1
|
Chung CT, Yeh KC, Lee CH, Chen YY, Ho PJ, Chang KY, Chen CH, Lai YK, Chen CT. Molecular profiling of afatinib-resistant non-small cell lung cancer cells in vivo derived from mice. Pharmacol Res 2020; 161:105183. [PMID: 32896579 DOI: 10.1016/j.phrs.2020.105183] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 01/28/2023]
Abstract
Non-small-cell lung cancer (NSCLC) is a leading cause of cancer-related death worldwide. NSCLC patients with overexpressed or mutated epidermal growth factor receptor (EGFR) related to disease progression are treated with EGFR-tyrosine kinase inhibitors (EGFR-TKIs). Acquired drug resistance after TKI treatments has been a major focus for development of NSCLC therapies. This study aimed to establish afatinib-resistant cell lines from which afatinib resistance-associated genes are identified and the underlying mechanisms of multiple-TKI resistance in NSCLC can be further investigated. Nude mice bearing subcutaneous NSCLC HCC827 tumors were administered with afatinib at different dose intensities (5-100 mg/kg). We established three HCC827 sublines resistant to afatinib (IC50 > 1 μM) with cross-resistance to gefitinib (IC50 > 5 μM). cDNA microarray revealed several of these sublines shared 27 up- and 13 down-regulated genes. The mRNA expression of selective novel genes - such as transmembrane 4 L six family member 19 (TM4SF19), suppressor of cytokine signaling 2 (SOCS2), and quinolinate phosphoribosyltransferase (QPRT) - are responsive to afatinib treatments only at high concentrations. Furthermore, c-MET amplification and activations of a subset of tyrosine kinase receptors were observed in all three resistant cells. PHA665752, a c-MET inhibitor, remarkably increased the sensitivity of these resistant cells to afatinib (IC50 = 12-123 nM). We established afatinib-resistant lung cancer cell lines and here report genes associated with afatinib resistance in human NSCLC. These cell lines and the identified genes serve as useful investigational tools, prognostic biomarkers of TKI therapies, and promising molecule targets for development of human NSCLC therapeutics.
Collapse
Affiliation(s)
- Cheng-Ta Chung
- Graduate Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan; Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Taiwan
| | - Kai-Chia Yeh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Taiwan
| | - Chia-Huei Lee
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Yun-Yu Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Taiwan
| | - Pai-Jiun Ho
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Taiwan
| | - Kai-Yen Chang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Taiwan
| | - Chieh-Hsin Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Taiwan
| | - Yiu-Kay Lai
- Graduate Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan.
| | - Chiung-Tong Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Taiwan.
| |
Collapse
|
2
|
Fu L, Liu Q, Shen L, Wang Y. Proteomic study on sodium selenite-induced apoptosis of human cervical cancer HeLa cells. J Trace Elem Med Biol 2011; 25:130-7. [PMID: 21767938 DOI: 10.1016/j.jtemb.2011.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Revised: 05/29/2011] [Accepted: 06/20/2011] [Indexed: 12/27/2022]
Abstract
Sodium selenite can induce the apoptosis of cancer cells, however its mechanism has seldom been studied via proteomics. In this paper, human cervical cancer HeLa cells were investigated by MTT assay and morphological observation to get appropriate selenite concentrations for proteomic study. Results showed that selenite at concentrations larger than 10 μmol/L significantly inhibited the viability of HeLa cells. 40 μmol/L selenite was in the appropriate range for proteomic study. After 24 h treatment with 40 μmol/L selenite, total proteins were extracted from the cells and applied to two-dimensional gel electrophoresis (2DE). Those proteins with their expression levels altered at least 2-fold comparing to the control were picked up for protein identification via MALDI-TOF mass spectrometry and further confirmed by Western blot analysis. About 1000 spots were detected by the software in each 2DE gel, among which 13 differentially expressed proteins were identified by mass spectrometry and most of them are relevant to oxidative stress, such as peroxiredoxins, superoxide dismutase, quinolinate phosphoribosyl transferase, and D-dopachrome tautomerase. Meanwhile, reactive oxygen species (ROS) and mitochondrial membrane potential were also detected by flow cytometry and laser confocal scanning microscope. An increase in ROS generation and a decrease in mitochondrial membrane potential were detected in the selenite-treated cells compared with the control, which are consistent with the down-expression of antioxidative proteins in proteomics. Those results indicate that selenite induces the apoptosis of HeLa cells via ROS-mediated mitochondrial pathway. The present study also implies the potentiality of selenium in cervical cancer treatment.
Collapse
Affiliation(s)
- Liping Fu
- College of Life Sciences, Shenzhen University, Shenzhen 518060, China
| | | | | | | |
Collapse
|
3
|
A proteomic investigation into the human cervical cancer cell line HeLa treated with dicitratoytterbium (III) complex. Chem Biol Interact 2009; 181:455-62. [DOI: 10.1016/j.cbi.2009.07.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2009] [Revised: 07/16/2009] [Accepted: 07/16/2009] [Indexed: 11/20/2022]
|
4
|
Liu H, Woznica K, Catton G, Crawford A, Botting N, Naismith JH. Structural and kinetic characterization of quinolinate phosphoribosyltransferase (hQPRTase) from homo sapiens. J Mol Biol 2007; 373:755-63. [PMID: 17868694 PMCID: PMC3326535 DOI: 10.1016/j.jmb.2007.08.043] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Revised: 08/03/2007] [Accepted: 08/20/2007] [Indexed: 11/27/2022]
Abstract
Human quinolinate phosphoribosyltransferase (EC 2.4.2.19) (hQPRTase) is a member of the type II phosphoribosyltransferase family involved in the catabolism of quinolinic acid (QA). It catalyses the formation of nicotinic acid mononucleotide from quinolinic acid, which involves a phosphoribosyl transfer reaction followed by decarboxylation. hQPRTase has been implicated in a number of neurological conditions and in order to study it further, we have carried out structural and kinetic studies on recombinant hQPRTase. The structure of the fully active enzyme overexpressed in Escherichia coli was solved using multiwavelength methods to a resolution of 2.0 A. hQPRTase has a alpha/beta barrel fold sharing a similar overall structure with the bacterial QPRTases. The active site of hQPRTase is located at an alpha/beta open sandwich structure that serves as a cup for the alpha/beta barrel of the adjacent subunit with a QA binding site consisting of three arginine residues (R102, R138 and R161) and two lysine residues (K139 and K171). Mutation of these residues affected substrate binding or abolished the enzymatic activity. The kinetics of the human enzyme are different to the bacterial enzymes studied, hQPRTase is inhibited competitively and non-competitively by one of its substrates, 5-phosphoribosylpyrophosphate (PRPP). The human enzyme adopts a hexameric arrangement, which places the active sites in close proximity to each other.
Collapse
Affiliation(s)
- Huanting Liu
- The Centre for Biomolecular Science, The University of St Andrews, North Haugh, St. Andrews KY16 9ST
| | - Kerry Woznica
- The Centre for Biomolecular Science, The University of St Andrews, North Haugh, St. Andrews KY16 9ST
| | - Gemma Catton
- The Centre for Biomolecular Science, The University of St Andrews, North Haugh, St. Andrews KY16 9ST
| | - Amanda Crawford
- The Centre for Biomolecular Science, The University of St Andrews, North Haugh, St. Andrews KY16 9ST
| | - Nigel Botting
- The Centre for Biomolecular Science, The University of St Andrews, North Haugh, St. Andrews KY16 9ST
| | - James H. Naismith
- The Centre for Biomolecular Science, The University of St Andrews, North Haugh, St. Andrews KY16 9ST
| |
Collapse
|
5
|
Wang K, Conn K, Lazarovits G. Involvement of quinolinate phosphoribosyl transferase in promotion of potato growth by a Burkholderia strain. Appl Environ Microbiol 2006; 72:760-8. [PMID: 16391116 PMCID: PMC1352213 DOI: 10.1128/aem.72.1.760-768.2006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Burkholderia sp. strain PsJN stimulates root growth of potato explants compared to uninoculated controls under gnotobiotic conditions. In order to determine the mechanism by which this growth stimulation occurs, we used Tn5 mutagenesis to produce a mutant, H41, which exhibited no growth-promoting activity but was able to colonize potato plants as well as the wild-type strain. The gene associated with the loss of growth promotion in H41 was shown to exhibit 65% identity at the amino acid level to the nadC gene encoding quinolinate phosphoribosyltransferase (QAPRTase) in Ralstonia solanacearum. Complementation of H41 with QAPRTase restored growth promotion of potato explants by this mutant. Expression of the gene identified in Escherichia coli yielded a protein with QAPRTase activities that catalyzed the de novo formation of nicotinic acid mononucleotide (NaMN). Two other genes involved in the same enzymatic pathway, nadA and nadB, were physically linked to nadC. The nadA gene was cotranscribed with nadC as an operon in wild-type strain PsJN, while the nadB gene was located downstream of the nadA-nadC operon. Growth promotion by H41 was fully restored by addition of NaMN to the tissue culture medium. These data suggested that QAPRTase may play a role in the signal pathway for promotion of plant growth by PsJN.
Collapse
Affiliation(s)
- Keri Wang
- Southern Crop Protection and Food Research Center, Agriculture and Agri-Food Canada, 1391 Sandford St., London, ON, Canada N5V 4T3
| | | | | |
Collapse
|
6
|
Callenbach PMC, van den Boogerd EH, de Coo RFM, ten Houten R, Oosterwijk JC, Hageman G, Frants RR, Brouwer OF, van den Maagdenberg AMJM. Refinement of the chromosome 16 locus for benign familial infantile convulsions. Clin Genet 2005; 67:517-25. [PMID: 15857419 DOI: 10.1111/j.1399-0004.2005.00445.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Benign familial infantile convulsions (BFIC) is an autosomal dominantly inherited partial epilepsy syndrome of early childhood with remission before the age of 3 years. The syndrome has been linked to loci on chromosomes 1q23, 2q24, 16p12-q12, and 19q in various families. The aim of this study was to identify the responsible locus in four unrelated Dutch families with BFIC. Two of the tested families had pure BFIC; in one family, affected individuals had BFIC followed by paroxysmal kinesigenic dyskinesias at later age, and in one family, BFIC was accompanied by later-onset focal epilepsy in older generations. Linkage analysis was performed for the known loci on chromosomes 1q23, 2q24, 16p12-q12, and 19q. The two families with pure BFIC were linked to chromosome 16p12-q12. Using recombinants from these and other published families, the chromosome 16-candidate gene region was reduced from 21.4 Mb (4.3 cm) to 2.7 Mb (0.0 cm). For the other two families, linkage to any of the known loci was unlikely. In conclusion, we confirm the linkage of pure BFIC to chromosome 16p12-q12, with further refinement of the locus. Furthermore, the lack of involvement of the known loci in two of the families indicates further genetic heterogeneity for BFIC.
Collapse
Affiliation(s)
- P M C Callenbach
- Department of Neurology, University Medical Center Groningen, Groningen, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Hara N, Yamada K, Terashima M, Osago H, Shimoyama M, Tsuchiya M. Molecular identification of human glutamine- and ammonia-dependent NAD synthetases. Carbon-nitrogen hydrolase domain confers glutamine dependency. J Biol Chem 2003; 278:10914-21. [PMID: 12547821 DOI: 10.1074/jbc.m209203200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
NAD synthetase catalyzes the final step in the biosynthesis of NAD. In the present study, we obtained cDNAs for two types of human NAD synthetase (referred as NADsyn1 and NADsyn2). Structural analysis revealed in both NADsyn1 and NADsyn2 a domain required for NAD synthesis from ammonia and in only NADsyn1 an additional carbon-nitrogen hydrolase domain shared with enzymes of the nitrilase family that cleave nitriles as well as amides to produce the corresponding acids and ammonia. Consistent with the domain structures, biochemical assays indicated (i) that both NADsyn1 and NADsyn2 have NAD synthetase activity, (ii) that NADsyn1 uses glutamine as well as ammonia as an amide donor, whereas NADsyn2 catalyzes only ammonia-dependent NAD synthesis, and (iii) that mutant NADsyn1 in which Cys-175 corresponding to the catalytic cysteine residue in nitrilases was replaced with Ser does not use glutamine. Kinetic studies suggested that glutamine and ammonia serve as physiological amide donors for NADsyn1 and NADsyn2, respectively. Both synthetases exerted catalytic activity in a multimeric form. In the mouse, NADsyn1 was seen to be abundantly expressed in the small intestine, liver, kidney, and testis but very weakly in the skeletal muscle and heart. In contrast, expression of NADsyn2 was observed in all tissues tested. Therefore, we conclude that humans have two types of NAD synthetase exhibiting different amide donor specificity and tissue distributions. The ammonia-dependent synthetase has not been found in eucaryotes until this study. Our results also indicate that the carbon-nitrogen hydrolase domain is the functional domain of NAD synthetase to make use of glutamine as an amide donor in NAD synthesis. Thus, glutamine-dependent NAD synthetase may be classified as a possible glutamine amidase in the nitrilase family. Our molecular identification of NAD synthetases may prove useful to learn more of mechanisms regulating cellular NAD metabolism.
Collapse
Affiliation(s)
- Nobumasa Hara
- Department of Biochemistry, Shimane Medical University, 89-1, Izumo, Shimane 693-8501, Japan
| | | | | | | | | | | |
Collapse
|
8
|
Fukuoka SI, Ishiguro K, Tanabe A, Egashira Y, Sanada H, Fukuwatari T, Shibata K. Identification and Expression of α Cdna Encoding Human 2-Amino-3- Carboxymuconate-6-Semialdehyde Decarboxylase (Acmsd): A Key Enzyme for the Tryptophan-Niacine Pathway and Quinolinate Hypothesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 527:443-53. [PMID: 15206762 DOI: 10.1007/978-1-4615-0135-0_52] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Quinolinate (quinolinic acid) is a potent endogenous excitotoxin of neuronal cells. Elevation of quinolinate levels in the brain has been implicated in the pathogenesis of various neurodegenerative disorders, the so-called "quinolinate hypothesis." Quinolinate is non-enzymatically derived from 2-amino-3-carboxymuconate-6-semialdehyde (ACMS). 2-amino-3-carboxymuconate-6-semialdehyde decarboxylase (ACMSD) is the only known enzyme which can process ACMS to a benign catabolite and thus prevent the accumulation of quinolinate from ACMS. ACMSD seems to be regulated by nutritional and hormonal signals, but its molecular mechanism has, to date, been largely unknown. Utilizing partial amino acid sequences obtained from highly purified porcine kidney ACMSD, a cDNA encoding human ACMSD was cloned and characterized. The cDNA encodes a unique open reading frame of 336 amino acids and displays little homology to any known enzymes or motifs in mammalian databases, suggesting that ACMSD may contain a new kind of protein fold. Real-time PCR-based quantification of ACMSD revealed very low but significant levels of the expression in the brain. Brain ACMSD messages was down- and up-regulated in response to low protein diet and streptozocin-induced diabetes, respectively. Expression of QPRT, another enzyme which catabolizes quinolinate, was also found in the brain. This suggests that a pathway does exist by which the levels of quinolinate in the brain are regulated. In this report, we address the molecular basis underlying quinolinate metabolism and the regulation of ACMSD expression.
Collapse
Affiliation(s)
- Shin-Ichi Fukuoka
- Graduate School of Agriculuture, Kyoto University, Uji, Kyoto 611-0011, Japan.
| | | | | | | | | | | | | |
Collapse
|
9
|
Fukuoka SI, Ishiguro K, Yanagihara K, Tanabe A, Egashira Y, Sanada H, Shibata K. Identification and expression of a cDNA encoding human alpha-amino-beta-carboxymuconate-epsilon-semialdehyde decarboxylase (ACMSD). A key enzyme for the tryptophan-niacine pathway and "quinolinate hypothesis". J Biol Chem 2002; 277:35162-7. [PMID: 12140278 DOI: 10.1074/jbc.m200819200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Quinolinate (quinolinic acid) is a potent endogenous excitotoxin of neuronal cells. Elevation of quinolinate levels in the brain has been implicated in the pathogenesis of various neurodegenerative disorders, the so-called "quinolinate hypothesis." Quinolinate is non-enzymatically derived from alpha-amino-beta-carboxymuconate-epsilon-semialdehyde (ACMS). Alpha-amino-beta-carboxymuconate-epsilon-semialdehyde decarboxylase (ACMSD) is the only known enzyme that can process ACMS to a benign catabolite and thus prevent the accumulation of quinolinate from ACMS. ACMSD seems to be regulated by nutritional and hormonal signals, but its molecular mechanism has, to date, been largely unknown. Utilizing partial amino acid sequences obtained from highly purified porcine kidney ACMSD, a cDNA encoding human ACMSD was cloned and characterized. The cDNA encodes a unique open reading frame of 336 amino acids and displays little homology to any known enzymes or motifs in mammalian databases, suggesting that ACMSD may contain a new kind of protein fold. Real-time PCR-based quantification of ACMSD revealed very low but significant levels of the expression in the brain. Brain ACMSD messages were down- and up-regulated in response to low protein diet and streptozocin-induced diabetes, respectively. The enzyme activities measured from partially purified brains were closely correlated with the changes in the message levels. Expression of quinolinate phosphoribosyltransferase (QPRT), another enzyme that catabolizes quinolinate, was also found in the brain. This suggests that a pathway does exist by which the levels of quinolinate in the brain are regulated. In this report, we address the molecular basis underlying quinolinate metabolism and the regulation of ACMSD expression.
Collapse
Affiliation(s)
- Shin-Ichi Fukuoka
- Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan.
| | | | | | | | | | | | | |
Collapse
|
10
|
Tanabe A, Egashira Y, Fukuoka SI, Shibata K, Sanada H. Purification and molecular cloning of rat 2-amino-3-carboxymuconate-6-semialdehyde decarboxylase. Biochem J 2002; 361:567-75. [PMID: 11802786 PMCID: PMC1222339 DOI: 10.1042/0264-6021:3610567] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
2-Amino-3-carboxymuconate-6-semialdehyde decarboxylase (ACMSD; EC 4.1.1.45) is one of the important enzymes regulating tryptophan-niacin metabolism. In the present study, we purified the enzyme from rat liver and kidney, and cloned the cDNA encoding rat ACMSD. The molecular masses of rat ACMSDs purified from the liver and kidney were both estimated to be 39 kDa by SDS/PAGE. Analysis of N-terminal amino acid sequences showed that these two ACMSDs share the same sequence. An expressed sequence tag (EST) of the mouse cited from the DNA database was found to be identical with this N-terminal sequence. Reverse transcription-PCR (RT-PCR) was performed using synthetic oligonucleotide primers having the partial sequences of the EST, and then cDNAs encoding rat ACMSDs were isolated by using subsequent 3'-rapid amplification of cDNA ends and RT-PCR methods. ACMSD cDNAs isolated from liver and kidney were shown to be identical, consisting of a 1008 bp open reading frame (ORF) encoding 336 amino acid residues with a molecular mass of 38091 Da. The rat ACMSD ORF was inserted into a mammalian expression vector, before transfection into human hepatoma HepG2 cells. The transfected cells expressed ACMSD activity, whereas the enzyme activity was not detected in uninfected parental HepG2 cells. The distribution of ACMSD mRNA expression in various tissues was investigated in the rat by RT-PCR. ACMSD was expressed in the liver and kidney, but not in the other principal organs examined.
Collapse
Affiliation(s)
- Atsushi Tanabe
- Graduate School of Science and Technology, Chiba University, 648 Matsudo, Matsudo, Chiba 271-8510, Japan.
| | | | | | | | | |
Collapse
|
11
|
Fukuoka S, Shibata K. Characterization and functional expression of the cDNA encoding human brain quinolinate phosphoribosyltransferase. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2000; 467:611-4. [PMID: 10721107 DOI: 10.1007/978-1-4615-4709-9_76] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
To elucidate the molecular basis underlying quinolinate metabolism, the cDNA encoding human brain QPRTase was cloned.
Collapse
Affiliation(s)
- S Fukuoka
- Research Institute for Food Science, Kyoto University, Japan.
| | | |
Collapse
|
12
|
Shin M, Ohnishi M, Iguchi S, Sano K, Umezawa C. Peroxisome-proliferator regulates key enzymes of the tryptophan-NAD+ pathway. Toxicol Appl Pharmacol 1999; 158:71-80. [PMID: 10387934 DOI: 10.1006/taap.1999.8683] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Structually diverse peroxisome-proliferators (PPs) were investigated regarding their effects on NAD+ level and two key enzyme activities in the tryptophan (Trp)-NAD+ pathway in the liver of rats (Sprague-Dawley male) fed PP-containing diets freely for 2 weeks. All PPs, except for thyroxine, significantly increased hepatic NAD+ level in concert with hepatic hypertrophy. Activity of quinolinate phosphoribosyltransferase (QAPRTase), one of the key enzymes in the Trp-NAD+ pathway, was increased by the PPs which caused significant increase in the hepatic NAD+. On the other hand, alpha-amino-beta-carboxymuconate-epsilon-semialdehyde decarboxylase (ACMSDase), another key enzyme in the Trp-NAD+ pathway, was drastically inhibited by all PPs except for linolenic acid, which was only slightly inhibitory. Most PPs investigated activated peroxisomal marker enzymes such as palmitoyl-CoA oxidase, catalase, and PPAR-alpha(peroxisome-proliferator activated receptor-alpha)-dependent enzymes, such as malic enzyme and l-3-glycerophosphate dehydrogenase. NAD+ was also increased in the rat hepatocytes cultured in the medium supplemented with PPs. These data suggested that regulation of the key enzymes in the Trp-NAD+ pathway was associated with PPAR-alpha directly or indirectly, and as a consequence the hepatic NAD+ was increased by PPs.
Collapse
Affiliation(s)
- M Shin
- School of Pharmacy, Kobe Gakuin University, Nishi-ku, Kobe, 651-2180, Japan
| | | | | | | | | |
Collapse
|
13
|
Chang HK, Zylstra GJ. Role of quinolinate phosphoribosyl transferase in degradation of phthalate by Burkholderia cepacia DBO1. J Bacteriol 1999; 181:3069-75. [PMID: 10322007 PMCID: PMC93761 DOI: 10.1128/jb.181.10.3069-3075.1999] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two distinct regions of DNA encode the enzymes needed for phthalate degradation by Burkholderia cepacia DBO1. A gene coding for an enzyme (quinolinate phosphoribosyl transferase) involved in the biosynthesis of NAD+ was identified between these two regions by sequence analysis and functional assays. Southern hybridization experiments indicate that DBO1 and other phthalate-degrading B. cepacia strains have two dissimilar genes for this enzyme, while non-phthalate-degrading B. cepacia strains have only a single gene. The sequenced gene was labeled ophE, due to the fact that it is specifically induced by phthalate as shown by lacZ gene fusions. Insertional knockout mutants lacking ophE grow noticeably slower on phthalate while exhibiting normal rates of growth on other substrates. The fact that elevated levels of quinolinate phosphoribosyl transferase enhance growth on phthalate stems from the structural similarities between phthalate and quinolinate: phthalate is a competitive inhibitor of this enzyme and the phthalate catabolic pathway cometabolizes quinolinate. The recruitment of this gene for growth on phthalate thus gives B. cepacia an advantage over other phthalate-degrading bacteria in the environment.
Collapse
Affiliation(s)
- H K Chang
- Biotechnology Center for Agriculture and the Environment, Cook College, Rutgers University, New Brunswick, New Jersey 08901-8520, USA
| | | |
Collapse
|
14
|
Fukuoka SI, Tanabe A, Egashira Y, Sanada H, Shin M, Shibata K. Identification of Cdnas Encoding α-Amino-β-Carboxymuconate-ε-Semialdehyde Decarboxylase (Acmsdase). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1999. [DOI: 10.1007/978-1-4615-4709-9_77] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|