1
|
Giannakoulas A, Stoikos P, Kouvata E, Kontouli KM, Fotiadis G, Stefani G, Amoutzias GD, Vassilopoulos G, Giannakoulas N. Angiogenesis and multiple myeloma: Exploring prognostic potential of adrenomedullin. Cancer Med 2024; 13:e70250. [PMID: 39315734 PMCID: PMC11420937 DOI: 10.1002/cam4.70250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/07/2024] [Accepted: 09/11/2024] [Indexed: 09/25/2024] Open
Abstract
BACKGROUND Adrenomedullin (AM) is a multifunctional peptide which under basal conditions mainly regulates vasodilation and maintains vascular integrity but is also implicated in the pathogenesis of several malignancies, including multiple myeloma (MM). It has been shown that adrenomedullin is expressed by human myeloma cell lines and that it enhances MM-driven angiogenesis. However, the clinical impact of AM remains unknown. MATERIALS AND METHODS On that basis, we enrolled 32 newly diagnosed multiple myeloma patients (NDMM) and studied the potential of AM as a prognostic biomarker. RESULTS We report that elevated levels of AM trend with suboptimal treatment response and inferior survival of NDMM patients.
Collapse
Affiliation(s)
- Angelos Giannakoulas
- Laboratory of Hematology Department, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Panagiotis Stoikos
- Laboratory of Hematology Department, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Evangelia Kouvata
- Hematology Department, University Hospital of Larissa, Larissa, Greece
| | - Katerina M Kontouli
- Laboratory of Hygiene and Epidemiology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Georgios Fotiadis
- Hematology Department, University Hospital of Larissa, Larissa, Greece
| | - Georgia Stefani
- Hematology Department, University Hospital of Larissa, Larissa, Greece
| | - Grigorios D Amoutzias
- Bioinformatics Laboratory, Department of Biochemistry & Biotechnology, School of Health Sciences, University of Thessaly, Larissa, Greece
| | | | | |
Collapse
|
2
|
Li JJ, Mao JX, Zhong HX, Zhao YY, Teng F, Lu XY, Zhu LY, Gao Y, Fu H, Guo WY. Multifaceted roles of lymphatic and blood endothelial cells in the tumor microenvironment of hepatocellular carcinoma: A comprehensive review. World J Hepatol 2024; 16:537-549. [PMID: 38689749 PMCID: PMC11056903 DOI: 10.4254/wjh.v16.i4.537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/11/2024] [Accepted: 03/18/2024] [Indexed: 04/24/2024] Open
Abstract
The tumor microenvironment is a complex network of cells, extracellular matrix, and signaling molecules that plays a critical role in tumor progression and metastasis. Lymphatic and blood vessels are major routes for solid tumor metastasis and essential parts of tumor drainage conduits. However, recent studies have shown that lymphatic endothelial cells (LECs) and blood endothelial cells (BECs) also play multifaceted roles in the tumor microenvironment beyond their structural functions, particularly in hepatocellular carcinoma (HCC). This comprehensive review summarizes the diverse roles played by LECs and BECs in HCC, including their involvement in angiogenesis, immune modulation, lymphangiogenesis, and metastasis. By providing a detailed account of the complex interplay between LECs, BECs, and tumor cells, this review aims to shed light on future research directions regarding the immune regulatory function of LECs and potential therapeutic targets for HCC.
Collapse
Affiliation(s)
- Jing-Jing Li
- Department of Liver Surgery and Organ Transplantation, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Jia-Xi Mao
- Department of Liver Surgery and Organ Transplantation, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Han-Xiang Zhong
- Department of Liver Surgery and Organ Transplantation, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Yuan-Yu Zhao
- Department of Liver Surgery and Organ Transplantation, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Fei Teng
- Department of Liver Surgery and Organ Transplantation, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Xin-Yi Lu
- Department of Liver Surgery and Organ Transplantation, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Li-Ye Zhu
- Department of Liver Surgery and Organ Transplantation, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Yang Gao
- Department of Liver Surgery and Organ Transplantation, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Hong Fu
- Department of Liver Surgery and Organ Transplantation, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Wen-Yuan Guo
- Department of Liver Surgery and Organ Transplantation, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China.
| |
Collapse
|
3
|
Jeeyavudeen MS, Mathiyalagan N, Fernandez James C, Pappachan JM. Tumor metabolism in pheochromocytomas: clinical and therapeutic implications. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:349-373. [PMID: 38745767 PMCID: PMC11090696 DOI: 10.37349/etat.2024.00222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/27/2023] [Indexed: 05/16/2024] Open
Abstract
Pheochromocytomas and paragangliomas (PPGLs) have emerged as one of the most common endocrine tumors. It epitomizes fascinating crossroads of genetic, metabolic, and endocrine oncology, providing a canvas to explore the molecular intricacies of tumor biology. Predominantly rooted in the aberration of metabolic pathways, particularly the Krebs cycle and related enzymatic functionalities, PPGLs manifest an intriguing metabolic profile, highlighting elevated levels of oncometabolites like succinate and fumarate, and furthering cellular malignancy and genomic instability. This comprehensive review aims to delineate the multifaceted aspects of tumor metabolism in PPGLs, encapsulating genetic factors, oncometabolites, and potential therapeutic avenues, thereby providing a cohesive understanding of metabolic disturbances and their ramifications in tumorigenesis and disease progression. Initial investigations into PPGLs metabolomics unveiled a stark correlation between specific genetic mutations, notably in the succinate dehydrogenase complex (SDHx) genes, and the accumulation of oncometabolites, establishing a pivotal role in epigenetic alterations and hypoxia-inducible pathways. By scrutinizing voluminous metabolic studies and exploiting technologies, novel insights into the metabolic and genetic aspects of PPGLs are perpetually being gathered elucidating complex interactions and molecular machinations. Additionally, the exploration of therapeutic strategies targeting metabolic abnormalities has burgeoned harboring potential for innovative and efficacious treatment modalities. This review encapsulates the profound metabolic complexities of PPGLs, aiming to foster an enriched understanding and pave the way for future investigations and therapeutic innovations in managing these metabolically unique tumors.
Collapse
Affiliation(s)
| | - Navin Mathiyalagan
- Department of Medical Oncology, Nottingham University Hospitals NHS Trust, NG5 1PB Nottingham, UK
| | - Cornelius Fernandez James
- Department of Endocrinology & Metabolism, Pilgrim Hospital, United Lincolnshire Hospitals NHS Trust, PE21 9QS Boston, UK
| | - Joseph M. Pappachan
- Department of Endocrinology and Metabolism, Lancashire Teaching Hospitals NHS Trust, PR2 9HT Preston, UK
- Faculty of Science, Manchester Metropolitan University, M15 6BH Manchester, UK
- Faculty of Biology, Medicine, and Health, The University of Manchester, M13 9PL Manchester, UK
| |
Collapse
|
4
|
Giannakoulas A, Nikolaidis M, Amoutzias GD, Giannakoulas N. A comparative analysis of transcriptomics of newly diagnosed multiple myeloma: exploring drug repurposing. Front Oncol 2024; 14:1390105. [PMID: 38690165 PMCID: PMC11058662 DOI: 10.3389/fonc.2024.1390105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/01/2024] [Indexed: 05/02/2024] Open
Abstract
Multiple myeloma (MM) is an incurable malignant plasma cell disorder characterized by the infiltration of clonal plasma cells in the bone marrow compartment. Gene Expression Profiling (GEP) has emerged as a powerful investigation tool in modern myeloma research enabling the dissection of the molecular background of MM and allowing the identification of gene products that could potentially serve as targets for therapeutic intervention. In this study we investigated shared transcriptomic abnormalities across newly diagnosed multiple myeloma (NDMM) patient cohorts. In total, publicly available transcriptomic data of 7 studies from CD138+ cells from 281 NDMM patients and 44 healthy individuals were integrated and analyzed. Overall, we identified 28 genes that were consistently differentially expressed (DE) between NDMM patients and healthy donors (HD) across various studies. Of those, 9 genes were over/under-expressed in more than 75% of NDMM patients. In addition, we identified 4 genes (MT1F, PURPL, LINC01239 and LINC01480) that were not previously considered to participate in MM pathogenesis. Meanwhile, by mining three drug databases (ChEMBL, IUPHAR/BPS and DrugBank) we identified 31 FDA-approved and 144 experimental drugs that target 8 of these 28 over/under-expressed MM genes. Taken together, our study offers new insights in MM pathogenesis and importantly, it reveals potential new treatment options that need to be further investigated in future studies.
Collapse
Affiliation(s)
- Angelos Giannakoulas
- Department of Hematology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Marios Nikolaidis
- Bioinformatics Laboratory, Department of Biochemistry & Biotechnology, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Grigorios D. Amoutzias
- Bioinformatics Laboratory, Department of Biochemistry & Biotechnology, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Nikolaos Giannakoulas
- Department of Hematology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| |
Collapse
|
5
|
Steinberger KJ, Eubank TD. The Underexplored Landscape of Hypoxia-Inducible Factor 2 Alpha and Potential Roles in Tumor Macrophages: A Review. OXYGEN (BASEL, SWITZERLAND) 2023; 3:45-76. [PMID: 37124241 PMCID: PMC10137047 DOI: 10.3390/oxygen3010005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Low tissue oxygenation, termed hypoxia, is a characteristic of solid tumors with negative consequences. Tumor-associated macrophages (TAMs) accumulate in hypoxic tumor regions and correlate with worse outcomes in cancer patients across several tumor types. Thus, the molecular mechanism in which macrophages respond to low oxygen tension has been increasingly investigated in the last decade. Hypoxia stabilizes a group of hypoxia-inducible transcription factors (HIFs) reported to drive transcriptional programs involved in cell survival, metabolism, and angiogenesis. Though both tumor macrophage HIF-1α and HIF-2α correlate with unfavorable tumor microenvironments, most research focuses on HIF-1α as the master regulator of hypoxia signaling, because HIF-1α expression was originally identified in several cancer types and correlates with worse outcome in cancer patients. The relative contribution of each HIFα subunit to cell phenotypes is poorly understood especially in TAMs. Once thought to have overlapping roles, recent investigation of macrophage HIF-2α has demonstrated a diverse function from HIF-1α. Little work has been published on the differential role of hypoxia-dependent macrophage HIF-2α when compared to HIF-1α in the context of tumor biology. This review highlights cellular HIF-2α functions and emphasizes the gap in research investigating oxygen-dependent functions of tumor macrophage HIF-2α.
Collapse
Affiliation(s)
- Kayla J. Steinberger
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV 26505, USA
- In Vivo Multifunctional Magnetic Resonance Center, West Virginia University, Morgantown, WV 26505, USA
- West Virginia University Cancer Institute, Morgantown, WV 26505, USA
| | - Timothy D. Eubank
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV 26505, USA
- In Vivo Multifunctional Magnetic Resonance Center, West Virginia University, Morgantown, WV 26505, USA
- West Virginia University Cancer Institute, Morgantown, WV 26505, USA
| |
Collapse
|
6
|
Expression profile of adrenomedullin and its specific receptors in liver tissues from patients with hepatocellular carcinoma and in tumorigenic cell line-secreted extracellular vesicles. Pathol Res Pract 2023; 243:154383. [PMID: 36827885 DOI: 10.1016/j.prp.2023.154383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/18/2023] [Indexed: 02/22/2023]
Abstract
The transcriptional profile of adrenomedullin (AM), a new metastasis-related factor involved in hepatocellular carcinoma (HCC), and its specific receptors (CLR, RAMP1, RAMP3) were evaluated in liver tissues of HCV-positive HCC subjects undergoing liver transplantation (LR) and in donors (LD). AM and its specific receptor expression were also assessed in extracellular vesicles (EVs) secreted by tumorigenic (HepG2) and non-tumorigenic (WRL68) cells by Real-Time PCR. AM expression resulted significantly elevated in LR concerning LD (p = 0.0038) and, for the first time, significantly higher levels in HCC patients as a function of clinical severity (MELD score), were observed. RAMP3 and CLR expression increased in LR as a function of clinical severity while RAMP1 decreased. Positive correlations were found among AM, its receptors, and apoptotic markers. No AM mRNA expression difference was observed between HepG2 and WRL68 EVs. RAMP1 and RAMP3 resulted lower in HepG2 concerning WRL68 while significantly higher levels were observed for CLR. While results at tissue level characterize AM as a regulator of carcinogenesis-tumor progression, those obtained in EVs do not indicate AM as a target candidate, neither as a pathological biomarker nor as a marker involved in cancer therapy.
Collapse
|
7
|
Expression of the Calcitonin Receptor-like Receptor (CALCRL) in Normal and Neoplastic Tissues. Int J Mol Sci 2023; 24:ijms24043960. [PMID: 36835377 PMCID: PMC9962437 DOI: 10.3390/ijms24043960] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
Little information is available concerning protein expression of the calcitonin receptor-like receptor (CALCRL) at the protein level. Here, we developed a rabbit monoclonal antibody, 8H9L8, which is directed against human CALCRL but cross-reacts with the rat and mouse forms of the receptor. We confirmed antibody specificity via Western blot analyses and immunocytochemistry using the CALCRL-expressing neuroendocrine tumour cell line BON-1 and a CALCRL-specific small interfering RNA (siRNA). We then used the antibody for immunohistochemical analyses of various formalin-fixed, paraffin-embedded specimens of normal and neoplastic tissues. In nearly all tissue specimens examined, CALCRL expression was detected in the capillary endothelium, smooth muscles of the arterioles and arteries, and immune cells. Analyses of normal human, rat, and mouse tissues revealed that CALCRL was primarily present in distinct cell populations in the cerebral cortex; pituitary; dorsal root ganglia; epithelia, muscles, and glands of the larger bronchi; intestinal mucosa (particularly in enteroendocrine cells); intestinal ganglia; exocrine and endocrine pancreas; arteries, capillaries, and glomerular capillary loops in the kidneys; the adrenals; Leydig cells in the testicles; and syncytiotrophoblasts in the placenta. In the neoplastic tissues, CALCRL was predominantly expressed in thyroid carcinomas, parathyroid adenomas, small-cell lung cancers, large-cell neuroendocrine carcinomas of the lung, pancreatic neuroendocrine neoplasms, renal clear-cell carcinomas, pheochromocytomas, lymphomas, and melanomas. In these tumours with strong expression of CALCRL, the receptor may represent a useful target structure for future therapies.
Collapse
|
8
|
Benyahia Z, Gaudy-Marqueste C, Berenguer-Daizé C, Chabane N, Dussault N, Cayol M, Vellutini C, Djemli A, Nanni I, Beaufils N, Mabrouk K, Grob JJ, Ouafik L. Adrenomedullin Secreted by Melanoma Cells Promotes Melanoma Tumor Growth through Angiogenesis and Lymphangiogenesis. Cancers (Basel) 2022; 14:cancers14235909. [PMID: 36497391 PMCID: PMC9738606 DOI: 10.3390/cancers14235909] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 12/03/2022] Open
Abstract
INTRODUCTION Metastatic melanoma is an aggressive tumor and can constitute a real therapeutic challenge despite the significant progress achieved with targeted therapies and immunotherapies, thus highlighting the need for the identification of new therapeutic targets. Adrenomedullin (AM) is a peptide with significant expression in multiple types of tumors and is multifunctional. AM impacts angiogenesis and tumor growth and binds to calcitonin receptor-like receptor/receptor activity-modifying protein 2 or 3 (CLR/RAMP2; CLR/RAMP3). METHODS In vitro and in vivo studies were performed to determine the functional role of AM in melanoma growth and tumor-associated angiogenesis and lymphangiogenesis. RESULTS In this study, AM and AM receptors were immunohistochemically localized in the tumoral compartment of melanoma tissue, suggesting that the AM system plays a role in melanoma growth. We used A375, SK-MEL-28, and MeWo cells, for which we demonstrate an expression of AM and its receptors; hypoxia induces the expression of AM in melanoma cells. The proliferation of A375 and SK-MEL-28 cells is decreased by anti-AM antibody (αAM) and anti-AMR antibodies (αAMR), supporting the fact that AM may function as a potent autocrine/paracrine growth factor for melanoma cells. Furthermore, migration and invasion of melanoma cells increased after treatment with AM and decreased after treatment with αAMR, thus indicating that melanoma cells are regulated by AM. Systemic administration of αAMR reduced neovascularization of in vivo Matrigel plugs containing melanoma cells, as demonstrated by reduced numbers of vessel structures, which suggests that AM is one of the melanoma cells-derived factors responsible for endothelial cell-like and pericyte recruitment in the construction of neovascularization. In vivo, αAMR therapy blocked angiogenesis and lymphangiogenesis and decreased proliferation in MeWo xenografts, thereby resulting in tumor regression. Histological examination of αAMR-treated tumors showed evidence of the disruption of tumor vascularity, with depletion of vascular endothelial cells and a significant decrease in lymphatic endothelial cells. CONCLUSIONS The expression of AM by melanoma cells promotes tumor growth and neovascularization by supplying/amplifying signals for neoangiogenesis and lymphangiogenesis.
Collapse
Affiliation(s)
- Zohra Benyahia
- Aix Marseille Univ, CNRS, INP, Inst Neurophysiopathol, 13005 Marseille, France
| | - Caroline Gaudy-Marqueste
- Aix Marseille Univ, APHM, CHU Timone, Service de Dermatologie et de Cancérologie Cutanée, 13005 Marseille, France
| | | | - Norhimane Chabane
- Aix Marseille Univ, CNRS, INP, Inst Neurophysiopathol, 13005 Marseille, France
| | - Nadège Dussault
- Aix Marseille Univ, CNRS, INP, Inst Neurophysiopathol, 13005 Marseille, France
| | - Mylène Cayol
- Aix Marseille Univ, CNRS, INP, Inst Neurophysiopathol, 13005 Marseille, France
| | - Christine Vellutini
- Aix Marseille Univ, CNRS, INP, Inst Neurophysiopathol, 13005 Marseille, France
| | - Amina Djemli
- Aix Marseille Univ, APHM, CHU Nord, Service D’anatomopathologie, 13015 Marseille, France
| | - Isabelle Nanni
- Aix Marseille Univ, APHM, CHU Nord, Service D’Onco-Biologie, 13015 Marseille, France
| | - Nathalie Beaufils
- Aix Marseille Univ, APHM, CHU Nord, Service D’Onco-Biologie, 13015 Marseille, France
| | - Kamel Mabrouk
- Aix Marseille Univ, CNRS, ICR, Institut de Chimie Radicalaire, 13013 Marseille, France
| | - Jean-Jacques Grob
- Aix Marseille Univ, APHM, CHU Timone, Service de Dermatologie et de Cancérologie Cutanée, 13005 Marseille, France
| | - L’Houcine Ouafik
- Aix Marseille Univ, CNRS, INP, Inst Neurophysiopathol, 13005 Marseille, France
- Aix Marseille Univ, APHM, CHU Nord, Service D’Onco-Biologie, 13015 Marseille, France
- Correspondence: ; Tel.: +33-491324447
| |
Collapse
|
9
|
Nakayama A, Roquid KA, Iring A, Strilic B, Günther S, Chen M, Weinstein LS, Offermanns S. Suppression of CCL2 angiocrine function by adrenomedullin promotes tumor growth. J Exp Med 2022; 220:213682. [PMID: 36374225 PMCID: PMC9665902 DOI: 10.1084/jem.20211628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/19/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
Within the tumor microenvironment, tumor cells and endothelial cells regulate each other. While tumor cells induce angiogenic responses in endothelial cells, endothelial cells release angiocrine factors, which act on tumor cells and other stromal cells. We report that tumor cell-derived adrenomedullin has a pro-angiogenic as well as a direct tumor-promoting effect, and that endothelium-derived CC chemokine ligand 2 (CCL2) suppresses adrenomedullin-induced tumor cell proliferation. Loss of the endothelial adrenomedullin receptor CALCRL or of the G-protein Gs reduced endothelial proliferation. Surprisingly, tumor cell proliferation was also reduced after endothelial deletion of CALCRL or Gs. We identified CCL2 as a critical angiocrine factor whose formation is inhibited by adrenomedullin. Furthermore, CCL2 inhibited adrenomedullin formation in tumor cells through its receptor CCR2. Consistently, loss of endothelial CCL2 or tumor cell CCR2 normalized the reduced tumor growth seen in mice lacking endothelial CALCRL or Gs. Our findings show tumor-promoting roles of adrenomedullin and identify CCL2 as an angiocrine factor controlling adrenomedullin formation by tumor cells.
Collapse
Affiliation(s)
- Akiko Nakayama
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany,Correspondence to Akiko Nakayama:
| | - Kenneth Anthony Roquid
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - András Iring
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Boris Strilic
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Stefan Günther
- Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Min Chen
- Metabolic Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MA
| | - Lee S. Weinstein
- Metabolic Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MA
| | - Stefan Offermanns
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany,Center for Molecular Medicine, Goethe University Frankfurt, Frankfurt, Germany,Cardiopulmonary Institute, Bad Nauheim, Germany,German Center for Cardiovascular Research, Bad Nauheim, Germany,Stefan Offermanns:
| |
Collapse
|
10
|
Abstract
The lymphatic system, composed of initial and collecting lymphatic vessels as well as lymph nodes that are present in almost every tissue of the human body, acts as an essential transport system for fluids, biomolecules and cells between peripheral tissues and the central circulation. Consequently, it is required for normal body physiology but is also involved in the pathogenesis of various diseases, most notably cancer. The important role of tumor-associated lymphatic vessels and lymphangiogenesis in the formation of lymph node metastasis has been elucidated during the last two decades, whereas the underlying mechanisms and the relation between lymphatic and peripheral organ dissemination of cancer cells are incompletely understood. Lymphatic vessels are also important for tumor-host communication, relaying molecular information from a primary or metastatic tumor to regional lymph nodes and the circulatory system. Beyond antigen transport, lymphatic endothelial cells, particularly those residing in lymph node sinuses, have recently been recognized as direct regulators of tumor immunity and immunotherapy responsiveness, presenting tumor antigens and expressing several immune-modulatory signals including PD-L1. In this review, we summarize recent discoveries in this rapidly evolving field and highlight strategies and challenges of therapeutic targeting of lymphatic vessels or specific lymphatic functions in cancer patients.
Collapse
Affiliation(s)
- Lothar C Dieterich
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Carlotta Tacconi
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.,Department of Biosciences, University of Milan, Milan, Italy
| | - Luca Ducoli
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Michael Detmar
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| |
Collapse
|
11
|
Sigaud R, Dussault N, Berenguer-Daizé C, Vellutini C, Benyahia Z, Cayol M, Parat F, Mabrouk K, Vázquez R, Riveiro ME, Metellus P, Ouafik L. Role of the Tyrosine Phosphatase SHP-2 in Mediating Adrenomedullin Proangiogenic Activity in Solid Tumors. Front Oncol 2021; 11:753244. [PMID: 34692535 PMCID: PMC8531523 DOI: 10.3389/fonc.2021.753244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/14/2021] [Indexed: 11/17/2022] Open
Abstract
VE-cadherin is an essential adhesion molecule in endothelial adherens junctions, and the integrity of these complexes is thought to be regulated by VE-cadherin tyrosine phosphorylation. We have previously shown that adrenomedullin (AM) blockade correlates with elevated levels of phosphorylated VE-cadherin (pVE-cadherinY731) in endothelial cells, associated with impaired barrier function and a persistent increase in vascular endothelial cell permeability. However, the mechanism underlying this effect is unknown. In this article, we demonstrate that the AM-mediated dephosphorylation of pVE-cadherinY731 takes place through activation of the tyrosine phosphatase SHP-2, as judged by the rise of its active fraction phosphorylated at tyrosine 542 (pSHP-2Y542) in HUVECs and glioblastoma-derived-endothelial cells. Both pre-incubation of HUVECs with SHP-2 inhibitors NSC-87877 and SHP099 and SHP-2 silencing hindered AM-induced dephosphorylation of pVE-cadherinY731 in a dose dependent-manner, showing the role of SHP-2 in the regulation of endothelial cell contacts. Furthermore, SHP-2 inhibition impaired AM-induced HUVECs differentiation into cord-like structures in vitro and impeded AM-induced neovascularization in in vivo Matrigel plugs bioassays. Subcutaneously transplanted U87-glioma tumor xenograft mice treated with AM-receptors-blocking antibodies showed a decrease in pSHP-2Y542 associated with VE-cadherin in nascent tumor vasculature when compared to control IgG-treated xenografts. Our findings show that AM acts on VE-cadherin dynamics through pSHP-2Y542 to finally modulate cell-cell junctions in the angiogenesis process, thereby promoting a stable and functional tumor vasculature.
Collapse
Affiliation(s)
- Romain Sigaud
- Aix Marseille University, Centre National de la Recherche Scientifique (CNRS), Institut de Neurophysiopathologie( INP), Inst Neurophysiopathol, Marseille, France
| | - Nadège Dussault
- Aix Marseille University, Centre National de la Recherche Scientifique (CNRS), Institut de Neurophysiopathologie( INP), Inst Neurophysiopathol, Marseille, France
| | - Caroline Berenguer-Daizé
- Aix Marseille University, Centre National de la Recherche Scientifique (CNRS), Institut de Neurophysiopathologie( INP), Inst Neurophysiopathol, Marseille, France
| | - Christine Vellutini
- Aix Marseille University, Centre National de la Recherche Scientifique (CNRS), Institut de Neurophysiopathologie( INP), Inst Neurophysiopathol, Marseille, France
| | - Zohra Benyahia
- Aix Marseille University, Centre National de la Recherche Scientifique (CNRS), Institut de Neurophysiopathologie( INP), Inst Neurophysiopathol, Marseille, France
| | - Mylène Cayol
- Aix Marseille University, Centre National de la Recherche Scientifique (CNRS), Institut de Neurophysiopathologie( INP), Inst Neurophysiopathol, Marseille, France
| | - Fabrice Parat
- Aix Marseille University, Centre National de la Recherche Scientifique (CNRS), Institut de Neurophysiopathologie( INP), Inst Neurophysiopathol, Marseille, France
| | - Kamel Mabrouk
- Aix Marseille University, CNRS, Institut de Chimie Radicalaire (ICR), Unité Mixte de Recherche (UMR) 7273 Chimie Radicalaire Organique et Polymères de Spécialité (CROPS), Marseille, France
| | - Ramiro Vázquez
- Preclinical Department, Early Drug Development Group (E2DG), Boulogne-Billancourt, France.,Center for Genomic Science of Istituto Italiano di Tecnologia, Center for Genomic Science, European School of Molecular Medicine (IIT@SEMM), Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - Maria E Riveiro
- Preclinical Department, Early Drug Development Group (E2DG), Boulogne-Billancourt, France
| | - Philippe Metellus
- Aix Marseille University, Centre National de la Recherche Scientifique (CNRS), Institut de Neurophysiopathologie( INP), Inst Neurophysiopathol, Marseille, France.,Centre Hospitalier Clairval, Département de Neurochirurgie, Marseille, France
| | - L'Houcine Ouafik
- Aix Marseille University, Centre National de la Recherche Scientifique (CNRS), Institut de Neurophysiopathologie( INP), Inst Neurophysiopathol, Marseille, France.,Assistance Publique Hôpitaux de Marseille (APHM), Centre Hospitalo Universitaire (CHU) Nord, Service d'OncoBiologie, Marseille, France
| |
Collapse
|
12
|
Meyrath M, Palmer CB, Reynders N, Vanderplasschen A, Ollert M, Bouvier M, Szpakowska M, Chevigné A. Proadrenomedullin N-Terminal 20 Peptides (PAMPs) Are Agonists of the Chemokine Scavenger Receptor ACKR3/CXCR7. ACS Pharmacol Transl Sci 2021; 4:813-823. [PMID: 33860204 PMCID: PMC8033753 DOI: 10.1021/acsptsci.1c00006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Indexed: 11/30/2022]
Abstract
Adrenomedullin (ADM) and proadrenomedullin N-terminal 20 peptide (PAMP) are two peptides with vasodilative, bronchodilative, and angiogenic properties, originating from a common precursor, proADM. Previous studies proposed that the atypical chemokine receptor ACKR3 might act as a low-affinity scavenger for ADM, regulating its availability for its cognate receptor calcitonin receptor-like receptor (CLR) in complex with a receptor activity modifying protein (RAMP). In this study, we compared the activation of ACKR3 by ADM and PAMP, as well as other related members of the calcitonin gene-related peptide (CGRP) family. Irrespective of the presence of RAMPs, ADM was the only member of the CGRP family to show moderate activity toward ACKR3. Remarkably, PAMP, and especially further processed PAMP-12, had a stronger potency toward ACKR3 than ADM. Importantly, PAMP-12 induced β-arrestin recruitment and was efficiently internalized by ACKR3 without inducing G protein or ERK signaling in vitro. Our results further extend the panel of endogenous ACKR3 ligands and broaden ACKR3 functions to a regulator of PAMP-12 availability for its primary receptor Mas-related G-protein-coupled receptor member X2 (MrgX2).
Collapse
Affiliation(s)
- Max Meyrath
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette L-4354, Luxembourg
| | - Christie B Palmer
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette L-4354, Luxembourg.,Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette 4365, Luxembourg
| | - Nathan Reynders
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette L-4354, Luxembourg.,Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette 4365, Luxembourg
| | - Alain Vanderplasschen
- Immunology-Vaccinology, FARAH, Faculty of Veterinary Medicine, University of Liège, Liège BE 4000, Belgium
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette L-4354, Luxembourg.,Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense 5230, Denmark
| | - Michel Bouvier
- Department of Biochemistry and Molecular Medicine, Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, H3C 3J7 Quebec, Canada
| | - Martyna Szpakowska
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette L-4354, Luxembourg
| | - Andy Chevigné
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette L-4354, Luxembourg
| |
Collapse
|
13
|
Velard F, Chatron-Colliet A, Côme D, Ah-Kioon MD, Lin H, Hafsia N, Cohen-Solal M, Ea HK, Lioté F. Adrenomedullin and truncated peptide adrenomedullin(22-52) affect chondrocyte response to apoptotis in vitro: downregulation of FAS protects chondrocyte from cell death. Sci Rep 2020; 10:16740. [PMID: 33028903 PMCID: PMC7541509 DOI: 10.1038/s41598-020-73924-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 08/31/2020] [Indexed: 12/03/2022] Open
Abstract
Chondrocyte apoptosis may have a pivotal role in the development of osteoarthritis. Interest has increased in the use of anti-apoptotic compounds to protect against osteoarthritis development. In this work, we investigated the effect of adrenomedullin (AM), a 52 amino-acid hormone peptide, and a 31 amino-acid truncated form, AM(22-52), on chondrocyte apoptosis. Bovine articular chondrocytes (BACs) were cultured under hypoxic conditions to mimic cartilage environment and then treated with Fas ligand (Fas-L) to induce apoptosis. The expression of AM and its calcitonin receptor-like receptor (CLR)/receptor activity-modifying protein (RAMP) (receptor/co-receptor) was assessed by immunostaining. We evaluated the effect of AM and AM(22-52) on Fas-L-induced chondrocyte apoptosis. FAS expression was appreciated by RT-qPCR and immunostainings. The expression of hypoxia-inducible factor 1α (HIF-1α), CLR and one co-receptor (RAMP2) was evidenced. With BACs under hypoxia, cyclic adenosine monophosphate production increased dose-dependently with AM stimulation. AM significantly decreased caspase-3 activity (mean 35% decrease; p = 0.03) as a marker of Fas-L-induced apoptosis. Articular chondrocytes treated with AM showed significantly reduced cell death, along with downregulated Fas expression and production, as compared with AM(22-52). AM decreased articular chondrocyte apoptosis by downregulating a Fas receptor. These findings may pave the way for novel therapeutic approaches in osteoarthritis.
Collapse
Affiliation(s)
- Frédéric Velard
- INSERM, UMR-S 1132 Bioscar, Centre Viggo Petersen, Hôpital Lariboisière, 2, Rue Ambroise Paré, 75010, Paris, France
| | - Aurore Chatron-Colliet
- INSERM, UMR-S 1132 Bioscar, Centre Viggo Petersen, Hôpital Lariboisière, 2, Rue Ambroise Paré, 75010, Paris, France
| | - Dominique Côme
- INSERM, UMR-S 1132 Bioscar, Centre Viggo Petersen, Hôpital Lariboisière, 2, Rue Ambroise Paré, 75010, Paris, France
| | - Marie-Dominique Ah-Kioon
- INSERM, UMR-S 1132 Bioscar, Centre Viggo Petersen, Hôpital Lariboisière, 2, Rue Ambroise Paré, 75010, Paris, France
| | - Hilène Lin
- INSERM, UMR-S 1132 Bioscar, Centre Viggo Petersen, Hôpital Lariboisière, 2, Rue Ambroise Paré, 75010, Paris, France
| | - Narjes Hafsia
- INSERM, UMR-S 1132 Bioscar, Centre Viggo Petersen, Hôpital Lariboisière, 2, Rue Ambroise Paré, 75010, Paris, France.,Université de Paris (UFR de Médecine), 75205, Paris, France
| | - Martine Cohen-Solal
- INSERM, UMR-S 1132 Bioscar, Centre Viggo Petersen, Hôpital Lariboisière, 2, Rue Ambroise Paré, 75010, Paris, France.,Université de Paris (UFR de Médecine), 75205, Paris, France.,Assistance Publique-Hôpitaux de Paris (AP-HP), Service de Rhumatologie, Centre Viggo Petersen, Hôpital Lariboisière, 75010, Paris, France
| | - Hang-Korng Ea
- INSERM, UMR-S 1132 Bioscar, Centre Viggo Petersen, Hôpital Lariboisière, 2, Rue Ambroise Paré, 75010, Paris, France.,Université de Paris (UFR de Médecine), 75205, Paris, France.,Assistance Publique-Hôpitaux de Paris (AP-HP), Service de Rhumatologie, Centre Viggo Petersen, Hôpital Lariboisière, 75010, Paris, France
| | - Frédéric Lioté
- INSERM, UMR-S 1132 Bioscar, Centre Viggo Petersen, Hôpital Lariboisière, 2, Rue Ambroise Paré, 75010, Paris, France. .,Université de Paris (UFR de Médecine), 75205, Paris, France. .,Assistance Publique-Hôpitaux de Paris (AP-HP), Service de Rhumatologie, Centre Viggo Petersen, Hôpital Lariboisière, 75010, Paris, France.
| |
Collapse
|
14
|
Avgoustou P, Jailani ABA, Zirimwabagabo JO, Tozer MJ, Gibson KR, Glossop PA, Mills JEJ, Porter RA, Blaney P, Bungay PJ, Wang N, Shaw AP, Bigos KJA, Holmes JL, Warrington JI, Skerry TM, Harrity JPA, Richards GO. Discovery of a First-in-Class Potent Small Molecule Antagonist against the Adrenomedullin-2 Receptor. ACS Pharmacol Transl Sci 2020; 3:706-719. [PMID: 32832872 DOI: 10.1021/acsptsci.0c00032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Indexed: 01/10/2023]
Abstract
The hormone adrenomedullin has both physiological and pathological roles in biology. As a potent vasodilator, adrenomedullin is critically important in the regulation of blood pressure, but it also has several roles in disease, of which its actions in cancer are becoming recognized to have clinical importance. Reduced circulating adrenomedullin causes increased blood pressure but also reduces tumor progression, so drugs blocking all effects of adrenomedullin would be unacceptable clinically. However, there are two distinct receptors for adrenomedullin, each comprising the same G protein-coupled receptor (GPCR), the calcitonin receptor-like receptor (CLR), together with a different accessory protein known as a receptor activity-modifying protein (RAMP). The CLR with RAMP2 forms an adrenomedullin-1 receptor, and the CLR with RAMP3 forms an adrenomedullin-2 receptor. Recent research suggests that a selective blockade of adrenomedullin-2 receptors would be therapeutically valuable. Here we describe the design, synthesis, and characterization of potent small-molecule adrenomedullin-2 receptor antagonists with 1000-fold selectivity over the adrenomedullin-1 receptor, although retaining activity against the CGRP receptor. These molecules have clear effects on markers of pancreatic cancer progression in vitro, drug-like pharmacokinetic properties, and inhibit xenograft tumor growth and extend life in a mouse model of pancreatic cancer. Taken together, our data support the promise of a new class of anticancer therapeutics as well as improved understanding of the pharmacology of the adrenomedullin receptors and other GPCR/RAMP heteromers.
Collapse
Affiliation(s)
- Paris Avgoustou
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, S10 2TN, U.K
| | - Ameera B A Jailani
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, S10 2TN, U.K
| | | | | | - Karl R Gibson
- Sandexis Medicinal Chemistry Ltd, Sandwich, Kent CT13 9ND, U.K
| | - Paul A Glossop
- Sandexis Medicinal Chemistry Ltd, Sandwich, Kent CT13 9ND, U.K
| | - James E J Mills
- Sandexis Medicinal Chemistry Ltd, Sandwich, Kent CT13 9ND, U.K
| | | | - Paul Blaney
- Concept Life Sciences, High Peak, SK23 0PG, U.K
| | - Peter J Bungay
- Sympetrus Ltd., Bishop's Stortford, Hertfordshire CM23 3BT, U.K
| | - Ning Wang
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, S10 2TN, U.K
| | - Alice P Shaw
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, S10 2TN, U.K
| | - Kamilla J A Bigos
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, S10 2TN, U.K
| | - Joseph L Holmes
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, S10 2TN, U.K
| | - Jessica I Warrington
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, S10 2TN, U.K
| | - Timothy M Skerry
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, S10 2TN, U.K
| | - Joseph P A Harrity
- Department of Chemistry, University of Sheffield, Sheffield, S10 2TN, U.K
| | - Gareth O Richards
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, S10 2TN, U.K
| |
Collapse
|
15
|
Intricacies of the Molecular Machinery of Catecholamine Biosynthesis and Secretion by Chromaffin Cells of the Normal Adrenal Medulla and in Pheochromocytoma and Paraganglioma. Cancers (Basel) 2019; 11:cancers11081121. [PMID: 31390824 PMCID: PMC6721535 DOI: 10.3390/cancers11081121] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 12/11/2022] Open
Abstract
The adrenal medulla is composed predominantly of chromaffin cells producing and secreting the catecholamines dopamine, norepinephrine, and epinephrine. Catecholamine biosynthesis and secretion is a complex and tightly controlled physiologic process. The pathways involved have been extensively studied, and various elements of the underlying molecular machinery have been identified. In this review, we provide a detailed description of the route from stimulus to secretion of catecholamines by the normal adrenal chromaffin cell compared to chromaffin tumor cells in pheochromocytomas. Pheochromocytomas are adrenomedullary tumors that are characterized by uncontrolled synthesis and secretion of catecholamines. This uncontrolled secretion can be partly explained by perturbations of the molecular catecholamine secretory machinery in pheochromocytoma cells. Chromaffin cell tumors also include sympathetic paragangliomas originating in sympathetic ganglia. Pheochromocytomas and paragangliomas are usually locally confined tumors, but about 15% do metastasize to distant locations. Histopathological examination currently poorly predicts future biologic behavior, thus long term postoperative follow-up is required. Therefore, there is an unmet need for prognostic biomarkers. Clearer understanding of the cellular mechanisms involved in the secretory characteristics of pheochromocytomas and sympathetic paragangliomas may offer one approach for the discovery of novel prognostic biomarkers for improved therapeutic targeting and monitoring of treatment or disease progression.
Collapse
|
16
|
Natural and synthetic peptides in the cardiovascular diseases: An update on diagnostic and therapeutic potentials. Arch Biochem Biophys 2018; 662:15-32. [PMID: 30481494 DOI: 10.1016/j.abb.2018.11.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/31/2018] [Accepted: 11/21/2018] [Indexed: 02/07/2023]
Abstract
Several peptides play an important role in physiological and pathological conditions into the cardiovascular system. In addition to well-known vasoactive agents such as angiotensin II, endothelin, serotonin or natriuretic peptides, the vasoconstrictor Urotensin-II (Uro-II) and the vasodilators Urocortins (UCNs) and Adrenomedullin (AM) have been implicated in the control of vascular tone and blood pressure as well as in cardiovascular disease states including congestive heart failure, atherosclerosis, coronary artery disease, and pulmonary and systemic hypertension. Therefore these peptides, together with their receptors, become important therapeutic targets in cardiovascular diseases (CVDs). Circulating levels of these agents in the blood are markedly modified in patients with specific CVDs compared with those in healthy patients, becoming also potential biomarkers for these pathologies. This review will provide an overview of current knowledge about the physiological roles of Uro-II, UCN and AM in the cardiovascular system and their implications in cardiovascular diseases. It will further focus on the structural modifications carried out on original peptide sequences in the search of analogues with improved physiochemical properties as well as in the delivery methods. Finally, we have overviewed the possible application of these peptides and/or their precursors as biomarkers of CVDs.
Collapse
|
17
|
Fischer JP, Els-Heindl S, Schönauer R, Bierer D, Köbberling J, Riedl B, Beck-Sickinger AG. The Impact of Adrenomedullin Thr22 on Selectivity within the Calcitonin Receptor-like Receptor/Receptor Activity-Modifying Protein System. ChemMedChem 2018; 13:1797-1805. [DOI: 10.1002/cmdc.201800329] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/26/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Jan-Patrick Fischer
- Institute of Biochemistry; Leipzig University; Brüderstraße 34 04103 Leipzig Germany
| | - Sylvia Els-Heindl
- Institute of Biochemistry; Leipzig University; Brüderstraße 34 04103 Leipzig Germany
| | - Ria Schönauer
- Institute of Biochemistry; Leipzig University; Brüderstraße 34 04103 Leipzig Germany
| | - Donald Bierer
- Department of Medicinal Chemistry; Bayer AG; Aprather Weg 18 A 42096 Wuppertal Germany
| | - Johannes Köbberling
- Department of Medicinal Chemistry; Bayer AG; Aprather Weg 18 A 42096 Wuppertal Germany
| | - Bernd Riedl
- Department of Medicinal Chemistry; Bayer AG; Aprather Weg 18 A 42096 Wuppertal Germany
| | | |
Collapse
|
18
|
Adrenomedullin promotes the growth of pancreatic ductal adenocarcinoma through recruitment of myelomonocytic cells. Oncotarget 2018; 7:55043-55056. [PMID: 27391260 PMCID: PMC5342400 DOI: 10.18632/oncotarget.10393] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 06/17/2016] [Indexed: 12/20/2022] Open
Abstract
Stromal infiltration of myelomonocytic cells is a hallmark of pancreatic ductal adenocarcinoma (PDAC) and is related to a poor prognosis. However, the detailed mechanism for the recruitment of myelomonocytic cells to pancreatic cancer tissue remains unclear. In the present study, pancreatic cancer cells secreted high levels of adrenomedullin (ADM), and CD11b+ myelomonocytic cells expressed all components of ADM receptors, including GPR182, CRLR, RAMP2 and RAMP3. ADM enhanced the migration and invasion of myelomonocytic cells through activation of the MAPK, PI3K/Akt and eNOS signaling pathways, as well as the expression and activity of MMP-2. ADM also promoted the adhesion and trans-endothelial migration of myelomonocytic cells by increasing expression of VCAM-1 and ICAM-1 in endothelial cells. In addition, ADM induced macrophages and myeloid-derived suppressor cells (MDSCs) to express pro-tumor phenotypes. ADM knockdown in tumor-bearing mice or administration of AMA, an ADM antagonist, significantly inhibited the recruitment of myelomonocytic cells and tumor angiogenesis. Moreover, in vivo depletion of myelomonocytic cells using clodronate liposomes suppressed the progression of PDAC. These results reveal a novel function of ADM in PDAC, and suggest ADM is a promising target in the treatment of PDAC.
Collapse
|
19
|
Dong W, Yu P, Zhang T, Zhu C, Qi J, Liang J. Adrenomedullin serves a role in the humoral pathway of delayed remote ischemic preconditioning via a hypoxia-inducible factor-1α-associated mechanism. Mol Med Rep 2018; 17:4547-4553. [PMID: 29344650 PMCID: PMC5802232 DOI: 10.3892/mmr.2018.8450] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 01/12/2018] [Indexed: 11/12/2022] Open
Abstract
Remote ischemic preconditioning (RIPC) is a minimally invasive method that provides protection by reducing injury to the heart, kidneys, brain and other tissues or organs. RIPC may improve the outcome in patients undergoing surgery. Although the role of RIPC has been studied, the results remain controversial. It is difficult to confirm whether RIPC has a kidney protective effect and the understanding of the preconditioning signal pathway involved remains unclear. In the present study, the effect of RIPC in urology was evaluated. The protection against renal damage was assessed by investigating the potential mediator, hypoxia-inducible factor-1α (HIF-1α), and the functional adrenomedullin (ADM) pathway. Male Sprague-Dawley (SD) rats were used in the present study. The animal model of kidney damage induced by ischemia reperfusion (IR) was used to investigate the protective effect of the acute and delayed phase RIPC. Furthermore, the protective effects of RIPC mediated by a HIF-1α-ADM pathway were assessed. The indexes of renal function and oxidative damage indicators were measured by Cr, BUN, mALB, β2-MG, MPO, MDA and SOD assays, and the expression of HIF-1α and ADM were detected by western blot analysis, immunohistochemistry and ELISA assays. Tubular score, determined using hematoxylin and eosin staining, was used to evaluate renal tissue damage. Applying RIPC prevented IR-induced renal dysfunction and oxidative damage by decreasing Cr, BUN, mALB, β2-MG, MPO, MDA levels and increasing SOD activity. Findings showed that delayed RIPC had an improved effect compared with acute treatment. Delayed RIPC also upregulated the expression of HIF-1α and ADM, indicating that the protective effect of the delayed RIPC may be associated with a HIF-1α-ADM-mediated mechanism. The effect of the delayed RIPC to reduce IR-induced renal damage and increase ADM expression was enhanced by HIF-1α agonists DMOG and BAY 85–3934, whereas the effect was whittled by HIF-1α antagonists YC-1 and 2-MeOE2. Furthermore, receiving ADM also offered protection to the kidney in comparison with the IR+Vehicle group. These findings suggest that RIPC prevents IR-mediated renal damage by HIF-1α via an ADM humoral pathway. In the present study, RIPC provided an effective renal protection. ADM could also offer protection regulated by HIF-1α in renal tissue. However, the mechanism of ADM as a protective factor in RIPC requires further research.
Collapse
Affiliation(s)
- Wenpei Dong
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, P.R. China
| | - Ping Yu
- School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, P.R. China
| | - Tielong Zhang
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, P.R. China
| | - Chenzhuang Zhu
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, P.R. China
| | - Jun Qi
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, P.R. China
| | - Junhao Liang
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, P.R. China
| |
Collapse
|
20
|
Small molecules related to adrenomedullin reduce tumor burden in a mouse model of colitis-associated colon cancer. Sci Rep 2017; 7:17488. [PMID: 29235493 PMCID: PMC5727507 DOI: 10.1038/s41598-017-17573-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 11/28/2017] [Indexed: 02/07/2023] Open
Abstract
To investigate the contribution of adrenomedullin (AM) and its gene-related peptide, proadrenomedullin N-terminal 20 peptide (PAMP), to the progression and potential treatment of colon cancer we studied the effects of four small molecules (SM) related to AM and PAMP on a mouse model of colon cancer. For each SM, four experimental groups of male mice were used: (i) Control group; (ii) SM group; (iii) DSS group (injected with azoxymethane [AOM] and drank dextran sulfate sodium [DSS]); and (iv) DSS + SM group (treated with AOM, DSS, and the SM). None of the mice in groups i and ii developed tumors, whereas all mice in groups iii and iv developed colon neoplasias. No significant differences were found among mice treated with PAMP modulators (87877 and 106221). Mice that received the AM negative modulator, 16311, had worse colitis symptoms than their control counterparts, whereas mice injected with the AM positive modulator, 145425, had a lower number of tumors than their controls. SM 145425 regulated the expression of proliferation marker Lgr5 and had an impact on microbiota, preventing the DSS-elicited increase of the Bacteroides/Prevotella ratio. These results suggest that treatment with AM or with positive modulator SMs may represent a novel strategy for colon cancer.
Collapse
|
21
|
Benyahia Z, Dussault N, Cayol M, Sigaud R, Berenguer-Daizé C, Delfino C, Tounsi A, Garcia S, Martin PM, Mabrouk K, Ouafik L. Stromal fibroblasts present in breast carcinomas promote tumor growth and angiogenesis through adrenomedullin secretion. Oncotarget 2017; 8:15744-15762. [PMID: 28178651 PMCID: PMC5362520 DOI: 10.18632/oncotarget.14999] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 01/03/2017] [Indexed: 11/25/2022] Open
Abstract
Tumor- or cancer-associated fibroblasts (TAFs or CAFs) are active players in tumorigenesis and exhibit distinct angiogenic and tumorigenic properties. Adrenomedullin (AM), a multifunctional peptide plays an important role in angiogenesis and tumor growth through its receptors calcitonin receptor-like receptor/receptor activity modifying protein-2 and -3 (CLR/RAMP2 and CLR/RAMP3). We show that AM and AM receptors mRNAs are highly expressed in CAFs prepared from invasive breast carcinoma when compared to normal fibroblasts. Immunostaining demonstrates the presence of immunoreactive AM and AM receptors in the CAFs (n = 9). The proliferation of CAFs is decreased by anti-AM antibody (αAM) and anti-AM receptors antibody (αAMR) treatment, suggesting that AM may function as a potent autocrine/paracrine growth factor. Systemic administration of αAMR reduced neovascularization of in vivo Matrigel plugs containing CAFs as demonstrated by reduced numbers of the vessel structures, suggesting that AM is one of the CAFs-derived factors responsible for endothelial cell-like and pericytes recruitment to built a neovascularization. We show that MCF-7 admixed with CAFs generated tumors of greater volume significantly different from the MCF-7 xenografts in nude mice due in part to the induced angiogenesis. αAMR and AM22-52 therapies significantly suppressed the growth of CAFs/MCF-7 tumors. Histological examination of tumors treated with AM22-52 and aAMR showed evidence of disruption of tumor vasculature with depletion of vascular endothelial cells, induced apoptosis and decrease of tumor cell proliferation. Our findings highlight the importance of CAFs-derived AM pathway in growth of breast carcinoma and in neovascularization by supplying and amplifying signals that are essential for pathologic angiogenesis.
Collapse
Affiliation(s)
- Zohra Benyahia
- Aix Marseille University, The Institut National pour la Recherche Médicale, Centre de Recherche en Oncologie et Oncopharmacologie, UMR 911, 13005, Marseille, France
| | - Nadège Dussault
- Aix Marseille University, The Institut National pour la Recherche Médicale, Centre de Recherche en Oncologie et Oncopharmacologie, UMR 911, 13005, Marseille, France
| | - Mylène Cayol
- Aix Marseille University, The Institut National pour la Recherche Médicale, Centre de Recherche en Oncologie et Oncopharmacologie, UMR 911, 13005, Marseille, France
| | - Romain Sigaud
- Aix Marseille University, The Institut National pour la Recherche Médicale, Centre de Recherche en Oncologie et Oncopharmacologie, UMR 911, 13005, Marseille, France
| | - Caroline Berenguer-Daizé
- Aix Marseille University, The Institut National pour la Recherche Médicale, Centre de Recherche en Oncologie et Oncopharmacologie, UMR 911, 13005, Marseille, France
| | - Christine Delfino
- Aix Marseille University, The Institut National pour la Recherche Médicale, Centre de Recherche en Oncologie et Oncopharmacologie, UMR 911, 13005, Marseille, France
| | - Asma Tounsi
- Aix Marseille University, The Institut National pour la Recherche Médicale, Centre de Recherche en Oncologie et Oncopharmacologie, UMR 911, 13005, Marseille, France
| | - Stéphane Garcia
- Assistance Publique Hôpitaux de Marseille, Laboratoire d'Anatomie Pathologique, 13015, Marseille, France
| | - Pierre-Marie Martin
- Aix Marseille University, The Institut National pour la Recherche Médicale, Centre de Recherche en Oncologie et Oncopharmacologie, UMR 911, 13005, Marseille, France
| | - Kamel Mabrouk
- Aix Marseille University, CNRS, ICR, UMR 7273 CROPS, 13397, Marseille, France
| | - L'Houcine Ouafik
- Aix Marseille University, The Institut National pour la Recherche Médicale, Centre de Recherche en Oncologie et Oncopharmacologie, UMR 911, 13005, Marseille, France.,Assistance Publique Hôpitaux de Marseille, Service de Transfert d'Oncologie Biologique, 13015, Marseille, France
| |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW This study is to highlight recent discoveries associated with the role of calcitonin peptide family and their receptors in prostate cancer progression and bone metastasis. RECENT FINDINGS Studies have linked adrenomedullin (AM), calcitonin (CT) and calcitonin gene-related peptide (CGRP) to the spread of prostate tumours to the bone. AM can induce a metastatic phenotype in prostate cancer cells through its action on TRPV2 calcium channels and is also capable of influencing localised levels of RANKL in the bone to favour tumourigenesis. CT utilises A-kinase anchoring proteins to indirectly act on PKA and promote metastasis in prostate cancer. The receptor for CT contains a PDZ-binding domain, the deletion of which stops metastasis to the bone in orthotopic prostate models. SUMMARY Recent findings show strong evidence for the role of calcitonin peptides and receptors in prostate cancer and bone metastasis. Further research could provide potential prognostic markers and therapeutic targets for prostate cancer patients.
Collapse
|
23
|
Qiao F, Fang J, Xu J, Zhao W, Ni Y, Akuo BA, Zhang W, Liu Y, Ding F, Li G, Liu B, Wang H, Shao S. The role of adrenomedullin in the pathogenesis of gastric cancer. Oncotarget 2017; 8:88464-88474. [PMID: 29179449 PMCID: PMC5687619 DOI: 10.18632/oncotarget.18881] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 06/13/2017] [Indexed: 12/29/2022] Open
Abstract
Adrenomedullin has been shown to be overexpressed in many tumors, including gastric cancer tumors; however, its mechanism of action remains unclear. In this study, we examined the role of adrenomedullin in the pathogenesis of gastric cancer. Using clinical specimens and immunohistochemistry, we found that the expression levels of adrenomedullin and its receptors are inordinately elevated as compared to the adjacent non-tumor gastric tissues. We used siRNA gene silencing, in BGC-823 gastric cancer cell lines, to target adrenomedullin genes, and found that increased adrenomedullin expression results in the proliferation of tumor cells, tumor invasion, and metastasis. Furthermore, we found that under hypoxic conditions, gastric cancer BGC-823 cells exhibit higher expression levels of adrenomedullin and various other related proteins. Our results indicate the involvement of adrenomedullin in microvessel proliferation and partially in the release of hypoxia in solid tumors. Knockdown of adrenomedullin expression, at the protein level, reduced the levels of phosphoprotein kinase B and B-cell lymphoma 2 but increased the levels of cleaved-caspase3 and Bcl 2 associated x protein (Bax). Therefore, we hypothesized siRNA targeting of adrenomedullin genes inhibits various serine/threonine kinases via a signaling pathway that induces cell apoptosis. SiRNA targeting of adrenomedullin genes and green fluorescent control vectors were used to transfect BGC-823 cells, and western blot analyses were used to detect changes in the rates of autophagy in related proteins using confocal laser scanning microscopy. No significant changes were detected. Therefore, the knockdown of adrenomedullin and its receptors may represent a novel treatment strategy for gastric cancer.
Collapse
Affiliation(s)
- Fuhao Qiao
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China.,Medical Laboratory, Xintai Hospital of Traditional Chinese Medicine, Xintai 271200, Shandong, PR China
| | - Jian Fang
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Jinfeng Xu
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Wenqiu Zhao
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Ying Ni
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | | | - Wei Zhang
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Yun Liu
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Fangfang Ding
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Guanlin Li
- School of The Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Baoguo Liu
- Nuclear Medicine Laboratory, Taian Jiangong Hospital, Taian 271001, Shandong, PR China
| | - Hua Wang
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Shihe Shao
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| |
Collapse
|
24
|
Nagata S, Yamasaki M, Kitamura K. Anti-Inflammatory Effects of PEGylated Human Adrenomedullin in a Mouse DSS-Induced Colitis Model. Drug Dev Res 2017; 78:129-134. [PMID: 28449192 DOI: 10.1002/ddr.21383] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 04/02/2017] [Indexed: 12/20/2022]
Abstract
Preclinical Research Human adrenomedullin (hAM), a hypotensive peptide, also has anti-inflammatory effects. hAM can reduce the severity of the dextran sulphate sodium (DSS)- and 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis in animal models. Furthermore, in a clinical study, hAM treatment reduced the Disease Activity Index in ulcerative colitis. However, these therapeutic effects required continuous administration of hAM as the half-life of native hAM is quite short in blood. To resolve this problem, hAM N-terminal was conjugated with two kinds of polyethylene glycol (PEG); 5 kDa PEG or 60 kDa PEG (5 kDa PEG-hAM and 60 kDa PEG-hAM respectively). In a previous study, 5 kDa PEG-hAM stimulated cAMP production and prolonged the plasma half-life compared with native hAM. Herein we examine the effect of PEG-hAM in the DSS colitis model. Treatment with both PEG-hAM preparations reduced the total inflammation score. In addition, the plasma half-life of 60 kDa PEG-hAM was much longer than 5 kDa PEG-hAM. In summary, a single subcutaneous administration of 60 kDa PEG-hAM reduced the total inflammation score in mice with DSS-induced colitis. Therefore, these results suggest that 60 kDa PEG-hAM is a possible therapeutic agent for the treatment of inflammatory bowel disease. Drug Dev Res 78 : 129-134, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sayaka Nagata
- Circulatory and Body Fluid Regulation, Faculty of Medicine, University of Miyazaki, Kiyotake, Miyazaki, 889-1692, Japan
| | - Motoo Yamasaki
- Circulatory and Body Fluid Regulation, Faculty of Medicine, University of Miyazaki, Kiyotake, Miyazaki, 889-1692, Japan
| | - Kazuo Kitamura
- Circulatory and Body Fluid Regulation, Faculty of Medicine, University of Miyazaki, Kiyotake, Miyazaki, 889-1692, Japan
| |
Collapse
|
25
|
Wang H, Yang L, Wang D, Zhang Q, Zhang L. Pro-tumor activities of macrophages in the progression of melanoma. Hum Vaccin Immunother 2017; 13:1556-1562. [PMID: 28441072 PMCID: PMC5512774 DOI: 10.1080/21645515.2017.1312043] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Macrophages are located in essentially all tissues due to their “janitor” function. Macrophages can exert either anti- or pro-tumor activities depending upon the specific tumor microenvironment they inhabit. Substantial evidence indicates that macrophages, owing to their plasticity, can be reeducated to adopt a protumoral phenotype within a tumor microenvironment through the help of growth factors in the microenvironment and intercellular interactions. As the lethality of malignant melanoma is due to its aggressive capacity for metastasis and resistance to therapy, considerable effort has gone toward treatment of metastatic melanoma. In the present review, we focus on the pro-tumor activities of macrophages in melanoma. Based upon the information presented in this review it is anticipated that new therapies will soon be developed that target pro-tumor activities of macrophages for use in the treatment of melanoma.
Collapse
Affiliation(s)
- Huafeng Wang
- a Modern College of Arts and Science, or School of Life Science, Shanxi Normal University , Linfen , China
| | - Luhong Yang
- a Modern College of Arts and Science, or School of Life Science, Shanxi Normal University , Linfen , China
| | - Dong Wang
- b Central Blood Station of Tianjin , Tianjin , China
| | - Qi Zhang
- c Nankai Hospital , Tianjin , China
| | - Lijuan Zhang
- d Research Center of Basic Medical Sciences , Tianjin Medical University , Tianjin , China
| |
Collapse
|
26
|
Awolaran O, Brooks SA, Lavender V. Breast cancer osteomimicry and its role in bone specific metastasis; an integrative, systematic review of preclinical evidence. Breast 2016; 30:156-171. [DOI: 10.1016/j.breast.2016.09.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/23/2016] [Accepted: 09/24/2016] [Indexed: 01/05/2023] Open
|
27
|
Greillier L, Tounsi A, Berenguer-Daizé C, Dussault N, Delfino C, Benyahia Z, Cayol M, Mabrouk K, Garcia S, Martin PM, Barlesi F, Ouafik L. Functional Analysis of the Adrenomedullin Pathway in Malignant Pleural Mesothelioma. J Thorac Oncol 2016; 11:94-107. [PMID: 26762744 DOI: 10.1016/j.jtho.2015.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 09/25/2015] [Accepted: 09/28/2015] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Malignant pleural mesothelioma (MPM) grows aggressively within the thoracic cavity and has a very low cure rate, thus highlighting the need for identification of new therapeutic targets. Adrenomedullin (AM) is a multifunctional peptide that is highly expressed in several tumors and plays an important role in angiogenesis and tumor growth after binding to its receptors, calcitonin receptor-like receptor/receptor activity-modifying protein 2 (CLR/RAMP2) and calcitonin receptor-like receptor/receptor activity-modifying protein 3 (CLR/RAMP3). METHODS Real time quantitative reverse transcriptase polymerase chain reaction (RT-PCR) was used to assess the steady-state levels of AM, CLR, RAMP2 and RAMP3 messenger RNA (mRNA) transcripts in normal pleural tissue (n=5) and MPM (n=24). The expression of these candidates at protein level was revealed by immunohistochemistry. We also characterized the expression and regulation by hypoxia of AM system in MPM cell lines and MeT-5A cells. In vitro and in vivo studies were performed to determine the functional role of AM system in MPM. RESULTS In this study, real-time quantitative reverse transcriptase polymerase chain reaction showed twofold to 10-fold higher levels of AM messenger RNA in MPM tissue than in normal pleural tissue. The MPM cell lines H2452, H2052, and human mesothelioma cell line MSTO-211H showed a significant increase in expression of AM messenger RNA under hypoxic conditions. Our results also show that AM stimulates cell proliferation in vitro through the Raf1 proto-oncogene, serine/threonine kinase (CRAF)/ Mitogen-activated protein kinase kinase 1 (MEK)/Extracellular regulated MAPKinase (ERK) pathway. Furthermore, the proliferation, migration, and invasion of MPM cells were decreased after treatment with anti-AM (αAM) and anti-AM receptor antibodies, thus indicating that MPM cells are regulated by AM. The action of AM was specific and mediated by CLR/RAMP2 and CLR/RAMP3 receptors. In vivo, αAM and AM22-52 antagonist therapies blocked angiogenesis and induced apoptosis in MSTO-211H xenografts, thereby resulting in tumor regression. Histologic examination of tumors treated with AM22-52 and αAM antibody showed evidence of disruption of tumor vasculature with depletion of vascular endothelial cells and a significant decrease in lymphatic endothelial cells. CONCLUSIONS Our findings highlight the importance of the AM pathway in growth of MPM and in neovascularization by supplying and amplifying signals that are essential for pathologic neoangiogenesis and lymphangiogenesis.
Collapse
MESH Headings
- Adrenomedullin/genetics
- Adrenomedullin/metabolism
- Animals
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Blotting, Western
- Calcitonin Receptor-Like Protein/genetics
- Calcitonin Receptor-Like Protein/metabolism
- Cell Movement
- Cell Proliferation
- Flow Cytometry
- Gene Expression Regulation, Neoplastic
- Humans
- Immunoenzyme Techniques
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Mesothelioma/genetics
- Mesothelioma/metabolism
- Mesothelioma/pathology
- Mesothelioma, Malignant
- Mice
- Mice, Nude
- Neovascularization, Pathologic
- Pleural Neoplasms/genetics
- Pleural Neoplasms/metabolism
- Pleural Neoplasms/pathology
- Proto-Oncogene Mas
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Receptor Activity-Modifying Protein 2/genetics
- Receptor Activity-Modifying Protein 2/metabolism
- Receptor Activity-Modifying Protein 3/genetics
- Receptor Activity-Modifying Protein 3/metabolism
- Receptors, Adrenomedullin/genetics
- Receptors, Adrenomedullin/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Laurent Greillier
- Aix-Marseille University, CRO2 UMR 911, Marseille, France; INSERM, CRO2 UMR 911, Marseille, France; Assistance Publique Hopitaux de Marseille, Service d'Oncologie Multidisciplinaire et Innovations Thérapeutiques, Marseille, France.
| | - Asma Tounsi
- Aix-Marseille University, CRO2 UMR 911, Marseille, France; INSERM, CRO2 UMR 911, Marseille, France
| | - Caroline Berenguer-Daizé
- Aix-Marseille University, CRO2 UMR 911, Marseille, France; INSERM, CRO2 UMR 911, Marseille, France
| | - Nadège Dussault
- Aix-Marseille University, CRO2 UMR 911, Marseille, France; INSERM, CRO2 UMR 911, Marseille, France
| | - Christine Delfino
- Aix-Marseille University, CRO2 UMR 911, Marseille, France; INSERM, CRO2 UMR 911, Marseille, France
| | - Zohra Benyahia
- Aix-Marseille University, CRO2 UMR 911, Marseille, France; INSERM, CRO2 UMR 911, Marseille, France
| | - Mylène Cayol
- Aix-Marseille University, CRO2 UMR 911, Marseille, France; INSERM, CRO2 UMR 911, Marseille, France
| | - Kamel Mabrouk
- Aix-Marseille University, LCP UMR 6264, CROPS, Marseille, France
| | - Stéphane Garcia
- Assistance Publique Hopitaux de Marseille, Service d'Anatomie et de Cytologie Pathologiques, Marseille, France
| | - Pierre-Marie Martin
- Aix-Marseille University, CRO2 UMR 911, Marseille, France; INSERM, CRO2 UMR 911, Marseille, France; Assistance Publique Hopitaux de Marseille, Service de Transfert d'Oncologie Biologique, Marseille, France
| | - Fabrice Barlesi
- Aix-Marseille University, CRO2 UMR 911, Marseille, France; INSERM, CRO2 UMR 911, Marseille, France; Assistance Publique Hopitaux de Marseille, Service d'Oncologie Multidisciplinaire et Innovations Thérapeutiques, Marseille, France
| | - L'Houcine Ouafik
- Aix-Marseille University, CRO2 UMR 911, Marseille, France; INSERM, CRO2 UMR 911, Marseille, France; Assistance Publique Hopitaux de Marseille, Service de Transfert d'Oncologie Biologique, Marseille, France
| |
Collapse
|
28
|
Khalfaoui-Bendriss G, Dussault N, Fernandez-Sauze S, Berenguer-Daizé C, Sigaud R, Delfino C, Cayol M, Metellus P, Chinot O, Mabrouk K, Martin PM, Ouafik L. Adrenomedullin blockade induces regression of tumor neovessels through interference with vascular endothelial-cadherin signalling. Oncotarget 2016; 6:7536-53. [PMID: 25924235 PMCID: PMC4480698 DOI: 10.18632/oncotarget.3167] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 01/19/2015] [Indexed: 11/25/2022] Open
Abstract
The cellular and molecular mechanisms by which adrenomedullin (AM) blockade suppresses tumor neovessels are not well defined. Herein, we show that AM blockade using anti-AM and anti-AM receptors antibodies targets vascular endothelial cells (ECs) and vascular smooth muscle cells (VSMCs), and induces regression of unstable nascent tumor neovessels. The underlying mechanism involved, and shown in vitro and in vivo in mice, is the disruption of the molecular engagement of the endothelial cell-specific junctional molecules vascular endothelial-cadherin (VE-cadherin)/β-catenin complex. AM blockade increases endothelial cell permeability by inhibiting cell-cell contacts predominantly through disruption of VE-cadherin/β-catenin/Akt signalling pathway, thereby leading to vascular collapse and regression of tumor neovessels. At a molecular level, we show that AM blockade induces tyrosine phosphorylation of VE-cadherin at a critical tyrosine, Tyr731, which is sufficient to prevent the binding of β-catenin to the cytoplasmic tail of VE-cadherin leading to the inhibition of cell barrier function. Furthermore, we demonstrate activation of Src kinase by phosphorylation on Tyr416, supporting a role of Src to phosphorylate Tyr731-VE-cadherin. In this model, Src inhibition impairs αAM and αAMR-induced Tyr731-VE-cadherin phosphorylation in a dose-dependent manner, indicating that Tyr731-VE-cadherin phosphorylation state is dependent on Src activation. We found that AM blockade induces β-catenin phosphorylation on Ser33/Ser37/Thr41 sites in both ECs and VSMCs both in vitro and in vivo in mice. These data suggest that AM blockade selectively induces regression of unstable tumor neovessels, through disruption of VE-cadherin signalling. Targeting AM system may present a novel therapeutic target to selectively disrupt assembly and induce regression of nascent tumor neovessels, without affecting normal stabilized vasculature.
Collapse
Affiliation(s)
- Ghizlane Khalfaoui-Bendriss
- Aix Marseille Université, CRO2, UMR_S 911, Faculté de Médecine, Marseille, France.,Inserm, U911-CRO2, Marseille, France
| | - Nadège Dussault
- Aix Marseille Université, CRO2, UMR_S 911, Faculté de Médecine, Marseille, France.,Inserm, U911-CRO2, Marseille, France
| | - Samantha Fernandez-Sauze
- Aix Marseille Université, CRO2, UMR_S 911, Faculté de Médecine, Marseille, France.,Inserm, U911-CRO2, Marseille, France
| | - Caroline Berenguer-Daizé
- Aix Marseille Université, CRO2, UMR_S 911, Faculté de Médecine, Marseille, France.,Inserm, U911-CRO2, Marseille, France
| | - Romain Sigaud
- Aix Marseille Université, CRO2, UMR_S 911, Faculté de Médecine, Marseille, France.,Inserm, U911-CRO2, Marseille, France
| | - Christine Delfino
- Aix Marseille Université, CRO2, UMR_S 911, Faculté de Médecine, Marseille, France.,Inserm, U911-CRO2, Marseille, France
| | - Mylène Cayol
- Aix Marseille Université, CRO2, UMR_S 911, Faculté de Médecine, Marseille, France.,Inserm, U911-CRO2, Marseille, France
| | - Philippe Metellus
- Aix Marseille Université, CRO2, UMR_S 911, Faculté de Médecine, Marseille, France.,Inserm, U911-CRO2, Marseille, France
| | - Olivier Chinot
- Aix Marseille Université, CRO2, UMR_S 911, Faculté de Médecine, Marseille, France.,Inserm, U911-CRO2, Marseille, France
| | - Kamel Mabrouk
- Aix-Marseille Université, CNRS, UMR 7273, Institut de Chimie Radicalaire (ICR) Marseille, France
| | - Pierre-Marie Martin
- Aix Marseille Université, CRO2, UMR_S 911, Faculté de Médecine, Marseille, France.,Inserm, U911-CRO2, Marseille, France.,AP-HM, CHU Nord, Service de Transfert d'Oncologie Biologique, Marseille, France
| | - L'Houcine Ouafik
- Aix Marseille Université, CRO2, UMR_S 911, Faculté de Médecine, Marseille, France.,Inserm, U911-CRO2, Marseille, France.,AP-HM, CHU Nord, Service de Transfert d'Oncologie Biologique, Marseille, France
| |
Collapse
|
29
|
Adrenomedullin: A potential therapeutic target for retinochoroidal disease. Prog Retin Eye Res 2016; 52:112-29. [DOI: 10.1016/j.preteyeres.2016.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 01/06/2016] [Accepted: 01/07/2016] [Indexed: 11/22/2022]
|
30
|
Bozkurt KK, Yalçın Y, Erdemoğlu E, Tatar B, Erdemoğlu E, Çerçi SS, Çiriş İM, Başpınar Ş, Uğuz A, Kapucuoğlu N. The role of immunohistochemical adrenomedullin and Bcl-2 expression in development of type-1 endometrial adenocarcinoma: Adrenomedullin expression in endometrium. Pathol Res Pract 2016; 212:450-5. [PMID: 26972419 DOI: 10.1016/j.prp.2016.02.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 02/02/2016] [Accepted: 02/24/2016] [Indexed: 11/24/2022]
Abstract
BACKGROUND Adrenomedullin (AM) is a pluripotent peptide first discovered from human pheochromocytoma. AM expression has been shown in various cancer types including endometrium cancer. Bcl-2 is an antiapoptotic protein which might be regulated by AM in hypoxic conditions. The aim of the present study was to investigate the role of AM and Bcl-2 expressions in carcinogenesis of type-1 endometrium cancer. MATERIALS AND METHOD Study group consisted of 10 proliferative endometrium, 22 simple endometrial hyperplasia, 23 endometrial intraepithelial neoplasia (EIN) and 30 Grade 1 endometrioid adenocarcinoma patients. AM and Bcl-2 expressions were investigated by immunohistochemistry. RESULTS Mean AM Allred score was 3±2.6, 5.6±1.6 and 5.7±2.5 in benign, EIN and adenocarcinoma groups, respectively. AM expression was significantly higher in EIN and adenocarcinoma groups than in benign endometrium group (p<0.05). Mean Bcl-2 Allred score was 6.4±2.1, 5.2±2.6, 2.3±2 in benign endometrium, EIN and adenocarcinoma groups, respectively. Mean Bcl-2 Allred score was similar between benign endometrium and EIN groups (p>0.05). However, it was significantly lower in adenocarcinoma group (p<0.05). An inverse correlation between AM and Bcl-2 expressions was found (r: -0.4, p<0.001). CONCLUSIONS Our findings showed that AM expression increased in progression from benign endometrium to EIN and type-1 adenocarcinoma while expression of Bcl-2 decreased in transition from EIN to carcinoma.
Collapse
Affiliation(s)
- Kemal Kürşat Bozkurt
- Süleyman Demirel University, Faculty of Medicine, Department of Pathology, Isparta, Turkey.
| | - Yakup Yalçın
- Suleyman Demirel University, Faculty of Medicine, Department of Gynecologic Oncology, Isparta, Turkey.
| | - Ebru Erdemoğlu
- Isparta Maternity Hospital, Department of Obstetrics and Gynecology, Isparta, Turkey.
| | - Burak Tatar
- Suleyman Demirel University, Faculty of Medicine, Department of Gynecologic Oncology, Isparta, Turkey.
| | - Evrim Erdemoğlu
- Suleyman Demirel University, Faculty of Medicine, Department of Gynecologic Oncology, Isparta, Turkey.
| | - Sevim Süreyya Çerçi
- Suleyman Demirel University, Faculty of Medicine, Department of Nuclear Medicine, Isparta, Turkey.
| | - İbrahim Metin Çiriş
- Süleyman Demirel University, Faculty of Medicine, Department of Pathology, Isparta, Turkey.
| | - Şirin Başpınar
- Süleyman Demirel University, Faculty of Medicine, Department of Pathology, Isparta, Turkey.
| | - Afife Uğuz
- Süleyman Demirel University, Faculty of Medicine, Department of Pathology, Isparta, Turkey.
| | - Nilgün Kapucuoğlu
- Acıbadem Maslak Hospital, Department of Pathology, Istanbul, Turkey.
| |
Collapse
|
31
|
Klein KR, Caron KM. Adrenomedullin in lymphangiogenesis: from development to disease. Cell Mol Life Sci 2015; 72:3115-26. [PMID: 25953627 PMCID: PMC11113374 DOI: 10.1007/s00018-015-1921-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 04/01/2015] [Accepted: 04/29/2015] [Indexed: 12/01/2022]
Abstract
Over the past decade, we have begun to appreciate that the lymphatic vascular system does more than simply return plasma back into the circulatory system and, in fact, contributes to a wide variety of normal and disease states. For this reason, much research has been devoted to understanding how lymphatic vessels form and function, with a particular interest in which molecules contribute to lymphatic vessel growth and maintenance. In the following review, we focus on a potent lymphangiogenic factor, adrenomedullin, and its known roles in lymphangiogenesis, lymphatic function, and human lymphatic disease. As one of the first, pharmacologically tractable G protein-coupled receptor pathways characterized in lymphatic endothelial cells, the continued study of adrenomedullin effects on the lymphatic system may open new avenues for the modulation of lymphatic growth and function in a variety of lymphatic-related diseases that currently have few treatments.
Collapse
Affiliation(s)
- Klara R. Klein
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, CB # 7545, 6312B MBRB, 111 Mason Farm Road, Chapel Hill, NC 27599 USA
| | - Kathleen M. Caron
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, CB # 7545, 6312B MBRB, 111 Mason Farm Road, Chapel Hill, NC 27599 USA
- Department of Genetics, The University of North Carolina, Chapel Hill, NC 27599 USA
| |
Collapse
|
32
|
Li M, Hong LI, Liao M, Guo G. Expression and clinical significance of focal adhesion kinase and adrenomedullin in epithelial ovarian cancer. Oncol Lett 2015; 10:1003-1007. [PMID: 26622614 DOI: 10.3892/ol.2015.3278] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 04/30/2015] [Indexed: 12/31/2022] Open
Abstract
The aim of the present study was to investigate the expression of focal adhesion kinase (FAK) and adrenomedullin (ADM) and determine their clinical significance and cooperative role in human epithelial ovarian cancer. The expression of FAK and ADM was investigated in epithelial ovarian cancer, benign ovarian tumors and normal control tissues by immunohistochemical staining and optical microscopy. The FAK and ADM expression and correlation with clinicopathological parameters was analyzed using SPSS 13.0 software. The expression of FAK and ADM in epithelial ovarian cancer was significantly higher compared with that in benign tumors or normal ovarian tissues (P<0.01); however, no significant difference was observed between benign tumors and normal tissues (P>0.05). The expression of FAK was found to be correlated with histological grade, clinical stage, lymph node metastasis and prognosis (P<0.05), but exhibited no significant association with patient age or histological type (P>0.05). The expression of ADM was significantly correlated with pathological grade, lymph node metastasis and prognosis (P<0.05), but not with age, clinical stage or histological type (P>0.05). The Spearman's rank correlation analysis revealed a positive correlation between FAK and ADM expression (r=0.314). FAK and ADM were more highly expressed in epithelial ovarian cancer compared with benign tumors or normal ovarian tissues. Furthermore, FAK and ADM may play a cooperative role; specifically, FAK may upregulate ADM in the invasion and migration of epithelial ovarian cancer. Thus, FAK and ADM may represent potential biomarkers for evaluating the malignant potential and prognosis of ovarian cancer.
Collapse
Affiliation(s)
- Mingqun Li
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430000, P.R. China ; Department of Gynecology and Obstetrics, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei 441100, P.R. China
| | - L I Hong
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430000, P.R. China
| | - Meimei Liao
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, Hubei 430000, P.R. China
| | - Guanglin Guo
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430000, P.R. China
| |
Collapse
|
33
|
Zhang ZL, Huang SX, Lin S, Chai L. Plasma adrenomedullin levels and nasopharyngeal carcinoma prognosis. Clin Chim Acta 2015; 440:172-6. [DOI: 10.1016/j.cca.2014.11.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 11/18/2014] [Accepted: 11/19/2014] [Indexed: 01/17/2023]
|
34
|
Larráyoz IM, Martínez-Herrero S, García-Sanmartín J, Ochoa-Callejero L, Martínez A. Adrenomedullin and tumour microenvironment. J Transl Med 2014; 12:339. [PMID: 25475159 PMCID: PMC4272513 DOI: 10.1186/s12967-014-0339-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 11/21/2014] [Indexed: 01/03/2023] Open
Abstract
Adrenomedullin (AM) is a regulatory peptide whose involvement in tumour progression is becoming more relevant with recent studies. AM is produced and secreted by the tumour cells but also by numerous stromal cells including macrophages, mast cells, endothelial cells, and vascular smooth muscle cells. Most cancer patients present high levels of circulating AM and in some cases these higher levels correlate with a worst prognosis. In some cases it has been shown that the high AM levels return to normal following surgical removal of the tumour, thus indicating the tumour as the source of this excessive production of AM. Expression of this peptide is a good investment for the tumour cell since AM acts as an autocrine/paracrine growth factor, prevents apoptosis-mediated cell death, increases tumour cell motility and metastasis, induces angiogenesis, and blocks immunosurveillance by inhibiting the immune system. In addition, AM expression gets rapidly activated by hypoxia through a HIF-1α mediated mechanism, thus characterizing AM as a major survival factor for tumour cells. Accordingly, a number of studies have shown that inhibition of this peptide or its receptors results in a significant reduction in tumour progression. In conclusion, AM is a great target for drug development and new drugs interfering with this system are being developed.
Collapse
Affiliation(s)
- Ignacio M Larráyoz
- Oncology Area, Center for Biomedical Research of La Rioja CIBIR, C/Piqueras 98, Logroño, 26006, Spain.
| | - Sonia Martínez-Herrero
- Oncology Area, Center for Biomedical Research of La Rioja CIBIR, C/Piqueras 98, Logroño, 26006, Spain.
| | - Josune García-Sanmartín
- Oncology Area, Center for Biomedical Research of La Rioja CIBIR, C/Piqueras 98, Logroño, 26006, Spain.
| | - Laura Ochoa-Callejero
- Oncology Area, Center for Biomedical Research of La Rioja CIBIR, C/Piqueras 98, Logroño, 26006, Spain.
| | - Alfredo Martínez
- Oncology Area, Center for Biomedical Research of La Rioja CIBIR, C/Piqueras 98, Logroño, 26006, Spain.
| |
Collapse
|
35
|
Siclari VA, Mohammad KS, Tompkins DR, Davis H, McKenna CR, Peng X, Wessner LL, Niewolna M, Guise TA, Suvannasankha A, Chirgwin JM. Tumor-expressed adrenomedullin accelerates breast cancer bone metastasis. Breast Cancer Res 2014; 16:458. [PMID: 25439669 PMCID: PMC4303191 DOI: 10.1186/s13058-014-0458-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 10/09/2014] [Indexed: 01/23/2023] Open
Abstract
Introduction Adrenomedullin (AM) is secreted by breast cancer cells and increased by hypoxia. It is a multifunctional peptide that stimulates angiogenesis and proliferation. The peptide is also a potent paracrine stimulator of osteoblasts and bone formation, suggesting a role in skeletal metastases—a major site of treatment-refractory tumor growth in patients with advanced disease. Methods The role of adrenomedullin in bone metastases was tested by stable overexpression in MDA-MB-231 breast cancer cells, which cause osteolytic bone metastases in a standard animal model. Cells with fivefold increased expression of AM were characterized in vitro, inoculated into immunodeficient mice and compared for their ability to form bone metastases versus control subclones. Bone destruction was monitored by X-ray, and tumor burden and osteoclast numbers were determined by quantitative histomorphometry. The effects of AM overexpression on tumor growth and angiogenesis in the mammary fat pad were determined. The effects of AM peptide on osteoclast-like multinucleated cell formation were tested in vitro. A small-molecule AM antagonist was tested for its effects on AM-stimulated ex vivo bone cell cultures and co-cultures with tumor cells, where responses of tumor and bone were distinguished by species-specific real-time PCR. Results Overexpression of AM mRNA did not alter cell proliferation in vitro, expression of tumor-secreted factors or cell cycle progression. AM-overexpressing cells caused osteolytic bone metastases to develop more rapidly, which was accompanied by decreased survival. In the mammary fat pad, tumors grew more rapidly with unchanged blood vessel formation. Tumor growth in the bone was also more rapid, and osteoclasts were increased. AM peptide potently stimulated bone cultures ex vivo; responses that were blocked by small-molecule adrenomedullin antagonists in the absence of cellular toxicity. Antagonist treatment dramatically suppressed tumor growth in bone and decreased markers of osteoclast activity. Conclusions The results identify AM as a target for therapeutic intervention against bone metastases. Adrenomedullin potentiates osteolytic responses in bone to metastatic breast cancer cells. Small-molecule antagonists can effectively block bone-mediated responses to tumor-secreted adrenomedullin, and such agents warrant development for testing in vivo. Electronic supplementary material The online version of this article (doi:10.1186/s13058-014-0458-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Valerie A Siclari
- Department of Biochemistry and Molecular Genetics, University of Virginia, PO Box 800733, Charlottesville, VA, 22908, USA.
| | - Khalid S Mohammad
- Division of Endocrinology and Metabolism, Department of Medicine, 450 Ray C Hunt Dr, University of Virginia, PO Box 801406, Charlottesville, VA, 22908, USA. .,Division of Endocrinology, Department of Medicine, Indiana University School of Medicine, 980 Walnut, St, C321-C, Indianapolis, IN, 46202, USA.
| | - Douglas R Tompkins
- Division of Endocrinology, Department of Medicine, Indiana University School of Medicine, 980 Walnut, St, C321-C, Indianapolis, IN, 46202, USA. .,Richard L. Roudebush VA Medical Center, 1481 W 10th St, Indianapolis, IN, 46202, USA.
| | - Holly Davis
- Division of Endocrinology and Metabolism, Department of Medicine, 450 Ray C Hunt Dr, University of Virginia, PO Box 801406, Charlottesville, VA, 22908, USA.
| | - C Ryan McKenna
- Division of Endocrinology and Metabolism, Department of Medicine, 450 Ray C Hunt Dr, University of Virginia, PO Box 801406, Charlottesville, VA, 22908, USA.
| | - Xianghong Peng
- Division of Endocrinology and Metabolism, Department of Medicine, 450 Ray C Hunt Dr, University of Virginia, PO Box 801406, Charlottesville, VA, 22908, USA. .,Division of Endocrinology, Department of Medicine, Indiana University School of Medicine, 980 Walnut, St, C321-C, Indianapolis, IN, 46202, USA.
| | - Lisa L Wessner
- Division of Endocrinology and Metabolism, Department of Medicine, 450 Ray C Hunt Dr, University of Virginia, PO Box 801406, Charlottesville, VA, 22908, USA.
| | - Maria Niewolna
- Division of Endocrinology and Metabolism, Department of Medicine, 450 Ray C Hunt Dr, University of Virginia, PO Box 801406, Charlottesville, VA, 22908, USA. .,Division of Endocrinology, Department of Medicine, Indiana University School of Medicine, 980 Walnut, St, C321-C, Indianapolis, IN, 46202, USA.
| | - Theresa A Guise
- Division of Endocrinology and Metabolism, Department of Medicine, 450 Ray C Hunt Dr, University of Virginia, PO Box 801406, Charlottesville, VA, 22908, USA. .,Division of Endocrinology, Department of Medicine, Indiana University School of Medicine, 980 Walnut, St, C321-C, Indianapolis, IN, 46202, USA.
| | - Attaya Suvannasankha
- Richard L. Roudebush VA Medical Center, 1481 W 10th St, Indianapolis, IN, 46202, USA. .,Division of Hematology/Oncology, Department of Medicine, 980 Walnut St, C321-H, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - John M Chirgwin
- Department of Biochemistry and Molecular Genetics, University of Virginia, PO Box 800733, Charlottesville, VA, 22908, USA. .,Division of Endocrinology and Metabolism, Department of Medicine, 450 Ray C Hunt Dr, University of Virginia, PO Box 801406, Charlottesville, VA, 22908, USA. .,Division of Endocrinology, Department of Medicine, Indiana University School of Medicine, 980 Walnut, St, C321-C, Indianapolis, IN, 46202, USA. .,Richard L. Roudebush VA Medical Center, 1481 W 10th St, Indianapolis, IN, 46202, USA.
| |
Collapse
|
36
|
Lopez-Ayllon BD, Moncho-Amor V, Abarrategi A, Ibañez de Cáceres I, Castro-Carpeño J, Belda-Iniesta C, Perona R, Sastre L. Cancer stem cells and cisplatin-resistant cells isolated from non-small-lung cancer cell lines constitute related cell populations. Cancer Med 2014; 3:1099-111. [PMID: 24961511 PMCID: PMC4302662 DOI: 10.1002/cam4.291] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 05/29/2014] [Accepted: 05/30/2014] [Indexed: 12/20/2022] Open
Abstract
Lung cancer is the top cause of cancer-related deceases. One of the reasons is the development of resistance to the chemotherapy treatment. In particular, cancer stem cells (CSCs), can escape treatment and regenerate the bulk of the tumor. In this article, we describe a comparison between cancer cells resistant to cisplatin and CSCs, both derived from the non-small-cell lung cancer cell lines H460 and A549. Cisplatin-resistant cells were obtained after a single treatment with the drug. CSCs were isolated by culture in defined media, under nonadherent conditions. The isolated CSCs were clonogenic, could be differentiated into adherent cells and were less sensitive to cisplatin than the original cells. Cisplatin resistant and CSCs were able to generate primary tumors and to metastasize when injected into immunodeficient Nu/Nu mice, although they formed smaller tumors with a larger latency than untreated cells. Notably, under appropriated proportions, CSCs synergized with differentiated cells to form larger tumors. CSCs also showed increased capacity to induce angiogenesis in Nu/Nu mice. Conversely, H460 cisplatin-resistant cells showed increased tendency to develop bone metastasis. Gene expression analysis showed that several genes involved in tumor development and metastasis (EGR1, COX2, MALAT1, AKAP12, ADM) were similarly induced in CSC and cisplatin-resistant H460 cells, in agreement with a close similarity between these two cell populations. Cells with the characteristic growth properties of CSCs were also isolated from surgical samples of 18 out of 44 lung cancer patients. A significant correlation (P = 0.028) was found between the absence of CSCs and cisplatin sensitivity.
Collapse
Affiliation(s)
- Blanca D Lopez-Ayllon
- Instituto de Investigaciones Biomédicas CSIC/UAM, Biomarkers and Experimental Therapeutics in Cancer, IdiPAZ, Spain
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Li F, Yang R, Zhang X, Liu A, Zhao Y, Guo Y. Silencing of hypoxia‑inducible adrenomedullin using RNA interference attenuates hepatocellular carcinoma cell growth in vivo. Mol Med Rep 2014; 10:1295-302. [PMID: 24927229 DOI: 10.3892/mmr.2014.2320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 04/14/2014] [Indexed: 11/06/2022] Open
Abstract
Adrenomedullin (ADM) is an angiogenic peptide that has been shown to increase the risk of endometrial hyperplasia and to promote tumor cell survival following hypoxia. ADM may induce microvessel proliferation and partially decrease hypoxia in solid tumors, thus contributing to the proliferation of tumor cells, as well as tumor invasion and metastasis. However, the impact of hypoxia‑induced ADM expression on hepatocellular carcinoma (HCC) cells requires further elucidation. In the present study it was found that the levels of ADM mRNA in tumor tissue from patients with HCC were significantly increased compared with the mRNA levels in adjacent non‑tumorous liver tissue. Under hypoxic conditions, the mRNA and protein levels of ADM, as well as those of the cancer‑promoting genes vascular endothelial growth factor and hypoxia‑inducible factor 1α, were significantly elevated in a time‑dependent manner in three human HCC cell lines. In addition, knockdown of ADM expression using short hairpin RNA (shRNA) in SMMC‑7721 cells resulted in apoptosis that was not observed in untransfected cells. Furthermore, combined treatment with cisplatin and ADM‑shRNA significantly decreased tumor growth in vivo compared with treatment with cisplatin or ADM‑shRNA alone. These data demonstrate that ADM acts as a critical promoter of cell cycle progression in HCC and that the inhibition of ADM may be an effective interventional therapeutic strategy in HCC.
Collapse
Affiliation(s)
- Fenbao Li
- Department of Interventional Therapy, First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, P.R. China
| | - Ruimin Yang
- Department of Interventional Therapy, First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, P.R. China
| | - Xizhong Zhang
- Department of Interventional Therapy, First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, P.R. China
| | - Aiguang Liu
- Department of Interventional Therapy, First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, P.R. China
| | - Yongli Zhao
- Department of Interventional Therapy, First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, P.R. China
| | - Yingchang Guo
- Department of Interventional Therapy, First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, P.R. China
| |
Collapse
|
38
|
Yang ZH, Zheng R, Gao Y, Zhang Q, Zhang H. Abnormal gene expression and gene fusion in lung adenocarcinoma with high-throughput RNA sequencing. Cancer Gene Ther 2014; 21:74-82. [PMID: 24503571 DOI: 10.1038/cgt.2013.86] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 12/10/2013] [Accepted: 12/21/2013] [Indexed: 01/26/2023]
Abstract
To explore the universal law of the abnormal gene expression and the structural variation of genes related to lung adenocarcinoma, the gene expression profile of GSE37765 were downloaded from Gene Expression Omnibus database. The differentially expressed genes (DEGs) were analyzed with t-test and NOISeq tool, and the core DEGs were screened out by combining with another RNA-seq data containing totally 77 pairs of samples in 77 patients with lung adenocarcinoma. Moreover, the functional annotation of the core DEGs was performed by using the Database for Annotation Visualization and Integrated Discovery following selection of oncogene and tumor suppressor by combining with tumor suppressor genes and Cancer Genes database, and motif-finding of core DEGs was performed with motif-finding algorithm Seqpos. We also used Tophat-fusion tool to further explore the fusion genes. In total, 850 downregulated DEGs and 206 upregulated DEGs were screened out in lung adenocarcinoma tissues. Next, we selected 543 core DEGs, including 401 downregulated and 142 upregulated genes, and vasculature development (P=1.89E-06) was significantly enriched among downregulated core genes, as well as mitosis (P=6.26E-04) enriched among upregulated core genes. On the basis of the cellular localization analysis of core genes, wnt-1-induced secreted protein 1 (WISP1) and receptor (G protein-coupled) activity modifying protein 1 (RAMP1) identified mainly located in extracellular region and extracellular space. We also screened one oncogene, v-myb avian myeloblastosis viral oncogene homolog-like 2 (MYBL2). Moreover, transcription factor GATA2 was mined by motif-finding analysis. Finally, four fusion genes belonged to the human leukocyte antigen (HLA) family. WISP1, RAMP1, MYBL2 and GATA2 could be potential targets of treatment for lung adenocarcinoma and the fusion of HLA family genes might have important roles in lung adenocarcinoma.
Collapse
Affiliation(s)
- Z-H Yang
- Department of Respiratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - R Zheng
- Department of Respiratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Y Gao
- Department of Respiratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Q Zhang
- Department of Respiratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - H Zhang
- Department of Respiratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
39
|
Rai A, Cross JC. Development of the hemochorial maternal vascular spaces in the placenta through endothelial and vasculogenic mimicry. Dev Biol 2014; 387:131-41. [PMID: 24485853 DOI: 10.1016/j.ydbio.2014.01.015] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 01/14/2014] [Accepted: 01/19/2014] [Indexed: 11/27/2022]
Abstract
The maternal vasculature within the placenta in primates and rodents is unique because it is lined by fetal cells of the trophoblast lineage and not by maternal endothelial cells. In addition to trophoblast cells that invade the uterine spiral arteries that bring blood into the placenta, other trophoblast subtypes sit at different levels of the vascular space. In mice, at least five distinct subtypes of trophoblast cells have been identified which engage maternal endothelial cells on the arterial and venous frontiers of the placenta, but which also form the channel-like spaces within it through a process analogous to formation of blood vessels (vasculogenic mimicry). These cells are all large, post-mitotic trophoblast giant cells. In addition to assuming endothelial cell-like characteristics (endothelial mimicry), they produce dozens of different hormones that are thought to regulate local and systemic maternal adaptations to pregnancy. Recent work has identified distinct molecular pathways in mice that regulate the morphogenesis of trophoblast cells on the arterial and venous sides of the vascular circuit that may be analogous to specification of arterial and venous endothelial cells.
Collapse
Affiliation(s)
- Anshita Rai
- Department of Biochemistry and Molecular Biology, University of Calgary, HSC Room 2279, 3330 Hospital Drive NW, Calgary, Alta., Canada; Department of Comparative Biology and Experimental Medicine, Obstetrics and Gynecology, and Medical Genetics, University of Calgary, HSC Room 2279, 3330 Hospital Drive NW, Calgary, Alta., Canada T2N 4N1
| | - James C Cross
- Department of Biochemistry and Molecular Biology, University of Calgary, HSC Room 2279, 3330 Hospital Drive NW, Calgary, Alta., Canada; Department of Comparative Biology and Experimental Medicine, Obstetrics and Gynecology, and Medical Genetics, University of Calgary, HSC Room 2279, 3330 Hospital Drive NW, Calgary, Alta., Canada T2N 4N1.
| |
Collapse
|
40
|
Sun W, Depping R, Jelkmann W. Interleukin-1β promotes hypoxia-induced apoptosis of glioblastoma cells by inhibiting hypoxia-inducible factor-1 mediated adrenomedullin production. Cell Death Dis 2014; 5:e1020. [PMID: 24457964 PMCID: PMC4040669 DOI: 10.1038/cddis.2013.562] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 12/01/2013] [Accepted: 12/02/2013] [Indexed: 12/17/2022]
Abstract
Glioblastoma is the most common brain tumor in adults. Advanced glioblastomas normally contain hypoxic areas. The primary cellular responses to hypoxia are generally mediated by the transcription factor hypoxia-inducible factor 1 (HIF-1). Interleukin-1β (IL-1β) is a cytokine that is often present in the glioblastoma microenvironment and is known to be a modulator of glioblastoma progression. However, the role of IL-1β in regulating glioblastoma progression is still controversial. In this study, we found that in the human glioblastoma cell lines U87MG and U138MG, IL-1β inhibits the transactivation activity of HIF-1 by promoting the ubiquitin-independent proteasomal degradation of the oxygen-labile α-subunit of HIF-1 and downregulates the expression of the HIF-1 target gene adrenomedullin (AM). Apoptosis and MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assays showed that AM protects glioblastoma cells against hypoxia-induced apoptosis in a dose-dependent manner. Thus, in the presence of IL-1β more glioblastoma cells undergo hypoxia-induced cell death. Our findings suggest that when estimating the influence of IL-1β on the prognosis of glioblastoma patients, factors such as the degree of hypoxia, the expression levels of HIF-1 and AM should be taken into consideration. For the AM-producing glioblastoma cells, IL-1β represents a potent apoptosis inducer.
Collapse
Affiliation(s)
- W Sun
- Institute of Physiology, Center for Structural and Cell Biology in Medicine, University of Luebeck, Luebeck, Germany
| | - R Depping
- Institute of Physiology, Center for Structural and Cell Biology in Medicine, University of Luebeck, Luebeck, Germany
| | - W Jelkmann
- Institute of Physiology, Center for Structural and Cell Biology in Medicine, University of Luebeck, Luebeck, Germany
| |
Collapse
|
41
|
Fiorio Pla A, Gkika D. Emerging role of TRP channels in cell migration: from tumor vascularization to metastasis. Front Physiol 2013; 4:311. [PMID: 24204345 PMCID: PMC3817680 DOI: 10.3389/fphys.2013.00311] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 10/11/2013] [Indexed: 01/28/2023] Open
Abstract
Transient Receptor Potential (TRP) channels modulate intracellular Ca(2+) concentrations, controlling critical cytosolic and nuclear events that are involved in the initiation and progression of cancer. It is not, therefore, surprising that the expression of some TRP channels is altered during tumor growth and metastasis. Cell migration of both epithelial and endothelial cells is an essential step of the so-called metastatic cascade that leads to the spread of the disease within the body. It is in fact required for both tumor vascularization as well as for tumor cell invasion into adjacent tissues and intravasation into blood/lymphatic vessels. Studies from the last 15 years have unequivocally shown that the ion channles and the transport proteins also play important roles in cell migration. On the other hand, recent literature underlies a critical role for TRP channels in the migration process both in cancer cells as well as in tumor vascularization. This will be the main focus of our review. We will provide an overview of recent advances in this field describing TRP channels contribution to the vascular and cancer cell migration process, and we will systematically discuss relevant molecular mechanism involved.
Collapse
Affiliation(s)
- Alessandra Fiorio Pla
- Department of Life Sciences and Systems Biology, Nanostructured Interfaces and Surfaces Centre of Excellence, University of Torino Torino, Italy ; Inserm U1003, Equipe labellisée par la Ligue Nationale contre le cancer, Université des Sciences et Technologies de Lille Villeneuve d'Ascq, France
| | | |
Collapse
|
42
|
Targeting tumor micro-environment for design and development of novel anti-angiogenic agents arresting tumor growth. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2013; 113:333-54. [PMID: 24139944 DOI: 10.1016/j.pbiomolbio.2013.10.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 10/05/2013] [Accepted: 10/08/2013] [Indexed: 12/12/2022]
Abstract
Angiogenesis: a process of generation of new blood vessels has been proved to be necessary for sustained tumor growth and cancer progression. Inhibiting angiogenesis pathway has long been remained a significant hope for the development of novel, effective and target orientated antitumor agents arresting the tumor proliferation and metastasis. The process of neoangiogenesis as a biological process is regulated by several pro- and anti-angiogenic factors, especially vascular endothelial growth factor, fibroblast growth factor, epidermal growth factor, hypoxia inducible factor 1 and transforming growth factor. Every endothelial cell destined for vessel formation is equipped with receptors for these angiogenic peptides. Moreover, numerous other angiogenic cytokines such as platelet derived growth factor (PGDF), placenta growth factor (PGF), nerve growth factor (NGF), stem-cell factor (SCF), and interleukins-2, 4, 6 etc. These molecular players performs critical role in regulating the angiogenic switch. Couple of decade's research in molecular aspects of tumor biology has unraveled numerous structural and functional mysteries of these angiogenic peptides. In present article, a detailed update on the functional and structural peculiarities of the various angiogenic peptides is described focusing on structural opportunities made available that has potential to be used to modulate function of these angiogenic peptides in developing therapeutic agents targeting neoplastic angiogenesis. The data may be useful in the mainstream of developing novel anticancer agents targeting tumor angiogenesis. We also discuss major therapeutic agents that are currently used in angiogenesis associated therapies as well as those are subject of active research or are in clinical trials.
Collapse
|
43
|
Nikitenko LL, Leek R, Henderson S, Pillay N, Turley H, Generali D, Gunningham S, Morrin HR, Pellagatti A, Rees MC, Harris AL, Fox SB. The G-protein-coupled receptor CLR is upregulated in an autocrine loop with adrenomedullin in clear cell renal cell carcinoma and associated with poor prognosis. Clin Cancer Res 2013; 19:5740-8. [PMID: 23969937 PMCID: PMC3836221 DOI: 10.1158/1078-0432.ccr-13-1712] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The G-protein-coupled receptor (GPCR) calcitonin receptor-like receptor (CLR) and its ligand peptide adrenomedullin (encoded by ADM gene) are implicated in tumor angiogenesis in mouse models but poorly defined in human cancers. We therefore investigated the diagnostic/prognostic use for CLR in human tumor types that may rely on adrenomedullin signaling and in clear cell renal cell carcinoma (RCC), a highly vascular tumor, in particular. EXPERIMENTAL DESIGN In silico gene expression mRNA profiling microarray study (n = 168 tumors) and cancer profiling cDNA array hybridization (n = 241 pairs of patient-matched tumor/normal tissue samples) were carried out to analyze ADM mRNA expression in 13 tumor types. Immunohistochemistry on tissue microarrays containing patient-matched renal tumor/normal tissues (n = 87 pairs) was conducted to study CLR expression and its association with clinicopathologic parameters and disease outcome. RESULTS ADM expression was significantly upregulated only in RCC and endometrial adenocarcinoma compared with normal tissue counterparts (P < 0.01). CLR was localized in tumor cells and vessels in RCC and upregulated as compared with patient-matched normal control kidney (P < 0.001). Higher CLR expression was found in advanced stages (P < 0.05), correlated with high tumor grade (P < 0.01) and conferred shorter overall survival (P < 0.01). CONCLUSIONS In human tissues ADM expression is upregulated in cancer type-specific manner, implicating potential role for adrenomedullin signaling in particular in RCC, where CLR localization suggests autocrine/paracrine mode for adrenomedullin action within the tumor microenvironment. Our findings reveal previously unrecognized CLR upregulation in an autocrine loop with adrenomedullin in RCC with potential application for this GPCR as a target for future functional studies and drug development.
Collapse
Affiliation(s)
- Leonid L. Nikitenko
- Cancer Research UK Viral Oncology Group, UCL Cancer Institute, University College London, London, United Kingdom
- Keble College, Oxford, United Kingdom
- Linacre College, Oxford, United Kingdom
- Scientific Centre of the Family Health and Human Reproduction Problems, Siberian Branch of Russian Academy of Medical Sciences, Irkutsk, Russia
| | - Russell Leek
- Nuffield Department of Clinical Laboratory Sciences, Weatherall Institute of Molecular Medicine
| | - Stephen Henderson
- Cancer Research UK Viral Oncology Group, UCL Cancer Institute, University College London, London, United Kingdom
| | - Nischalan Pillay
- Sarcoma Biology Group , UCL Cancer Institute, University College London, London, United Kingdom
| | - Helen Turley
- Nuffield Department of Clinical Laboratory Sciences, Weatherall Institute of Molecular Medicine
| | - Daniele Generali
- Cancer Research UK Oncology Laboratory, Weatherall Institute of Molecular Medicine
- Unità di Patologia Mammaria Senologia e Breast Unit Centro di Medicina Molecolare Istituti Ospitalieri di Cremona, Viale Concordia 1, 26100, Cremona, Italy
| | - Sarah Gunningham
- Department of Pathology, University of Otago, Christchurch 8140, New Zealand
| | - Helen R. Morrin
- Cancer Society Tissue Bank, University of Otago, Christchurch 8140, New Zealand
| | - Andrea Pellagatti
- Nuffield Department of Clinical Laboratory Sciences, Weatherall Institute of Molecular Medicine
| | - Margaret C.P. Rees
- Nuffield Department of Obstetrics and Gynaecology; University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Adrian L. Harris
- Cancer Research UK Oncology Laboratory, Weatherall Institute of Molecular Medicine
| | - Stephen B. Fox
- Department of Pathology, University of Melbourne, Parkville, VIC, 3010
- Department of Pathology, Peter MacCallum Cancer Centre, VIC, 3002, Melbourne, Australia
| |
Collapse
|
44
|
Berenguer-Daizé C, Boudouresque F, Bastide C, Tounsi A, Benyahia Z, Acunzo J, Dussault N, Delfino C, Baeza N, Daniel L, Cayol M, Rossi D, El Battari A, Bertin D, Mabrouk K, Martin PM, Ouafik L. Adrenomedullin blockade suppresses growth of human hormone-independent prostate tumor xenograft in mice. Clin Cancer Res 2013; 19:6138-50. [PMID: 24100627 DOI: 10.1158/1078-0432.ccr-13-0691] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
PURPOSE To study the role of the adrenomedullin system [adrenomedullin and its receptors (AMR), CLR, RAMP2, and RAMP3] in prostate cancer androgen-independent growth. EXPERIMENTAL DESIGN Androgen-dependent and -independent prostate cancer models were used to investigate the role and mechanisms of adrenomedullin in prostate cancer hormone-independent growth and tumor-associated angiogenesis and lymphangiogenesis. RESULTS Adrenomedullin and AMR were immunohistochemically localized in the carcinomatous epithelial compartment of prostate cancer specimens of high grade (Gleason score >7), suggesting a role of the adrenomedullin system in prostate cancer growth. We used the androgen-independent Du145 cells, for which we demonstrate that adrenomedullin stimulated cell proliferation in vitro through the cAMP/CRAF/MEK/ERK pathway. The proliferation of Du145 and PC3 cells is decreased by anti-adrenomedullin antibody (αAM), supporting the fact that adrenomedullin may function as a potent autocrine/paracrine growth factor for prostate cancer androgen-independent cells. In vivo, αAM therapy inhibits the growth of Du145 androgen-independent xenografts and interestingly of LNCaP androgen-dependent xenografts only in castrated animals, suggesting strongly that adrenomedullin might play an important role in tumor regrowth following androgen ablation. Histologic examination of αAM-treated tumors showed evidence of disruption of tumor vascularity, with depletion of vascular as well as lymphatic endothelial cells and pericytes, and increased lymphatic endothelial cell apoptosis. Importantly, αAM potently blocks tumor-associated lymphangiogenesis, but does not affect established vasculature and lymphatic vessels in normal adult mice. CONCLUSIONS We conclude that expression of adrenomedullin upon androgen ablation in prostate cancer plays an important role in hormone-independent tumor growth and in neovascularization by supplying/amplifying signals essential for pathologic neoangiogenesis and lymphangiogenesis. Clin Cancer Res; 19(22); 6138-50. ©2013 AACR.
Collapse
Affiliation(s)
- Caroline Berenguer-Daizé
- Authors' Affiliations: Aix-Marseille Université and Insitut national de la santé et de la recherche medicale (INSERM), CRO2 UMR 911, 13005; AP-HM, CHU Nord, Service Urologie, 13015; Aix-Marseille Université, LCP UMR 6264, CROPS, 13397; and AP-HM, CHU Nord, Service de Transfert d'Oncologie Biologique, 13015, Marseille, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Rasulova N, Lyubshin V, Arybzhanov D, Krylov V, Khodjibekov M. Effectiveness of bone metastases treatment by sm-153 oxabifore in combination with monoclonal antibody denosumab (xgeva): first experience. World J Nucl Med 2013; 12:19-23. [PMID: 23961251 PMCID: PMC3745628 DOI: 10.4103/1450-1147.113942] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Breast and prostate cancer have a propensity to metastasize to bones and cause osteolysis and abnormal new bone formation. Metastases locally disrupt normal bone remodeling. Although metastases from prostate cancer have been classified as osteoblastic based on the radiographic appearance of the lesion, data gleaned from a rapid autopsy program indicate that the same prostate cancer patient may have evidence of both osteolytic and osteoblastic disease as shown by histologic examinations. Thus, bone metastases are heterogeneous, requiring combined treatment targeting on both osteolytic and osteoblastic lesions. While Samarium-153 (Sm-153) oxabifore treatment is widely used for the relief of pain in patients with osteoblastic metastatic bone lesions, Xgeva (Denosumab) is indicated for the prevention of skeletal-related events in patients with bone metastases from solid tumors. It is a fully human monoclonal antibody that has been designed to target receptor activator of nuclear factor-kB ligand (RANKL), a protein that acts as the primary signal to promote bone removal. In many bone loss conditions, RANKL overwhelms the body's natural defense against bone destruction. The main objectives of the current pilot study were to estimate the effectiveness of bone metastases treatment by a combination of Sm-153 oxabifore and Xgeva (Denosumab). Five patients (four female and one male, aged 35-64, mean age 50.8) with multiple skeletal metastases from prostatic carcinoma (1) and breast carcinoma (4) were studied. Their mean objective pain score according to visual analog scoring system on a 1-10 scoring system was 7.8 ± 0.5 (range 6-9). Sm-153 oxabifore was administered at the standard bone palliation dose of 37 MBq/kg body weight. Xgeva (Denosumab) was administered at a dosage of 120 mg every 4 weeks, with the monitoring of calcium level and administration of calcium, magnesium, and vitamin D. Whole body (WB) bone scan was performed before and 3 months after treatment in all patients. After Sm-153 oxabifore administration, pain relief occurred within 4.4 ± 1.25 days (range 2-9 days) and the objective pain score decreased to 0.2 ± 0.2 (range 0-1). There was statistically significant difference found, according to the pain score system, before and after treatment (P < 0.0001). WB bone scan showed that in one patient, there was significant reduction in the number and intensity of bone metastases, and in four patients, there was no evidence of bone metastases found. Based on our first experience, combined treatment of bone metastases with Sm-153 oxabifore and Denosumab is effective and safe.
Collapse
Affiliation(s)
- Nigora Rasulova
- Department of Nuclear Medicine, Republic Specialized Center of Surgery, Tashkent, Uzbekistan
| | | | | | | | | |
Collapse
|
46
|
Oulidi A, Bokhobza A, Gkika D, Vanden Abeele F, Lehen’kyi V, Ouafik L, Mauroy B, Prevarskaya N. TRPV2 mediates adrenomedullin stimulation of prostate and urothelial cancer cell adhesion, migration and invasion. PLoS One 2013; 8:e64885. [PMID: 23741410 PMCID: PMC3669125 DOI: 10.1371/journal.pone.0064885] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 04/19/2013] [Indexed: 11/18/2022] Open
Abstract
Adrenomedullin (AM) is a 52-amino acid peptide initially isolated from human pheochromocytoma. AM is expressed in a variety of malignant tissues and cancer cell lines and was shown to be a mitogenic factor capable of stimulating growth of several cancer cell types. In addition, AM is a survival factor for certain cancer cells. Some data suggest that AM might be involved in the progression cancer metastasis via angiogenesis and cell migration and invasion control. The Transient Receptor Potential channel TRPV2 is known to promote in prostate cancer cell migration and invasive phenotype and is correlated with the stage and grade of bladder cancer. In this work we show that AM induces prostate and urothelial cancer cell migration and invasion through TRPV2 translocation to plasma membrane and the subsequent increase in resting calcium level.
Collapse
Affiliation(s)
- Agathe Oulidi
- INSERM U1003, Equipe Labellisée par la Ligue Nationale contre le Cancer, Villeneuve d’Ascq, France
- Laboratory of Excellence, Ion Channels Science and Therapeutics, Universite des Sciences et Technologies de Lille (USTL), Villeneuve d’Ascq, France
| | - Alexandre Bokhobza
- INSERM U1003, Equipe Labellisée par la Ligue Nationale contre le Cancer, Villeneuve d’Ascq, France
- Laboratory of Excellence, Ion Channels Science and Therapeutics, Universite des Sciences et Technologies de Lille (USTL), Villeneuve d’Ascq, France
| | - Dimitra Gkika
- INSERM U1003, Equipe Labellisée par la Ligue Nationale contre le Cancer, Villeneuve d’Ascq, France
- Laboratory of Excellence, Ion Channels Science and Therapeutics, Universite des Sciences et Technologies de Lille (USTL), Villeneuve d’Ascq, France
- * E-mail:
| | - Fabien Vanden Abeele
- INSERM U1003, Equipe Labellisée par la Ligue Nationale contre le Cancer, Villeneuve d’Ascq, France
- Laboratory of Excellence, Ion Channels Science and Therapeutics, Universite des Sciences et Technologies de Lille (USTL), Villeneuve d’Ascq, France
| | - V’yacheslav Lehen’kyi
- INSERM U1003, Equipe Labellisée par la Ligue Nationale contre le Cancer, Villeneuve d’Ascq, France
- Laboratory of Excellence, Ion Channels Science and Therapeutics, Universite des Sciences et Technologies de Lille (USTL), Villeneuve d’Ascq, France
| | - L’Houcine Ouafik
- Inserm UMR 911-CRO2, Faculté de Médecine Timone, Marseille, France
| | - Brigitte Mauroy
- INSERM U1003, Equipe Labellisée par la Ligue Nationale contre le Cancer, Villeneuve d’Ascq, France
- Laboratory of Excellence, Ion Channels Science and Therapeutics, Universite des Sciences et Technologies de Lille (USTL), Villeneuve d’Ascq, France
| | - Natalia Prevarskaya
- INSERM U1003, Equipe Labellisée par la Ligue Nationale contre le Cancer, Villeneuve d’Ascq, France
- Laboratory of Excellence, Ion Channels Science and Therapeutics, Universite des Sciences et Technologies de Lille (USTL), Villeneuve d’Ascq, France
| |
Collapse
|
47
|
Martínez-Herrero S, Martínez A. Cancer protection elicited by a single nucleotide polymorphism close to the adrenomedullin gene. J Clin Endocrinol Metab 2013; 98:E807-10. [PMID: 23450059 DOI: 10.1210/jc.2012-4193] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT The risk of developing cancer is regulated by genetic variants, including polymorphisms. Characterizing such variants may help in developing protocols for personalized medicine. OBJECTIVE Adrenomedullin is a regulatory peptide involved in cancer promotion and progression. Carriers of a single nucleotide polymorphism (SNP) in the proximity of the adrenomedullin gene have lower levels of circulating peptide. The aim of the present work was to investigate whether carriers of this SNP (rs4910118) are protected against cancer. DESIGN This was a retrospective study. DNA samples were obtained from the Carlos III DNA National Bank (University of Salamanca, Salamanca, Spain). SETTING Samples represent a variety of donors and patients from Spain. PATIENTS OR OTHER PARTICIPANTS DNA from patients with breast cancer (n = 238), patients with lung cancer (n = 348), patients with cardiac insufficiency (n = 474), and healthy donors of advanced age (n = 500) was used. INTERVENTIONS All samples were genotyped using double-mismatch PCR, and confirmation was achieved by direct sequencing. MAIN OUTCOME MEASURES The minor allele frequency was calculated in all groups. The Pearson χ(2) was used to compare SNP frequencies. RESULTS Of 1560 samples, 14 had the minor allele, with a minor allele frequency in healthy donors of 0.90%. Patients with cancer had a statistically significantly lower frequency than healthy donors (odds ratio = 0.216, 95% confidence interval = 0.048-0.967, P = .028). CONCLUSIONS Carriers of the minor allele have a 4.6-fold lower risk of developing cancer than homozygotes for the major allele. Knowledge of the rs4910118 genotype may be useful for stratifying patients in clinical trials and for designing prevention strategies.
Collapse
|
48
|
Nouguerède E, Berenguer C, Garcia S, Bennani B, Delfino C, Nanni I, Dahan L, Gasmi M, Seitz JF, Martin PM, Ouafik L. Expression of adrenomedullin in human colorectal tumors and its role in cell growth and invasion in vitro and in xenograft growth in vivo. Cancer Med 2013; 2:196-207. [PMID: 23634287 PMCID: PMC3639658 DOI: 10.1002/cam4.51] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 11/08/2012] [Accepted: 11/09/2012] [Indexed: 12/17/2022] Open
Abstract
Adrenomedullin (AM) is a multifunctional peptide vasodilator that transduces its effects through calcitonin receptor-like receptor/receptor activity-modifying protein-2 and -3 (CLR/RAMP2 and CLR/RAMP3). In this study, real-time quantitative reverse transcription demonstrated a significant expression of AM mRNA in tumor samples from colorectal cancer (CRC) patients in clinical stage II, III, and IV when compared with normal colorectal tissue. AM, CLR, RAMP2, and RAMP3 proteins were immunohistochemically localized in the carcinomatous epithelial compartment of CRC tissue. Tissue microarray analysis revealed a clear increase of AM, CLR, RAMP2, and RAMP3 staining in lymph node and distant metastasis when compared with primary tumors. The human colon carcinoma cells HT-29 expressed and secreted AM into the culture medium with a significant increase under hypoxia. Treatment of HT-29 cells with synthetic AM stimulated cell proliferation and invasion in vitro. Incubation with anti-AM antibody (αAM), anti-AM receptors antibodies (αAMR), or AM antagonist AM22-52 inhibited significantly basal levels of proliferation of HT-29 cells, suggesting that AM may function as an autocrine growth factor for CRC cells. Treatment with αAM significantly suppressed the growth of HT-29 tumor xenografts in vivo. Histological examination of αAM-treated tumors showed evidence of disruption of tumor vascularity with decreased microvessel density, depletion of endothelial cells and pericytes, and increased tumor cell apoptosis. These findings highlight the potential importance of AM and its receptors in the progression of CRC and support the conclusion that αAM treatment inhibits tumor growth by suppression of angiogenesis and tumor growth, suggesting that AM may be a useful therapeutic target.
Collapse
Affiliation(s)
| | | | - Stéphane Garcia
- Laboratoire d'Anapathologie, CHU Nord (AP-HM)Marseille, F-13000, France
| | - Bahia Bennani
- Laboratoire de Biologie du Cancer, Faculté de Médecine et de PharmacieBP 1893, Route de Sidi Harazem, Fès, Maroc
| | | | - Isabelle Nanni
- Laboratoire de Transfert d'Oncologie Biologique (AP-HM)Marseille, F-13000, France
| | - Laetitia Dahan
- Service d'oncologie digestive, CHU la Timone (AP-HM)Marseille, F-13000, France
| | - Mohamed Gasmi
- Service de Gastro-entérologie, CHU Nord (AP-HM)Marseille, F-13000, France
| | - Jean-François Seitz
- Service d'oncologie digestive, CHU la Timone (AP-HM)Marseille, F-13000, France
| | - Pierre-Marie Martin
- Inserm, UMR 911-CRO2Marseille, F-13000, France
- Laboratoire de Transfert d'Oncologie Biologique (AP-HM)Marseille, F-13000, France
| | - L'Houcine Ouafik
- Inserm, UMR 911-CRO2Marseille, F-13000, France
- Laboratoire de Transfert d'Oncologie Biologique (AP-HM)Marseille, F-13000, France
| |
Collapse
|
49
|
Pang X, Shang H, Deng B, Wen F, Zhang Y. The Interaction of Adrenomedullin and Macrophages Induces Ovarian Cancer Cell Migration via Activation of RhoA Signaling Pathway. Int J Mol Sci 2013; 14:2774-87. [PMID: 23434647 PMCID: PMC3588014 DOI: 10.3390/ijms14022774] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 01/06/2013] [Accepted: 01/11/2013] [Indexed: 11/16/2022] Open
Abstract
Tumor-associated macrophages (TAMs) are correlated with poor prognosis in many human cancers; however, the mechanism by which TAMs facilitate ovarian cancer cell migration and invasion remains unknown. This study was aimed to examine the function of adrenomedullin (ADM) in macrophage polarization and their further effects on the migration of ovarian cancer cells. Exogenous ADM antagonist and small interfering RNA (siRNA) specific for ADM expression were treated to macrophages and EOC cell line HO8910, respectively. Then macrophages were cocultured with HO8910 cells without direct contact. Flow cytometry, Western blot and real-time PCR were used to detect macrophage phenotype and cytokine production. The migration ability and cytoskeleton rearrangement of ovarian cancer cells were determined by Transwell migration assay and phalloidin staining. Western blot was performed to evaluate the activity status of signaling molecules in the process of ovarian cancer cell migration. The results showed that ADM induced macrophage phenotype and cytokine production similar to TAMs. Macrophages polarized by ADM promoted the migration and cytoskeleton rearrangement of HO8910 cells. The expression of RhoA and its downstream effector, cofilin, were upregulated in macrophage-induced migration of HO8910 cells. In conclusion, ADM could polarize macrophages similar to TAMs, and then polarized macrophages promote the migration of ovarian cancer cells via activation of RhoA signaling pathway in vitro.
Collapse
Affiliation(s)
- Xiaoyan Pang
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China; E-Mails: (X.P.); (B.D.)
| | - Hai Shang
- Department of Hepatobiliary Surgery, Liaoning Tumor Hospital, Shenyang 110042, Liaoning, China; E-Mail:
| | - Boya Deng
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China; E-Mails: (X.P.); (B.D.)
| | - Fang Wen
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China; E-Mails: (X.P.); (B.D.)
- Authors to whom correspondence should be addressed; E-Mails: (F.W.); (Y.Z.); Tel./Fax: +86-24-8328-3510
| | - Yi Zhang
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China; E-Mails: (X.P.); (B.D.)
- Authors to whom correspondence should be addressed; E-Mails: (F.W.); (Y.Z.); Tel./Fax: +86-24-8328-3510
| |
Collapse
|
50
|
Chen P, Bonaldo P. Role of macrophage polarization in tumor angiogenesis and vessel normalization: implications for new anticancer therapies. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 301:1-35. [PMID: 23317816 DOI: 10.1016/b978-0-12-407704-1.00001-4] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Angiogenesis, the formation of new capillary blood vessels from preexisting vasculature, is one of the hallmarks of cancer that is pivotal for tumor growth and metastasis. Tumor vessels are known to be abnormal, with typically aberrant, leaky and disordered vessels. Thus, the combination of angiogenesis inhibition and vessel normalization is a potential strategy for anticancer therapy. The solid tumor is composed of not only cancer cells, but also the nonmalignant resident stromal cells, such as bone-marrow-derived cells (BMDCs) and cancer-associated fibroblasts (CAFs). Tumor-associated macrophages (TAMs) are the most abundant cell components of BMDCs, which play a significant role in promoting tumor progression. Accumulating evidences from both patient biopsies and experimental animal models have shown that TAMs function in tumor angiogenesis and vessel abnormalization in a density- and phenotype-dependent manner. This chapter will discuss the evidence for the factors and signaling pathways that are involved in macrophage recruitment and polarization in the tumor microenvironment, and it summarizes the role and underlying molecular mechanisms of macrophage polarization in tumor angiogenesis and vessel normalization. In addition, an overview of the potential of targeting TAM polarization for anticancer therapy will be provided.
Collapse
Affiliation(s)
- Peiwen Chen
- Department of Biomedical Sciences, University of Padova, Padova, Italy.
| | | |
Collapse
|