1
|
He Z, Hu M, Zha YH, Li ZC, Zhao B, Yu LL, Yu M, Qian Y. Piracetam ameliorated oxygen and glucose deprivation-induced injury in rat cortical neurons via inhibition of oxidative stress, excitatory amino acids release and P53/Bax. Cell Mol Neurobiol 2014; 34:539-47. [PMID: 24570112 PMCID: PMC11488888 DOI: 10.1007/s10571-014-0037-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Accepted: 02/14/2014] [Indexed: 12/23/2022]
Abstract
Our previous work has demonstrated that piracetam inhibited the decrease in amino acid content induced by chronic hypoperfusion, ameliorated the dysfunction of learning and memory in a hypoperfusion rat model, down-regulated P53, and BAX protein, facilitated the synaptic plasticity, and may be helpful in the treatment of vascular dementia. To explore the precise mechanism, the present study further evaluated effects of piracetam on Oxygen and glucose deprivation (OGD)-induced neuronal damage in rat primary cortical cells. The addition of piracetam to the cultured cells 12 h before OGD for 4 h significantly reduced neuronal damage as determined by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and lactate dehydrogenase release experiments. Piracetam also lowered the levels of malondialdehyde, nitrogen monoxidum, and xanthine oxidase which was increased in the OGD cells, and enhanced the activities of superoxide dismutase and glutathione peroxidase, which were decreased in the OGD cells. We also demonstrated that piracetam could decrease glutamate and aspartate release when cortical cells were subjected to OGD. Furthermore, Western blot study demonstrated that piracetam attenuated the increased expression of P53 and BAX protein in OGD cells. These observations demonstrated that piracetam reduced OGD-induced neuronal damage by inhibiting the oxidative stress and decreasing excitatory amino acids release and lowering P53/Bax protein expression in OGD cells.
Collapse
Affiliation(s)
- Zhi He
- Medical School of China Three Gorges University, Yichang, China
| | - Min Hu
- Medical School of China Three Gorges University, Yichang, China
| | - Yun-hong Zha
- The First Renmin Hospital of Yichang City, Yichang, China
| | - Zi-cheng Li
- Medical School of China Three Gorges University, Yichang, China
| | - Bo Zhao
- Medical School of China Three Gorges University, Yichang, China
| | - Ling-ling Yu
- Medical School of China Three Gorges University, Yichang, China
| | - Min Yu
- The First Renmin Hospital of Yichang City, Yichang, China
| | - Ying Qian
- Department of Obstetrics and Gynecology, East Hospital, Tongji University, Shanghai, China
| |
Collapse
|
2
|
Dobrivojević M, Špiranec K, Sinđić A. Involvement of bradykinin in brain edema development after ischemic stroke. Pflugers Arch 2014; 467:201-12. [DOI: 10.1007/s00424-014-1519-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 04/07/2014] [Accepted: 04/09/2014] [Indexed: 01/04/2023]
|
3
|
Campisi A, Spatuzza M, Russo A, Raciti G, Vanella A, Stanzani S, Pellitteri R. Expression of tissue transglutaminase on primary olfactory ensheathing cells cultures exposed to stress conditions. Neurosci Res 2011; 72:289-95. [PMID: 22222252 DOI: 10.1016/j.neures.2011.12.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 12/14/2011] [Accepted: 12/15/2011] [Indexed: 01/27/2023]
Abstract
Tissue transglutaminase (TG2), a multifunctional enzyme implicated in cellular proliferation and differentiation processes, plays a modulatory role in the cell response to stressors. Herein, we used olfactory ensheathing cells (OECs), representing an unusual population of glial cells to promote axonal regeneration and to provide trophic support, as well as to assess whether the effect of some Growth Factors (GFs), NGF, bFGF or GDNF, on TG2 overexpression induced by stress conditions, such as glutamate or lipopolysaccaride (LPS). Glial Fibrillary Acidic Protein (GFAP) and vimentin were used as markers of astroglial differentiation and cytoskeleton component, respectively. Glutamate or LPS treatment induced a particular increase of TG2 expression. A pre-treatment of the cells with the GFs restored the levels of the protein to that of untreated ones. Our results demonstrate that the treatment of OECs with the GFs was able to restore the OECs oxidative status as modified by stress, also counteracting TG2 overexpression. It suggests that, in OECs, TG2 modulation or inhibition induced by GFs might represent a therapeutic target to control the excitotoxicity and/or inflammation, which are involved in several acute and chronic brain diseases.
Collapse
Affiliation(s)
- Agata Campisi
- Department of Drug Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | | | | | | | | | | | | |
Collapse
|
4
|
Park KA, Fehrenbacher JC, Thompson EL, Duarte DB, Hingtgen CM, Vasko MR. Signaling pathways that mediate nerve growth factor-induced increase in expression and release of calcitonin gene-related peptide from sensory neurons. Neuroscience 2010; 171:910-23. [PMID: 20870010 DOI: 10.1016/j.neuroscience.2010.09.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 08/27/2010] [Accepted: 09/18/2010] [Indexed: 01/10/2023]
Abstract
Nerve growth factor (NGF) can augment transmitter release in sensory neurons by acutely sensitizing sensory neurons and by increasing the expression of calcitonin gene-related peptide (CGRP) over time. The current study examined the intracellular signaling pathways that mediate these two temporally distinct effects of NGF to augment CGRP release from sensory neurons. Growing sensory neurons in 30 or 100 ng/mL of NGF for 7 days increases CGRP content and this increase augments the amount of CGRP that is released by high extracellular potassium. Overexpressing a dominant negative Ras, Ras(17N) or treatment with a farnesyltransferase inhibitor attenuates the NGF-induced increase in CGRP content. Conversely, overexpressing a constitutively active Ras augments the NGF-induced increase in content of CGRP. Inhibiting mitogen activated protein kinase (MEK) activity also blocks the ability of NGF to increase CGRP expression. In contrast to the ability of chronic NGF to increase peptide content, acute exposure of sensory neurons to 100 ng/mL NGF augments capsaicin-evoked release of CGRP without affecting the content of CGRP. This sensitizing action of NGF is not affected by inhibiting Ras, MEK, or PI3 kinases. In contrast, the NGF-induced increase in capsaicin-evoked release of CGRP is blocked by the protein kinase C (PKC) inhibitor, BIM and the Src family kinases inhibitor, PP2. These data demonstrate that different signaling pathways mediate the alterations in expression of CGRP by chronic NGF and the acute actions of the neurotrophin to augment capsaicin-evoked release of CGRP in the absence of a change in the content of the peptide.
Collapse
Affiliation(s)
- K A Park
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, 635 Barnhill Drive A401, Indianapolis, IN 46202, USA
| | | | | | | | | | | |
Collapse
|
5
|
Zeng Y, Lv X, Zeng S, Shi J. Activity-dependent neuronal control of gap-junctional communication in fibroblasts. Brain Res 2009; 1280:13-22. [DOI: 10.1016/j.brainres.2009.05.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Revised: 05/07/2009] [Accepted: 05/13/2009] [Indexed: 10/20/2022]
|
6
|
Xie W, Strong JA, Zhang JM. Early blockade of injured primary sensory afferents reduces glial cell activation in two rat neuropathic pain models. Neuroscience 2009; 160:847-57. [PMID: 19303429 DOI: 10.1016/j.neuroscience.2009.03.016] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Revised: 03/05/2009] [Accepted: 03/09/2009] [Indexed: 12/16/2022]
Abstract
Satellite glial cells in the dorsal root ganglion (DRG), like the better-studied glia cells in the spinal cord, react to peripheral nerve injury or inflammation by activation, proliferation, and release of messengers that contribute importantly to pathological pain. It is not known how information about nerve injury or peripheral inflammation is conveyed to the satellite glial cells. Abnormal spontaneous activity of sensory neurons, observed in the very early phase of many pain models, is one plausible mechanism by which injured sensory neurons could activate neighboring satellite glial cells. We tested effects of locally inhibiting sensory neuron activity with sodium channel blockers on satellite glial cell activation in a rat spinal nerve ligation (SNL) model. SNL caused extensive satellite glial cell activation (as defined by glial fibrillary acidic protein [GFAP] immunoreactivity) which peaked on day 1 and was still observed on day 10. Perfusion of the axotomized DRG with the Na channel blocker tetrodotoxin (TTX) significantly reduced this activation at all time points. Similar findings were made with a more distal injury (spared nerve injury model), using a different sodium channel blocker (bupivacaine depot) at the injury site. Local DRG perfusion with TTX also reduced levels of nerve growth factor (NGF) in the SNL model on day 3 (when activated glia are an important source of NGF), without affecting the initial drop of NGF on day 1 (which has been attributed to loss of transport from target tissues). Local perfusion in the SNL model also significantly reduced microglia activation (OX-42 immunoreactivity) on day 3 and astrocyte activation (GFAP immunoreactivity) on day 10 in the corresponding dorsal spinal cord. The results indicate that early spontaneous activity in injured sensory neurons may play important roles in glia activation and pathological pain.
Collapse
Affiliation(s)
- W Xie
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267-0531, USA
| | | | | |
Collapse
|
7
|
He Z, Lu Q, Xu X, Huang L, Chen J, Guo L. DDPH ameliorated oxygen and glucose deprivation-induced injury in rat hippocampal neurons via interrupting Ca2+ overload and glutamate release. Eur J Pharmacol 2008; 603:50-5. [PMID: 19105952 DOI: 10.1016/j.ejphar.2008.12.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Revised: 11/19/2008] [Accepted: 12/02/2008] [Indexed: 11/26/2022]
Abstract
Our previous work has demonstrated that DDPH (1-(2, 6-dimethylphenoxy)-2-(3, 4-dimethoxyphenylethylamino) propane hydrochloride), a competitive alpha(1)-adrenoceptor antagonist, could improve cognitive deficits, reduce histopathological damage and facilitate synaptic plasticity in vivo possibly via increasing NR2B (NMDA receptor 2B) expression and antioxidation of DDPH itself. The present study further evaluated effects of DDPH on OGD (Oxygen and glucose deprivation)-induced neuronal damage in rat primary hippocampal cells. The addition of DDPH to the cultured cells 12 h before OGD for 4 h significantly reduced neuronal damage as determined by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and LDH (lactate dehydrogenase) release experiments. The effects of DDPH on intracellular calcium concentration were explored by Fura-2 based calcium imaging techniques and results showed that DDPH at the dosages of 5 microM and 10 microM suppressed the increase of intracellular calcium ([Ca(2+)](i)) stimulated by 50 mM KCl in Ca(2+)-containing extracellular solutions. However, DDPH couldn't suppress the increase of [Ca(2+)](i) induced by both 50 microM glutamate in Ca(2+)-containing extracellular solutions and 20 microM ATP (Adenosine Triphosphate) in Ca(2+)-free solution. These results indicated that DDPH prevented [Ca(2+)](i) overload in hippocampal neurons by blocking Ca(2+) influx (voltage-dependent calcium channel) but not Ca(2+) mobilization from the intracellular Ca(2+) store in endoplasm reticulum (ER). We also demonstrated that DDPH could decrease glutamate release when hippocampal cells were subjected to OGD. These observations demonstrated that DDPH protected hippocampal neurons against OGD-induced damage by preventing the Ca(2+) influx and decreasing glutamate release.
Collapse
Affiliation(s)
- Zhi He
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.
| | | | | | | | | | | |
Collapse
|
8
|
Levy BDFA, Cunha JDC, Chadi G. Cellular analysis of S100Beta and fibroblast growth factor-2 in the dorsal root ganglia and sciatic nerve of rodents. focus on paracrine actions of activated satellite cells after axotomy. Int J Neurosci 2007; 117:1481-503. [PMID: 17729158 DOI: 10.1080/15569520701502716] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The role of satellite cells, a type of peripheral glia, in the paracrine mechanisms related to neuronal maintenance and plasticity in the dorsal root ganglia (DRG) needs to be further investigated. This study employed immunohistochemistry and image analysis to investigate basic fibroblast growth factor (bFGF, FGF-2) and S100Beta immunoreactivities in the DRG and sciatic nerve of the rat and mouse. Well-characterized antibodies against bovine (residues 1-24) and rat (residues 1-23) FGF-2 were employed. Furthermore, the state of satellite cell reaction and changes in the FGF-2/S100Beta immunoreactivity were analyzed after axotomy of rat sciatic nerve. Scattered neurons and the majority of the satellite cells of the rat DRG and also Schwann cells of the rat sciatic nerve stained for S100Beta. In the mouse, strong S100Beta was encountered in the majority of sensory neurons and Schwann cells. Moderate FGF-2 (residues 1-24) immunoreactivity was found in scattered small size neurons of the rat DRG. A strong FGF-2 (residues 1-23) immunoreactivity was achieved in the satellite cells of rat DRG. Both FGF-2 antisera showed strong labeling in the mouse DRG sensory neurons. Activated satellite cells of the axotomized DRG possessed increased amount of FGF-2 and S100Beta immunoreactivity as demonstrated by quantitative image analysis. The proximal stump of the lesioned rat sciatic nerve showed increased FGF-2 (residues 1-24 and 1-23) in the Schwann cells, myelin sheaths, and neuronal fibers, without changes in the level of S100Beta immunoreactivity. Results suggested a possible interaction between FGF-2 and S100Beta in activated satellite cells of the DRG, which might trigger paracrine actions in the axotomized sensory neurons.
Collapse
|
9
|
D'Sa C, Gross J, Francone VP, Morest DK. Plasticity of synaptic endings in the cochlear nucleus following noise-induced hearing loss is facilitated in the adult FGF2 overexpressor mouse. Eur J Neurosci 2007; 26:666-80. [PMID: 17651425 DOI: 10.1111/j.1460-9568.2007.05695.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In adult mammals a single exposure to loud noise can damage cochlear hair cells and initiate subsequent episodes of degeneration of axonal endings in the cochlear nucleus (CN). Possible mechanisms are loss of trophic support and/or excitotoxicity. Fibroblast growth factor 2 (FGF2), important for development, might be involved in either mechanism. To test this hypothesis, we noise-exposed FGF2 overexpressor mice and observed the effects on synaptic endings by immunolabelling for SV2, a synaptic vesicle protein, at 1, 2, 4, and 8 weeks after noise exposure. SV2 staining was observed in two major locations; perisomatic, representing axo-somatic terminals, and neuropil, representing axo-dendritic terminals. The wildtype (WT) lost both perisomatic and neuropil clusters with an intervening period of modest recovery for the perisomatic. In contrast, in the overexpressor, the perisomatic clusters remained unchanged after intervening periods of increase. The neuropil clusters underwent a period of initial decline, followed by a transient recovery and ultimate decline. Changes in SV2 immunostaining correlated with changes in vesicular glutamate and GABA transporters at synapses and, in the overexpressor, with staining changes for FGF2 and FGF receptor 1. These molecules may contribute to the synaptic reorganization after noise damage; they may protect and/or aid recovery of synapses after overstimulation.
Collapse
Affiliation(s)
- Chrystal D'Sa
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030, USA
| | | | | | | |
Collapse
|
10
|
Ohshiro H, Ogawa S, Shinjo K. Visualizing sensory transmission between dorsal root ganglion and dorsal horn neurons in co-culture with calcium imaging. J Neurosci Methods 2007; 165:49-54. [PMID: 17597226 DOI: 10.1016/j.jneumeth.2007.05.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Revised: 05/14/2007] [Accepted: 05/17/2007] [Indexed: 10/23/2022]
Abstract
Sensory information is conveyed to the central nervous system by primary afferent neurons within dorsal root ganglia (DRG), which synapse onto neurons of the dorsal horn of the spinal cord. This synaptic connection is central to the processing of both sensory and pain stimuli. Here, we describe a model system to monitor synaptic transmission between DRG neurons and dorsal horn neurons that is compatible with high-throughput screening. This co-culture preparation comprises DRG and dorsal horn neurons and utilizes Ca(2+) imaging with the indicator dye Fura-2 to visualize synaptic transmission. Addition of capsaicin to co-cultures stimulated DRG neurons and led to activation of dorsal horn neurons as well as increased intracellular Ca(2+) concentrations. This effect was dose-dependent and absent when DRG neurons were omitted from the culture. NMDA receptors are a critical component of synapses between DRG and dorsal horn neurons as MK-801, a use-dependent non-competitive antagonist, prevented activation of dorsal horn neurons following capsaicin treatment. This model system allows for rapid and efficient analysis of noxious stimulus-evoked Ca(2+) signal transmission and provides a new approach both for investigating synaptic transmission in the spinal cord and for screening potential analgesic compounds.
Collapse
Affiliation(s)
- Hiroyuki Ohshiro
- Discovery Biology Research, Nagoya Laboratories, Pfizer Global Research and Development, Pfizer Inc., 5-2 Taketoyo, Aichi 470-2393, Japan
| | | | | |
Collapse
|
11
|
Shortland PJ, Leinster VHL, White W, Robson LG. Riluzole promotes cell survival and neurite outgrowth in rat sensory neurones in vitro. Eur J Neurosci 2007; 24:3343-53. [PMID: 17229083 DOI: 10.1111/j.1460-9568.2006.05218.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This study explored the effects of riluzole administration on cell survival and neurite growth in adult and neonatal rat dorsal root ganglion (DRG) neurones in vitro. Neuronal survival was assessed by comparing numbers of remaining neurones in vehicle- and riluzole-treated cultures. A single dose of 0.1 microm riluzole was sufficient to promote neuronal survival in neonatal DRG cultures, whereas repeated riluzole administration was necessary in adult cultures. However, a single administration of riluzole was sufficient to induce neuritogenesis, promote neurite branching and enhance neurite outgrowth in both neonatal and adult DRG cultures. The effects of a single dose of riluzole on adult DRG neurones after peripheral nerve or dorsal root injury were also studied in vitro at 48 h. For both types of injury, riluzole enhanced neurite outgrowth in terms of number, length and branch pattern significantly more on the injured side as compared with the contralateral side. No effect was seen on cell survival. The results suggest that, in addition to its cell survival effects, riluzole has novel growth-promoting effects on sensory neurones in vitro and that riluzole may offer a new way to promote sensory afferent regeneration following peripheral injury.
Collapse
Affiliation(s)
- Peter J Shortland
- Neuroscience Centre, Institute of Cell and Molecular Sciences, Bart's and The London School of Medicine and Dentistry, 4 Newark Street, London E1 2AT, UK.
| | | | | | | |
Collapse
|
12
|
Madiai F, Goettl VM, Hussain SR, Clairmont AR, Stephens RL, Hackshaw KV. Anti-fibroblast growth factor-2 antibodies attenuate mechanical allodynia in a rat model of neuropathic pain. J Mol Neurosci 2006; 27:315-24. [PMID: 16280602 DOI: 10.1385/jmn:27:3:315] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2005] [Accepted: 07/03/2005] [Indexed: 02/02/2023]
Abstract
Peripheral nerve injury leads to the activation of spinal cord astrocytes, which contribute to maintaining neuropathic (NP) pain behavior. Fibroblast growth factor-2 (FGF-2), a neurotrophic and gliogenic factor, is upregulated by spinal cord astrocytes in response to ligation of spinal nerves L5 and L6 (spinal nerve ligation [SpNL]). To evaluate the contribution of spinal astroglial FGF-2 to mechanical allodynia following SpNL, neutralizing antibodies to FGF-2 were injected intrathecally. Administration of 18 microg of anti-FGF-2 antibodies attenuated mechanical allodynia at day 21 after SpNL and reduced FGF-2 and glial acidic fibrillary protein mRNA expression and immunoreactivity in the L5 spinal cord segment of rats with SpNL. These results suggest that endogenous astroglial FGF-2 contributes to maintaining NP tactile allodynia associated with reactivity of spinal cord astrocytes and that inhibition of spinal FGF-2 ameliorates NP pain signs.
Collapse
Affiliation(s)
- Francesca Madiai
- Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | | | | | | | | | | |
Collapse
|
13
|
Miao FJP, Green PG, Benowitz N, Levine JD. Central terminals of nociceptors are targets for nicotine suppression of inflammation. Neuroscience 2004; 123:777-84. [PMID: 14706790 DOI: 10.1016/j.neuroscience.2003.10.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Spinal intrathecal administration of nicotine inhibits bradykinin-induced plasma extravasation, a component of the inflammatory response, in the knee joint of the rat in a dose-related fashion. Nociceptors contain nicotinic receptors and activation of a nociceptor at its peripheral terminal, by capsaicin, also produces inhibition of inflammation. Therefore the aim of this study was to test the hypothesis that the spinal target for this effect of nicotine is the central terminal of the primary afferent nociceptor. Intrathecal administration of the neurokinin-1 receptor antagonist, (3aR,7aR)-7,7-diphenyl-2-(1-imino-2(2-methoxyphenyl)-ethyl) perhydroisoindol-4-1 hydrochloride or the N-methyl-D-aspartate receptor antagonist, DL-2-amino-5-phosphonovaleric acid, both antagonists of the action of primary afferent neurotransmitters, markedly attenuated the inhibition of bradykinin-induced plasma extravasation produced by both intrathecal nicotine and intraplantar capsaicin.Conversely, intrathecal administration of an alpha-adrenoceptor antagonist, phentolamine or an opioid receptor antagonist, naloxone, to block descending antinociceptive controls, which provide inhibitory input to primary afferent nociceptors, enhanced the action of both nicotine and capsaicin. These findings support the hypothesis that the central terminal of the primary afferent nociceptor is a CNS target at which nicotine acts to inhibit inflammation.
Collapse
Affiliation(s)
- F J P Miao
- NIH Pain Center UCSF, University of California at San Francisco, Schools of Medicine and Dentistry, 521 Parnassus Avenue, 94143-0440, San Francisco, CA, USA
| | | | | | | |
Collapse
|
14
|
Ding-Zhou L, Margaill I, Palmier B, Pruneau D, Plotkine M, Marchand-Verrecchia C. LF 16-0687 Ms, a bradykinin B2 receptor antagonist, reduces ischemic brain injury in a murine model of transient focal cerebral ischemia. Br J Pharmacol 2003; 139:1539-47. [PMID: 12922942 PMCID: PMC1573979 DOI: 10.1038/sj.bjp.0705385] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. Bradykinin promotes neuronal damage and brain edema through the activation of the B(2) receptor. The neuroprotective effect of LF 16-0687 Ms, a B(2) receptor antagonist, has been described when given prior to induction of transient focal cerebral ischemia in rat, but there are no data regarding the consequence of a treatment when given after injury. Therefore, in a murine model of transient middle cerebral artery occlusion (MCAO), we evaluated the effect of LF 16-0687 Ms given prior to and/or after the onset of ischemia on neurological deficit, infarct volume and inflammatory responses including cerebral edema, blood-brain barrier (BBB) disruption and neutrophil accumulation. 2. LF 16-0687 Ms (1, 2 and 4 mg kg(-1)) administered 0.5 h before and, 1.25 and 6 h after MCAO, decreased the infarct volume by a maximum of 33% and significantly improved the neurological recovery. 3. When given at 0.25 and 6.25 h after MCAO, LF 16-0687 Ms (1.5, 3 and 6 mg kg(-1)) decreased the infarct volume by a maximum of 25% and improved the neurological score. 4. Post-treatment with LF 16-0687 Ms (1.5 mg kg(-1)) significantly decreased brain edema (-28%), BBB disruption (-60%) and neutrophil accumulation (-65%) induced by ischemia. Physiological parameters were not modified by LF 16-0687 Ms. 5. These data emphasize the role of bradykinin B(2) receptor in the development of infarct lesion, neurological deficit and inflammatory responses resulting from transient focal cerebral ischemia. Therefore, B(2) receptor antagonist might represent a new therapeutic approach in the pharmacological treatment of stroke.
Collapse
Affiliation(s)
- Li Ding-Zhou
- UPRES EA 2510, Laboratoire de Pharmacologie, Université René Descartes, 4 Avenue de l'Observatoire, 75006 Paris, France
| | - Isabelle Margaill
- UPRES EA 2510, Laboratoire de Pharmacologie, Université René Descartes, 4 Avenue de l'Observatoire, 75006 Paris, France
| | - Bruno Palmier
- UPRES EA 2510, Laboratoire de Pharmacologie, Université René Descartes, 4 Avenue de l'Observatoire, 75006 Paris, France
| | - Didier Pruneau
- Centre de Recherche, Laboratoires Fournier, Daix, France
| | - Michel Plotkine
- UPRES EA 2510, Laboratoire de Pharmacologie, Université René Descartes, 4 Avenue de l'Observatoire, 75006 Paris, France
| | - Catherine Marchand-Verrecchia
- UPRES EA 2510, Laboratoire de Pharmacologie, Université René Descartes, 4 Avenue de l'Observatoire, 75006 Paris, France
- Author for correspondence:
| |
Collapse
|