1
|
Shaik L, Chakraborty S. Sequential Pulsed Light and Ultrasound Treatments for the Inactivation of Saccharomyces cerevisiae and PPO and the Retention of Bioactive Compounds in Sweet Lime Juice. Foods 2024; 13:1996. [PMID: 38998503 PMCID: PMC11241773 DOI: 10.3390/foods13131996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/02/2024] [Accepted: 06/07/2024] [Indexed: 07/14/2024] Open
Abstract
Designing a pasteurization con dition for sweet lime juice while ensuring microbial safety, enzymatic stability, and high nutritional quality is crucial for satisfying stakeholder demands. The present research investigates the effects of matrix pH, ultrasound treatments, and sequential pulsed light on the microbial population, enzyme activity, and bioactive chemicals in sweet lime juice. The sequential pulsed light (PL: 0.6-0.84 J/cm2) and ultrasound (US: 0.2-0.4 W/cm3) treatments for sweet lime juice were optimized using response surface methodology (RSM). A three-factor full factorial design was used for this purpose. The independent variables encompassed pH (X1), PL effective fluence (X2, J/cm2), and US intensity (X3, W/cm3). The responses assessed included the inactivation of Saccharomyces cerevisiae (Y1, log cfu/mL) and polyphenol oxidase (PPO: Y2 in %) and the retention of vitamin C (Y3, %). The polynomial models were optimized using numerical optimization to attain the maximum desirability value (0.89). The optimized PL + US sample (0.8 J/cm2 + 0.4 W/cm3, respectively) at pH 3.5 resulted in a 5-log cycle reduction in S. cerevisiae count and a 90% inactivation in PPO activity and retained 95% of its vitamin C content. This optimized sample underwent further analysis, including phenolic profiling, assessment of microbial cell morphology, and examination of enzyme conformational changes. After sequential pulsed-light (0.8 J/cm2) and ultrasound (0.4 W/cm3) treatments, yeast cells showed unusual structural changes, indicating additional targets besides membranes. Following PL + US treatment, the PPO composition changed to 2.7 ± 0.1% α-helix, 33.9 ± 0.3% β-sheet, 1.4 ± 0.2% β-turn, and 62 ± 0.7% random coil. Impressively, the optimized PL + US sample maintained a sensory acceptance level similar to that of the untreated sample.
Collapse
Affiliation(s)
- Lubna Shaik
- Department of Food Engineering and Technology, Institute of Chemical Technology, Matunga, Mumbai 400019, India
- School of Biosciences and Bioengineering, D Y Patil International University, Akurdi, Pune 411044, India
| | - Snehasis Chakraborty
- Department of Food Engineering and Technology, Institute of Chemical Technology, Matunga, Mumbai 400019, India
| |
Collapse
|
2
|
Nemergut M, Sedláková D, Fabriciová G, Belej D, Jancura D, Sedlák E. Explanation of inconsistencies in the determination of human serum albumin thermal stability. Int J Biol Macromol 2023; 232:123379. [PMID: 36702231 DOI: 10.1016/j.ijbiomac.2023.123379] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/15/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023]
Abstract
Thermal denaturation of human serum albumin has been the subject of many studies in recent decades, but the results of these studies are often conflicting and inconclusive. To clarify this, we combined different spectroscopic and calorimetric techniques and performed an in-depth analysis of the structural changes that occur during the thermal unfolding of different conformational forms of human serum albumin. Our results showed that the inconsistency of the results in the literature is related to the different quality of samples in different batches, methodological approaches and experimental conditions used in the studies. We confirmed that the presence of fatty acids (FAs) causes a more complex process of the thermal denaturation of human serum albumin. While the unfolding pathway of human serum albumin without FAs can be described by a two-step model, consisting of subsequent reversible and irreversible transitions, the thermal denaturation of human serum albumin with FAs appears to be a three-step process, consisting of a reversible step followed by two consecutive irreversible transitions.
Collapse
Affiliation(s)
- Michal Nemergut
- Center for Interdisciplinary Biosciences, P. J. Šafárik University in Košice, Jesenná 5, 04154 Košice, Slovakia
| | - Dagmar Sedláková
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001 Košice, Slovakia
| | - Gabriela Fabriciová
- Department of Biophysics, Faculty of Science, P. J. Šafárik University in Košice, Jesenná 5, 04154 Košice, Slovakia
| | - Dominik Belej
- Department of Biophysics, Faculty of Science, P. J. Šafárik University in Košice, Jesenná 5, 04154 Košice, Slovakia
| | - Daniel Jancura
- Department of Biophysics, Faculty of Science, P. J. Šafárik University in Košice, Jesenná 5, 04154 Košice, Slovakia
| | - Erik Sedlák
- Center for Interdisciplinary Biosciences, P. J. Šafárik University in Košice, Jesenná 5, 04154 Košice, Slovakia; Department of Biochemistry, Faculty of Science, P. J. Šafárik University in Košice, Moyzesova 11, 04154 Košice, Slovakia.
| |
Collapse
|
3
|
Gupta MN, Uversky VN. Pre-Molten, Wet, and Dry Molten Globules en Route to the Functional State of Proteins. Int J Mol Sci 2023; 24:ijms24032424. [PMID: 36768742 PMCID: PMC9916686 DOI: 10.3390/ijms24032424] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
Transitions between the unfolded and native states of the ordered globular proteins are accompanied by the accumulation of several intermediates, such as pre-molten globules, wet molten globules, and dry molten globules. Structurally equivalent conformations can serve as native functional states of intrinsically disordered proteins. This overview captures the characteristics and importance of these molten globules in both structured and intrinsically disordered proteins. It also discusses examples of engineered molten globules. The formation of these intermediates under conditions of macromolecular crowding and their interactions with nanomaterials are also reviewed.
Collapse
Affiliation(s)
- Munishwar Nath Gupta
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Hauz Khas, New Delhi 110016, India
| | - Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Correspondence: ; Tel.: +1-813-494-5816
| |
Collapse
|
4
|
Melnik BS, Katina NS, Ryabova NA, Marchenkov VV, Melnik TN, Karuzina NE, Nemtseva EV. Relationship between Changes in the Protein Folding Pathway and the Process of Amyloid Formation: The Case of Bovine Carbonic Anhydrase II. Int J Mol Sci 2022; 23:ijms232314645. [PMID: 36498970 PMCID: PMC9735599 DOI: 10.3390/ijms232314645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Abstract
Many proteins form amyloid fibrils only under conditions when the probability of transition from a native (structured, densely packed) to an intermediate (labile, destabilized) state is increased. It implies the assumption that some structural intermediates are more convenient for amyloid formation than the others. Hence, if a mutation affects the protein folding pathway, one should expect that this mutation could affect the rate of amyloid formation as well. In the current work, we have compared the effects of amino acid substitutions of bovine carbonic anhydrase II on its unfolding pathway and on its ability to form amyloids at acidic pH and an elevated temperature. Wild-type protein and four mutant forms (L78A, L139A, I208A, and M239A) were studied. We analyzed the change of the protein unfolding pathway by the time-resolved fluorescence technique and the process of amyloid formation by thioflavin T fluorescence assay and electron microscopy. It was revealed that I208A substitution accelerates amyloid formation and affects the structure of the late (molten globule-like)-intermediate state of carbonic anhydrase, whereas the other mutations slow down the growth of amyloids and have either no effect on the unfolding pathway (L78A, L139A) or alter the conformational states arising at the early unfolding stage (M239A).
Collapse
Affiliation(s)
- Bogdan S. Melnik
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia
- Pushchino Branch, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia
- Correspondence: ; Tel.: +7-(4967)-318271; Fax: +7-(4967)-318435
| | - Natalya S. Katina
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Natalya A. Ryabova
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Victor V. Marchenkov
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Tatiana N. Melnik
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Natalya E. Karuzina
- Biophysics Department, Siberian Federal University, 660041 Krasnoyarsk, Russia
| | - Elena V. Nemtseva
- Biophysics Department, Siberian Federal University, 660041 Krasnoyarsk, Russia
- Institute of Biophysics, Siberian Branch of Russian Academy of Sciences, 660036 Krasnoyarsk, Russia
| |
Collapse
|
5
|
Zhu Y, Elliot M, Zheng Y, Chen J, Chen D, Deng S. Aggregation and conformational change of mushroom (Agaricus bisporus) polyphenol oxidase subjected to atmospheric cold plasma treatment. Food Chem 2022; 386:132707. [PMID: 35339091 DOI: 10.1016/j.foodchem.2022.132707] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 03/10/2022] [Accepted: 03/12/2022] [Indexed: 11/25/2022]
Abstract
Atmospheric cold plasma (ACP) is a novel nonthermal technology with potential applications in maintaining and improving food quality. The effect of ACP on the activity and structure of mushroom (Agaricus bisporus) polyphenol oxidase (PPO) was evaluated. Results demonstrated that the dielectric barrier discharge (DBD) based plasma technology could inactivate PPO (up to 69%) at 50 kV with the increased concentrations of H2O2 and NOx. An obvious enhancement of surface hydrophobicity was observed, whereas a gradual reduction of total sulfhydryl content was recorded with the increasing exposure time. Data from circular dichroism, atomic force microscopy, particle size distribution and fluorescence spectra displayed the rearrangement of secondary structure and disruption of the tertiary structure. Red shifts of fluorescence spectra showed positive correlations with the inactivation rate of PPO. Therefore, ACP treatment could be served as an alternative approach to inactivate undesirable enzymes to minimize the loss of food nutrition and quality.
Collapse
Affiliation(s)
- Yifan Zhu
- College of Food and Medicine, Zhejiang Ocean University, Zhoushan 316022, China
| | - Mubango Elliot
- College of Food Science and Nutrition Engineering, China Agricultural University, Beijing 100083, China
| | - Yanhong Zheng
- College of Food and Medicine, Zhejiang Ocean University, Zhoushan 316022, China
| | - Jing Chen
- College of Food and Medicine, Zhejiang Ocean University, Zhoushan 316022, China; Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan 316022, China.
| | - Dongzhi Chen
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316022, China
| | - Shanggui Deng
- College of Food and Medicine, Zhejiang Ocean University, Zhoushan 316022, China; Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan 316022, China
| |
Collapse
|
6
|
Stepanenko OV, Sulatsky MI, Mikhailova EV, Stepanenko OV, Kuznetsova IM, Turoverov KK, Sulatskaya AI. Trypsin Induced Degradation of Amyloid Fibrils. Int J Mol Sci 2021; 22:4828. [PMID: 34063223 PMCID: PMC8124345 DOI: 10.3390/ijms22094828] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/26/2021] [Accepted: 04/30/2021] [Indexed: 02/06/2023] Open
Abstract
Proteolytic enzymes are known to be involved in the formation and degradation of various monomeric proteins, but the effect of proteases on the ordered protein aggregates, amyloid fibrils, which are considered to be extremely stable, remains poorly understood. In this work we study resistance to proteolytic degradation of lysozyme amyloid fibrils with two different types of morphology and beta-2-microglobulun amyloids. We showed that the proteolytic enzyme of the pancreas, trypsin, induced degradation of amyloid fibrils, and the mechanism of this process was qualitatively the same for all investigated amyloids. At the same time, we found a dependence of efficiency and rate of fibril degradation on the structure of the amyloid-forming protein as well as on the morphology and clustering of amyloid fibrils. It was assumed that the discovered relationship between fibrils structure and the efficiency of their degradation by trypsin can become the basis of a new express method for the analysis of amyloids polymorphism. Unexpectedly lower resistance of both types of lysozyme amyloids to trypsin exposure compared to the native monomeric protein (which is not susceptible to hydrolysis) was attributed to the higher availability of cleavage sites in studied fibrils. Another intriguing result of the work is that the cytotoxicity of amyloids treated with trypsin was not only failing to decline, but even increasing in the case of beta-2-microglobulin fibrils.
Collapse
Affiliation(s)
- Olga V. Stepanenko
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Avenue, 194064 St. Petersburg, Russia; (O.V.S.); (E.V.M.); (O.V.S.); (I.M.K.); (A.I.S.)
| | - Maksim I. Sulatsky
- Laboratory of Cell Morphology, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Avenue, 194064 St. Petersburg, Russia;
| | - Ekaterina V. Mikhailova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Avenue, 194064 St. Petersburg, Russia; (O.V.S.); (E.V.M.); (O.V.S.); (I.M.K.); (A.I.S.)
| | - Olesya V. Stepanenko
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Avenue, 194064 St. Petersburg, Russia; (O.V.S.); (E.V.M.); (O.V.S.); (I.M.K.); (A.I.S.)
| | - Irina M. Kuznetsova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Avenue, 194064 St. Petersburg, Russia; (O.V.S.); (E.V.M.); (O.V.S.); (I.M.K.); (A.I.S.)
| | - Konstantin K. Turoverov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Avenue, 194064 St. Petersburg, Russia; (O.V.S.); (E.V.M.); (O.V.S.); (I.M.K.); (A.I.S.)
- Institute of Physics, Nanotechnology and Telecommunications, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, 195251 St. Petersburg, Russia
| | - Anna I. Sulatskaya
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Avenue, 194064 St. Petersburg, Russia; (O.V.S.); (E.V.M.); (O.V.S.); (I.M.K.); (A.I.S.)
| |
Collapse
|
7
|
Heat inactivation of thermolabile polygalacturonase down to single molecule level. Systematic investigation and molecular modeling. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Interaction characterization of 5−hydroxymethyl−2−furaldehyde with human serum albumin: Binding characteristics, conformational change and mechanism. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.111835] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
9
|
Nemtseva EV, Gerasimova MA, Melnik TN, Melnik BS. Experimental approach to study the effect of mutations on the protein folding pathway. PLoS One 2019; 14:e0210361. [PMID: 30640946 PMCID: PMC6331109 DOI: 10.1371/journal.pone.0210361] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 12/20/2018] [Indexed: 11/19/2022] Open
Abstract
Is it possible to compare the physicochemical properties of a wild-type protein and its mutant form under the same conditions? Provided the mutation has destabilized the protein, it may be more correct to compare the mutant protein under native conditions to the wild-type protein destabilized with a small amount of the denaturant. In general, is it appropriate to compare the properties of proteins destabilized by different treatments: mutations, pH, temperature, and denaturants like urea? These issues have compelled us to search for methods and ways of presentation of experimental results that would allow a comparison of mutant forms of proteins under different conditions and lead to conclusions on the effect of mutations on the protein folding/unfolding pathway. We have studied equilibrium unfolding of wild-type bovine carbonic anhydrase II (BCA II) and its six mutant forms using different urea concentrations. BCA II has been already studied in detail and is a good model object for validating new techniques. In this case, time-resolved fluorescence spectroscopy was chosen as the basic research method. The main features of this experimental method allowed us to compare different stages of unfolding of studied proteins and prove experimentally that a single substitution of the amino acid in three mutant forms of BCA II affected the native state of the protein but did not change its unfolding pathway. On the contrary, the inserted disulfide bridge in three other mutant forms of BCA II affected the protein unfolding pathway. An important result of this research is that we have validated the new approach allowing investigation of the effect of mutations on the folding of globular proteins, because in this way it is possible to compare proteins in the same structural states rather than under identical conditions.
Collapse
Affiliation(s)
- Elena V. Nemtseva
- Siberian Federal University, Krasnoyarsk, Russia
- Institute of Biophysics, Siberian Branch of Russian Academy of Sciences, Krasnoyarsk, Russia
| | | | - Tatiana N. Melnik
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Bogdan S. Melnik
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| |
Collapse
|
10
|
Antonio Pellicer J, Navarro P, Gómez-López VM. Pulsed light inactivation of polygalacturonase. Food Chem 2019; 271:109-113. [DOI: 10.1016/j.foodchem.2018.07.194] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/28/2018] [Accepted: 07/25/2018] [Indexed: 01/03/2023]
|
11
|
The Pathways of the iRFP713 Unfolding Induced by Different Denaturants. Int J Mol Sci 2018; 19:ijms19092776. [PMID: 30223568 PMCID: PMC6163377 DOI: 10.3390/ijms19092776] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 09/11/2018] [Accepted: 09/13/2018] [Indexed: 02/06/2023] Open
Abstract
Near-infrared fluorescent proteins (NIR FPs) based on the complexes of bacterial phytochromes with their natural biliverdin chromophore are widely used as genetically encoded optical probes for visualization of cellular processes and deep-tissue imaging of cells and organs in living animals. In this work, we show that the steady-state and kinetic dependencies of the various spectral characteristics of iRFP713, developed from the bacterial phytochrome RpBphP2 and recorded at protein unfolding induced by guanidine hydrochloride (GdnHCl), guanidine thiocyanate (GTC), and urea, differ substantially. A study of the unfolding of three single-tryptophan mutant forms of iRFP713 expectedly revealed that protein unfolding begins with the dissociation of the native dimer, while the monomers remain compact. A further increase in the denaturant concentration leads to the formation of an intermediate state of iRFP713 having hydrophobic areas exposed on the protein surface (I). The total surface charge of iRFP713 (pI 5.86) changes from negative to positive with an increase in the concentration of GdnHCl and GTC because the negative charge of glutamic and aspartic acids is neutralized by forming salt bridges between the carboxyl groups and GdnH+ ions and because the guanidinium cations bind to amide groups of glutamines and asparagines. The coincidence of both the concentration of the denaturants at which the intermediate state of iRFP713 accumulates and the concentration of GdnH+ ions at which the neutralization of the surface charge of the protein in this state is ensured results in strong protein aggregation. This is evidently realized by iRFP713 unfolding by GTC. At the unfolding of the protein by GdnHCl, an intermediate state is populated at higher denaturant concentrations and a strong aggregation is not observed. As expected, protein aggregates are not formed in the presence of the urea. The aggregation of the protein upon neutralization of the charge on the macromolecule surface is the main indicator of the intermediate state of protein. The unfolded state of iRFP713, whose formation is accompanied by a significant decrease in the parameter A, was found to have a different residual structure in the denaturants used.
Collapse
|
12
|
Pulsed Light Inactivation of Mushroom Polyphenol Oxidase: a Fluorometric and Spectrophotometric Study. FOOD BIOPROCESS TECH 2017. [DOI: 10.1007/s11947-017-2033-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
13
|
Shamsi A, Ahmed A, Bano B. Global transition of human serum albumin to prefibrillar aggregates induced by temsirolimus: Insight into implications of anti-renal cancer drug. J Mol Recognit 2017; 31. [DOI: 10.1002/jmr.2688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 10/03/2017] [Accepted: 10/23/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Anas Shamsi
- Department of Biochemistry, F/O Life Sciences; Aligarh Muslim University; Aligarh India
| | - Azaj Ahmed
- Department of Biochemistry, F/O Life Sciences; Aligarh Muslim University; Aligarh India
| | - Bilqees Bano
- Department of Biochemistry, F/O Life Sciences; Aligarh Muslim University; Aligarh India
| |
Collapse
|
14
|
Fonin AV, Golikova AD, Zvereva IA, D'Auria S, Staiano M, Uversky VN, Kuznetsova IM, Turoverov KK. Osmolyte-Like Stabilizing Effects of Low GdnHCl Concentrations on d-Glucose/d-Galactose-Binding Protein. Int J Mol Sci 2017; 18:E2008. [PMID: 28925982 PMCID: PMC5618657 DOI: 10.3390/ijms18092008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 09/14/2017] [Accepted: 09/16/2017] [Indexed: 11/16/2022] Open
Abstract
The ability of d-glucose/d-galactose-binding protein (GGBP) to reversibly interact with its ligands, glucose and galactose, makes this protein an attractive candidate for sensing elements of glucose biosensors. This potential is largely responsible for attracting researchers to study the conformational properties of this protein. Previously, we showed that an increase in the fluorescence intensity of the fluorescent dye 6-bromoacetyl-2-dimetylaminonaphtalene (BADAN) is linked to the holo-form of the GGBP/H152C mutant in solutions containing sub-denaturing concentrations of guanidine hydrochloride (GdnHCl). It was hypothesized that low GdnHCl concentrations might lead to compaction of the protein, thereby facilitating ligand binding. In this work, we utilize BADAN fluorescence spectroscopy, intrinsic protein UV fluorescence spectroscopy, and isothermal titration calorimetry (ITC) to show that the sub-denaturing GdnHCl concentrations possess osmolyte-like stabilizing effects on the structural dynamics, conformational stability, and functional activity of GGBP/H152C and the wild type of this protein (wtGGBP). Our data are consistent with the model where low GdnHCl concentrations promote a shift in the dynamic distribution of the protein molecules toward a conformational ensemble enriched in molecules with a tighter structure and a more closed conformation. This promotes the increase in the configurational complementarity between the protein and glucose molecules that leads to the increase in glucose affinity in both GGBP/H152C and wtGGBP.
Collapse
Affiliation(s)
- Alexander V Fonin
- Institute of Cytology of the Russian Academy of Sciences, Laboratory of Structural Dynamics, Stability and Folding of Proteins, Tikhoretsky av. 4, 194064 St. Petersburg, Russia.
| | - Alexandra D Golikova
- Saint Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia.
| | - Irina A Zvereva
- Saint Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia.
| | - Sabato D'Auria
- CNR, Institute of Food Science, via Roma 64, 83100 Avellino, Italy.
| | - Maria Staiano
- CNR, Institute of Food Science, via Roma 64, 83100 Avellino, Italy.
| | - Vladimir N Uversky
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA.
| | - Irina M Kuznetsova
- Institute of Cytology of the Russian Academy of Sciences, Laboratory of Structural Dynamics, Stability and Folding of Proteins, Tikhoretsky av. 4, 194064 St. Petersburg, Russia.
| | - Konstantin K Turoverov
- Institute of Cytology of the Russian Academy of Sciences, Laboratory of Structural Dynamics, Stability and Folding of Proteins, Tikhoretsky av. 4, 194064 St. Petersburg, Russia.
- Department of Biophysics, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya av. 29, 195251 St. Petersburg, Russia.
| |
Collapse
|
15
|
Shamsi A, Bano B. Journey of cystatins from being mere thiol protease inhibitors to at heart of many pathological conditions. Int J Biol Macromol 2017; 102:674-693. [PMID: 28445699 PMCID: PMC7112400 DOI: 10.1016/j.ijbiomac.2017.04.071] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 04/18/2017] [Accepted: 04/19/2017] [Indexed: 02/04/2023]
Abstract
Cystatins are thiol proteinase inhibitors (TPI), present ubiquitously in animals, plants and micro-organisms. These are not merely inhibitors rather they are at heart of many pathological conditions ranging from diabetes to renal failure. These are essential for maintenance of protein balance of the cell; once this balance gets disturbed, it may lead to cell death. Thus, cystatins cannot be merely regarded as TPI's as these have been found to play a pivotal role in tumorigenesis and neurodegenerative diseases. Many studies have reported the variation in cystatin level in incidences of different types of cancer; highlighting an important role played by these inhibitors in cancer development and progression. Cystatin C is increasingly replacing creatinine as a biomarker of glomerular filtration rate (GFR) thereby highlighting the importance of this important inhibitor. Some recent studies have also reported the interaction pattern of various anti-cancer drugs with cystatins in a bid to find how these drugs affect this important inhibitors and whether these drugs have any side effect on cystatins. Thus, in this growing disease era it can be said that cystatins are no more just inhibitors blocking the activity of thiol proteases rather they play a pivotal role in variety of pathological conditions.
Collapse
Affiliation(s)
- Anas Shamsi
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Bilqees Bano
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
16
|
Guo M, Lu X, Wang Y, Brodelius PE. Comparison of the interaction between lactoferrin and isomeric drugs. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 173:593-607. [PMID: 27776314 DOI: 10.1016/j.saa.2016.10.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 10/04/2016] [Accepted: 10/17/2016] [Indexed: 06/06/2023]
Abstract
The binding properties of pentacyclic triterpenoid isomeric drugs, i.e. ursolic acid (UA) and oleanolic acid (OA), to bovine lactoferrin (BLF) have been studied by molecule modeling, fluorescence spectroscopy, UV-visible absorbance spectroscopy and infrared spectroscopy (IR). Molecular docking, performed to reveal the possible binding mode or mechanism, suggested that hydrophobic interaction and hydrogen bonding play important roles to stabilize the complex. The results of spectroscopic measurements showed that the two isomeric drugs both strongly quenched the intrinsic fluorescence of BLF through a static quenching procedure although some differences between UA and OA binding strength and non-radiation energy transfer occurred within the molecules. The number of binding sites was 3.44 and 3.10 for UA and OA, respectively, and the efficiency of Förster energy transfer provided a distance of 0.77 and 1.21nm for UA and OA, respectively. The conformation transformation of BLF affected by the drugs conformed to the "all-or-none" pattern. In addition, the changes of the ratios of α-helices, β-sheets and β-turns of BLF during the process of the interaction were obtained. The results of the experiments in combination with the calculations showed that there are two modes of pentacyclic triterpenoid binding to BLF instead of one binding mode only governed by the principle of the lowest bonding energy.
Collapse
Affiliation(s)
- Ming Guo
- Department of Chemistry, Zhejiang Agricultural & Forestry University, Lin'an 311300, Zhejiang, China.
| | - Xiaowang Lu
- Department of Chemistry, Zhejiang Agricultural & Forestry University, Lin'an 311300, Zhejiang, China
| | - Yan Wang
- Department of Chemistry, Zhejiang Agricultural & Forestry University, Lin'an 311300, Zhejiang, China
| | - Peter E Brodelius
- Department of Chemistry and Biomedical Sciences, Linnaeus University, 391 82 Kalmar, Sweden.
| |
Collapse
|
17
|
Uversky VN. Under-folded proteins: Conformational ensembles and their roles in protein folding, function, and pathogenesis. Biopolymers 2016; 99:870-87. [PMID: 23754493 PMCID: PMC7161862 DOI: 10.1002/bip.22298] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Revised: 05/21/2013] [Accepted: 05/30/2013] [Indexed: 11/16/2022]
Abstract
For decades, protein function was intimately linked to the presence of a unique, aperiodic crystal‐like structure in a functional protein. The two only places for conformational ensembles of under‐folded (or partially folded) protein forms in this picture were either the end points of the protein denaturation processes or transiently populated folding intermediates. Recent years witnessed dramatic change in this perception and conformational ensembles, which the under‐folded proteins are, have moved from the shadow. Accumulated to date data suggest that a protein can exist in at least three global forms–functional and folded, functional and intrinsically disordered (nonfolded), and nonfunctional and misfolded/aggregated. Under‐folded protein states are crucial for each of these forms, serving as important folding intermediates of ordered proteins, or as functional states of intrinsically disordered proteins (IDPs) and IDP regions (IDPRs), or as pathology triggers of misfolded proteins. Based on these observations, conformational ensembles of under‐folded proteins can be classified as transient (folding and misfolding intermediates) and permanent (IDPs and stable misfolded proteins). Permanently under‐folded proteins can further be split into intentionally designed (IDPs and IDPRs) and unintentionally designed (misfolded proteins). Although intrinsic flexibility, dynamics, and pliability are crucial for all under‐folded proteins, the different categories of under‐foldedness are differently encoded in protein amino acid sequences. © 2013 Wiley Periodicals, Inc. Biopolymers 99: 870–887, 2013.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine, USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612; Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, 142292, Moscow Region, Russia
| |
Collapse
|
18
|
Sedlák E, Schaefer JV, Marek J, Gimeson P, Plückthun A. Advanced analyses of kinetic stabilities of iggs modified by mutations and glycosylation. Protein Sci 2015; 24:1100-13. [PMID: 25966898 DOI: 10.1002/pro.2691] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 04/11/2015] [Accepted: 04/29/2015] [Indexed: 01/07/2023]
Abstract
The stability of Immunoglobulin G (IgG) affects production, storage and usability, especially in the clinic. The complex thermal and isothermal transitions of IgGs, especially their irreversibilities, pose a challenge to the proper determination of parameters describing their thermodynamic and kinetic stability. Here, we present a reliable mathematical model to study the irreversible thermal denaturations of antibody variants. The model was applied to two unrelated IgGs and their variants with stabilizing mutations as well as corresponding non-glycosylated forms of IgGs and Fab fragments. Thermal denaturations of IgGs were analyzed with three transitions, one reversible transition corresponding to C(H)2 domain unfolding followed by two consecutive irreversible transitions corresponding to Fab and C(H)3 domains, respectively. The parameters obtained allowed us to examine the effects of these mutations on the stabilities of individual domains within the full-length IgG. We found that the kinetic stability of the individual Fab fragment is significantly lowered within the IgG context, possibly because of intramolecular aggregation upon heating, while the stabilizing mutations have an especially beneficial effect. Thermal denaturations of non-glycosylated variants of IgG consist of more than three transitions and could not be analyzed by our model. However, isothermal denaturations demonstrated that the lack of glycosylation affects the stability of all and not just of the C(H)2 domain, suggesting that the partially unfolded domains may interact with each other during unfolding. Investigating thermal denaturation of IgGs according to our model provides a valuable tool for detecting subtle changes in thermodynamic and/or kinetic stabilities of individual domains.
Collapse
Affiliation(s)
- Erik Sedlák
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.,Centre for Interdisciplinary Biosciences, P.J. Šafárik University, Moyzesova 11, Košice, 040 01, Slovakia.,Department of Biochemistry, P.J. Šafárik University, Moyzesova 11, Košice, 040 01, Slovakia
| | - Jonas V Schaefer
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Jozef Marek
- Department of Biophysics, Institute of Experimental Physics, Watsonova 47, Košice, 040 01, Slovakia
| | - Peter Gimeson
- Malvern Instruments Inc., Northampton, Massachusetts, 01060-2327
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| |
Collapse
|
19
|
Hackl EV. Effect of Temperature on the Conformation of Natively Unfolded Protein 4E-BP1 in Aqueous and Mixed Solutions Containing Trifluoroethanol and Hexafluoroisopropanol. Protein J 2014; 34:18-28. [DOI: 10.1007/s10930-014-9595-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Abstract
Superfolder variant of the green fluorescent protein (sfGFP) became a favorite probe for examination of the unfolding–refolding processes of fluorescent proteins with beta-barrel structure owing to its reversible unfolding in comparison with other fluorescent proteins. Its benefit is the proper folding even in fusion constructions with poorly folded polypeptides. We noticed that guanidine thiocyanate affects not only the structure of protein but its chromophore directly. Therefore we studied the influence of ionic denaturants and salts including guanidine thiocyanate, guanidine hydrochloride, sodium chloride and sodium thiocyanate on spectral features of sfGFP. It was shown that moderate amounts of the studied agents do not disrupt sfGFP structure but provoke pronounced alteration of its spectral characteristics. Changes in absorption and CD spectra in visible spectral range indicate the specific binding of SCN− and Cl− anions in the sfGFP chromophore vicinity. The anion binding results in the redistribution of sfGFP molecules with neutral and anionic chromophores. This also hinders the proton transfer in the chromophore excited state, considerably decreasing the fluorescence intensity of sfGFP. Our results indicate that when ionic denaturants are used in the studies of fluorescent protein folding their effect on fluorophore charge state should be taken into account.
Collapse
|
21
|
Fonin AV, Stepanenko OV, Povarova OI, Volova CA, Philippova EM, Bublikov GS, Kuznetsova IM, Demchenko AP, Turoverov KK. Spectral characteristics of the mutant form GGBP/H152C of D-glucose/D-galactose-binding protein labeled with fluorescent dye BADAN: influence of external factors. PeerJ 2014; 2:e275. [PMID: 24711960 PMCID: PMC3970809 DOI: 10.7717/peerj.275] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 01/26/2014] [Indexed: 11/22/2022] Open
Abstract
The mutant form GGBP/H152C of the D-glucose/D-galactose-binding protein with the solvatochromic dye BADAN linked to cysteine residue Cys 152 can be used as a potential base for a sensitive element of glucose biosensor system. We investigated the influence of various external factors on the physical-chemical properties of GGBP/H152C-BADAN and its complex with glucose. The high affinity (Kd = 8.5 µM) and high binding rate of glucose make GGBP/H152C-BADAN a good candidate to determine the sugar content in biological fluids extracted using transdermal techniques. It was shown that changes in the ionic strength and pH of solution within the physiological range did not have a significant influence on the fluorescent characteristics of GGBP/H152C-BADAN. The mutant form GGBP/H152C has relatively low resistance to denaturation action of GdnHCl and urea. This result emphasizes the need to find more stable proteins for the creation of a sensitive element for a glucose biosensor system.
Collapse
Affiliation(s)
- Alexander V Fonin
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Science , St. Petersburg , Russia
| | - Olga V Stepanenko
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Science , St. Petersburg , Russia
| | - Olga I Povarova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Science , St. Petersburg , Russia
| | - Catherine A Volova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Science , St. Petersburg , Russia ; Department of Biology, St. Petersburg State University , St. Petersburg , Russia
| | - Elizaveta M Philippova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Science , St. Petersburg , Russia ; Department of Physical Electronics, St. Petersburg State Polytechnical University , St. Petersburg , Russia
| | - Grigory S Bublikov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Science , St. Petersburg , Russia
| | - Irina M Kuznetsova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Science , St. Petersburg , Russia ; Department of Biophysics, St. Petersburg State Polytechnical University , St. Petersburg , Russia
| | - Alexander P Demchenko
- Laboratory of Nanobiotechnologies, Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine , Kiev , Ukraine
| | - Konstantin K Turoverov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Science , St. Petersburg , Russia ; Department of Biophysics, St. Petersburg State Polytechnical University , St. Petersburg , Russia
| |
Collapse
|
22
|
Bian L, Ji X. Distribution, transition and thermodynamic stability of protein conformations in the denaturant-induced unfolding of proteins. PLoS One 2014; 9:e91129. [PMID: 24603868 PMCID: PMC3948385 DOI: 10.1371/journal.pone.0091129] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 02/09/2014] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Extensive and intensive studies on the unfolding of proteins require appropriate theoretical model and parameter to clearly illustrate the feature and characteristic of the unfolding system. Over the past several decades, four approaches have been proposed to describe the interaction between proteins and denaturants, but some ambiguity and deviations usually occur in the explanation of the experimental data. METHODOLOGY/PRINCIPAL FINDINGS In this work, a theoretical model was presented to show the dependency of the residual activity ratio of the proteins on the molar denaturant concentration. Through the characteristic unfolding parameters ki and Δmi in this model, the distribution, transition and thermodynamic stability of protein conformations during the unfolding process can be quantitatively described. This model was tested with the two-state unfolding of bovine heart cytochrome c and the three-state unfolding of hen egg white lysozyme induced by both guanidine hydrochloride and urea, the four-state unfolding of bovine carbonic anhydrase b induced by guanidine hydrochloride and the unfolding of some other proteins induced by denaturants. The results illustrated that this model could be used accurately to reveal the distribution and transition of protein conformations in the presence of different concentrations of denaturants and to evaluate the unfolding tendency and thermodynamic stability of different conformations. In most denaturant-induced unfolding of proteins, the unfolding became increasingly hard in next transition step and the proteins became more unstable as they attained next successive stable conformation. CONCLUSIONS/SIGNIFICANCE This work presents a useful method for people to study the unfolding of proteins and may be used to describe the unfolding and refolding of other biopolymers induced by denaturants, inducers, etc.
Collapse
Affiliation(s)
- Liujiao Bian
- College of Life Science, Northwest University, Xi’an, Shaanxi, China
- * E-mail:
| | - Xu Ji
- College of Life Science, Northwest University, Xi’an, Shaanxi, China
| |
Collapse
|
23
|
Determination of LMF binding site on a HSA-PPIX complex in the presence of human holo transferrin from the viewpoint of drug loading on proteins. PLoS One 2014; 9:e84045. [PMID: 24392106 PMCID: PMC3879261 DOI: 10.1371/journal.pone.0084045] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 11/18/2013] [Indexed: 12/21/2022] Open
Abstract
Holo transferrin (TF) and the natural complex of human serum albumin and protoporphyrin IX (HSA-PPIX) are two serum carrier proteins that can interact with each other. Such an interaction may alter their binding sites. In this study, fluorescence spectroscopy, as well as zeta potential and molecular modeling techniques, have been used to compare the complexes (HSA-PPIX)-LMF and [(HSA-PPIX)-TF]-LMF. The Ka1, Ka2, values of (HSA-PPIX)-LMF and [(HSA-PPIX)-TF]-LMF were 1.1×10(5) M(-1), 9.7×10(6) M(-1), and 2.0×10(4) M(-1), 1.8×10(5) M(-1), respectively, and the n1, n2 values were respectively 1.19, 1.53 and 1.17, 1.65. The second derivative of the Trp emission scan of (HSA-PPIX)-LMF exhibited one negative band at 310 nm, whereas for the [(HSA-PPIX)-TF]-LMF system, we observed one negative band at 316 nm indicating an increase in polarity around Trp. The effect of TF on the conformation of (HSA-PPIX)-TF was analyzed using three-dimensional fluorescence spectroscopy. The phase diagram indicated that the presence of a second binding site on HSA and TF was due to the existence of intermediate structures. Zeta potential analysis showed that the presence of TF increased the positive charges of the HSA-PPIX system. Site marker experiments revealed that the binding site of LMF to HSA-PPIX changed from Sudlow's site IIA to Sudlow's site IIIB in the presence of TF. Moreover, molecular modeling studies suggested the sub-domain IIIB in HSA as the candidate place for the formation of the binding site of LMF on the (HSA-PPIX)-TF complex.
Collapse
|
24
|
Liu J, Dong Y, Zheng J, He Y, Sheng Q. Investigation on the conformation change of hemoglobin immobilized on MPA-modified electrode by electrochemical method. ANAL SCI 2013; 29:1075-81. [PMID: 24212734 DOI: 10.2116/analsci.29.1075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The conformation change of bovine hemoglobin (Hb) during the unfolding process induced by urea and acid was investigated by an electrochemical method. Hb unfolding induced by urea of different concentrations was realized by bonding Hb onto a 3-mercaptopropionic acid (MPA) modified gold electrode. The difference in unfolding percentage showed that the Hb unfolding induced by urea was a two-step, three-state transition process, while the unfolding induced by acid was a two-state transition process. The results obtained by the electrochemical method coincided closely with those obtained by UV-vis spectroscopy and fluorescence spectroscopy. Some thermodynamic parameters during the conformational change were also calculated to study the intermediate state during the Hb unfolding process. The present work may lead to an easy and effective way to study metalloproteins unfolding, and holds great promise for the design of novel sensitive biosensors.
Collapse
Affiliation(s)
- Jianbo Liu
- Institute of Analytical Science/Shaanxi Provincial Key Laboratory of Electroanalytical Chemistry, Northwest University
| | | | | | | | | |
Collapse
|
25
|
|
26
|
Moghaddam MM, Pirouzi M, Saberi MR, Chamani J. Comparison of the binding behavior of FCCP with HSA and HTF as determined by spectroscopic and molecular modeling techniques. LUMINESCENCE 2013; 29:314-31. [DOI: 10.1002/bio.2546] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Revised: 03/17/2013] [Accepted: 05/06/2013] [Indexed: 11/10/2022]
Affiliation(s)
| | - Malihe Pirouzi
- Department of Biology, Faculty of Sciences, Mashhad Branch; Islamic Azad University; Mashhad Iran
| | - Mohammad Reza Saberi
- Medical Chemistry Department, School of Pharmacy; Mashhad University of Medical Sciences; Mashhad Iran
| | - Jamshidkhan Chamani
- Department of Biology, Faculty of Sciences, Mashhad Branch; Islamic Azad University; Mashhad Iran
| |
Collapse
|
27
|
Wu K, Liu W, Li G. The aggregation behavior of native collagen in dilute solution studied by intrinsic fluorescence and external probing. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2013; 102:186-193. [PMID: 23220534 DOI: 10.1016/j.saa.2012.10.048] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 10/20/2012] [Accepted: 10/22/2012] [Indexed: 06/01/2023]
Abstract
The aggregation behavior of type I collagen in acid solutions with the concentrations covering a range of 0.06-1.50mg/mL was studied utilizing both of the fluorescence resonance energy transfer (FRET) between the phenylalanine and tyrosine residues and the external probing of 1,8-anilinonaphthalene sulfonate (ANS). FRET at 0.30 mg/mL showed the distance among collagen monomers was within 10nm without the obvious aggregates formed. The predominance of tyrosine fluorescence in FRET in the range of 0.45-0.75 mg/mL identified the existence of collagen aggregates companied with the formation of hydrophobic microdomains revealed by the change of the fluorescence of ANS. The blue-shift of tyrosine fluorescence from 303 to 293 nm for 0.90-1.50mg/mL dedicated the formation of high order aggregates. The results from the two-phase diagrams of the intrinsic fluorescence for the guanidine hydrochloride-induced unfolding of collagen confirmed these conclusions. By the two-dimensional correlation analysis for the intrinsic fluorescence of collagen solutions of 0.45, 0.75 and 1.05 mg/mL, the probable characteristic fluorescence peaks for the interactions of proline-aromatic (CH∼π) among the collagen molecules were found at 298 and 316 nm.
Collapse
Affiliation(s)
- Kun Wu
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| | | | | |
Collapse
|
28
|
Chen Z, Chen XJ, Xia M, He HW, Wang S, Liu H, Gong H, Yan YB. Chaperone-like effect of the linker on the isolated C-terminal domain of rabbit muscle creatine kinase. Biophys J 2013; 103:558-566. [PMID: 22947872 DOI: 10.1016/j.bpj.2012.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 07/02/2012] [Accepted: 07/03/2012] [Indexed: 11/25/2022] Open
Abstract
Intramolecular chaperones (IMCs), which are specific domains/segments encoded in the primary structure of proteins, exhibit chaperone-like activity against the aggregation of the other domains in the same molecule. In this research, we found that the truncation of the linker greatly promoted the thermal aggregation of the isolated C-terminal domain (CTD) of rabbit muscle creatine kinase (RMCK). Either the existence of the linker covalently linked to CTD or the supply of the synthetic linker peptide additionally could successfully protect the CTD of RMCK against aggregation in a concentration-dependent manner. Truncated fragments of the linker also behaved as a chaperone-like effect with lower efficiency, revealing the importance of its C-terminal half in the IMC function of the linker. The aggregation sites in the CTD of RMCK were identified by molecular dynamics simulations. Mutational analysis of the three key hydrophobic residues resulted in opposing effects on the thermal aggregation between the CTD with intact or partial linker, confirming the role of linker as a lid to protect the hydrophobic residues against exposure to solvent. These observations suggested that the linkers in multidomain proteins could act as IMCs to facilitate the correct folding of the aggregation-prone domains. Furthermore, the intactness of the IMC linker after proteolysis modulates the production of off-pathway aggregates, which may be important to the onset of some diseases caused by the toxic effects of aggregated proteolytic fragments.
Collapse
Affiliation(s)
- Zhe Chen
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua University, Beijing, China
| | - Xiang-Jun Chen
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua University, Beijing, China; Key Laboratory of Bio-Resources and Eco-Environment of MOE, College of Life Science, Sichuan University, Chengdu, China
| | - Mengdie Xia
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Hua-Wei He
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua University, Beijing, China
| | - Sha Wang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua University, Beijing, China
| | - Huihui Liu
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Haipeng Gong
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yong-Bin Yan
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua University, Beijing, China.
| |
Collapse
|
29
|
Inactivation of recombinant human brain-type creatine kinase during denaturation by guanidine hydrochloride in a macromolecular crowding system. Appl Biochem Biotechnol 2012. [PMID: 23179281 DOI: 10.1007/s12010-012-9972-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In this study, we quantitatively examined the effects of the macromolecular crowding agents, polyethylene glycol 2000 (PEG 2000) and dextran 70, on guanidine hydrochloride (GdnHCl)-induced denaturation of recombinant human brain-type creatine kinase (rHBCK). Our results showed that both PEG 2000 and dextran 70 had a protective effect on the inactivation of rHBCK induced by 0.5 M GdnHCl at 25 °C. The presence of 200 g/L PEG 2000 resulted in the retention of 35.33 % of rHBCK activity after 4 h of inactivation, while no rHBCK activity was observed after denaturation in the absence of macromolecular crowding agents. The presence of PEG 2000 and dextran 70 at a concentration of 100 g/L could decelerate the k (2) value of the slow track to 21 and 33 %, respectively, in comparison to values obtained in the absence of crowding agents. Interestingly, inactivation of rHBCK in the presence of 200 g/L PEG 2000 followed first-order monophasic kinetics, with an apparent rate constant of 8 × 10(-5) s(-1). The intrinsic fluorescence results showed that PEG 2000 was better than dextran 70 at stabilizing rHBCK conformation. In addition, the results of the phase diagram indicate that more intermediates may be captured when rHBCK is denatured in a macromolecular crowding system. Mixed crowding agents did not produce better results than single crowding agents, but the protective effects of PEG 2000 on the inactivation and unfolding of rHBCK tended to increase as the ratio of PEG 2000 increased in the mixed crowding agent solution. Though it is not clear which crowding agents more accurately simulated the intracellular environment, this study could lead to a better understanding of protein unfolding in the intracellular environment.
Collapse
|
30
|
Distinct effects of guanidine thiocyanate on the structure of superfolder GFP. PLoS One 2012; 7:e48809. [PMID: 23144981 PMCID: PMC3492234 DOI: 10.1371/journal.pone.0048809] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 10/05/2012] [Indexed: 11/22/2022] Open
Abstract
Having a high folding efficiency and a low tendency to aggregate, the superfolder GFP (sfGFP) offers a unique opportunity to study the folding of proteins that have a β-barrel topology. Here, we studied the unfolding–refolding of sfGFP that was induced by guanidine thiocyanate (GTC), which is a stronger denaturing agent than GdnHCl or urea. Structural perturbations of sfGFP were studied by spectroscopic methods (absorbance, fluorescence, and circular dichroism), by acrylamide quenching of tryptophan and green chromophore fluorescence, and by size-exclusion chromatography. Low concentrations of GTC (up to 0.1 M) induce subtle changes in the sfGFP structure. The pronounced changes in the visible absorption spectrum of sfGFP which are accompanied by a dramatic decrease in tryptophan and green chromophore fluorescence was recorded in the range 0–0.7 M GNC. These alterations of sfGFP characteristics that erroneously can be mixed up with appearance of intermediate state in fact have pure spectroscopic but not structural nature. Higher concentrations of GTC (from 0.7 to 1.7 M), induce a disruption of the sfGFP structure, that is manifested in simultaneous changes of all of the detected parameters. Full recovery of native properties of denaturated sfGFP was observed after denaturant removal. The refolding of sfGFP passes through the accumulation of the off-pathway intermediate state, in which inner alpha-helix and hence green chromophore and Trp57 are still not tuned up to (properly integrated into) the already formed β-barrel scaffold of protein. Incorporation of the chromophore in the β-barrel in the pathway of refolding and restoration of its ability to fluoresce occur in a narrow range of GTC concentrations from 1.0 to 0.7 M, and a correct insertion of Trp 57 occurs at concentrations ranging from 0.7 to 0 M GTC. These two processes determine the hysteresis of protein unfolding and refolding.
Collapse
|
31
|
Li C, Zhang Q, Hu WJ, Mu H, Lin Z, Ma L, Park YD, Zhou HM. Effect of SNPs on creatine kinase structure and function: identifying potential molecular mechanisms for possible creatine kinase deficiency diseases. PLoS One 2012; 7:e45949. [PMID: 23049898 PMCID: PMC3457962 DOI: 10.1371/journal.pone.0045949] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 08/23/2012] [Indexed: 02/02/2023] Open
Abstract
Single-nucleotide polymorphisms (SNPs) are common genetic material changes that often occur naturally. SNPs can cause amino acid replacements that may lead to severe diseases, such as the well-known sickle-cell anemia. We constructed eight SNP mutants of human brain-type creatine kinase (CKB) based on bioinformatics predictions. The biochemical and biophysical characteristics of these SNP mutants were determined and compared to those of the wild-type creatine kinase to explore the potential molecular mechanisms of possible creatine kinase SNP-induced diseases. While the reactivation of six SNP mutants after heat shock dropped more than 45%, only three of them showed notable increases in ANS fluorescence intensity and decreases in catalytic efficiency. Among them, H26Y and P36T bind substrates as well as the wild-type form does, but the melting temperatures (Tm) dropped below body temperature, while the T59I mutant exhibited decreased catalytic activity that was most likely due to the much reduced binding affinity of this mutant for substrates. These findings indicate that SNPs such as H26Y, P36T and T59I have the potential to induce genetic diseases by different mechanisms.
Collapse
Affiliation(s)
- Chang Li
- Protein Science Laboratory of the Ministry of Education, School of Life Sciences, Tsinghua University, Beijing, P.R. China
| | - Qian Zhang
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing, P.R. China
| | - Wei-Jiang Hu
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, P.R. China
| | - Hang Mu
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, P.R. China
| | - Zong Lin
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, P.R. China
| | - Long Ma
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing, P.R. China
| | - Yong-Doo Park
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, P.R. China
| | - Hai-Meng Zhou
- Protein Science Laboratory of the Ministry of Education, School of Life Sciences, Tsinghua University, Beijing, P.R. China
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, P.R. China
- Bejing Key Laboratory of Protein Therapeutics, School of Life Sciences, Tsinghua University, Beijing, P.R. China
- * E-mail:
| |
Collapse
|
32
|
Singh VK, Rahman MN, Munro K, Uversky VN, Smith SP, Jia Z. Free cysteine modulates the conformation of human C/EBP homologous protein. PLoS One 2012; 7:e34680. [PMID: 22496840 PMCID: PMC3319616 DOI: 10.1371/journal.pone.0034680] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 03/08/2012] [Indexed: 01/01/2023] Open
Abstract
The C/EBP Homologous Protein (CHOP) is a nuclear protein that is integral to the unfolded protein response culminating from endoplasmic reticulum stress. Previously, CHOP was shown to comprise extensive disordered regions and to self-associate in solution. In the current study, the intrinsically disordered nature of this protein was characterized further by comprehensive in silico analyses. Using circular dichroism, differential scanning calorimetry and nuclear magnetic resonance, we investigated the global conformation and secondary structure of CHOP and demonstrated, for the first time, that conformational changes in this protein can be induced by the free amino acid L-cysteine. Addition of L-cysteine caused a significant dose-dependent decrease in the protein helicity--dropping from 69.1% to 23.8% in the presence of 1 mM of L-cysteine--and a sequential transition to a more disordered state, unlike that caused by thermal denaturation. Furthermore, the presence of small amounts of free amino acid (80 µM, an 8:1 cysteine∶CHOP ratio) during CHOP thermal denaturation altered the molecular mechanism of its melting process, leading to a complex, multi-step transition. On the other hand, high levels (4 mM) of free L-cysteine seemed to cause a complete loss of rigid cooperatively melting structure. These results suggested a potential regulatory function of L-cysteine which may lead to changes in global conformation of CHOP in response to the cellular redox state and/or endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Vinay K. Singh
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Mona N. Rahman
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Kim Munro
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Vladimir N. Uversky
- Department of Molecular Medicine, University of South Florida, Tampa, Florida, United States of America
- Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Steven P. Smith
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Zongchao Jia
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
- * E-mail:
| |
Collapse
|
33
|
Zhang Y, Xu Y, Zhao Q, Ji Z, Deng H, Li SJ. The structural characteristics of human preprotein translocase of the inner mitochondrial membrane Tim23: Implications for its physiological activities. Protein Expr Purif 2012; 82:255-62. [DOI: 10.1016/j.pep.2012.01.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 01/06/2012] [Accepted: 01/09/2012] [Indexed: 11/26/2022]
|
34
|
Muzaffar M, Ahmad A. The mechanism of enhanced insulin amyloid fibril formation by NaCl is better explained by a conformational change model. PLoS One 2011; 6:e27906. [PMID: 22132167 PMCID: PMC3221682 DOI: 10.1371/journal.pone.0027906] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 10/27/2011] [Indexed: 01/05/2023] Open
Abstract
The high propensity of insulin to fibrillate causes severe biomedical and biotechnological complications. Insulin fibrillation studies attain significant importance considering the prevalence of diabetes and the requirement of functional insulin in each dose. Although studied since the early years of the 20(th) century, elucidation of the mechanism of insulin fibrillation has not been understood completely. We have previously, through several studies, shown that insulin hexamer dissociates into monomer that undergoes partial unfolding before converting into mature fibrils. In this study we have established that NaCl enhances insulin fibrillation mainly due to subtle structural changes and is not a mere salt effect. We have carried out studies both in the presence and absence of urea and Gdn.HCl and compared the relationship between conformation of insulin induced by urea and Gdn.HCl with respect to NaCl at both pH 7.4 (hexamer) and pH 2 (monomer). Fibril formation was followed with a Thioflavin T assay and structural changes were monitored by circular dichroism and size-exclusion chromatography. The results show salt-insulin interactions are difficult to classify as commonly accepted Debye-Hückel or Hofmeister series interactions but instead a strong correlation between the association states and conformational states of insulin and their propensity to fibrillate is evident.
Collapse
Affiliation(s)
- Mahvish Muzaffar
- Department of Biological Chemistry and Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | | |
Collapse
|
35
|
Yang J, Zhang T, Lu C, Bian L. Distribution and Transition of Native and Completely Unfolded Conformations in the Unfolding of Bovine Heart Cytochrome c Induced by Urea and Guanidine Hydrochloride. CHINESE J CHEM 2011. [DOI: 10.1002/cjoc.201180337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
36
|
Dissimilarity in the folding of human cytosolic creatine kinase isoenzymes. PLoS One 2011; 6:e24681. [PMID: 21931810 PMCID: PMC3170377 DOI: 10.1371/journal.pone.0024681] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 08/15/2011] [Indexed: 12/02/2022] Open
Abstract
Creatine kinase (CK, EC 2.7.3.2) plays a key role in the energy homeostasis of excitable cells. The cytosolic human CK isoenzymes exist as homodimers (HMCK and HBCK) or a heterodimer (MBCK) formed by the muscle CK subunit (M) and/or brain CK subunit (B) with highly conserved three-dimensional structures composed of a small N-terminal domain (NTD) and a large C-terminal domain (CTD). The isoforms of CK provide a novel system to investigate the sequence/structural determinants of multimeric/multidomain protein folding. In this research, the role of NTD and CTD as well as the domain interactions in CK folding was investigated by comparing the equilibrium and kinetic folding parameters of HMCK, HBCK, MBCK and two domain-swapped chimeric forms (BnMc and MnBc). Spectroscopic results indicated that the five proteins had distinct structural features depending on the domain organizations. MBCK BnMc had the smallest CD signals and the lowest stability against guanidine chloride-induced denaturation. During the biphasic kinetic refolding, three proteins (HMCK, BnMc and MnBc), which contained either the NTD or CTD of the M subunit and similar microenvironments of the Trp fluorophores, refolded about 10-fold faster than HBCK for both the fast and slow phase. The fast folding of these three proteins led to an accumulation of the aggregation-prone intermediate and slowed down the reactivation rate thereby during the kinetic refolding. Our results suggested that the intra- and inter-subunit domain interactions modified the behavior of kinetic refolding. The alternation of domain interactions based on isoenzymes also provides a valuable strategy to improve the properties of multidomain enzymes in biotechnology.
Collapse
|
37
|
Stepanenko OV, Fonin AV, Stepanenko OV, Morozova KS, Verkhusha VV, Kuznetsova IM, Turoverov KK, Staiano M, D’Auria S. New Insight in Protein–Ligand Interactions. 2. Stability and Properties of Two Mutant Forms of the d-Galactose/d-Glucose-Binding Protein from E. coli. J Phys Chem B 2011; 115:9022-32. [DOI: 10.1021/jp204555h] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Olga V. Stepanenko
- Laboratory of Protein structure, stability and folding of proteins, Institute of Cytology RAS, 194064 St. Petersburg, Russia
| | - Alexander V. Fonin
- Laboratory of Protein structure, stability and folding of proteins, Institute of Cytology RAS, 194064 St. Petersburg, Russia
| | - Olesya V. Stepanenko
- Laboratory of Protein structure, stability and folding of proteins, Institute of Cytology RAS, 194064 St. Petersburg, Russia
| | - Kateryna S. Morozova
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York, United States
| | - Vladislav V. Verkhusha
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York, United States
| | - Irina M. Kuznetsova
- Laboratory of Protein structure, stability and folding of proteins, Institute of Cytology RAS, 194064 St. Petersburg, Russia
| | - Konstantin K. Turoverov
- Laboratory of Protein structure, stability and folding of proteins, Institute of Cytology RAS, 194064 St. Petersburg, Russia
| | - Maria Staiano
- Laboratory for Molecular Sensing, IBP-CNR, 111 80131 Naples, Italy
| | - Sabato D’Auria
- Laboratory for Molecular Sensing, IBP-CNR, 111 80131 Naples, Italy
| |
Collapse
|
38
|
Bian L, Zhang T, Yang X, Liu L, Zheng X. Unfolding of Bovine Heart Cytochrome c Induced by Urea and Guanidine Hydrochloride. CHINESE J CHEM 2011. [DOI: 10.1002/cjoc.201190163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
39
|
Stepanenko OV, Stepanenko OV, Povarova OI, Fonin AV, Kuznetsova IM, Turoverov KK, Staiano M, Varriale A, D’Auria S. New Insight into Protein−Ligand Interactions. The Case of the d-Galactose/d-Glucose-Binding Protein from Escherichia coli. J Phys Chem B 2011; 115:2765-73. [DOI: 10.1021/jp1095486] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Olga V. Stepanenko
- Institute of Cytology, Russian Academy of Science, 194064 St. Petersburg, Russia
| | - Olesya V. Stepanenko
- Institute of Cytology, Russian Academy of Science, 194064 St. Petersburg, Russia
| | - Olga I. Povarova
- Institute of Cytology, Russian Academy of Science, 194064 St. Petersburg, Russia
| | - Alexander V. Fonin
- Institute of Cytology, Russian Academy of Science, 194064 St. Petersburg, Russia
| | - Irina M. Kuznetsova
- Institute of Cytology, Russian Academy of Science, 194064 St. Petersburg, Russia
| | | | - Maria Staiano
- CNR, Laboratory for Molecular Sensing, IBP, Naples, Italy
- University of Siena, Siena, Italy
| | | | - Sabato D’Auria
- CNR, Laboratory for Molecular Sensing, IBP, Naples, Italy
| |
Collapse
|
40
|
Povarova OI, Kuznetsova IM, Turoverov KK. Differences in the pathways of proteins unfolding induced by urea and guanidine hydrochloride: molten globule state and aggregates. PLoS One 2010; 5:e15035. [PMID: 21152408 PMCID: PMC2994796 DOI: 10.1371/journal.pone.0015035] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 10/11/2010] [Indexed: 11/25/2022] Open
Abstract
It was shown that at low concentrations guanidine hydrochloride (GdnHCl) can cause aggregation of proteins in partially folded state and that fluorescent dye 1-anilinonaphthalene-8-sulfonic acid (ANS) binds with these aggregates rather than with hydrophobic clusters on the surface of protein in molten globule state. That is why the increase in ANS fluorescence intensity is often recorded in the pathway of protein denaturation by GdnHCl, but not by urea. So what was previously believed to be the molten globule state in the pathway of protein denaturation by GdnHCl, in reality, for some proteins represents the aggregates of partially folded molecules.
Collapse
Affiliation(s)
- Olga I. Povarova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Science, St. Petersburg, Russia
| | - Irina M. Kuznetsova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Science, St. Petersburg, Russia
| | - Konstantin K. Turoverov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Science, St. Petersburg, Russia
- * E-mail:
| |
Collapse
|
41
|
Duan Y, Li N, Liu C, Liu H, Cui Y, Wang H, Hong F. Interaction between nanoparticulate anatase TiO2 and lactate dehydrogenase. Biol Trace Elem Res 2010; 136:302-13. [PMID: 19841870 DOI: 10.1007/s12011-009-8548-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2009] [Accepted: 10/09/2009] [Indexed: 10/20/2022]
Abstract
In order to study the mechanisms underlying the effects of TiO(2) nanoparticles on lactate dehydrogenase (LDH, EC1.1.1.27), Institute of Cancer Research region mice were injected with nanoparticulate anatase TiO(2) (5 nm) of various doses into the abdominal cavity daily for 14 days. We then examined LDH activity in vivo and in vitro and direct evident for interaction between nanoparticulate anatase TiO(2) and LDH using spectral methods. The results showed that nanoparticulate anatase TiO(2) could significantly activate LDH in vivo and in vitro; the kinetics constant (Km) and Vmax were 0.006 microM and 1,149 unit mg(-1) protein min(-1), respectively, at a low concentration of nanoparticulate anatase TiO(2), and 3.45 and 0.031 microM and 221 unit mg(-1) protein min(-1), respectively, at a high concentration of nanoparticulate anatase TiO(2). By fluorescence spectral assays, the nanoparticulate anatase TiO(2) was determined to be directly bound to LDH, and the binding constants of the binding site were 1.77 x 10(8) L mol(-1) and 2.15 x 10(7) L mol(-1), respectively, and the binding distance between nanoparticulate anatase TiO(2) and the Trp residue of LDH was 4.18 nm, and nanoparticulate anatase TiO(2) induced the protein unfolding. It was concluded that the binding of nanoparticulate anatase TiO(2) altered LDH structure and function.
Collapse
Affiliation(s)
- Yanmei Duan
- Medical College of Soochow University, Suzhou, 215123, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
42
|
Pang M, Su JT, Feng S, Tang ZW, Gu F, Zhang M, Ma X, Yan YB. Effects of congenital cataract mutation R116H on αA-crystallin structure, function and stability. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:948-56. [PMID: 20079887 DOI: 10.1016/j.bbapap.2010.01.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Revised: 12/11/2009] [Accepted: 01/07/2010] [Indexed: 10/20/2022]
|
43
|
Jiao M, Zhou YL, Li HT, Zhang DL, Chen J, Liang Y. Structural and functional alterations of two multidomain oxidoreductases induced by guanidine hydrochloride. Acta Biochim Biophys Sin (Shanghai) 2010; 42:30-8. [PMID: 20043044 DOI: 10.1093/abbs/gmp107] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The unfolding and refolding of two multidomain oxidoreductases, bovine liver catalase and flavoprotein bovine milk xanthine oxidase (XO), have been analyzed by fluorescence spectroscopy, circular dichroism, and activity measurements. Two intermediates, a partially folded active dimer disassembled from the native tetramer and a partially folded inactivated monomer, are found to exist in the conformational changes of catalase induced by guanidine hydrochloride (GdnHCl). Similarly, two intermediates, an active, compacted intermediate bound by flavin adenine dinucleotide (FAD) partially and an inactive flexible intermediate with FAD completely dissociated, exist in the conformational changes of XO induced by GdnHCl. The activity regains completely and an enhancement in activity compared with the native catalase or native XO is observed by dilution of catalase or XO incubated with GdnHCl at concentrations not >0.5 or 1.8 M into the refolding buffer, but the yield of reactivation for catalase or XO is zero when the concentration of GdnHCl is >1.5 or 3.0 M. The addition of FAD provides a remarkable protection against the inactivation of XO by GdnHCl under mild denaturing conditions, and the conformational change of XO is irreversible after FAD has been removed in the presence of a strong denaturing agent. These findings provide impetus for exploring the influences of cofactors such as FAD on the structure-function relationship of xanthine oxidoreductases.
Collapse
Affiliation(s)
- Ming Jiao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | | | | | | | | | | |
Collapse
|
44
|
Liu YM, Feng S, Ding XL, Kang CF, Yan YB. Mutation of the conserved Asp122 in the linker impedes creatine kinase reactivation and refolding. Int J Biol Macromol 2009; 44:271-7. [PMID: 19263506 DOI: 10.1016/j.ijbiomac.2008.12.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Creatine kinase (CK), a key enzyme in maintaining the intracellular energetic homeostasis, contains two domains connected by a long linker. In this research,we found that the mutations of the conserved Asp122 in the linker slightly affected CK activity, structure and stability. The hydrogen bonding and the ion pair contributed 2-5 kJ/mol to the conformational stability of CK. Interestingly, the ability of CK reactivation from the denatured state was completely removed by the mutations. These results suggested that the electrostatic interactions were crucial to the action of the linker in CK reactivation.
Collapse
Affiliation(s)
- Yan-Ming Liu
- Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing, China
| | | | | | | | | |
Collapse
|
45
|
Fluorescence properties and conformational stability of the hemocyanin from Chinese mitten crab Eriocheir japonica sinensis (Decapoda, Grapsidae). J Mol Struct 2009. [DOI: 10.1016/j.molstruc.2008.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
46
|
Stepanenko OV, Verkhusha VV, Shavlovsky MM, Kuznetsova IM, Uversky VN, Turoverov KK. Understanding the role of Arg96 in structure and stability of green fluorescent protein. Proteins 2008; 73:539-51. [PMID: 18470931 DOI: 10.1002/prot.22089] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Arg96 is a highly conservative residue known to catalyze spontaneous green fluorescent protein (GFP) chromophore biosynthesis. To understand a role of Arg96 in conformational stability and structural behavior of EGFP, the properties of a series of the EGFP mutants bearing substitutions at this position were studied using circular dichroism, steady state fluorescence spectroscopy, fluorescence lifetime, kinetics and equilibrium unfolding analysis, and acrylamide-induced fluorescence quenching. During the protein production and purification, high yield was achieved for EGFP/Arg96Cys variant, whereas EGFP/Arg96Ser and EGFP/Arg96Ala were characterized by essentially lower yields and no protein was produced when Arg96 was substituted by Gly. We have also shown that only EGFP/Arg96Cys possessed relatively fast chromophore maturation, whereas it took EGFP/Arg96Ser and EGFP/Arg96Ala about a year to develop a noticeable green fluorescence. The intensity of the characteristic green fluorescence measured for the EGFP/Arg96Cys and EGFP/Arg96Ser (or EGFP/Arg96Ala) was 5- and 50-times lower than that of the nonmodified EGFP. Intriguingly, EGFP/Arg96Cys was shown to be more stable than EGFP toward the GdmCl-induced unfolding both in kinetics and in the quasi-equilibrium experiments. In comparison with EGFP, tryptophan residues of EGFP/Arg96Cys were more accessible to the solvent. These data taken together suggest that besides established earlier crucial catalytic role, Arg96 is important for the overall folding and conformational stability of GFP.
Collapse
Affiliation(s)
- Olesya V Stepanenko
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia
| | | | | | | | | | | |
Collapse
|
47
|
The conserved Cys254 plays a crucial role in creatine kinase refolding under non-reduced conditions but not in its activity or stability. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1784:2071-8. [DOI: 10.1016/j.bbapap.2008.08.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Revised: 08/19/2008] [Accepted: 08/20/2008] [Indexed: 11/22/2022]
|
48
|
Ge M, Mao YJ, Pan XM. Refolding of the hyperthermophilic protein Ssh10b involves a kinetic dimeric intermediate. Extremophiles 2008; 13:131-7. [PMID: 19002648 DOI: 10.1007/s00792-008-0204-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Accepted: 10/13/2008] [Indexed: 11/29/2022]
Abstract
The alpha/beta-mixed dimeric protein Ssh10b from the hyperthermophile Sulfolobus shibatae is a member of the Sac10b family that is thought to be involved in chromosomal organization or DNA repair/recombination. The equilibrium unfolding/refolding of Ssh10b induced by denaturants and heat was fully reversible, suggesting that Ssh10b could serve as a good model for folding/unfolding studies of protein dimers. Here, we investigate the folding/unfolding kinetics of Ssh10b in detail by stopped-flow circular dichroism (SF-CD) and using GdnHCl as denaturant. In unfolding reactions, the native Ssh10b turned rapidly into fully unfolded monomers within the stopped-flow dead time with no detectable kinetic intermediate, agreeing well with the results of equilibrium unfolding experiments. In refolding reactions, two unfolded monomers associate in the burst phase to form a dimeric intermediate that undergoes a further, slower, first-order folding process to form the native dimer. Our results demonstrate that the dimerization is essential for maintaining the native tertiary interactions of the protein Ssh10b. In addition, folding mechanisms of Ssh10b and several other alpha/beta-mixed or pure beta-sheet proteins are compared.
Collapse
Affiliation(s)
- Meng Ge
- The Key Laboratory of Bioinformatics, Ministry of Education, Department of Biological Sciences and Biotechnology, Tsinghua University, 100084 Beijing, China
| | | | | |
Collapse
|
49
|
Shaw GS, Marlatt NM, Ferguson PL, Barber KR, Bottomley SP. Identification of a dimeric intermediate in the unfolding pathway for the calcium-binding protein S100B. J Mol Biol 2008; 382:1075-88. [PMID: 18706914 DOI: 10.1016/j.jmb.2008.07.083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 06/30/2008] [Accepted: 07/31/2008] [Indexed: 11/18/2022]
Abstract
The S100 proteins comprise 25 calcium-signalling members of the EF-hand protein family. Unlike typical EF-hand signalling proteins such as calmodulin and troponin-C, the S100 proteins are dimeric, forming both homo- and heterodimers in vivo. One member of this family, S100B, is a homodimeric protein shown to control the assembly of several cytoskeletal proteins and regulate phosphorylation events in a calcium-sensitive manner. Calcium binding to S100B causes a conformational change involving movement of helix III in the second calcium-binding site (EF2) that exposes a hydrophobic surface enabling interactions with other proteins such as tubulin and Ndr kinase. In several S100 proteins, calcium binding also stabilizes dimerization compared to the calcium-free states. In this work, we have examined the guanidine hydrochloride (GuHCl)-induced unfolding of dimeric calcium-free S100B. A series of tryptophan substitutions near the dimer interface and the EF2 calcium-binding site were studied by fluorescence spectroscopy and showed biphasic unfolding curves. The presence of a plateau near 1.5 M GuHCl showed the presence of an intermediate that had a greater exposed hydrophobic surface area compared to the native dimer based on increased 4,4-dianilino-1,1'-binaphthyl-5,5'-disulfonic acid fluorescence. Furthermore, (1)H-(15)N heteronuclear single quantum coherence analyses as a function of GuHCl showed significant chemical shift changes in regions near the EF1 calcium-binding loop and between the linker and C-terminus of helix IV. Together these observations show that calcium-free S100B unfolds via a dimeric intermediate.
Collapse
Affiliation(s)
- Gary S Shaw
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada N6A 5C1.
| | | | | | | | | |
Collapse
|
50
|
Fukunaga Y, Nishimoto E, Otosu T, Murakami Y, Yamashita S. The Unfolding of -Momorcharin Proceeds Through the Compact Folded Intermediate. J Biochem 2008; 144:457-66. [DOI: 10.1093/jb/mvn088] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|