1
|
Rittipornlertrak A, Nambooppha B, Muenthaisong A, Apinda N, Koonyosying P, Srisawat W, Chomjit P, Sangkakam K, Punyapornwithaya V, Tiwananthagorn S, Yokoyama N, Sthitmatee N. Immunization of Cattle With Recombinant Structural Ectodomains I and II of Babesia bovis Apical Membrane Antigen 1 [BbAMA-1(I/II)] Induces Strong Th1 Immune Response. Front Vet Sci 2022; 9:917389. [PMID: 35812841 PMCID: PMC9260583 DOI: 10.3389/fvets.2022.917389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/23/2022] [Indexed: 12/04/2022] Open
Abstract
Both strong innate and adaptive immune responses are an important component of protection against intraerythrocytic protozoan parasites. Resistance to bovine babesiosis is associated with interferon (IFN)-γ mediated responses. CD4+ T cells and macrophages have been identified as major effector cells mediating the clearance of pathogens. Previously, the apical membrane antigen 1 (AMA-1) was found to significantly induce the immune response inhibiting B. bovis merozoite growth and invasion. However, a detailed characterization of both humoral and cellular immune responses against the structure of B. bovis AMA-1 (BbAMA-1) has not yet been established. Herein, the present study aimed to express the recombinant BbAMA-1 domain I+II protein [rBbAMA-1(I/II)], which is the most predominant immune response region, and to characterize its immune response. As a result, cattle vaccinated with BbAMA-1(I/II) significantly developed high titters of total immunoglobulin (Ig) G antibodies and a high ratio of IgG2/IgG1 when compared to control groups. Interestingly, the BbAMA-1(I/II)-based formulations produced in our study could elicit CD4+ T cells and CD8+ T cells producing IFN-γ and tumor necrosis factor (TNF)-α. Collectively, the results indicate that immunization of cattle with BbAMA-1(I/II) could induce strong Th1 cell responses. In support of this, we observed the up-regulation of Th1 cytokine mRNA transcripts, including IFN-γ, TNF-α, Interleukin (IL)-2 and IL-12, in contrast to down regulation of IL-4, IL-6 and IL-10, which would be indicative of a Th2 cytokine response. Moreover, the up-regulation of inducible nitric oxide synthase (iNOS) was observed. In conclusion, this is the first report on the in-depth immunological characterization of the response to BbAMA-1. According to our results, BbAMA-1 is recognized as a potential candidate vaccine against B. bovis infection. As evidenced by the Th1 cell response, it could potentially provide protective immunity. However, further challenge-exposure with virulent B. bovis strain in immunized cattle would be needed to determine its protective efficacy.
Collapse
Affiliation(s)
- Amarin Rittipornlertrak
- Laboratory of Veterinary Vaccine and Biological Products, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
- Ruminant Clinic, Department of Food Animal Clinics, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Boondarika Nambooppha
- Laboratory of Veterinary Vaccine and Biological Products, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
- Department of Veterinary Bioscience and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Anucha Muenthaisong
- Laboratory of Veterinary Vaccine and Biological Products, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nisachon Apinda
- Laboratory of Veterinary Vaccine and Biological Products, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Pongpisid Koonyosying
- Laboratory of Veterinary Vaccine and Biological Products, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Wanwisa Srisawat
- Laboratory of Veterinary Vaccine and Biological Products, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Paweena Chomjit
- Laboratory of Veterinary Vaccine and Biological Products, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Kanokwan Sangkakam
- Laboratory of Veterinary Vaccine and Biological Products, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Veerasak Punyapornwithaya
- Ruminant Clinic, Department of Food Animal Clinics, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Saruda Tiwananthagorn
- Department of Veterinary Bioscience and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Naoaki Yokoyama
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Nattawooti Sthitmatee
- Laboratory of Veterinary Vaccine and Biological Products, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
- Department of Veterinary Bioscience and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
- Excellent Center in Veterinary Bioscience, Chiang Mai University, Chiang Mai, Thailand
- *Correspondence: Nattawooti Sthitmatee ;
| |
Collapse
|
2
|
Milani A, Basirnejad M, Bolhassani A. Heat-shock proteins in diagnosis and treatment: an overview of different biochemical and immunological functions. Immunotherapy 2020; 11:215-239. [PMID: 30730280 DOI: 10.2217/imt-2018-0105] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Heat-shock proteins (HSPs) have been involved in different functions including chaperone activity, protein folding, apoptosis, autophagy and immunity. The HSP families have powerful effects on the stimulation of innate immune responses through Toll-like receptors and scavenger receptors. Moreover, HSP-mediated phagocytosis directly enhances the processing and presentation of internalized antigens via the endocytic pathway in adaptive immune system. These properties of HSPs have been used for development of prophylactic and therapeutic vaccines against infectious and noninfectious diseases. Several studies also demonstrated the relationship between HSPs and drug resistance as well as their use as a novel biomarker for detecting tumors in patients. The present review describes different roles of HSPs in biology and medicine especially biochemical and immunological aspects.
Collapse
Affiliation(s)
- Alireza Milani
- Department of Hepatitis & AIDS, Pasteur Institute of Iran, Tehran, Iran.,Iranian Comprehensive Hemophilia Care Center, Tehran, Iran
| | | | - Azam Bolhassani
- Department of Hepatitis & AIDS, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
3
|
Rostami B, Irani S, Bolhassani A, Cohan RA. M918: A Novel Cell Penetrating Peptide for Effective Delivery of HIV-1 Nef and Hsp20-Nef Proteins into Eukaryotic Cell Lines. Curr HIV Res 2019; 16:280-287. [PMID: 30520377 PMCID: PMC6416460 DOI: 10.2174/1570162x17666181206111859] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/30/2018] [Accepted: 12/02/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND HIV-1 Nef protein is a possible attractive target in the development of therapeutic HIV vaccines including protein-based vaccines. The most important disadvantage of protein-based vaccines is their low immunogenicity which can be improved by heat shock proteins (Hsps) as an immunomodulator, and cell-penetrating peptides (CPPs) as a carrier. METHODS In this study, the HIV-1 Nef and Hsp20-Nef proteins were generated in E.coli expression system for delivery into the HEK-293T mammalian cell line using a novel cell-penetrating peptide, M918, in a non-covalent fashion. The size, zeta potential and morphology of the peptide/protein complexes were studied by scanning electron microscopy (SEM) and Zeta sizer. The efficiency of Nef and Hsp20-Nef transfection using M918 was evaluated by western blotting in HEK-293T cell line. RESULTS The SEM data confirmed the formation of discrete nanoparticles with a diameter of approximately 200-250 nm and 50-80 nm for M918/Nef and M918/Hsp20-Nef, respectively. The dominant band of ~ 27 kDa and ~ 47 kDa was detected in the transfected cells with the Nef/ M918 and Hsp20-Nef/ M918 nanoparticles at a molar ratio of 1:20 using anti-HIV-1 Nef monoclonal antibody. These bands were not detected in the un-transfected and transfected cells with Nef or Hsp20- Nef protein alone indicating that M918 could increase the penetration of Nef and Hsp20-Nef proteins into the cells. CONCLUSION These data suggest that M918 CPP can be used to enter HIV-1 Nef and Hsp20-Nef proteins inside mammalian cells efficiently as a promising approach in HIV-1 vaccine development.
Collapse
Affiliation(s)
- Bahareh Rostami
- Department of Biology, School of Basic Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shiva Irani
- Department of Biology, School of Basic Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Reza Ahangari Cohan
- Pilot Nano-Biotechnology Department, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
4
|
Development of an Indirect ELISA Based on a Recombinant Chimeric Protein for the Detection of Antibodies against Bovine Babesiosis. Vet Sci 2018; 5:vetsci5010013. [PMID: 29360801 PMCID: PMC5876563 DOI: 10.3390/vetsci5010013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/19/2018] [Accepted: 01/21/2018] [Indexed: 01/08/2023] Open
Abstract
The current method for Babesia spp. serodiagnosis based on a crude merozoite antigen is a complex and time-consuming procedure. An indirect enzyme-linked immunosorbent assay (iELISA) based on a recombinant multi-antigen of Babesia bovis (rMABbO) was developed for detection of antibodies in bovines suspected of infection with this parasite. The multi-antigen comprises gene fragments of three previously characterized B. bovis antigens: MSA-2c, RAP-1 and the Heat Shock protein 20 that are well-conserved among geographically distant strains. The cutoff value for the new rMABbo-iELISA was determined using 75 known—positive and 300 known—negative bovine sera previously tested for antibodies to B. bovis by the gold-standard ELISA which uses a merozoite lysate. A cutoff value of ≥35% was determined in these samples by receiver operator characteristic (ROC) curve analysis, showing a sensitivity of 95.9% and a specificity of 94.3%. The rMABbo-iELISA was further tested in a blind trial using an additional set of 263 field bovine sera from enzootic and tick-free regions of Argentina. Results showed a good agreement with the gold standard test with a Cohen’s kappa value of 0.76. Finally, the prevalence of bovine babesiosis in different tick enzootic regions of Argentina was analyzed where seropositivity values among 68–80% were obtained. A certain level of cross reaction was observed when samples from B. bigemina infected cattle were analyzed with the new test, which can be attributed to shared epitopes between 2 of the 3 antigens. This new rMABbo-iELISA could be considered a simpler alternative to detect anti Babesia spp. antibodies and appears to be well suited to perform epidemiological surveys at the herd level in regions where ticks are present.
Collapse
|
5
|
Rojas-Martínez C, Rodríguez-Vivas RI, Millán JVF, Bautista-Garfias CR, Castañeda-Arriola RO, Lira-Amaya JJ, Urióstegui PV, Carrasco JJO, Martínez JAÁ. Bovine babesiosis: Cattle protected in the field with a frozen vaccine containing Babesia bovis and Babesia bigemina cultured in vitro with a serum-free medium. Parasitol Int 2017; 67:190-195. [PMID: 29155165 DOI: 10.1016/j.parint.2017.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 09/21/2017] [Accepted: 11/15/2017] [Indexed: 01/02/2023]
Abstract
An attenuated live vaccine containing Babesia bovis and B. bigemina cultured in vitro with a serum-free medium was assessed for its clinical protection conferred of naïve cattle, under natural tick-challenge in a high endemicity zone to Babesia spp. Three groups of six animals were treated as follows: group I (GI) received a vaccine derived from parasites cultured with a free-serum medium; group II (GII) were immunized with the standard vaccine, with parasites cultured in a medium supplemented with 40% (v/v) bovine serum; and a control group (GIII) inoculated with non-infected bovine erythrocytes. Inocula were administered by IM route. Experimental animals were kept during 23days after vaccination in a cattle farm free of ticks and Babesia spp. Thereafter, cattle were moved to a high endemicity farm for natural exposure to Babesia spp. transmitted by Rhipicephalus microplus ticks. Protection against clinical babesiosis was observed in bovines belonging to GI (100%) and GII (83.33%), while the control animals (GIII) were not protected, and showed severe clinical signs, closely related to babesiosis, were observed for at least three consecutive days during the challenge. These were fever, anemia, which were measured simultaneously, and circulating parasites were detected by optic light microscopy. All cattle showed B. bovis and B. bigemina in stained blood films during the challenge; B. bovis antibody titers were higher than those to B. bigemina in GI and GII, and lower titers were determined in GIII. The protective capacity of the vaccine derived from B. bovis and B. bigemina cultured in vitro in a serum-free medium was demonstrated.
Collapse
Affiliation(s)
- Carmen Rojas-Martínez
- Centro Nacional de Investigación Disciplinaria en Parasitología Veterinaria (CENID-PAVET), Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Jiutepec, Morelos, Mexico; Campus de Ciencias Biológicas y Agropecuarias, FMVZ, Universidad Autónoma de Yucatán, km 15.5 Carretera Mérida-Xmatkuil, C.P. 97100, Mérida, Yucatán, Mexico
| | - Roger Iván Rodríguez-Vivas
- Campus de Ciencias Biológicas y Agropecuarias, FMVZ, Universidad Autónoma de Yucatán, km 15.5 Carretera Mérida-Xmatkuil, C.P. 97100, Mérida, Yucatán, Mexico
| | - Julio Vicente Figueroa Millán
- Centro Nacional de Investigación Disciplinaria en Parasitología Veterinaria (CENID-PAVET), Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Jiutepec, Morelos, Mexico
| | - Carlos Ramón Bautista-Garfias
- Centro Nacional de Investigación Disciplinaria en Parasitología Veterinaria (CENID-PAVET), Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Jiutepec, Morelos, Mexico
| | | | - José Juan Lira-Amaya
- Centro Nacional de Investigación Disciplinaria en Parasitología Veterinaria (CENID-PAVET), Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Jiutepec, Morelos, Mexico
| | - Patricia Vargas Urióstegui
- Centro Nacional de Investigación Disciplinaria en Parasitología Veterinaria (CENID-PAVET), Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Jiutepec, Morelos, Mexico
| | - Juan José Ojeda Carrasco
- Universidad Autónoma del Estado de México, Carretera Amecameca-Ayapango Km. 2.5, Amecameca, Estado de México, Mexico
| | - Jesús Antonio Álvarez Martínez
- Centro Nacional de Investigación Disciplinaria en Parasitología Veterinaria (CENID-PAVET), Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Jiutepec, Morelos, Mexico.
| |
Collapse
|
6
|
Han H, Yan Y, Dong H, Zhu S, Zhao Q, Zhai Q, Huang B. Characterization and expression analysis of a new small heat shock protein Hsp20.4 from Eimeria tenella. Exp Parasitol 2017; 183:13-22. [PMID: 29054823 DOI: 10.1016/j.exppara.2017.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 09/06/2017] [Accepted: 10/15/2017] [Indexed: 10/18/2022]
Abstract
Small heat shock proteins (sHsps) are ubiquitous and diverse molecular chaperones. Found in almost all organisms, they regulate protein refolding and protect cells from stress. Until now, no sHsp has been characterized in Eimeria tenella. In this study, the novel EtsHsp20.4 gene was cloned from E. tenella by rapid amplification of cDNA ends based on a previously identified expressed sequence tag. The full-length cDNA was 1019bp in length and contained an open reading frame of 558bp that encoded a 185-amino acid polypeptide with a calculated molecular weight of 20.4 kDa. The EtsHsp20.4 protein contained a distinct HSP20/alpha-crystallin domain that is the key determinant of their function as molecular chaperones and belongs to the HSP20 protein family. EtsHsp20.4 mRNA levels were higher in sporulated oocysts than in sporozoites or second-generation merozoites by real-time quantitative PCR, the transcription of EtsHsp20.4 was barely detectable in unsporulated oocysts. Immunolocalization with EtsHsp20.4 antibody showed that EtsHsp20.4 was mainly located on the surface of sporozoites, first-generation merozoites and second-generation merozoites. Following the development of parasites in DF-1 cells, EtsHsp20.4 protein was uniformly dispersed in trophozoites, immature schizonts, and mature schizonts. Malate dehydrogenase thermal aggregation assays indicated that recombinant EtsHsp20.4 had molecular chaperone activity in vitro. These results suggested that EtsHsp20.4 might be involved in sporulation in external environments and intracellular growth of the parasite in the host.
Collapse
Affiliation(s)
- Hongyu Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, PR China
| | - Yan Yan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, PR China
| | - Hui Dong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, PR China
| | - Shunhai Zhu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, PR China
| | - Qiping Zhao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, PR China
| | - Qi Zhai
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, PR China
| | - Bing Huang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China.
| |
Collapse
|
7
|
Pérez-Morales D, Espinoza B. The role of small heat shock proteins in parasites. Cell Stress Chaperones 2015; 20:767-80. [PMID: 26045203 PMCID: PMC4529861 DOI: 10.1007/s12192-015-0607-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 04/16/2015] [Accepted: 04/20/2015] [Indexed: 12/14/2022] Open
Abstract
The natural life cycle of many protozoan and helminth parasites involves exposure to several hostile environmental conditions. Under these circumstances, the parasites arouse a cellular stress response that involves the expression of heat shock proteins (HSPs). Small HSPs (sHSPs) constitute one of the main families of HSPs. The sHSPs are very divergent at the sequence level, but their secondary and tertiary structures are conserved and some of its members are related to α-crystallin from vertebrates. They are involved in a variety of cellular processes. As other HSPs, the sHSPs act as molecular chaperones; however, they have shown other activities apparently not related to chaperone action. In this review, the diverse activities of sHSPs in the major genera of protozoan and helminth parasites are described. These include stress response, development, and immune response, among others. In addition, an analysis comparing the sequences of sHSPs from some parasites using a distance analysis is presented. Because many parasites face hostile conditions through its life cycles the study of HSPs, including sHSPs, is fundamental.
Collapse
Affiliation(s)
- Deyanira Pérez-Morales
- Laboratorio de Estudios sobre Tripanosomiasis, Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, A.P. 70228, C.P. 04510 México, D.F. México
| | - Bertha Espinoza
- Laboratorio de Estudios sobre Tripanosomiasis, Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, A.P. 70228, C.P. 04510 México, D.F. México
| |
Collapse
|
8
|
Adaszek Ł, Jarosz Ł, Kalinowski M, Staniec M, Grądzki Z, Salmons B, Winiarczyk S. Changes in selected subpopulations of lymphocytes in dogs infected with Babesia canis treated with imidocarb. TIERAERZTLICHE PRAXIS AUSGABE KLEINTIERE HEIMTIERE 2015; 43:94-100. [PMID: 25771779 DOI: 10.15654/tpk-140409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 11/10/2014] [Indexed: 11/13/2022]
Abstract
OBJECTIVE The purpose of this study was to track changes in selected subpopulations of lymphocytes in the blood of dogs infected with Babesia (B.) canis and treated with imidocarb. MATERIAL AND METHODS The study included 16 dogs divided into two groups. The first group (n = 6) consisted of healthy control animals. Dogs of the se- cond group (n = 10) were infected with B. canis and after establishment of the diagnosis each animal received a single dose of imido- carb (5 mg/kg). Flow cytometry was used to enumerate several immune cell phenotypes. RESULTS It was concluded that the invasion of B. canis contributes to the decreased percentage of CD3+, CD4+, CD8+, CD21+ lymphocytes in the blood of infected animals. The decreased level of tested subpopulations of lymphocytes in group 2 persisted for the entire 12-day period of the test. After the administration of imidocarb, each tested lymphocyte fraction in the blood of the dogs with babesiosis increased, but did not reach physiological values. CONCLUSION The presented results indicate that the resolution of clinical signs associated with babesiosis may be related to the stimulation and intensity of cellular immunity, dependent on the CD4+ T cells profile. After administration of imidocarb, the parasitemia is cleared which allows the recovery of the lymphocyte populations.
Collapse
Affiliation(s)
- Ł Adaszek
- Dr. med. vet. Lukasz Adaszek, Department of Epizootiology and Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences, 30 Głęboka St. 20-612, Lublin, Poland,
| | | | | | | | | | | | | |
Collapse
|
9
|
|
10
|
Jaramillo Ortiz JM, Del Médico Zajac MP, Zanetti FA, Molinari MP, Gravisaco MJ, Calamante G, Wilkowsky SE. Vaccine strategies against Babesia bovis based on prime-boost immunizations in mice with modified vaccinia Ankara vector and recombinant proteins. Vaccine 2014; 32:4625-32. [DOI: 10.1016/j.vaccine.2014.06.075] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 06/04/2014] [Accepted: 06/13/2014] [Indexed: 12/25/2022]
|
11
|
Molecular cloning and characterization of a novel heat shock protein 20 of Babesia orientalis. Vet Parasitol 2014; 204:177-83. [DOI: 10.1016/j.vetpar.2014.04.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 04/15/2014] [Accepted: 04/21/2014] [Indexed: 11/18/2022]
|
12
|
Florin-Christensen M, Suarez CE, Rodriguez AE, Flores DA, Schnittger L. Vaccines against bovine babesiosis: where we are now and possible roads ahead. Parasitology 2014; 141:1-30. [PMID: 25068315 DOI: 10.1017/s0031182014000961] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
SUMMARY Bovine babesiosis caused by the tick-transmitted haemoprotozoans Babesia bovis, Babesia bigemina and Babesia divergens commonly results in substantial cattle morbidity and mortality in vast world areas. Although existing live vaccines confer protection, they have considerable disadvantages. Therefore, particularly in countries where large numbers of cattle are at risk, important research is directed towards improved vaccination strategies. Here a comprehensive overview of currently used live vaccines and of the status quo of experimental vaccine trials is presented. In addition, pertinent research fields potentially contributing to the development of novel non-live and/or live vaccines are discussed, including parasite antigens involved in host cell invasion and in pathogen-tick interactions, as well as the protective immunity against infection. The mining of available parasite genomes is continuously enlarging the array of potential vaccine candidates and, additionally, the recent development of a transfection tool for Babesia can significantly contribute to vaccine design. However, the complication and high cost of vaccination trials hinder Babesia vaccine research, and have so far seriously limited the systematic examination of antigen candidates and prevented an in-depth testing of formulations using different immunomodulators and antigen delivery systems.
Collapse
Affiliation(s)
| | - Carlos E Suarez
- Department of Veterinary Microbiology and Pathology,Washington State University,Pullman, WA 99164-7040,USA
| | - Anabel E Rodriguez
- Instituto de Patobiologia,CICVyA, INTA-Castelar, 1686 Hurlingham,Argentina
| | - Daniela A Flores
- Instituto de Patobiologia,CICVyA, INTA-Castelar, 1686 Hurlingham,Argentina
| | | |
Collapse
|
13
|
Expression and immunological characterization of the heat shock protein-70 homologue from Babesia bigemina. Vet Parasitol 2012; 190:401-10. [DOI: 10.1016/j.vetpar.2012.06.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 06/25/2012] [Accepted: 06/26/2012] [Indexed: 11/17/2022]
|
14
|
Vichido R, Falcon A, Ramos JA, Alvarez A, Figueroa JV, Norimine J, Brown WC, Castro LA, Mosqueda J. Expression analysis of heat shock protein 20 and rhoptry-associated protein 1a in sexual stages and kinetes of Babesia bigemina. Ann N Y Acad Sci 2009; 1149:136-40. [PMID: 19120192 DOI: 10.1196/annals.1428.073] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Heat shock protein 20 (HSP-20) and rhoptry-associated protein 1a (RAP-1a) are two proteins considered as candidates to be included in vaccines or diagnostics methods for the control of bovine babesiosis. It has been hypothesized that both genes have a basic function in the cellular physiology of erythrocyte-infecting stages; it is not known if they have a functional role in tick stages. The objective of this work was to analyze whether hsp-20 and rap-1a are expressed in sexual stages and kinetes of Babesia bigemina. Purified RNA from sexual stages and kinetes was analyzed by reverse transcriptase (RT)-PCR with specific primers for hsp-20 or rap-1a. Expression analysis was carried out using an indirect immunofluorescence test with specific antibodies against HSP-20 and RAP-1a. Results obtained by RT-PCR showed amplicons for hsp-20 and rap-1a in sexual stages and kinetes. Positive signals were also detected when sexual stages and kinetes were analyzed with specific antibodies for HSP-20 and RAP-1a. The results obtained here confirm the hypothesis that the genes hsp-20 and rap-1a from B. bigemina are expressed in sexual stages and kinetes and stress the importance of these proteins in the cellular physiology of tick stages.
Collapse
Affiliation(s)
- Rodrigo Vichido
- Centro Nacional de Investigación Disciplinaria en Parasitologia, Veterinaria-Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Jiutepec, Morelos, México
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Montero E, Rodriguez M, Gonzalez LM, Lobo CA. Babesia divergens: Identification and characterization of BdHSP-20, a small heat shock protein. Exp Parasitol 2008; 119:238-45. [DOI: 10.1016/j.exppara.2008.01.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Revised: 01/25/2008] [Accepted: 01/29/2008] [Indexed: 10/22/2022]
|
16
|
Brown WC, Norimine J, Goff WL, Suarez CE, McElwain TF. Prospects for recombinant vaccines against Babesia bovis and related parasites. Parasite Immunol 2006; 28:315-27. [PMID: 16842268 DOI: 10.1111/j.1365-3024.2006.00849.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Babesial parasites infect cattle in tropical and temperate regions of the world and cause significant morbidity and mortality. Discovery of protective antigens that could be used in a killed vaccine has been slow and to date there are few promising vaccine candidates for cattle Babesia. This review describes mechanisms of protective innate and adaptive immune responses to babesial parasites and different strategies to identify potentially protective protein antigens of B. bovis, B. bigemina, and B. divergens. Successful parasites often cause persistent infection, and this paper also discusses how B. bovis evades and regulates the immune response to promote survival of parasite and host. Development of successful non-living recombinant vaccines will depend on increased understanding of protective immune mechanisms and availability of parasite genomes.
Collapse
Affiliation(s)
- W C Brown
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040, USA.
| | | | | | | | | |
Collapse
|
17
|
Lee S, Carson K, Rice-Ficht A, Good T. Small heat shock proteins differentially affect Abeta aggregation and toxicity. Biochem Biophys Res Commun 2006; 347:527-33. [PMID: 16828710 DOI: 10.1016/j.bbrc.2006.06.128] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Accepted: 06/22/2006] [Indexed: 10/24/2022]
Abstract
beta-Amyloid (Abeta) is the primary protein component of senile plaques in Alzheimer's disease (AD) and has been implicated in neurotoxicity associated with the disease. Abeta aggregates readily in vitro and in vivo, and its toxicity has been linked to its aggregation state. Prevention of Abeta aggregation has been investigated as a means to prevent Abeta toxicity associated with AD. Recently we found that Hsp20 from Babesia bovis prevented both Abeta aggregation and toxicity [S. Lee, K. Carson, A. Rice-Ficht, T. Good, Hsp20, a novel alpha-crystallin, prevents Abeta fibril formation and toxicity, Protein Sci. 14 (2005) 593-601.]. In this work, we examined the mechanism of Hsp20 interaction with Abeta1-40 and compared its activity to that of other small heat shock proteins, carrot Hsp17.7 and human Hsp27. While all three small heat shock proteins were able to prevent Abeta aggregation, only Hsp20 was able to attenuate Abeta toxicity in cultured SH-SY5Y cells. Understanding the mechanism of the Hsp20-Abeta interaction may provide insights into the design of the next generation of Abeta aggregation and toxicity inhibitors.
Collapse
Affiliation(s)
- Sungmun Lee
- Department of Chemical Engineering, Texas A&M University, College Station, TX 77843-3122, USA
| | | | | | | |
Collapse
|
18
|
Abstract
Babesia bovis causes an acute and often fatal infection in adult cattle, which if resolved, leads to a state of persistent infection in otherwise clinically healthy cattle. Persistently infected cattle are generally resistant to reinfection with related parasite strains, and this resistance in the face of infection is termed concomitant immunity. Young animals are generally more resistant than adults to B. bovis infection, which is dependent on the spleen. Despite the discovery of B. bovis over a century ago, there are still no safe and effective vaccines that protect cattle against this most virulent of babesial pathogens. Immunodominant antigens identified by serological reactivity and dominant T-cell antigens have failed to protect cattle against challenge. This review describes the innate and acquired immune mechanisms that define resistance in young calves and correlate with the development of concomitant immunity in older cattle following recovery from clinical disease. The first sections will discuss the innate immune responses by peripheral blood- and spleen-derived macrophages in cattle induced by B. bovis merozoites and their products that limit parasite replication, and comparison of natural killer cell responses in the spleens of young (resistant) and adult (susceptible) cattle. Later sections will describe a proteomic approach to discover novel antigens, especially those recognized by immune CD4+ T lymphocytes. Because immunodominant antigens have failed to stimulate protective immunity, identification of subdominant antigens may prove to be important for effective vaccines. Identification of CD4+ T-cell immunogenic proteins and their epitopes, together with the MHC class II restricting elements, now makes possible the development of MHC class II tetramers and application of this technology to both quantify antigen-specific lymphocytes during infection and discover novel antigenic epitopes. Finally, with the imminent completion of the B. bovis genome-sequencing project, strategies using combined genomic and proteomic approaches to identify novel vaccine candidates will be reviewed. The availability of an annotated B. bovis genome will, for the first time, enable identification of non-immunodominant proteins that may stimulate protective immunity.
Collapse
Affiliation(s)
- Wendy C Brown
- Program in Vector-borne Disease, Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-7040, USA.
| | | | | | | |
Collapse
|
19
|
Norimine J, Ruef BJ, Palmer GH, Knowles DP, Herndon DR, Rice-Ficht AC, Brown WC. A novel 78-kDa fatty acyl-CoA synthetase (ACS1) of Babesia bovis stimulates memory CD4+ T lymphocyte responses in B. bovis-immune cattle. Mol Biochem Parasitol 2006; 147:20-9. [PMID: 16469396 DOI: 10.1016/j.molbiopara.2006.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2005] [Revised: 12/26/2005] [Accepted: 01/05/2006] [Indexed: 11/24/2022]
Abstract
Antigen-specific CD4+ T lymphocyte responses contribute to protective immunity against Babesia bovis, however the antigens that induce these responses remain largely unknown. A proteomic approach was used to identify novel B. bovis antigens recognized by memory CD4+ T cells from immune cattle. Fractions obtained from merozoites separated by continuous-flow electrophoresis (CFE) that contained proteins ranging from 20 to 83 kDa were previously shown to stimulate memory CD4+ lymphocyte responses in B. bovis-immune cattle. Expression library screening with rabbit antiserum raised against an immunostimulatory CFE fraction identified a clone encoding a predicted 78 kDa protein. BLAST analysis revealed sequence identity of this B. bovis protein with Plasmodium falciparum fatty acyl coenzyme A synthetase (ACS) family members (PfACS1-PfACS11), and the protein was designated B. bovis acyl-CoA synthetase 1 (ACS1). Southern blot analysis indicated that B. bovis ACS1 is encoded by a single gene, although BLAST analysis of the preliminary B. bovis genome sequence identified two additional family members, ACS2 and ACS3. Peripheral blood lymphocytes and CD4+ T cell lines from B. bovis-immune cattle proliferated significantly against recombinant ACS1 protein, consistent with its predicted involvement in protective immunity. However, immune sera from cattle recovered from B. bovis infection did not react with ACS1, indicating that epitopes may be conformationally dependent.
Collapse
Affiliation(s)
- Junzo Norimine
- Program in Vector-Borne Diseases, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Lee S, Carson K, Rice-Ficht A, Good T. Hsp20, a novel alpha-crystallin, prevents Abeta fibril formation and toxicity. Protein Sci 2005; 14:593-601. [PMID: 15722443 PMCID: PMC2279291 DOI: 10.1110/ps.041020705] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Beta-amyloid (Abeta) is a major protein component of senile plaques in Alzheimer's disease, and is neurotoxic when aggregated. The size of aggregated Abeta responsible for the observed neurotoxicity and the mechanism of aggregation are still under investigation; however, prevention of Abeta aggregation still holds promise as a means to reduce Abeta neurotoxicity. In research presented here, we show that Hsp20, a novel alpha-crystallin isolated from the bovine erythrocyte parasite Babesia bovis, was able to prevent aggregation of denatured alcohol dehydrogenase when the two proteins are present at near equimolar levels. We then examined the ability of Hsp20 produced as two different fusion proteins to prevent Abeta amyloid formation as indicated by Congo Red binding; we found that not only was Hsp20 able to dramatically reduce Congo Red binding, but it was able to do so at molar ratios of Hsp20 to Abeta of 1 to 1000. Electron microscopy confirmed that Hsp20 does prevent Abeta fibril formation. Hsp20 was also able to significantly reduce Abeta toxicity to both SH-SY5Y and PC12 neuronal cells at similar molar ratios. At high concentrations of Hsp20, the protein no longer displays its aggregation inhibition and toxicity attenuation properties. Size exclusion chromatography indicated that Hsp20 was active at low concentrations in which dimer was present. Loss of activity at high concentrations was associated with the presence of higher oligomers of Hsp20. This work could contribute to the development of a novel aggregation inhibitor for prevention of Abeta toxicity.
Collapse
Affiliation(s)
- Sungmun Lee
- Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843-3122, USA
| | | | | | | |
Collapse
|
21
|
Norimine J, Mosqueda J, Palmer GH, Lewin HA, Brown WC. Conservation of Babesia bovis small heat shock protein (Hsp20) among strains and definition of T helper cell epitopes recognized by cattle with diverse major histocompatibility complex class II haplotypes. Infect Immun 2004; 72:1096-106. [PMID: 14742557 PMCID: PMC321645 DOI: 10.1128/iai.72.2.1096-1106.2003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Babesia bovis small heat shock protein (Hsp20) is recognized by CD4+ T lymphocytes from cattle that have recovered from infection and are immune to challenge. This candidate vaccine antigen is related to a protective antigen of Toxoplasma gondii, Hsp30/bag1, and both are members of the alpha-crystallin family of proteins that can serve as molecular chaperones. In the present study, immunofluorescence microscopy determined that Hsp20 is expressed intracellularly in all merozoites. Importantly, Hsp20 is also expressed by tick larval stages, including sporozoites, so that natural tick-transmitted infection could boost a vaccine-induced response. The predicted amino acid sequence of Hsp20 from merozoites is completely conserved among different B. bovis strains. To define the location of CD4+ T-cell epitopes for inclusion in a multiepitope peptide or minigene vaccine construct, truncated recombinant Hsp20 proteins and overlapping peptides were tested for their ability to stimulate T cells from immune cattle. Both amino-terminal (amino acids [aa] 1 to 105) and carboxy-terminal (aa 48 to 177) regions were immunogenic for the majority of cattle in the study, stimulating strong proliferation and IFN-gamma production. T-cell lines from all individuals with distinct DRB3 haplotypes responded to aa 11 to 62 of Hsp20, which contained one or more immunodominant epitopes for each animal. One epitope, DEQTGLPIKS (aa 17 to 26), was identified by T-cell clones. The presence of strain-conserved T helper cell epitopes in aa 11 to 62 of the ubiquitously expressed Hsp20 that are presented by major histocompatibility complex class II molecules represented broadly in the Holstein breed supports the inclusion of this region in vaccine constructs to be tested in cattle.
Collapse
Affiliation(s)
- Junzo Norimine
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington 99164, USA
| | | | | | | | | |
Collapse
|
22
|
Norimine J, Mosqueda J, Suarez C, Palmer GH, McElwain TF, Mbassa G, Brown WC. Stimulation of T-helper cell gamma interferon and immunoglobulin G responses specific for Babesia bovis rhoptry-associated protein 1 (RAP-1) or a RAP-1 protein lacking the carboxy-terminal repeat region is insufficient to provide protective immunity against virulent B. bovis challenge. Infect Immun 2003; 71:5021-32. [PMID: 12933845 PMCID: PMC187345 DOI: 10.1128/iai.71.9.5021-5032.2003] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Rhoptry-associated protein 1 (RAP-1) is a targeted vaccine antigen for Babesia bovis and Babesia bigemina infections of cattle. The 60-kDa B. bovis RAP-1 is recognized by antibodies and T lymphocytes from cattle that recovered from infection and were immune to subsequent challenge. Immunization with native or recombinant protein was reported to reduce parasitemias in challenged animals. We recently reported that the NT domain of B. bovis RAP-1 contained immunodominant T-cell epitopes, whereas the repeat-rich CT domain was less immunostimulatory for T lymphocytes from cattle immune to B. bovis. The present study was therefore designed to test the hypothesis that the NT region of RAP-1, used as a vaccine with interleukin-12 and RIBI (catalog no. R-730; RIBI Immunochem Research, Inc., Hamilton, Mont. [now Corixa, Seattle, Wash.]) adjuvant to induce a type 1 response, would prime calves for antibody and T-helper cell responses comparable to or greater than those induced by full-length RAP-1 containing the C-terminal repeats. Furthermore, a type 1 immune response to RAP-1 was hypothesized to induce protection against challenge. Following four inoculations of either recombinant full-length RAP-1 or RAP-1 NT protein, RAP-1-specific immunoglobulin G (IgG) titers, T-lymphocyte proliferation, and gamma interferon production were similar. Similar numbers of NT region peptides were recognized. However, in spite of the presence of strong RAP-1-specific IgG and CD4(+)-T-lymphocyte responses that were recalled upon challenge, neither antigen stimulated a protective immune response. We conclude that successful priming of calves with recombinant RAP-1 and adjuvants that elicit strong Th1 cell and IgG responses is insufficient to protect calves against virulent B. bovis challenge.
Collapse
Affiliation(s)
- Junzo Norimine
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington 99164, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Norimine J, Suarez CE, McElwain TF, Florin-Christensen M, Brown WC. Immunodominant epitopes in Babesia bovis rhoptry-associated protein 1 that elicit memory CD4(+)-T-lymphocyte responses in B. bovis-immune individuals are located in the amino-terminal domain. Infect Immun 2002; 70:2039-48. [PMID: 11895969 PMCID: PMC127881 DOI: 10.1128/iai.70.4.2039-2048.2002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Babesia bovis rhoptry-associated protein 1 (RAP-1), which confers partial protection against B. bovis challenge, is recognized by antibodies and T lymphocytes from cattle that have recovered from infection and are immune to subsequent challenge. RAP-1 is a 60-kDa protein with an N-terminal (NT) region that contains four cysteine residues conserved among all Babesia RAP-1 family members and a C-terminal (CT) region that contains multiple, degenerate, tandem 23-amino-acid (aa) repeats. To define the location of CD4(+)-T-cell epitopes for vaccine development using a recombinant protein or minigene construct, a series of truncated recombinant RAP-1 proteins and peptides were tested for stimulation of T-cell lines derived from B. bovis-immune cattle. CD4(+)-T-cell lines from three B. bovis-immune cattle with different DRB3 haplotypes responded to the NT region of RAP-1, whereas T cells from only one animal responded weakly to the CT region. T-cell lines from the three individuals recognized two to six NT-region peptides spanning aa 134 to 316 and representing at least four dominant epitopes. Using RAP-1-specific CD4(+)-T-cell clones, two NT-region epitopes, EYLVNKVLYMATMNYKT (aa 187 to 203) and EAPWYKRWIKKFR (aa 295 to 307), and one CT-region repeat epitope, FREAPQATKHFL, which is present twice at aa positions 391 to 402 and 414 to 425, were identified. Several peptides representing degenerate repeats of the agonist CT-region peptide FREAPQATKHFL neither stimulated responses of T-cell clones specific for this peptide nor inhibited responses to the agonist peptide. Upon stimulation with specific antigen, T-cell clones specific for NT or CT epitopes produced gamma interferon. The presence of T-helper-cell epitopes in the NT domain of RAP-1, which is highly conserved among otherwise antigenically different strains of B. bovis, supports the inclusion of this region in vaccine constructs to be tested in cattle.
Collapse
Affiliation(s)
- Junzo Norimine
- Program in Vector-Borne Diseases, Department of Veterinary Microbiology and Pathology Animal Disease Research Unit, Washington State University, Pullman, Washington 99164, USA
| | | | | | | | | |
Collapse
|