1
|
Qu C, Hao B, Xu X, Wang Y, Yang C, Xu Z, Liu G. Functional Research on Three Presumed Asparagine Synthetase Family Members in Poplar. Genes (Basel) 2019; 10:E326. [PMID: 31035411 PMCID: PMC6562506 DOI: 10.3390/genes10050326] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/16/2019] [Accepted: 04/23/2019] [Indexed: 12/15/2022] Open
Abstract
Asparagine synthetase (AS), a key enzyme in plant nitrogen metabolism, plays an important role in plant nitrogen assimilation and distribution. Asparagine (Asn), the product of asparagine synthetase, is one of the main compounds responsible for organic nitrogen transport and storage in plants. In this study, we performed complementation experiments using an Asn-deficient Escherichia coli strain to demonstrate that three putative asparagine synthetase family members in poplar (Populussimonii× P.nigra) function in Asn synthesis. Quantitative real-time PCR revealed that the three members had high expression levels in different tissues of poplar and were regulated by exogenous nitrogen. PnAS1 and PnAS2 were also affected by diurnal rhythm. Long-term dark treatment resulted in a significant increase in PnAS1 and PnAS3 expression levels. Under long-term light conditions, however, PnAS2 expression decreased significantly in the intermediate region of leaves. Exogenous application of ammonium nitrogen, glutamine, and a glutamine synthetase inhibitor revealed that PnAS3 was more sensitive to exogenous glutamine, while PnAS1 and PnAS2 were more susceptible to exogenous ammonium nitrogen. Our results suggest that the various members of the PnAS gene family have distinct roles in different tissues and are regulated in different ways.
Collapse
Affiliation(s)
- Chunpu Qu
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), School of Forestry, Northeast Forestry University, Harbin 150040, China.
- School of Forestry, Northeast Forestry University, Harbin 150040, China.
| | - Bingqing Hao
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), School of Forestry, Northeast Forestry University, Harbin 150040, China.
- School of Forestry, Northeast Forestry University, Harbin 150040, China.
- Guangxi Forestry Research Institute, Nanning 530000, China.
| | - Xiuyue Xu
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), School of Forestry, Northeast Forestry University, Harbin 150040, China.
- School of Forestry, Northeast Forestry University, Harbin 150040, China.
| | - Yuchen Wang
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), School of Forestry, Northeast Forestry University, Harbin 150040, China.
- School of Forestry, Northeast Forestry University, Harbin 150040, China.
| | - Chengjun Yang
- School of Forestry, Northeast Forestry University, Harbin 150040, China.
| | - Zhiru Xu
- School of Forestry, Northeast Forestry University, Harbin 150040, China.
- College of Life Science, Northeast Forestry University, Harbin 150040, China.
| | - Guanjun Liu
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), School of Forestry, Northeast Forestry University, Harbin 150040, China.
- School of Forestry, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
2
|
Gálvez-Valdivieso G, Alamillo JM, Fernández J, Pineda M. Molecular characterization of PVAS3: an asparagine synthetase gene from common bean prevailing in developing organs. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:1484-1490. [PMID: 23846186 DOI: 10.1016/j.jplph.2013.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 05/29/2013] [Accepted: 06/06/2013] [Indexed: 06/02/2023]
Abstract
In common bean, asparagine synthetase (AS; EC 6.3.5.4) is encoded by three members of a multigene family called PVAS1, PVAS2 and PVAS3. Two of these genes, PVAS1 and PVAS2, have been extensively studied, but little is known about PVAS3, remaining unclear whether PVAS3 function is redundant to the other AS or if it plays a specific role in Phaseolus vulgaris metabolism. In this work, we used a molecular approach to characterize PVAS3 expression and to gain some knowledge about its physiological function. We showed that, in contrast to PVAS1 and PVAS2, PVAS3 was expressed in all organs analyzed. Interestingly, PVAS3 was the AS gene most highly expressed in nodules, leaves and pods at the earliest stages of development, and its expression decreased as these organs developed. Expression of PVAS3 parallels the accumulation of AS protein and the asparagine content during the earliest stages of nodule, leaf and pod development, suggesting an important role for PVAS3 in the synthesis of asparagine in that period. Furthermore, PVAS3 was not repressed by light, as most class-II AS genes. Surprisingly, fertilization of nodulated plants with nitrate or ammonium, conditions that induce PVAS1 and PVAS2 and the shift from ureides to amide synthesis, repressed the expression of PVAS3 in nodules and roots. The possible implications of this regulation are discussed.
Collapse
Affiliation(s)
- Gregorio Gálvez-Valdivieso
- Departamento de Botánica, Ecología y Fisiología Vegetal, Grupo del Campus de Excelencia Internacional Agroalimentario (ceiA3), Instituto Andaluz de Biotecnología, Campus de Rabanales, Edif. C-6, 1ª Planta, Universidad de Córdoba, 14071 Córdoba, Spain.
| | | | | | | |
Collapse
|
3
|
PVAS3, a class-II ubiquitous asparagine synthetase from the common bean (Phaseolus vulgaris). Mol Biol Rep 2009; 36:2249-58. [PMID: 19130295 DOI: 10.1007/s11033-008-9441-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Accepted: 12/19/2008] [Indexed: 10/21/2022]
Abstract
A gene encoding a putative asparagine synthetase (AS; EC 6.3.5.4) has been isolated from common bean (Phaseolus vulgaris). A 2.4 kb cDNA clone of this gene (PVAS3) encodes a protein of 570 amino acids with a predicted molecular mass of 64,678 Da, an isoelectric point of 6.45, and a net charge of -5.9 at pH 7.0. The PVAS3 protein sequence conserves all the amino acid residues that are essential for glutamine-dependent AS, and PVAS3 complemented an E. coli asparagine auxotroph, that demonstrates that it encodes a glutamine-dependent AS. PVAS3 displayed significant similarity to other AS. It showed the highest similarity to soybean SAS3 (92.9% identity), rice AS (73.7% identity), Arabidopsis ASN2 (73.2%) and sunflower HAS2 (72.9%). A phylogenetic analysis revealed that PVAS3 belongs to class-II asparagine synthetases. Expression analysis by real-time RT-PCR revealed that PVAS3 is expressed ubiquitously and is not repressed by light.
Collapse
|
4
|
Webb CJ, Chan-Weiher C, Johnson DA. Isolation of a novel family of genes related to 2-oxoglutarate-dependent dioxygenases from soybean and analysis of their expression during root nodule senescence. JOURNAL OF PLANT PHYSIOLOGY 2008; 165:1736-44. [PMID: 18160179 DOI: 10.1016/j.jplph.2007.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Revised: 10/13/2007] [Accepted: 10/13/2007] [Indexed: 05/25/2023]
Abstract
A screen for genes involved in root nodule senescence has led to the isolation of the senescence-associated nodulin 1 (SAN1) multigene family from Glycine max (soybean). The three, tandemly repeated SAN1 genes each have three exons and two introns and are highly conserved. SAN1A and SAN1B code for conceptual proteins of 352 and 353 amino acids, respectively, and share over 83% sequence identity, while SAN1C encodes a truncated protein of 126 amino acids and is likely to be a pseudogene. The SAN1-encoded proteins share sequence similarity and highly conserved motifs with plant 2-oxoglutarate-dependent dioxygenases (2-ODDs), suggesting that they encode 2-ODDs. Analyses of the steady-state mRNA levels of SAN1A and SAN1B during senescence induced by treatment with fixed nitrogen or darkness demonstrate that SAN1A is downregulated during induced senescence. In contrast, SAN1B is upregulated by both treatments. The expression of the SAN1 genes is not restricted to nodules, suggesting that in addition to their function(s) in these organs, they play a more general role in plant metabolism.
Collapse
Affiliation(s)
- Candace J Webb
- Department of Biology, University of Ottawa, Ontario, Canada
| | | | | |
Collapse
|
5
|
Antunes F, Aguilar M, Pineda M, Sodek L. Nitrogen stress and the expression of asparagine synthetase in roots and nodules of soybean (Glycine max). PHYSIOLOGIA PLANTARUM 2008; 133:736-43. [PMID: 18384503 DOI: 10.1111/j.1399-3054.2008.01092.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The difficulty of assaying asparagine synthetase (AS) (EC 6.3.5.4) activity in roots of soybean has been circumvented by measuring expression of the AS genes. Expression of three soybean asparagine synthetase (SAS) genes (SAS1, SAS2 and SAS3) was observed in roots of non-nodulated soybean plants cultivated on nitrate. Expression of these genes was reduced to very low levels within days after submitting the plants to a N-free medium. The subsequent return to a complete medium (containing nitrate) restored expression of all three AS genes. Roots of nodulated plants, where symbiotic nitrogen fixation was the exclusive source of N (no nitrate present), showed very weak expression of all three AS genes, but on transfer to a nitrate-containing medium, strong expression of these genes was observed within 24 h. In nodules, all three genes were expressed in the absence of nitrate. Under conditions that impair nitrogen fixation (nodules submerged in aerated hydroponics), only SAS1 expression was reduced. However, in the presence of nitrate, an inhibitor of N(2) fixation, SAS1 expression was maintained. High and low expressions of AS genes in the roots were associated with high and low ratios of Asn/Asp transported to the shoot through xylem. It is concluded that nitrate (or one of its assimilatory products) leads to the induction of AS in roots of soybean and that this underlies the variations found in xylem sap Asn/Asp ratios. Regulation of nodule AS expression is quite different from that of the root, but nodule SAS1, at least, appears to involve a product of N assimilation rather than nitrate itself.
Collapse
Affiliation(s)
- Flávia Antunes
- Departamento de Fisiologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | | | | | | |
Collapse
|
6
|
Silvente S, Reddy PM, Khandual S, Blanco L, Alvarado-Affantranger X, Sanchez F, Lara-Flores M. Evidence for sugar signalling in the regulation of asparagine synthetase gene expressed in Phaseolus vulgaris roots and nodules. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:1279-1294. [PMID: 18407964 DOI: 10.1093/jxb/ern034] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
A cDNA clone, designated as PvNAS2, encoding asparagine amidotransferase (asparagine synthetase) was isolated from nodule tissue of common bean (Phaseolus vulgaris cv. Negro Jamapa). Southern blot analysis indicated that asparagine synthetase in bean is encoded by a small gene family. Northern analysis of RNAs from various plant organs demonstrated that PvNAS2 is highly expressed in roots, followed by nodules in which it is mainly induced during the early days of nitrogen fixation. Investigations with the PvNAS2 promoter gusA fusion revealed that the expression of PvNAS2 in roots is confined to vascular bundles and meristematic tissues, while in root nodules its expression is solely localized to vascular traces and outer cortical cells encompassing the central nitrogen-fixing zone, but never detected in either infected or non-infected cells located in the central region of the nodule. PvNAS2 is down-regulated when carbon availability is reduced in nodules, and the addition of sugars to the plants, mainly glucose, boosted its induction, leading to the increased asparagine production. In contrast to PvNAS2 expression and the concomitant asparagine synthesis, glucose supplement resulted in the reduction of ureide content in nodules. Studies with glucose analogues as well as hexokinase inhibitors suggested a role for hexokinase in the sugar-sensing mechanism that regulates PvNAS2 expression in roots. In light of the above results, it is proposed that, in bean, low carbon availability in nodules prompts the down-regulation of the asparagine synthetase enzyme and concomitantly asparagine production. Thereby a favourable environment is created for the efficient transfer of the amido group of glutamine for the synthesis of purines, and then ureide generation.
Collapse
MESH Headings
- 3' Untranslated Regions/metabolism
- Amino Acid Sequence
- Asparagine/metabolism
- Aspartate-Ammonia Ligase/chemistry
- Aspartate-Ammonia Ligase/genetics
- Base Sequence
- Carbohydrate Metabolism
- Cloning, Molecular
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Plant
- Glucose/metabolism
- Hexokinase/metabolism
- Molecular Sequence Data
- Nitrogen Fixation
- Phaseolus/enzymology
- Phaseolus/genetics
- Phaseolus/physiology
- Plant Roots/enzymology
- Plant Roots/genetics
- Plant Roots/physiology
- Plant Structures/enzymology
- Plant Structures/genetics
- Plant Structures/physiology
- Promoter Regions, Genetic
- RNA Processing, Post-Transcriptional
- RNA, Plant/chemistry
- RNA, Plant/genetics
- RNA, Plant/metabolism
- Root Nodules, Plant/enzymology
- Root Nodules, Plant/genetics
- Root Nodules, Plant/physiology
- Sequence Alignment
- Signal Transduction
Collapse
Affiliation(s)
- Sonia Silvente
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, Colonia Chamilpa, Cuernavaca, CP 62210, Morelos, México
| | | | | | | | | | | | | |
Collapse
|
7
|
Lehmann T, Ratajczak L. The pivotal role of glutamate dehydrogenase (GDH) in the mobilization of N and C from storage material to asparagine in germinating seeds of yellow lupine. JOURNAL OF PLANT PHYSIOLOGY 2008; 165:149-58. [PMID: 17566603 DOI: 10.1016/j.jplph.2006.12.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Accepted: 12/18/2006] [Indexed: 05/15/2023]
Abstract
In germinating seeds of legumes, amino acids liberated during mobilization of storage proteins are partially used for synthesis of storage proteins of the developing axis, but some of them are respired. The amino acids are catabolized by both glutamate dehydrogenase (GDH) and transaminases. Ammonium is reassimilated by glutamine synthetase (GS) and, through the action of asparagine synthetase (AS), is stored in asparagine (Asn). This review presents the ways in which amino acids are converted into Asn and their regulation, mostly in germinating seeds of yellow lupine, where Asn can make up to 30% of dry matter. The energy balance of the synthesis of Asn from glutamate, the most common amino acid in lupine storage proteins, also shows an adaptation of lupine for oxidation of amino acids in early stages of germination. Regulation of the pathway of Asn synthesis is described with regard to the role of GDH and AS, as well as compartmentation of particular metabolites. The regulatory effect of sugar on major links of the pathway (mobilization of storage proteins, induction of genes and activity of GDH and AS) is discussed with respect to recent genetic and molecular studies. Moreover, the effect of glutamate and phytohormones is presented at various stages of Asn biosynthesis.
Collapse
Affiliation(s)
- Teresa Lehmann
- Department of Plant Physiology, A. Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland.
| | | |
Collapse
|
8
|
Herrera-Rodríguez MB, Maldonado JM, Pérez-Vicente R. Light and metabolic regulation of HAS1, HAS1.1 and HAS2, three asparagine synthetase genes in Helianthus annuus. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2004; 42:511-8. [PMID: 15246064 DOI: 10.1016/j.plaphy.2004.05.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2004] [Accepted: 05/06/2004] [Indexed: 05/23/2023]
Abstract
The role of light, carbon and nitrogen availability on the regulation of three asparagine synthetase (AS, EC 6.3.5.4)-coding genes, HAS1, HAS1.1 and HAS2, has been investigated in sunflower (Helianthus annuus). The response of each gene to different illumination conditions and to treatments that modify the carbon and nitrogen status of the plant was evaluated by Northern analysis with gene-specific probes. Light represses the expression of HAS1 and HAS1.1. Phytochrome and photosynthesis-derived carbohydrates mediate this repression. On the contrary, maintained HAS2 expression requires light and is positively affected by sucrose. HAS1 and HAS1.1 expression is dependent on nitrogen availability, while HAS2 transcripts are still found in N-starved plants. High ammonium level induces all three AS genes and partially reverts sucrose repression of HAS1 and HAS1.1. In summary, light, carbon and nitrogen availability control asparagine synthesis in sunflower by regulating three AS-coding genes. Illumination and carbon sufficiency maintain HAS2 active to supply asparagine that can be used for growth. Darkness and low C/N ratio conditions trigger the response of the specialized HAS1 and HAS1.1 genes which contribute to store the excess nitrogen as asparagine. Ammonium induces all three AS-genes which may favor its detoxification.
Collapse
Affiliation(s)
- María Begoña Herrera-Rodríguez
- Departamento de Ciencias Ambientales, Area de Fisiología Vegetal, Universidad Pablo de Olavide, Ctra. de Utrera, km 1, 41013 Seville, Spain
| | | | | |
Collapse
|
9
|
Møller MG, Taylor C, Rasmussen SK, Holm PB. Molecular cloning and characterisation of two genes encoding asparagine synthetase in barley (Hordeum vulgare L.). BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1628:123-32. [PMID: 12890559 DOI: 10.1016/s0167-4781(03)00137-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Two different cDNA clones encoding asperagine synthetase (AS: EC 6.3.5.4.) were cloned from barley (Hordeum vulgare L. cv. Alexis). The corresponding genes were designated HvAS1 (GenBank no AF307145) and HvAS2 (GenBank no AY193714). Chromosomal mapping using wheat-barley addition lines revealed that the HvAS1 gene is located on the long arm of barley chromosome 5, while the HvAS2 gene maps to the short arm of chromosome 3. Both genes are expressed in barley leaves according to RT-PCR analysis but only the HvAS1 gene expression can be detected in roots. Northern blots show no expression of HvAS1 in plants grown under a normal 16 h light/8 h dark cycle but after 10 h of continuous darkness, transcript appears and mRNA accumulates over a 48-h period of dark treatment. In roots, low-level expression of HvAS1 could be detected and the expression level appears to be unaffected by light. A polyclonal antibody was raised against the HvAS1 protein and used in Western blot analysis. The AS protein accumulated during a 48-h period of dark treatment, following the increase in HvAS1 transcript.
Collapse
Affiliation(s)
- Marianne G Møller
- Research Centre Flakkebjerg, Department of Plant Biology, Danish Institute of Agricultural Sciences, Slagelse, DK-4200, Denmark
| | | | | | | |
Collapse
|
10
|
Herrera-Rodríguez MB, Carrasco-Ballesteros S, Maldonado JM, Pineda M, Aguilar M, Pérez-Vicente R. Three genes showing distinct regulatory patterns encode the asparagine synthetase of sunflower (Helianthus annuus). THE NEW PHYTOLOGIST 2002; 155:33-45. [PMID: 33873300 DOI: 10.1046/j.1469-8137.2002.00437.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
• Asparagine metabolism in sunflower (Helianthus annuus) was investigated by cDNA cloning, sequence characterization and expression analysis of three genes encoding different isoforms of asparagine synthetase (AS, EC 6.3.5.4). • The AS-coding sequences were searched for in leaves, roots and cotyledons by using a methodology based on the simultaneous amplification of different cDNAs. Three distinct AS-coding genes, HAS1, HAS1.1 and HAS2, were identified. • HAS1 and HAS1.1 are twin genes with closely related sequences that share some regulatory features. By contrast, HAS2 is a singular sequence that encodes an incomplete AS polypeptide and shows an unusual regulation. The functionality of both the complete HAS1 and the truncated HAS2 proteins was demonstrated by complementation assays. Northern analysis revealed that HAS1, HAS1.1 and HAS2 were differentially regulated dependent on the organ, the physiological status, the developmental stage and the light conditions. • Asparagine synthetase from sunflower is encoded by a small gene family whose members have achieved a significant degree of specialization to cope with the major situations requiring asparagine synthesis.
Collapse
Affiliation(s)
- María Begoña Herrera-Rodríguez
- Departamento de Biología Vegetal, División de Fisiología Vegetal, Universidad de Córdoba, Avda. San Alberto Magno s/n, E-14071 Córdoba, Spain
| | - Susana Carrasco-Ballesteros
- Departamento de Biología Vegetal, División de Fisiología Vegetal, Universidad de Córdoba, Avda. San Alberto Magno s/n, E-14071 Córdoba, Spain
| | - José María Maldonado
- Departamento de Fisiología Vegetal y Ecología, Unidad de Fisiología Vegetal, Facultad de Biología, Universidad de Sevilla, Avda, Reina Mercedes 6, E-41012 Seville, Spain
| | - Manuel Pineda
- Departamento de Bioquímica y Biología Molecular. Universidad de Córdoba, Campus Rabanales, Edif. C-6, 1a Planta, E-14071 Córdoba, Spain
| | - Miguel Aguilar
- Departamento de Bioquímica y Biología Molecular. Universidad de Córdoba, Campus Rabanales, Edif. C-6, 1a Planta, E-14071 Córdoba, Spain
| | - Rafael Pérez-Vicente
- Departamento de Biología Vegetal, División de Fisiología Vegetal, Universidad de Córdoba, Avda. San Alberto Magno s/n, E-14071 Córdoba, Spain
| |
Collapse
|
11
|
Kawachi T, Sueyoshi K, Nakajima A, Yamagata H, Sugimoto T, Oji Y. Expression of asparagine synthetase in rice (Oryza sativa) roots in response to nitrogen. PHYSIOLOGIA PLANTARUM 2002; 114:41-46. [PMID: 11982933 DOI: 10.1034/j.1399-3054.2002.1140107.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The expression of asparagine synthetase (AS; EC 6.3.5.4) in response to externally supplied nitrogen was investigated with respect to enzyme activity and protein levels as detected immunologically in rice (Oryza sativa) seedlings. The asparagine content was very low in leaves and roots of nitrogen-starved rice plants but increased significantly after the supply of 1 mM NH4+ to the nutrient solution. While neither AS activity nor AS protein could be detected in leaves and roots prior to the supply of nitrogen, levels became detectable in roots but not in leaves within 12 h of the supply of 1 mM NH4+ or 10 mM glutamine. Other nitrogen compounds, such as nitrate, glutamate, aspartate and asparagine had no effect. Methionine sulfoximine completely inhibited the NH4+-induced accumulation of AS protein but did not affect the glutamine-induced accumulation of the enzyme. The results suggested that glutamine or glutamine-derived metabolites regulate AS expression in rice roots.
Collapse
Affiliation(s)
- Tahei Kawachi
- Department of Environmental and Biological Science, Faculty of Agriculture, Kobe University, Kobe 657-8501, Japan Department of Biofunctional Chemistry, Faculty of Agriculture, Kobe University, Kobe 657-8501, Japan Present address: Department of Applied Biological Chemistry, Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan
| | | | | | | | | | | |
Collapse
|
12
|
Oliveira IC, Brenner E, Chiu J, Hsieh MH, Kouranov A, Lam HM, Shin MJ, Coruzzi G. Metabolite and light regulation of metabolism in plants: lessons from the study of a single biochemical pathway. Braz J Med Biol Res 2001; 34:567-75. [PMID: 11323742 DOI: 10.1590/s0100-879x2001000500003] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We are using molecular, biochemical, and genetic approaches to study the structural and regulatory genes controlling the assimilation of inorganic nitrogen into the amino acids glutamine, glutamate, aspartate and asparagine. These amino acids serve as the principal nitrogen-transport amino acids in most crop and higher plants including Arabidopsis thaliana. We have begun to investigate the regulatory mechanisms controlling nitrogen assimilation into these amino acids in plants using molecular and genetic approaches in Arabidopsis. The synthesis of the amide amino acids glutamine and asparagine is subject to tight regulation in response to environmental factors such as light and to metabolic factors such as sucrose and amino acids. For instance, light induces the expression of glutamine synthetase (GLN2) and represses expression of asparagine synthetase (ASN1) genes. This reciprocal regulation of GLN2 and ASN1 genes by light is reflected at the level of transcription and at the level of glutamine and asparagine biosynthesis. Moreover, we have shown that the regulation of these genes is also reciprocally controlled by both organic nitrogen and carbon metabolites. We have recently used a reverse genetic approach to study putative components of such metabolic sensing mechanisms in plants that may be conserved in evolution. These components include an Arabidopsis homolog for a glutamate receptor gene originally found in animal systems and a plant PII gene, which is a homolog of a component of the bacterial Ntr system. Based on our observations on the biology of both structural and regulatory genes of the nitrogen assimilatory pathway, we have developed a model for metabolic control of the genes involved in the nitrogen assimilatory pathway in plants.
Collapse
Affiliation(s)
- I C Oliveira
- Department of Biology, New York University, New York, NY 10003, USA
| | | | | | | | | | | | | | | |
Collapse
|