1
|
Ameen S, Zaman U, AlSalem HS, Alhawiti AS, Alanazi AN, Zghab I, Alissa M, Alghamdi SA, Naz R, Rehman KU. Isolation and biochemical characterization of novel acid phosphatase and zinc-dependent acid phosphatase from the chicken's brain. Int J Biol Macromol 2024; 266:131339. [PMID: 38574925 DOI: 10.1016/j.ijbiomac.2024.131339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/18/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
The AcPase exhibits a specific activity of 31.32 U/mg of protein with a 728-fold purification, and the yield of the enzyme is raised to 3.15 %. The Zn2+-dependent AcPase showed a purification factor of 1.34 specific activity of 14 U/mg of proteins and a total recovery of 5.14. The SDS-PAGE showed a single band corresponding to a molecular weight of 18 kDa of AcPase and 29 kDa of Zn2+-dependent AcPase. The AcPase enzyme has shown a wide range of substrate specificity for p-NPP, phenyl phosphate and FMN, while in the case of ZnAcPase α and β-Naphthyl phosphate and p-NPP were proved to be superior substrates. The divalent metal ions like Mg2+, Mn2+, and Ca2+ increased the activity, while other substrates decreased the enzyme activity. The Km (0.14 mM) and Vmax (21 μmol/min/mg) values of AcPase were higher than those of Zn2+-AcPase (Km = 0.5 mM; Vmax = 9.7 μmol/min/mg). The Zn2+ ions activate the Zn2+-AcPase while Fe3+, Al3+, Pb2+, and Hg2+ showed inhibition on enzyme activity. Molybdate, vanadate and phosphate were found to be competitive inhibitors of AcPase with Ki values 316 μM, 185 μM, and 1.6 mM, while in Zn2+-AcPase tartrate and phosphate also showed competitive inhibition with Ki values 3 mM and 0.5 mM respectively.
Collapse
Affiliation(s)
- Shazia Ameen
- Institute of Chemical Sciences, Gomal University, Dera Ismail Khan 29050, KPK, Pakistan
| | - Umber Zaman
- Institute of Chemical Sciences, Gomal University, Dera Ismail Khan 29050, KPK, Pakistan
| | - Huda Salem AlSalem
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Aliyah S Alhawiti
- Department of chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Amal N Alanazi
- Department of Chemistry, Khafji University College, University of Hafr Al Batin, Saudi Arabia
| | - Imen Zghab
- Department of Physical Sciences, Chemistry Division, College of Science, Jazan University, P.O. Box. 114, Jazan 45142, Kingdom of Saudi Arabia
| | - Mohammed Alissa
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Suad A Alghamdi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Rubina Naz
- Institute of Chemical Sciences, Gomal University, Dera Ismail Khan 29050, KPK, Pakistan
| | - Khalil Ur Rehman
- Institute of Chemical Sciences, Gomal University, Dera Ismail Khan 29050, KPK, Pakistan.
| |
Collapse
|
2
|
He R, Wang J, Yu ZH, Moyers JS, Michael MD, Durham TB, Cramer JW, Qian Y, Lin A, Wu L, Noinaj N, Barrett DG, Zhang ZY. Structure-Based Design of Active-Site-Directed, Highly Potent, Selective, and Orally Bioavailable Low-Molecular-Weight Protein Tyrosine Phosphatase Inhibitors. J Med Chem 2022; 65:13892-13909. [PMID: 36197449 PMCID: PMC10128051 DOI: 10.1021/acs.jmedchem.2c01143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein tyrosine phosphatases constitute an important class of drug targets whose potential has been limited by the paucity of drug-like small-molecule inhibitors. We recently described a class of active-site-directed, moderately selective, and potent inhibitors of the low-molecular-weight protein tyrosine phosphatase (LMW-PTP). Here, we report our extensive structure-based design and optimization effort that afforded inhibitors with vastly improved potency and specificity. The leading compound inhibits LMW-PTP potently and selectively (Ki = 1.2 nM, >8000-fold selectivity). Many compounds exhibit favorable drug-like properties, such as low molecular weight, weak cytochrome P450 inhibition, high metabolic stability, moderate to high cell permeability (Papp > 0.2 nm/s), and moderate to good oral bioavailability (% F from 23 to 50% in mice), and therefore can be used as in vivo chemical probes to further dissect the complex biological as well as pathophysiological roles of LMW-PTP and for the development of therapeutics targeting LMW-PTP.
Collapse
Affiliation(s)
- Rongjun He
- Lilly Research Laboratories, Eli Lilly and Company, 307 E Merrill Street, Indianapolis, Indiana 46225, United States.,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, Indiana 46202, United States
| | - Jifeng Wang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, Indiana 46202, United States
| | - Zhi-Hong Yu
- Department of Medicinal Chemistry and Molecular Pharmacology and Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, Indiana 47907, United States
| | - Julie S Moyers
- Lilly Research Laboratories, Eli Lilly and Company, 307 E Merrill Street, Indianapolis, Indiana 46225, United States
| | - M Dodson Michael
- Lilly Research Laboratories, Eli Lilly and Company, 307 E Merrill Street, Indianapolis, Indiana 46225, United States
| | - Timothy B Durham
- Lilly Research Laboratories, Eli Lilly and Company, 307 E Merrill Street, Indianapolis, Indiana 46225, United States
| | - Jeff W Cramer
- Lilly Research Laboratories, Eli Lilly and Company, 307 E Merrill Street, Indianapolis, Indiana 46225, United States
| | - Yuewei Qian
- Lilly Research Laboratories, Eli Lilly and Company, 307 E Merrill Street, Indianapolis, Indiana 46225, United States
| | - Amy Lin
- Lilly Research Laboratories, Eli Lilly and Company, 307 E Merrill Street, Indianapolis, Indiana 46225, United States
| | - Li Wu
- Department of Medicinal Chemistry and Molecular Pharmacology and Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, Indiana 47907, United States
| | - Nicholas Noinaj
- Department of Biological Sciences, Purdue University, 240 S. Martin Jischke Drive, West Lafayette, Indiana 47907, United States
| | - David G Barrett
- Lilly Research Laboratories, Eli Lilly and Company, 307 E Merrill Street, Indianapolis, Indiana 46225, United States
| | - Zhong-Yin Zhang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, Indiana 46202, United States.,Department of Medicinal Chemistry and Molecular Pharmacology and Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
3
|
Rosen MR, Leuthaeuser JB, Parish CA, Fetrow JS. Isofunctional Clustering and Conformational Analysis of the Arsenate Reductase Superfamily Reveals Nine Distinct Clusters. Biochemistry 2020; 59:4262-4284. [PMID: 33135415 DOI: 10.1021/acs.biochem.0c00651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Arsenate reductase (ArsC) is a superfamily of enzymes that reduce arsenate. Due to active site similarities, some ArsC can function as low-molecular weight protein tyrosine phosphatases (LMW-PTPs). Broad superfamily classifications align with redox partners (Trx- or Grx-linked). To understand this superfamily's mechanistic diversity, the ArsC superfamily is classified on the basis of active site features utilizing the tools TuLIP (two-level iterative clustering process) and autoMISST (automated multilevel iterative sequence searching technique). This approach identified nine functionally relevant (perhaps isofunctional) protein groups. Five groups exhibit distinct ArsC mechanisms. Three are Grx-linked: group 4AA (classical ArsC), group 3AAA (YffB-like), and group 5BAA. Two are Trx-linked: groups 6AAAAA and 7AAAAAAAA. One is an Spx-like transcriptional regulatory group, group 5AAA. Three are potential LMW-PTP groups: groups 7BAAAA, and 7AAAABAA, which have not been previously identified, and the well-studied LMW-PTP family group 8AAA. Molecular dynamics simulations were utilized to explore functional site details. In several families, we confirm and add detail to literature-based mechanistic information. Mechanistic roles are hypothesized for conserved active site residues in several families. In three families, simulations of the unliganded structure sample specific conformational ensembles, which are proposed to represent either a more ligand-binding-competent conformation or a pathway toward a more binding-competent state; these active sites may be designed to traverse high-energy barriers to the lower-energy conformations necessary to more readily bind ligands. This more detailed biochemical understanding of ArsC and ArsC-like PTP mechanisms opens possibilities for further understanding of arsenate bioremediation and the LMW-PTP mechanism.
Collapse
Affiliation(s)
- Mikaela R Rosen
- Department of Chemistry, Gottwald Center for the Sciences, University of Richmond, Richmond, Virginia 23713, United States
| | - Janelle B Leuthaeuser
- Department of Chemistry, Gottwald Center for the Sciences, University of Richmond, Richmond, Virginia 23713, United States
| | - Carol A Parish
- Department of Chemistry, Gottwald Center for the Sciences, University of Richmond, Richmond, Virginia 23713, United States
| | - Jacquelyn S Fetrow
- Department of Chemistry, Gottwald Center for the Sciences, University of Richmond, Richmond, Virginia 23713, United States
| |
Collapse
|
4
|
Alkoxide ligand controlled self-assembling of (imido)vanadium(V) compounds having a tetrahedral VO 3N geometry. J Inorg Biochem 2019; 203:110880. [PMID: 31726333 DOI: 10.1016/j.jinorgbio.2019.110880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/01/2019] [Accepted: 10/03/2019] [Indexed: 11/21/2022]
Abstract
The reaction of (1S,2S)-(-)-1,2-diphenylethylenediamine with VO(OiPr)3 in the presence of NaH was found to afford the binuclear (imido)vanadium(V) triisopropoxide, [(OiPr)3V(N-meso-1,2-DPE-N)V(OiPr)3] (DPE = diphenylethylene), (1aRS/SS). Using (1R,2R)-(+)-1,2-diphenylethylenediamine as a starting material, one-step reaction also proceeded to form the binuclear (imido)vanadium(V) triisopropoxide, [(OiPr)3V(N-meso-1,2-DPE-N)V(OiPr)3], (1aRS/RR). The single-crystal X-ray structure determination of 1aRS/SS revealed the hydrogen-bonded self-assembled structure utilizing the advantage of anti-conformation through the intermolecular hydrogen bonds of C-H···O pattern between phenyl and isopropoxide moieties, wherein each vanadium atom is coordinated in a nearly tetrahedral VO3N geometry (τ4 = 0.017 and 0.057). On the contrary, a discrete (imido)vanadium(V) tris(triphenylsiloxide) unit, which possesses a nearly tetrahedral VO3N arrangement around the vanadium metal center (τ4 = 0.060), was observed in the crystal structure of the (4-methoxyphenylimido)vanadium(V) tris(triphenylsiloxide), [(p-MeOC6H4N)V(OSiPh3)3], (1b) with bulky triphenylsiloxide ligands.
Collapse
|
5
|
Rodriguez-Iglesias A, Schmoll M. Protein phosphatases regulate growth, development, cellulases and secondary metabolism in Trichoderma reesei. Sci Rep 2019; 9:10995. [PMID: 31358805 PMCID: PMC6662751 DOI: 10.1038/s41598-019-47421-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 07/03/2019] [Indexed: 12/15/2022] Open
Abstract
Trichoderma reesei represents one of the most prolific producers of plant cell wall degrading enzymes. Recent research showed broad regulation by phosphorylation in T. reesei, including important transcription factors involved in cellulase regulation. To evaluate factors crucial for changes in these phosphorylation events, we studied non-essential protein phosphatases (PPs) of T. reesei. Viable deletion strains were tested for growth on different carbon sources, osmotic and oxidative stress response, asexual and sexual development, cellulase and protease production as well as secondary metabolism. Six PPs were found to be positive or negative regulators for cellulase production. A correlation of the effects of PPs on protease activities and cellulase activities was not detected. Hierarchical clustering of regulation patterns and phenotypes of deletion indicated functional specialization within PP classes and common as well as variable effects. Our results confirmed the central role of catalytic and regulatory subunits of PP2A which regulates several aspects of cell growth and metabolism. Moreover we show that the additional homologue of PPH5 in Trichoderma spp., PPH5-2 assumes distinct functions in metabolism, development and stress response, different from PPH5. The influence of PPs on both cellulase gene expression and secondary metabolite production support an interrelationship in the underlying regulation mechanisms.
Collapse
Affiliation(s)
- Aroa Rodriguez-Iglesias
- Austrian Institute of Technology GmbH, Health & Environment, Bioresources, Konrad-Lorenz-Straße 24, 3430, Tulln, Austria
| | - Monika Schmoll
- Austrian Institute of Technology GmbH, Health & Environment, Bioresources, Konrad-Lorenz-Straße 24, 3430, Tulln, Austria.
| |
Collapse
|
6
|
Low-molecular-weight protein tyrosine phosphatase expression as a prognostic factor for men with metastatic hormone-naïve prostate cancer. Urol Oncol 2017. [DOI: 10.1016/j.urolonc.2017.05.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Stanford SM, Aleshin AE, Zhang V, Ardecky RJ, Hedrick MP, Zou J, Ganji SR, Bliss MR, Yamamoto F, Bobkov AA, Kiselar J, Liu Y, Cadwell GW, Khare S, Yu J, Barquilla A, Chung TDY, Mustelin T, Schenk S, Bankston LA, Liddington RC, Pinkerton AB, Bottini N. Diabetes reversal by inhibition of the low-molecular-weight tyrosine phosphatase. Nat Chem Biol 2017; 13:624-632. [PMID: 28346406 PMCID: PMC5435566 DOI: 10.1038/nchembio.2344] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 01/06/2017] [Indexed: 11/09/2022]
Abstract
Obesity-associated insulin resistance plays a central role in type 2 diabetes. As such, tyrosine phosphatases that dephosphorylate the insulin receptor (IR) are potential therapeutic targets. The low-molecular-weight protein tyrosine phosphatase (LMPTP) is a proposed IR phosphatase, yet its role in insulin signaling in vivo has not been defined. Here we show that global and liver-specific LMPTP deletion protects mice from high-fat diet-induced diabetes without affecting body weight. To examine the role of the catalytic activity of LMPTP, we developed a small-molecule inhibitor with a novel uncompetitive mechanism, a unique binding site at the opening of the catalytic pocket, and an exquisite selectivity over other phosphatases. This inhibitor is orally bioavailable, and it increases liver IR phosphorylation in vivo and reverses high-fat diet-induced diabetes. Our findings suggest that LMPTP is a key promoter of insulin resistance and that LMPTP inhibitors would be beneficial for treating type 2 diabetes.
Collapse
Affiliation(s)
- Stephanie M Stanford
- Division of Cellular Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA.,Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Alexander E Aleshin
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Vida Zhang
- Division of Cellular Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA.,Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Robert J Ardecky
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Michael P Hedrick
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Jiwen Zou
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Santhi R Ganji
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Matthew R Bliss
- Division of Cellular Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Fusayo Yamamoto
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Andrey A Bobkov
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Janna Kiselar
- Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Yingge Liu
- Institute for Genetic Medicine, University of Southern California, Los Angeles, California, USA
| | - Gregory W Cadwell
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Shilpi Khare
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Jinghua Yu
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Antonio Barquilla
- Division of Cellular Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Thomas D Y Chung
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Tomas Mustelin
- Department of Respiratory, Inflammation and Autoimmunity, MedImmune LLC, Gaithersburg, Maryland, USA
| | - Simon Schenk
- Department of Orthopaedic Surgery and Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| | - Laurie A Bankston
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Robert C Liddington
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Anthony B Pinkerton
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Nunzio Bottini
- Division of Cellular Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA.,Department of Medicine, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
8
|
Schmoll M, Dattenböck C, Carreras-Villaseñor N, Mendoza-Mendoza A, Tisch D, Alemán MI, Baker SE, Brown C, Cervantes-Badillo MG, Cetz-Chel J, Cristobal-Mondragon GR, Delaye L, Esquivel-Naranjo EU, Frischmann A, Gallardo-Negrete JDJ, García-Esquivel M, Gomez-Rodriguez EY, Greenwood DR, Hernández-Oñate M, Kruszewska JS, Lawry R, Mora-Montes HM, Muñoz-Centeno T, Nieto-Jacobo MF, Nogueira Lopez G, Olmedo-Monfil V, Osorio-Concepcion M, Piłsyk S, Pomraning KR, Rodriguez-Iglesias A, Rosales-Saavedra MT, Sánchez-Arreguín JA, Seidl-Seiboth V, Stewart A, Uresti-Rivera EE, Wang CL, Wang TF, Zeilinger S, Casas-Flores S, Herrera-Estrella A. The Genomes of Three Uneven Siblings: Footprints of the Lifestyles of Three Trichoderma Species. Microbiol Mol Biol Rev 2016; 80:205-327. [PMID: 26864432 PMCID: PMC4771370 DOI: 10.1128/mmbr.00040-15] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The genus Trichoderma contains fungi with high relevance for humans, with applications in enzyme production for plant cell wall degradation and use in biocontrol. Here, we provide a broad, comprehensive overview of the genomic content of these species for "hot topic" research aspects, including CAZymes, transport, transcription factors, and development, along with a detailed analysis and annotation of less-studied topics, such as signal transduction, genome integrity, chromatin, photobiology, or lipid, sulfur, and nitrogen metabolism in T. reesei, T. atroviride, and T. virens, and we open up new perspectives to those topics discussed previously. In total, we covered more than 2,000 of the predicted 9,000 to 11,000 genes of each Trichoderma species discussed, which is >20% of the respective gene content. Additionally, we considered available transcriptome data for the annotated genes. Highlights of our analyses include overall carbohydrate cleavage preferences due to the different genomic contents and regulation of the respective genes. We found light regulation of many sulfur metabolic genes. Additionally, a new Golgi 1,2-mannosidase likely involved in N-linked glycosylation was detected, as were indications for the ability of Trichoderma spp. to generate hybrid galactose-containing N-linked glycans. The genomic inventory of effector proteins revealed numerous compounds unique to Trichoderma, and these warrant further investigation. We found interesting expansions in the Trichoderma genus in several signaling pathways, such as G-protein-coupled receptors, RAS GTPases, and casein kinases. A particularly interesting feature absolutely unique to T. atroviride is the duplication of the alternative sulfur amino acid synthesis pathway.
Collapse
Affiliation(s)
- Monika Schmoll
- Austrian Institute of Technology, Department Health and Environment, Bioresources Unit, Tulln, Austria
| | - Christoph Dattenböck
- Austrian Institute of Technology, Department Health and Environment, Bioresources Unit, Tulln, Austria
| | | | | | - Doris Tisch
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria
| | - Mario Ivan Alemán
- Cinvestav, Department of Genetic Engineering, Irapuato, Guanajuato, Mexico
| | - Scott E Baker
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Christopher Brown
- University of Otago, Department of Biochemistry and Genetics, Dunedin, New Zealand
| | | | - José Cetz-Chel
- LANGEBIO, National Laboratory of Genomics for Biodiversity, Cinvestav-Irapuato, Guanajuato, Mexico
| | | | - Luis Delaye
- Cinvestav, Department of Genetic Engineering, Irapuato, Guanajuato, Mexico
| | | | - Alexa Frischmann
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria
| | | | - Monica García-Esquivel
- LANGEBIO, National Laboratory of Genomics for Biodiversity, Cinvestav-Irapuato, Guanajuato, Mexico
| | | | - David R Greenwood
- The University of Auckland, School of Biological Sciences, Auckland, New Zealand
| | - Miguel Hernández-Oñate
- LANGEBIO, National Laboratory of Genomics for Biodiversity, Cinvestav-Irapuato, Guanajuato, Mexico
| | - Joanna S Kruszewska
- Polish Academy of Sciences, Institute of Biochemistry and Biophysics, Laboratory of Fungal Glycobiology, Warsaw, Poland
| | - Robert Lawry
- Lincoln University, Bio-Protection Research Centre, Lincoln, Canterbury, New Zealand
| | | | | | | | | | | | | | - Sebastian Piłsyk
- Polish Academy of Sciences, Institute of Biochemistry and Biophysics, Laboratory of Fungal Glycobiology, Warsaw, Poland
| | - Kyle R Pomraning
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Aroa Rodriguez-Iglesias
- Austrian Institute of Technology, Department Health and Environment, Bioresources Unit, Tulln, Austria
| | | | | | - Verena Seidl-Seiboth
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria
| | | | | | - Chih-Li Wang
- National Chung-Hsing University, Department of Plant Pathology, Taichung, Taiwan
| | - Ting-Fang Wang
- Academia Sinica, Institute of Molecular Biology, Taipei, Taiwan
| | - Susanne Zeilinger
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria University of Innsbruck, Institute of Microbiology, Innsbruck, Austria
| | | | - Alfredo Herrera-Estrella
- LANGEBIO, National Laboratory of Genomics for Biodiversity, Cinvestav-Irapuato, Guanajuato, Mexico
| |
Collapse
|
9
|
Alonso A, Pulido R. The extended human PTPome: a growing tyrosine phosphatase family. FEBS J 2015; 283:1404-29. [PMID: 26573778 DOI: 10.1111/febs.13600] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 10/02/2015] [Accepted: 11/13/2015] [Indexed: 12/13/2022]
Abstract
Tyr phosphatases are, by definition, enzymes that dephosphorylate phospho-Tyr (pTyr) from proteins. This activity is found in several structurally diverse protein families, including the protein Tyr phosphatase (PTP), arsenate reductase, rhodanese, haloacid dehalogenase (HAD) and His phosphatase (HP) families. Most of these families include members with substrate specificity for non-pTyr substrates, such as phospho-Ser/phospho-Thr, phosphoinositides, phosphorylated carbohydrates, mRNAs, or inorganic moieties. A Cys is essential for catalysis in PTPs, rhodanese and arsenate reductase enzymes, whereas this work is performed by an Asp in HAD phosphatases and by a His in HPs, via a catalytic mechanism shared by all of the different families. The category that contains most Tyr phosphatases is the PTP family, which, although it received its name from this activity, includes Ser, Thr, inositide, carbohydrate and RNA phosphatases, as well as some inactive pseudophosphatase proteins. Here, we propose an extended collection of human Tyr phosphatases, which we call the extended human PTPome. The addition of new members (SACs, paladin, INPP4s, TMEM55s, SSU72, and acid phosphatases) to the currently categorized PTP group of enzymes means that the extended human PTPome contains up to 125 proteins, of which ~ 40 are selective for pTyr. We set criteria to ascribe proteins to the extended PTPome, and summarize the more important features of the new PTPome members in the context of their phosphatase activity and their relationship with human disease.
Collapse
Affiliation(s)
- Andrés Alonso
- Instituto de Biología y Genética Molecular (IBGM), CSIC-Universidad de Valladolid, Valladolid, Spain
| | - Rafael Pulido
- Biocruces Health Research Institute, Barakaldo, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
10
|
McLauchlan CC, Peters BJ, Willsky GR, Crans DC. Vanadium–phosphatase complexes: Phosphatase inhibitors favor the trigonal bipyramidal transition state geometries. Coord Chem Rev 2015. [DOI: 10.1016/j.ccr.2014.12.012] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
11
|
Fonseca EMB, Trivella DBB, Scorsato V, Dias MP, Bazzo NL, Mandapati KR, de Oliveira FL, Ferreira-Halder CV, Pilli RA, Miranda PCML, Aparicio R. Crystal structures of the apo form and a complex of human LMW-PTP with a phosphonic acid provide new evidence of a secondary site potentially related to the anchorage of natural substrates. Bioorg Med Chem 2015; 23:4462-4471. [PMID: 26117648 DOI: 10.1016/j.bmc.2015.06.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 05/29/2015] [Accepted: 06/05/2015] [Indexed: 12/22/2022]
Abstract
Low molecular weight protein tyrosine phosphatases (LMW-PTP, EC 3.1.3.48) are a family of single-domain enzymes with molecular weight up to 18 kDa, expressed in different tissues and considered attractive pharmacological targets for cancer chemotherapy. Despite this, few LMW-PTP inhibitors have been described to date, and the structural information on LMW-PTP druggable binding sites is scarce. In this study, a small series of phosphonic acids were designed based on a new crystallographic structure of LMW-PTP complexed with benzylsulfonic acid, determined at 2.1Å. In silico docking was used as a tool to interpret the structural and enzyme kinetics data, as well as to design new analogs. From the synthesized series, two compounds were found to act as competitive inhibitors, with inhibition constants of 0.124 and 0.047 mM. We also report the 2.4Å structure of another complex in which LMW-PTP is bound to benzylphosphonic acid, and a structure of apo LMW-PTP determined at 2.3Å resolution. Although no appreciable conformation changes were observed, in the latter structures, amino acid residues from an expression tag were found bound to a hydrophobic region at the protein surface. This regions is neighbored by positively charged residues, adjacent to the active site pocket, suggesting that this region might be not a mere artefact of crystal contacts but an indication of a possible anchoring region for the natural substrate-which is a phosphorylated protein.
Collapse
Affiliation(s)
- Emanuella M B Fonseca
- Laboratory of Structural Biology and Crystallography, Institute of Chemistry, University of Campinas, CP 6154, 13083-970, Campinas, SP, Brazil
| | - Daniela B B Trivella
- Laboratory of Structural Biology and Crystallography, Institute of Chemistry, University of Campinas, CP 6154, 13083-970, Campinas, SP, Brazil; Department of Organic Chemistry, Institute of Chemistry, University of Campinas, CP 6154, CEP 13083-970, Campinas, SP, Brazil
| | - Valéria Scorsato
- Laboratory of Structural Biology and Crystallography, Institute of Chemistry, University of Campinas, CP 6154, 13083-970, Campinas, SP, Brazil
| | - Mariana P Dias
- Laboratory of Structural Biology and Crystallography, Institute of Chemistry, University of Campinas, CP 6154, 13083-970, Campinas, SP, Brazil
| | - Natália L Bazzo
- Laboratory of Structural Biology and Crystallography, Institute of Chemistry, University of Campinas, CP 6154, 13083-970, Campinas, SP, Brazil
| | - Kishore R Mandapati
- Laboratory of Structural Biology and Crystallography, Institute of Chemistry, University of Campinas, CP 6154, 13083-970, Campinas, SP, Brazil; Department of Organic Chemistry, Institute of Chemistry, University of Campinas, CP 6154, CEP 13083-970, Campinas, SP, Brazil
| | - Fábio L de Oliveira
- Laboratory of Structural Biology and Crystallography, Institute of Chemistry, University of Campinas, CP 6154, 13083-970, Campinas, SP, Brazil
| | - Carmen V Ferreira-Halder
- Department of Biochemistry, Institute of Biology, University of Campinas, CEP 13083-862, Campinas, SP, Brazil
| | - Ronaldo A Pilli
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas, CP 6154, CEP 13083-970, Campinas, SP, Brazil
| | - Paulo C M L Miranda
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas, CP 6154, CEP 13083-970, Campinas, SP, Brazil
| | - Ricardo Aparicio
- Laboratory of Structural Biology and Crystallography, Institute of Chemistry, University of Campinas, CP 6154, 13083-970, Campinas, SP, Brazil.
| |
Collapse
|
12
|
Kant S, Agarwal S, Pancholi P, Pancholi V. TheStreptococcus pyogenesorphan protein tyrosine phosphatase, SP-PTP, possesses dual specificity and essential virulence regulatory functions. Mol Microbiol 2015; 97:515-40. [DOI: 10.1111/mmi.13047] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2015] [Indexed: 01/06/2023]
Affiliation(s)
- Sashi Kant
- Department of Pathology; The Ohio State University College of Medicine; Wexner Medical Center; Columbus OH USA
| | - Shivani Agarwal
- Department of Pathology; The Ohio State University College of Medicine; Wexner Medical Center; Columbus OH USA
| | - Preeti Pancholi
- Department of Pathology; The Ohio State University College of Medicine; Wexner Medical Center; Columbus OH USA
| | - Vijay Pancholi
- Department of Pathology; The Ohio State University College of Medicine; Wexner Medical Center; Columbus OH USA
| |
Collapse
|
13
|
Hobiger K, Friedrich T. Voltage sensitive phosphatases: emerging kinship to protein tyrosine phosphatases from structure-function research. Front Pharmacol 2015; 6:20. [PMID: 25713537 PMCID: PMC4322731 DOI: 10.3389/fphar.2015.00020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 01/21/2015] [Indexed: 02/03/2023] Open
Abstract
The transmembrane protein Ci-VSP from the ascidian Ciona intestinalis was described as first member of a fascinating family of enzymes, the voltage sensitive phosphatases (VSPs). Ci-VSP and its voltage-activated homologs from other species are stimulated by positive membrane potentials and dephosphorylate the head groups of negatively charged phosphoinositide phosphates (PIPs). In doing so, VSPs act as control centers at the cytosolic membrane surface, because they intervene in signaling cascades that are mediated by PIP lipids. The characteristic motif CX5RT/S in the active site classifies VSPs as members of the huge family of cysteine-based protein tyrosine phosphatases (PTPs). Although PTPs have already been well-characterized regarding both, structure and function, their relationship to VSPs has drawn only limited attention so far. Therefore, the intention of this review is to give a short overview about the extensive knowledge about PTPs in relation to the facts known about VSPs. Here, we concentrate on the structural features of the catalytic domain which are similar between both classes of phosphatases and their consequences for the enzymatic function. By discussing results obtained from crystal structures, molecular dynamics simulations, and mutagenesis studies, a possible mechanism for the catalytic cycle of VSPs is presented based on that one proposed for PTPs. In this way, we want to link the knowledge about the catalytic activity of VSPs and PTPs.
Collapse
Affiliation(s)
- Kirstin Hobiger
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps-Universität Marburg Marburg, Germany
| | - Thomas Friedrich
- Max-Volmer-Laboratory of Biophysical Chemistry, Institute of Chemistry, Technische Universität Berlin Berlin, Germany
| |
Collapse
|
14
|
Linford AS, Jiang NM, Edwards TE, Sherman NE, Van Voorhis WC, Stewart LJ, Myler PJ, Staker BL, Petri WA. Crystal structure and putative substrate identification for the Entamoeba histolytica low molecular weight tyrosine phosphatase. Mol Biochem Parasitol 2014; 193:33-44. [PMID: 24548880 DOI: 10.1016/j.molbiopara.2014.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Revised: 01/12/2014] [Accepted: 01/22/2014] [Indexed: 11/28/2022]
Abstract
Entamoeba histolytica is a eukaryotic intestinal parasite of humans, and is endemic in developing countries. We have characterized the E. histolytica putative low molecular weight protein tyrosine phosphatase (LMW-PTP). The structure for this amebic tyrosine phosphatase was solved, showing the ligand-induced conformational changes necessary for binding of substrate. In amebae, it was expressed at low but detectable levels as detected by immunoprecipitation followed by immunoblotting. A mutant LMW-PTP protein in which the catalytic cysteine in the active site was replaced with a serine lacked phosphatase activity, and was used to identify a number of trapped putative substrate proteins via mass spectrometry analysis. Seven of these putative substrate protein genes were cloned with an epitope tag and overexpressed in amebae. Five of these seven putative substrate proteins were demonstrated to interact specifically with the mutant LMW-PTP. This is the first biochemical study of a small tyrosine phosphatase in Entamoeba, and sets the stage for understanding its role in amebic biology and pathogenesis.
Collapse
Affiliation(s)
- Alicia S Linford
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, VA 22908, USA.
| | - Nona M Jiang
- Division of Infectious Diseases and International Health, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - Thomas E Edwards
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), USA; Emerald Bio, Bainbridge Island, WA 98110, USA
| | - Nicholas E Sherman
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA
| | - Wesley C Van Voorhis
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), USA; Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Lance J Stewart
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), USA; Emerald Bio, Bainbridge Island, WA 98110, USA
| | - Peter J Myler
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), USA; Seattle Biomedical Research Institute, Seattle, WA 98109, USA; Departments of Global Health and Medical Education & Biomedical Informatics, University of Washington, Seattle, WA 98195, USA
| | - Bart L Staker
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), USA; Emerald Bio, Bainbridge Island, WA 98110, USA
| | - William A Petri
- Division of Infectious Diseases and International Health, University of Virginia Health System, Charlottesville, VA 22908, USA; Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA; Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
15
|
Pandey S, Shrivastava AK, Rai R, Rai LC. Molecular characterization of Alr1105 a novel arsenate reductase of the diazotrophic cyanobacterium Anabaena sp. PCC7120 and decoding its role in abiotic stress management in Escherichia coli. PLANT MOLECULAR BIOLOGY 2013; 83:417-432. [PMID: 23836391 DOI: 10.1007/s11103-013-0100-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 06/22/2013] [Indexed: 06/02/2023]
Abstract
This paper constitutes the first report on the Alr1105 of Anabaena sp. PCC7120 which functions as arsenate reductase and phosphatase and offers tolerance against oxidative and other abiotic stresses in the alr1105 transformed Escherichia coli. The bonafide of 40.8 kDa recombinant GST+Alr1105 fusion protein was confirmed by immunoblotting. The purified Alr1105 protein (mw 14.8 kDa) possessed strong arsenate reductase (Km 16.0 ± 1.2 mM and Vmax 5.6 ± 0.31 μmol min⁻¹ mg protein⁻¹) and phosphatase activity (Km 27.38 ± 3.1 mM and Vmax 0.077 ± 0.005 μmol min⁻¹ mg protein⁻¹) at an optimum temperature 37 °C and 6.5 pH. Native Alr1105 was found as a monomeric protein in contrast to its homologous Synechocystis ArsC protein. Expression of Alr1105 enhanced the arsenic tolerance in the arsenate reductase mutant E. coli WC3110 (∆arsC) and rendered better growth than the wild type W3110 up to 40 mM As (V). Notwithstanding above, the recombinant E. coli strain when exposed to CdCl₂, ZnSO₄, NiCl₂, CoCl₂, CuCl₂, heat, UV-B and carbofuron showed increase in growth over the wild type and mutant E. coli transformed with the empty vector. Furthermore, an enhanced growth of the recombinant E. coli in the presence of oxidative stress producing chemicals (MV, PMS and H₂O₂), suggested its protective role against these stresses. Appreciable expression of alr1105 gene as measured by qRT-PCR at different time points under selected stresses reconfirmed its role in stress tolerance. Thus the Alr1105 of Anabaena sp. PCC7120 functions as an arsenate reductase and possess novel properties different from the arsenate reductases known so far.
Collapse
Affiliation(s)
- Sarita Pandey
- Molecular Biology Section, Laboratory of Algal Biology, Center of Advanced Study in Botany, Banaras Hindu University, Varanasi, 221005, India
| | | | | | | |
Collapse
|
16
|
Tan H, Wan S, Liu PQ, Wang L, Zhang CC, Chen WL. Alr5068, a Low-Molecular-Weight protein tyrosine phosphatase, is involved in formation of the heterocysts polysaccharide layer in the cyanobacterium Anabaena sp. PCC 7120. Res Microbiol 2013; 164:875-85. [PMID: 23827083 DOI: 10.1016/j.resmic.2013.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 05/14/2013] [Indexed: 11/25/2022]
Abstract
The filamentous cyanobacterium Anabaena sp. PCC 7120 forms nitrogen-fixing heterocysts after deprivation of combined nitrogen. Under such conditions, vegetative cells provide heterocysts with photosynthate and receive fixed nitrogen from the latter. Heterocyst envelope contains a glycolipid layer and a polysaccharide layer to restrict the diffusion of oxygen into heterocysts. Low-Molecular-Weight protein tyrosine phosphatases (LMW-PTPs) are involved in the biosynthesis of exopolysaccharides in bacteria. Alr5068, a protein from Anabaena sp. PCC 7120, shows significant sequence similarity with LMW-PTPs. In this study we characterized the enzymatic properties of Alr5068 and showed that it can dephosphorylate several autophosphorylated tyrosine kinases (Alr2856, Alr3059 and All4432) of Anabaena sp. PCC 7120 in vitro. Several conserved residues among LMW-PTPs are shown to be essential for the phosphatase activity of Alr5068. Overexpression of alr5068 results in a strain unable to survive under diazotrophic conditions, with the formation of morphologically mature heterocysts detached from the filaments. Overexpression of an alr5068 allele that lost phosphatase activity led to the formation of heterocyst with an impaired polysaccharide layer. The alr5068 gene was upregulated after nitrogen step-down and its mutation affected the expression of hepA and hepC, two genes necessary for the formation of the heterocyst envelope polysaccharide (HEP) layer. Our results suggest that Alr5068 is associated with the production of HEP in Anabaena sp. PCC 7120.
Collapse
Affiliation(s)
- Hui Tan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070 Wuhan, China.
| | | | | | | | | | | |
Collapse
|
17
|
Kuznetsov VI, Hengge AC, Johnson SJ. New aspects of the phosphatase VHZ revealed by a high-resolution structure with vanadate and substrate screening. Biochemistry 2012; 51:9869-79. [PMID: 23145819 DOI: 10.1021/bi300908y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The recently discovered 150-residue human VHZ (VH1-related protein, Z member) is one of the smallest protein tyrosine phosphatases (PTPs) known and contains only the minimal structural elements common to all PTPs. We report a substrate screening analysis and a crystal structure of the VHZ complex with vanadate at 1.1 Å resolution, with a detailed structural comparison with other members of the protein tyrosine phosphatase family, including classical tyrosine-specific protein tyrosine phosphatases (PTPs) and dual-specificity phosphatases (DSPs). A screen with 360 phosphorylated peptides shows VHZ efficiently catalyzes the hydrolysis of phosphotyrosine (pY)-containing peptides but exhibits no activity toward phosphoserine (pS) or phosphothreonine (pT) peptides. The new structure reveals a deep and narrow active site more typical of the classical tyrosine-specific PTPs. Despite the high degrees of structural and sequence similarity between VHZ and classical PTPs, its general acid IPD-loop is most likely conformationally rigid, in contrast to the flexible WPD counterpart of classical PTPs. VHZ also lacks substrate recognition domains and other domains typically found on classical PTPs. It is therefore proposed that VHZ is more properly classified as an atypical PTP rather than an atypical DSP, as has been suggested.
Collapse
Affiliation(s)
- Vyacheslav I Kuznetsov
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322-0300, USA
| | | | | |
Collapse
|
18
|
Nath S, Banerjee R, Khamrui S, Sen U. Cloning, purification, crystallization and preliminary X-ray analysis of two low-molecular-weight protein tyrosine phosphatases from Vibrio cholerae. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:1204-8. [PMID: 23027748 PMCID: PMC3497980 DOI: 10.1107/s174430911203518x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 08/08/2012] [Indexed: 11/10/2022]
Abstract
Low-molecular-weight protein tyrosine phosphatases (LMWPTPs) are small cytoplasmic enzymes of molecular weight ∼18 kDa that belong to the large family of protein tyrosine phosphatases (PTPs). Despite their wide distribution in both prokaryotes and eukaryotes, their exact biological role in bacterial systems is not yet clear. Two low-molecular-weight protein tyrosine phosphatases (VcLMWPTP-1 and VcLMWPTP-2) from the Gram-negative bacterium Vibrio cholerae have been cloned, overexpressed, purified by Ni(2+)-NTA affinity chromatography followed by gel filtration and used for crystallization. Crystals of VcLMWPTP-1 were grown in the presence of ammonium sulfate and glycerol and diffracted to a resolution of 1.6 Å. VcLMWPTP-2 crystals were grown in PEG 4000 and diffracted to a resolution of 2.7 Å. Analysis of the diffraction data showed that the VcLMWPTP-1 crystals had symmetry consistent with space group P3(1) and that the VcLMWPTP-2 crystals had the symmetry of space group C2. Assuming the presence of four molecules in the asymmetric unit, the Matthews coefficient for the VcLMWPTP-1 crystals was estimated to be 1.97 Å(3) Da(-1), corresponding to a solvent content of 37.4%. The corresponding values for the VcLMWPTP-2 crystals, assuming the presence of two molecules in the asymmetric unit, were 2.77 Å(3) Da(-1) and 55.62%, respectively.
Collapse
Affiliation(s)
- Seema Nath
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700 064, India
| | - Ramanuj Banerjee
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700 064, India
| | - Susmita Khamrui
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700 064, India
| | - Udayaditya Sen
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700 064, India
| |
Collapse
|
19
|
Hoekstra E, Peppelenbosch MP, Fuhler GM. The role of protein tyrosine phosphatases in colorectal cancer. Biochim Biophys Acta Rev Cancer 2012; 1826:179-88. [PMID: 22521639 DOI: 10.1016/j.bbcan.2012.04.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 04/03/2012] [Accepted: 04/04/2012] [Indexed: 01/17/2023]
Abstract
Colorectal cancer is one of the most common oncogenic diseases in the Western world. Several cancer associated cellular pathways have been identified, in which protein phosphorylation and dephosphorylation, especially on tyrosine residues, are one of most abundant regulatory mechanisms. The balance between these processes is under tight control by protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs). Aberrant activity of oncogenic PTKs is present in a large portion of human cancers. Because of the counteracting role of PTPs on phosphorylation-based activation of signal pathways, it has long been thought that PTPs must act as tumor suppressors. This dogma is now being challenged, with recent evidence showing that dephosphorylation events induced by some PTPs may actually stimulate tumor formation. As such, PTPs might form a novel attractive target for anticancer therapy. In this review, we summarize the action of different PTPs, the consequences of their altered expression in colorectal cancer, and their potential as target for the treatment of this deadly disease.
Collapse
Affiliation(s)
- Elmer Hoekstra
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | | | | |
Collapse
|
20
|
Villadangos AF, Van Belle K, Wahni K, Dufe VT, Freitas S, Nur H, De Galan S, Gil JA, Collet JF, Mateos LM, Messens J. Corynebacterium glutamicum survives arsenic stress with arsenate reductases coupled to two distinct redox mechanisms. Mol Microbiol 2011; 82:998-1014. [PMID: 22032722 DOI: 10.1111/j.1365-2958.2011.07882.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Arsenate reductases (ArsCs) evolved independently as a defence mechanism against toxic arsenate. In the genome of Corynebacterium glutamicum, there are two arsenic resistance operons (ars1 and ars2) and four potential genes coding for arsenate reductases (Cg_ArsC1, Cg_ArsC2, Cg_ArsC1' and Cg_ArsC4). Using knockout mutants, in vitro reconstitution of redox pathways, arsenic measurements and enzyme kinetics, we show that a single organism has two different classes of arsenate reductases. Cg_ArsC1 and Cg_ArsC2 are single-cysteine monomeric enzymes coupled to the mycothiol/mycoredoxin redox pathway using a mycothiol transferase mechanism. In contrast, Cg_ArsC1' is a three-cysteine containing homodimer that uses a reduction mechanism linked to the thioredoxin pathway with a k(cat)/K(M) value which is 10(3) times higher than the one of Cg_ArsC1 or Cg_ArsC2. Cg_ArsC1' is constitutively expressed at low levels using its own promoter site. It reduces arsenate to arsenite that can then induce the expression of Cg_ArsC1 and Cg_ArsC2. We also solved the X-ray structures of Cg_ArsC1' and Cg_ArsC2. Both enzymes have a typical low-molecular-weight protein tyrosine phosphatases-I fold with a conserved oxyanion binding site. Moreover, Cg_ArsC1' is unique in bearing an N-terminal three-helical bundle that interacts with the active site of the other chain in the dimeric interface.
Collapse
|
21
|
Maccari R, Ottanà R. Low molecular weight phosphotyrosine protein phosphatases as emerging targets for the design of novel therapeutic agents. J Med Chem 2011; 55:2-22. [PMID: 21988196 DOI: 10.1021/jm200607g] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Rosanna Maccari
- Dipartimento Farmaco-Chimico, Faculty of Pharmacy, University of Messina, Polo Universitario dell'Annunziata, 98168 Messina, Italy.
| | | |
Collapse
|
22
|
Global transcriptome analysis of the E. coli O157 response to Agrimonia pilosa extract. Mol Cell Toxicol 2011. [DOI: 10.1007/s13273-011-0036-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
23
|
Crystal structure of Ssu72, an essential eukaryotic phosphatase specific for the C-terminal domain of RNA polymerase II, in complex with a transition state analogue. Biochem J 2011; 434:435-44. [DOI: 10.1042/bj20101471] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Reversible phosphorylation of the CTD (C-terminal domain) of the eukaryotic RNA polymerase II largest subunit represents a critical regulatory mechanism during the transcription cycle and mRNA processing. Ssu72 is an essential phosphatase conserved in eukaryotes that dephosphorylates phosphorylated Ser5 of the CTD heptapeptide. Its function is implicated in transcription initiation, elongation and termination, as well as RNA processing. In the present paper we report the high resolution X-ray crystal structures of Drosophila melanogaster Ssu72 phosphatase in the apo form and in complex with an inhibitor mimicking the transition state of phosphoryl transfer. Ssu72 facilitates dephosphorylation of the substrate through a phosphoryl-enzyme intermediate, as visualized in the complex structure of Ssu72 with the oxo-anion compound inhibitor vanadate at a 2.35 Å (1 Å=0.1 nm) resolution. The structure resembles the transition state of the phosphoryl transfer with vanadate exhibiting a trigonal bi-pyramidal geometry covalently bonded to the nucleophilic cysteine residue. Interestingly, the incorporation of oxo-anion compounds greatly stabilizes a flexible loop containing the general acid, as detected by an increase of melting temperature of Ssu72 detected by differential scanning fluorimetry. The Ssu72 structure exhibits a core fold with a similar topology to that of LMWPTPs [low-molecular-mass PTPs (protein tyrosine phosphatases)], but with an insertion of a unique ‘cap’ domain to shelter the active site from the solvent with a deep groove in between where the CTD substrates bind. Mutagenesis studies in this groove established the functional roles of five residues (Met17, Pro46, Asp51, Tyr77 and Met85) that are essential specifically for substrate recognition.
Collapse
|
24
|
Zambuzzi WF, Milani R, Teti A. Expanding the role of Src and protein-tyrosine phosphatases balance in modulating osteoblast metabolism: lessons from mice. Biochimie 2010; 92:327-32. [PMID: 20083150 DOI: 10.1016/j.biochi.2010.01.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Accepted: 01/06/2010] [Indexed: 10/20/2022]
Abstract
The widespread nature of protein phosphorylation/dephosphorylation underscores its key role in cell signaling metabolism, growth and differentiation. Tyrosine phosphorylation of cytoplasmic proteins is a critical event in the regulation of intracellular signaling pathways activated by external stimuli. An adequate balance in protein phosphorylation is a major factor in the regulation of osteoclast and osteoblast activities involved in bone metabolism. However, although phosphorylation is widely recognized as an important regulatory pathway in skeletal development and maintenance, the mechanisms involved are not fully understood. Among the putative protein-tyrosine kinases (ptk) and protein-tyrosine phosphatases (ptp) involved in this phenomenon there is increasing evidence that Src and low molecular weight-ptps play a central role in a range of osteoblast activities, from adhesion to differentiation. A role for Src in bone metabolism was first demonstrated in Src-deficient mice and has since been confirmed using low molecular weight Src inhibitors in animal models of osteoporosis. Several studies have shown that Src is important for cellular proliferation, adhesion and motility. In contrast, few studies have assessed the importance of the ptk/ptp balance in driving osteoblast metabolism. In this review, we summarize our current knowledge of the functional importance of the ptk/ptp balance in osteoblast metabolism, and highlight directions for future research that should improve our understanding of these critical signaling molecules.
Collapse
Affiliation(s)
- Willian F Zambuzzi
- Department of Biochemistry, University of Campinas, Campinas, SP, Brazil.
| | | | | |
Collapse
|
25
|
Huang H, Hagelueken G, Whitfield C, Naismith JH. Crystallization and preliminary crystallographic analysis of the bacterial capsule assembly-regulating tyrosine phosphatases Wzb of Escherichia coli and Cps4B of Streptococcus pneumoniae. Acta Crystallogr Sect F Struct Biol Cryst Commun 2009; 65:770-2. [PMID: 19652335 PMCID: PMC2720329 DOI: 10.1107/s1744309109023914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Accepted: 06/22/2009] [Indexed: 11/18/2022]
Abstract
Bacterial tyrosine kinases and their cognate phosphatases are key players in the regulation of capsule assembly and thus are important virulence determinants of these bacteria. Examples of the kinase/phosphatase pairing are found in Gram-negative bacteria such as Escherichia coli (Wzc and Wzb) and in Gram-positive bacteria such as Streptococcus pneumoniae (CpsCD and CpsB). Although Wzb and Cps4B are both predicted to dephosphorylate the C-terminal tyrosine cluster of their cognate tyrosine kinase, they appear on the basis of protein sequence to belong to quite different enzyme classes. Recombinant purified proteins Cps4B of S. pneumoniae TIGR4 and Wzb of E. coli K-30 have been crystallized. Wzb crystals belonged to space-group family P3(x)21 and diffracted to 2.7 A resolution. Crystal form I of Cps4B belonged to space-group family P4(x)2(1)2 and diffracted to 2.8 A resolution; crystal form II belonged to space group P2(1)2(1)2(1) and diffracted to 1.9 A resolution.
Collapse
Affiliation(s)
- Hexian Huang
- Centre for Biomolecular Sciences, The University of St Andrews, Fife KY16 9RH, Scotland
| | - Gregor Hagelueken
- Centre for Biomolecular Sciences, The University of St Andrews, Fife KY16 9RH, Scotland
| | - Chris Whitfield
- Department of Molecular and Cellular Biology, University of Guelph, Ontario N1G 2W1, Canada
| | - James H. Naismith
- Centre for Biomolecular Sciences, The University of St Andrews, Fife KY16 9RH, Scotland
| |
Collapse
|
26
|
Hagelueken G, Huang H, Mainprize IL, Whitfield C, Naismith JH. Crystal structures of Wzb of Escherichia coli and CpsB of Streptococcus pneumoniae, representatives of two families of tyrosine phosphatases that regulate capsule assembly. J Mol Biol 2009; 392:678-88. [PMID: 19616007 PMCID: PMC2777267 DOI: 10.1016/j.jmb.2009.07.026] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Revised: 07/07/2009] [Accepted: 07/09/2009] [Indexed: 12/11/2022]
Abstract
Many Gram-positive and Gram-negative bacteria utilize polysaccharide surface layers called capsules to evade the immune system; consequently, the synthesis and export of the capsule are a potential therapeutic target. In Escherichia coli K-30, the integral membrane tyrosine autokinase Wzc and the cognate phosphatase Wzb have been shown to be key for both synthesis and assembly of capsular polysaccharides. In the Gram-positive bacterium Streptococcus pneumoniae, the CpsCD complex is analogous to Wzc and the phosphatase CpsB is the corresponding cognate phosphatase. The phosphatases are known to dephosphorylate their corresponding autokinases, yet despite their functional equivalence, they share no sequence homology. We present the structure of Wzb in complex with phosphate and high-resolution structures of apo-CpsB and a phosphate-complexed CpsB. We show that both proteins are active toward Wzc and thereby demonstrate that CpsB is not specific for CpsCD. CpsB is a novel enzyme and represents the first solved structure of a tyrosine phosphatase from a Gram-positive bacterium. Wzb and CpsB have completely different structures, suggesting that they must operate by very different mechanisms. Although the mechanism of Wzb can be inferred from previous studies, CpsB appears to have a tyrosine phosphatase mechanism not observed before. We propose a chemical mechanism for CpsB based on site-directed mutagenesis and structural data.
Collapse
Affiliation(s)
- Gregor Hagelueken
- Centre for Biomolecular Sciences, The University of St. Andrews, Fife KY16 9RH, UK
| | - Hexian Huang
- Centre for Biomolecular Sciences, The University of St. Andrews, Fife KY16 9RH, UK
| | - Iain L. Mainprize
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Chris Whitfield
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - James H. Naismith
- Centre for Biomolecular Sciences, The University of St. Andrews, Fife KY16 9RH, UK
- Corresponding author.
| |
Collapse
|
27
|
Liu XY, Li LF, Su XD. Tailoring a low-molecular weight protein tyrosine phosphatase into an efficient reporting protein. Biochem Biophys Res Commun 2009; 382:735-9. [PMID: 19324012 DOI: 10.1016/j.bbrc.2009.03.099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Accepted: 03/18/2009] [Indexed: 10/21/2022]
Abstract
Fusion reporter methods are important tools for biology and biotechnology. An ideal reporter protein in a fusion system should have little effects on its fusion partner and provide an easy and accurate readout. Therefore, a small monomeric protein with high activity for detection assays often has advantages as a reporter protein. For this purpose, we have tailored the human B-form low-molecular-weight phosphotyrosyl phosphatase (HPTP-B) to increase its general applicability as a potent reporter protein. With the aim to eliminate interference from cysteine residues in the native HPTP-B, combined with a systematic survey of N- and C-terminal truncated variants, a series of cysteine to serine mutations were introduced, which allowed isolation of an engineered soluble protein with suitable biophysical properties. When we deleted both the first six residues and the last two residues, we still obtained a soluble mutant protein with correct folding and similar activity with wild-type protein. This mutant with two cysteine to serine mutations, HPTP-B(NDelta6-CDelta2-C90S-C109S), has good potential as an optimal reporter.
Collapse
Affiliation(s)
- Xiao-Yan Liu
- The National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Science, Peking University, Beijing, PR China
| | | | | |
Collapse
|
28
|
Miranda MA, Okamoto AK, Ferreira CV, Silva TL, Granjeiro JM, Aoyama H. Differential effects of flavonoids on bovine kidney low molecular mass protein tyrosine phosphatase. J Enzyme Inhib Med Chem 2008; 21:419-25. [PMID: 17059175 DOI: 10.1080/14756360500179523] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Among the structurally related flavonoids tested on the bovine kidney low molecular weight protein tyrosine phosphatase (LMrPTP) activity, quercetin activated by about 2.6-fold the p-nitrophenyl-phosphate (p-NPP)-directed reaction, in contrast to morin that acted as a competitive inhibitor, with Ki values of 87, 73 and 50 microM for p-NPP, FMN, and tyrosine-phosphate, respectively. Other related flavonoids, such as rutin, kaempferol, catechin, narigin, phloretin and taxifolin did not significantly affect the LMrPTP activity. The positions of the hydroxyl groups in the structures of the flavonoids were important for their distinct effects on LMrPTP activity. The hydroxyl groups at C3' and C4' and the presence of a double bond at C2 and C3 were essential for the activating effect of quercetin. The absence of the 3'-OH (kaempferol), absence of the double bond (taxifolin) and the presence of the sugar rutinose at the 3-OH (rutin) suppressed the effect of quercetin. The C2'- and C4'-hydroxyl groups, the presence of the double bond, and a C4-ketone group were important requirements for the inhibitory effects of morin.
Collapse
Affiliation(s)
- Márcio A Miranda
- Departamento de Bioquimica, Instituto de Biologia, UNICAMP 13083-970 Campinas, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
29
|
Stoner GD, Dombkowski AA, Reen RK, Cukovic D, Salagrama S, Wang LS, Lechner JF. Carcinogen-altered genes in rat esophagus positively modulated to normal levels of expression by both black raspberries and phenylethyl isothiocyanate. Cancer Res 2008; 68:6460-7. [PMID: 18676871 DOI: 10.1158/0008-5472.can-08-0146] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Our recent study identified 2,261 dysregulated genes in the esophagi of rats that received a 1-week exposure to the carcinogen N-nitrosomethylbenzylamine (NMBA). We further reported that 1,323 of these genes were positively modulated to near-normal levels of expression in NMBA-treated animals that consumed dietary phenylethyl isothiocyanate (PEITC), a constituent of cruciferous vegetables. Herein, we report our results with companion animals that were fed a diet containing 5% freeze-dried black raspberries (BRB) instead of PEITC. We found that 462 of the 2,261 NMBA-dysregulated genes in rat esophagus were restored to near-normal levels of expression by BRB. Further, we have identified 53 NMBA-dysregulated genes that are positively modulated by both PEITC and BRB. These 53 common genes include genes involved in phase I and II metabolism, oxidative damage, and oncogenes and tumor suppressor genes that regulate apoptosis, cell cycling, and angiogenesis. Because both PEITC and BRB maintain near-normal levels of expression of these 53 genes, their dysregulation during the early phase of NMBA-induced esophageal cancer may be especially important in the genesis of the disease.
Collapse
Affiliation(s)
- Gary D Stoner
- Department of Internal Medicine, Comprehensive Cancer Center, The Ohio State University College of Medicine, Columbus, Ohio 43240, USA.
| | | | | | | | | | | | | |
Collapse
|
30
|
Clark CG, Alsmark UCM, Tazreiter M, Saito-Nakano Y, Ali V, Marion S, Weber C, Mukherjee C, Bruchhaus I, Tannich E, Leippe M, Sicheritz-Ponten T, Foster PG, Samuelson J, Noël CJ, Hirt RP, Embley TM, Gilchrist CA, Mann BJ, Singh U, Ackers JP, Bhattacharya S, Bhattacharya A, Lohia A, Guillén N, Duchêne M, Nozaki T, Hall N. Structure and content of the Entamoeba histolytica genome. ADVANCES IN PARASITOLOGY 2008; 65:51-190. [PMID: 18063096 DOI: 10.1016/s0065-308x(07)65002-7] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The intestinal parasite Entamoeba histolytica is one of the first protists for which a draft genome sequence has been published. Although the genome is still incomplete, it is unlikely that many genes are missing from the list of those already identified. In this chapter we summarise the features of the genome as they are currently understood and provide previously unpublished analyses of many of the genes.
Collapse
Affiliation(s)
- C G Clark
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Maccari R, Paoli P, Ottanà R, Jacomelli M, Ciurleo R, Manao G, Steindl T, Langer T, Vigorita MG, Camici G. 5-Arylidene-2,4-thiazolidinediones as inhibitors of protein tyrosine phosphatases. Bioorg Med Chem 2007; 15:5137-49. [PMID: 17543532 DOI: 10.1016/j.bmc.2007.05.027] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Revised: 05/04/2007] [Accepted: 05/11/2007] [Indexed: 11/20/2022]
Abstract
4-(5-Arylidene-2,4-dioxothiazolidin-3-yl)methylbenzoic acids (2) were synthesized and evaluated in vitro as inhibitors of PTP1B and LMW-PTP, two protein tyrosine phosphatases (PTPs) which act as negative regulators of the metabolic and mitotic signalling of insulin. The synthesis of compounds 2 represents an example of utilizing phosphotyrosine-mimetics to identify effective low molecular weight nonphosphorus inhibitors of PTPs. Several thiazolidinediones 2 exhibited PTP1B inhibitory activity in the low micromolar range with moderate selectivity for human PTP1B and IF1 isoform of human LMW-PTP compared with other related PTPs.
Collapse
Affiliation(s)
- Rosanna Maccari
- Dipartimento Farmaco-Chimico, Università di Messina, Vl SS Annunziata, Messina, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Kanda M, Ihara Y, Murata H, Urata Y, Kono T, Yodoi J, Seto S, Yano K, Kondo T. Glutaredoxin modulates platelet-derived growth factor-dependent cell signaling by regulating the redox status of low molecular weight protein-tyrosine phosphatase. J Biol Chem 2006; 281:28518-28. [PMID: 16893901 DOI: 10.1074/jbc.m604359200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Glutaredoxin (GRX) is a glutathione-disulfide oxidoreductase involved in various cellular functions, including the redox-dependent regulation of certain integral proteins. Here we demonstrated that overexpression of GRX suppressed the proliferation of myocardiac H9c2 cells treated with platelet-derived growth factor (PDGF)-BB. After stimulation with PDGF-BB, the phosphorylation of PDGF receptor (PDGFR) beta was suppressed in GRX gene-transfected cells, compared with controls. Conversely, the phosphorylation was enhanced by depletion of GRX by RNA interference. In this study we focused on the role of low molecular weight protein-tyrosine phosphatase (LMW-PTP) in the dephosphorylation of PDGFRbeta via a redox-dependent mechanism. We found that depletion of LMW-PTP using RNA interference enhanced the PDGF-BB-induced phosphorylation of PDGFRbeta, indicating that LMW-PTP works for PDGFRbeta. The enhancement of the phosphorylation of PDGFRbeta was well correlated with inactivation of LMW-PTP by cellular peroxide generated in the cells stimulated with PDGF-BB. In vitro, with hydrogen peroxide treatment, LMW-PTP showed decreased activity with the concomitant formation of dithiothreitol-reducible oligomers. GRX protected LMW-PTP from hydrogen peroxide-induced oxidation and inactivation in concert with glutathione, NADPH, and glutathione disulfide reductase. This strongly suggests that retention of activity of LMW-PTP by enhanced GRX expression suppresses the proliferation of cells treated with PDGF-BB via enhanced dephosphorylation of PDGFRbeta. Thus, GRX plays an important role in PDGF-BB-dependent cell proliferation by regulating the redox state of LMW-PTP.
Collapse
Affiliation(s)
- Munetake Kanda
- Department of Biochemistry and Molecular Biology in Disease, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Lescop E, Hu Y, Xu H, Hu W, Chen J, Xia B, Jin C. The solution structure of Escherichia coli Wzb reveals a novel substrate recognition mechanism of prokaryotic low molecular weight protein-tyrosine phosphatases. J Biol Chem 2006; 281:19570-7. [PMID: 16651264 DOI: 10.1074/jbc.m601263200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Low molecular weight protein-tyrosine phosphatases (LMW-PTPs) are small enzymes that ubiquitously exist in various organisms and play important roles in many biological processes. In Escherichia coli, the LMW-PTP Wzb dephosphorylates the autokinase Wzc, and the Wzc/Wzb pair regulates colanic acid production. However, the substrate recognition mechanism of Wzb is still poorly understood thus far. To elucidate the molecular basis of the catalytic mechanism, we have determined the solution structure of Wzb at high resolution by NMR spectroscopy. The Wzb structure highly resembles that of the typical LMW-PTP fold, suggesting that Wzb may adopt a similar catalytic mechanism with other LMW-PTPs. Nevertheless, in comparison with eukaryotic LMW-PTPs, the absence of an aromatic amino acid at the bottom of the active site significantly alters the molecular surface and implicates Wzb may adopt a novel substrate recognition mechanism. Furthermore, a structure-based multiple sequence alignment suggests that a class of the prokaryotic LMW-PTPs may share a similar substrate recognition mechanism with Wzb. The current studies provide the structural basis for rational drug design against the pathogenic bacteria.
Collapse
Affiliation(s)
- Ewen Lescop
- Beijing Nuclear Magnetic Resonance Center, College of Life Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | | | | | | | | | | | | |
Collapse
|
34
|
Xu H, Xia B, Jin C. Solution structure of a low-molecular-weight protein tyrosine phosphatase from Bacillus subtilis. J Bacteriol 2006; 188:1509-17. [PMID: 16452434 PMCID: PMC1367216 DOI: 10.1128/jb.188.4.1509-1517.2006] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The low-molecular-weight (LMW) protein tyrosine phosphatases (PTPs) exist ubiquitously in prokaryotes and eukaryotes and play important roles in cellular processes. We report here the solution structure of YwlE, an LMW PTP identified from the gram-positive bacteria Bacillus subtilis. YwlE consists of a twisted central four-stranded parallel beta-sheet with seven alpha-helices packing on both sides. Similar to LMW PTPs from other organisms, the conformation of the YwlE active site is favorable for phosphotyrosine binding, indicating that it may share a common catalytic mechanism in the hydrolysis of phosphate on tyrosine residue in proteins. Though the overall structure resembles that of the eukaryotic LMW PTPs, significant differences were observed around the active site. Residue Asp115 is likely interacting with residue Arg13 through electrostatic interaction or hydrogen bond interaction to stabilize the conformation of the active cavity, which may be a unique character of bacterial LMW PTPs. Residues in the loop region from Phe40 to Thr48 forming a wall of the active cavity are more flexible than those in other regions. Ala41 and Gly45 are located near the active cavity and form a noncharged surface around it. These unique properties demonstrate that this loop may be involved in interaction with specific substrates. In addition, the results from spin relaxation experiments elucidate further insights into the mobility of the active site. The solution structure in combination with the backbone dynamics provides insights into the mechanism of substrate specificity of bacterial LMW PTPs.
Collapse
Affiliation(s)
- Huimin Xu
- Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing 100871, China
| | | | | |
Collapse
|
35
|
Faggioni G, Grassi S, Fillo S, Stefanini L, Bottini E, Lista F. Rapid single tube genotyping of ACP1 by FRET based amplification and dual color melting curve analysis. Mol Cell Probes 2006; 20:27-30. [PMID: 16226867 DOI: 10.1016/j.mcp.2005.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2005] [Revised: 08/10/2005] [Accepted: 08/10/2005] [Indexed: 10/25/2022]
Abstract
Erythrocyte acid phosphatase (ACP1), also named low molecular weight phosphotyrosine phosphatase (LMW-PTP) is an enzyme involved in signal transduction pathways of tyrosine kinase receptor. The precise physiological role of ACP1 remains to be elucidated, however recent advancements suggest that it may play an important role in the control of cell proliferation. ACP1 is a highly polymorphic enzyme that has been investigated by case-control studies for decades. Initially based on protein electrophoresis, the phenotype of ACP1 is now detected by DNA-based techniques. Here, we report a new rapid single tube genotyping method for ACP1 by FRET based amplification and dual color melting curve analysis. This method does not require a post-procedure amplification process and allows unambiguous genotyping of 30 samples in less than 1 h.
Collapse
Affiliation(s)
- G Faggioni
- Laboratory of Genetics, Army Medical and Veterinary Research Center, Via S. Stefano Rotondo, 4 00184 Rome, Italy
| | | | | | | | | | | |
Collapse
|
36
|
Miyazono KI, Sawano Y, Tanokura M. Crystal structure and structural stability of acylphosphatase from hyperthermophilic archaeon Pyrococcus horikoshii OT3. Proteins 2005; 61:196-205. [PMID: 16080154 DOI: 10.1002/prot.20535] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
To elucidate the structural basis for the high stability of acylphosphatase (AcP) from Pyrococcus horikoshii OT3, we determined its crystal structure at 1.72 A resolution. P. horikoshii AcP possesses high stability despite its approximately 30% sequence identity with eukaryotic enzymes that have moderate thermostability. The overall fold of P. horikoshii AcP was very similar to the structures of eukaryotic counterparts. The crystal structure of P. horikoshii AcP shows the same fold betaalphabetabetaalphabeta topology and the conserved putative catalytic residues as observed in eukaryotic enzymes. Comparison with the crystal structure of bovine common-type AcP and that of D. melanogaster AcP (AcPDro2) as representative of eukaryotic AcP revealed some significant characteristics in P. horikoshii AcP that likely play important roles in structural stability: (1) shortening of the flexible N-terminal region and long loop; (2) an increased number of ion pairs on the protein surface; (3) stabilization of the loop structure by hydrogen bonds. In P. horikoshii AcP, two ion pair networks were observed one located in the loop structure positioned near the C-terminus, and other on the beta-sheet. The importance of ion pairs for structural stability was confirmed by site-directed mutation and denaturation induced by guanidium chloride.
Collapse
Affiliation(s)
- Ken-ichi Miyazono
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan
| | | | | |
Collapse
|
37
|
Malentacchi F, Marzocchini R, Gelmini S, Orlando C, Serio M, Ramponi G, Raugei G. Up-regulated expression of low molecular weight protein tyrosine phosphatases in different human cancers. Biochem Biophys Res Commun 2005; 334:875-83. [PMID: 16036221 DOI: 10.1016/j.bbrc.2005.06.176] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2005] [Accepted: 06/27/2005] [Indexed: 10/25/2022]
Abstract
Protein tyrosine phosphorylation, mediated by the balanced action of tyrosine kinases and phosphatases, contributes to the regulation of the growth, migration, and invasion of normal and malignant cells. Among tyrosine phosphatases, low molecular weight protein tyrosine phosphatases (LMW-PTP) have been recognized as a possible "positive factor" in tumour onset and progression. The aim of this work was to assess whether LMW-PTP are differentially expressed in normal and malignant tissues. Using real-time PCR analysis we evaluated the expression levels of total LMW-PTP mRNA in surgical samples of breast, colon and lung cancers (63, 60, and 58, respectively), and in their paired adjacent not affected tissues. Moreover, the same analysis was carried out on a group of neuroblastomas (25 cases). Significant correlations between LMW-PTP overexpression and the most common clinical-pathological features of cancers exist. In colon cancer and neuroblastoma increased total LMW-PTP mRNA expression correlates with unfavourable outcome. While LMW-PTP mRNA expression increases in tumour samples, the relative contribution of the different isoforms does not change. Our findings indicate that LMW-PTP can be considered an oncogene as it is overexpressed in different tumour types and suggests that LMW-PTP enhanced expression is generally prognostic for a more aggressive cancer.
Collapse
Affiliation(s)
- Francesca Malentacchi
- Department of Biochemical Sciences of the University of Florence, viale Morgagni 50, 50134 Firenze, Italy
| | | | | | | | | | | | | |
Collapse
|
38
|
Bottini N, Meloni GF, Lucarelli P, Amante A, Saccucci P, Gloria-Bottini F, Bottini E. Risk of type 1 diabetes in childhood and maternal age at delivery, interaction with ACP1 and sex. Diabetes Metab Res Rev 2005; 21:353-8. [PMID: 15586390 DOI: 10.1002/dmrr.521] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND We have investigated the possible role of ACP1 (also known as cLMWPTP: cytosolic low molecular weight phosphotyrosine phosphatase), a highly polymorphic enzyme involved in signal transduction of T-cell receptor, insulin receptor and other growth factors in the relationship between maternal age at delivery and risk of type 1 diabetes in the offspring. METHODS One hundred and eighty-nine consecutive children with type 1 diabetes (TIDM) diagnosed at the Department of Pediatrics of the University of Sassari (Sardinia) were studied. A control sample of 5460 consecutive newborns from the same population was also studied. RESULTS Maternal age at birth of children with type 1 diabetes has shifted towards high values. There is also an effect of birth order on the susceptibility to type 1 diabetes, which is independent of that due to maternal age. The proportion of low activity ACPl genotypes is much higher among children born from older mothers than among diabetic children born from relatively young mothers. There is a significant effect of sex, maternal age, sex-ACPl two-way interaction and sex-ACP1-maternal age three-way interaction on the age at diagnosis of diabetes. CONCLUSIONS The present data confirm the strong association between maternal age at delivery and risk of type 1 diabetes in the child. In addition, our analysis suggests a complex interaction among maternal age, sex of infant and ACP1 concerning age at diagnosis of diabetes. Thus, risk and clinical course of type 1 diabetes seem to be dependent on both maternal environment during intrauterine development and foetal genetic factors.
Collapse
Affiliation(s)
- N Bottini
- Burhnam Institute, La Jolla, California, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Meinhart A, Kamenski T, Hoeppner S, Baumli S, Cramer P. A structural perspective of CTD function. Genes Dev 2005; 19:1401-15. [PMID: 15964991 DOI: 10.1101/gad.1318105] [Citation(s) in RCA: 252] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The C-terminal domain (CTD) of RNA polymerase II (Pol II) integrates nuclear events by binding proteins involved in mRNA biogenesis. CTD-binding proteins recognize a specific CTD phosphorylation pattern, which changes during the transcription cycle, due to the action of CTD-modifying enzymes. Structural and functional studies of CTD-binding and -modifying proteins now reveal some of the mechanisms underlying CTD function. Proteins recognize CTD phosphorylation patterns either directly, by contacting phosphorylated residues, or indirectly, without contact to the phosphate. The catalytic mechanisms of CTD kinases and phosphatases are known, but the basis for CTD specificity of these enzymes remains to be understood.
Collapse
Affiliation(s)
- Anton Meinhart
- Department of Chemistry and Biochemistry, Gene Center, University of Munich (LMU), 81377 Munich, Germany
| | | | | | | | | |
Collapse
|
40
|
Granjeiro JM, Miranda MA, da Glória S T Maia M, Ferreira CV, Taga EM, Aoyama H, Volpe PLO. Effect of homologous series of n-alkyl sulfates and n-alkyl trimethylammonium bromides on low molecular mass protein tyrosine phosphatase activity. Mol Cell Biochem 2005; 265:133-40. [PMID: 15543943 DOI: 10.1023/b:mcbi.0000044390.18530.39] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The effect of anionic and cationic surfactants on acid phosphatase denaturation has been extensively studied. Low molecular mass (LMr) protein tyrosine phosphatase (PTP), a key regulatory enzyme involved in many different processes in the cell, was distinctly affected by anionic (homologous series of n-alkyl sulfates (C8-C14)) and cationic (n-alkyl trimethylammonium bromides (C12-C16)) surfactants. At concentrations 10-fold lower critical micellar concentration (cmc) values, the enzyme was completely inactivated in the presence of anionic surfactants, in a process independent of the pH, and dependent on the chain length of the surfactants. Under the same conditions, the effect of cationic surfactants on the enzyme activity was pH-dependent and only at pH 7.0 full inactivation was observed at concentrations 10-fold higher cmc values. In contrast to cationic surfactants the effect of anionic surfactants on the enzyme activity was irreversible and was not affected by the presence of NaCl. Inorganic phosphate, a known competitive inhibitor of PTP, protected the enzyme against inactivation by the surfactants. Our results suggest that the inactivation of the LMr PTP by anionic and cationic surfactants involved both electrostatic and hydrophobic interactions, and that the interactions enzyme-surfactants probably occurred at or near the active site.
Collapse
|
41
|
Bottini N, Ronchetti F, Gloria-Bottini F, Stefanini L, Bottini E, Lucarini N. Atopic and nonatopic asthma in children. J Asthma 2005; 42:25-8. [PMID: 15801324 DOI: 10.1081/jas-200044756] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In 155 asthmatic children we have studied the relationship between prick test positivity and a set of genetic factors previously found to be associated with bronchial asthma. Among these factors, MN system (p = 0.009) and age at onset of symptoms (p = 0.05) are the most important variables separating prick test negative from prick test positive children. MN and age at onset influence independently prick test positivity pointing to an additive effect of the two variables. M phenotype appears correlated positively with an increased susceptibility to nonallergic asthma in all age groups, whereas N phenotype appears correlated positively with age at onset but in allergic asthma only. The MN system codifies for glycophorin A, a sialoglycoprotein that represents a major ligand for several bacteria and viruses that recognize the N-acetylneuraminic acid present in this protein. The present data suggest that genetic variability in this system might influence bacterial and viral competition and mucosal damage influencing susceptibility to asthmatic reactions in absence of IgE hyperproduction.
Collapse
Affiliation(s)
- N Bottini
- The Burnham Institute, La Jolla, California, USA
| | | | | | | | | | | |
Collapse
|
42
|
Chiarugi P, Taddei ML, Schiavone N, Papucci L, Giannoni E, Fiaschi T, Capaccioli S, Raugei G, Ramponi G. LMW-PTP is a positive regulator of tumor onset and growth. Oncogene 2004; 23:3905-14. [PMID: 15021900 DOI: 10.1038/sj.onc.1207508] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Low molecular weight protein tyrosine phosphatases (LMW-PTPs) are an enzyme family that plays a key role in cell proliferation control by dephosphorylating/inactivating both tyrosine kinase receptors (such as PDGF, insulin, and ephrin receptors) and docking proteins (such, as beta-catenin) endowed with both adhesion and transcriptional activity. Besides being a frequent event in human tumors, overexpression of LMW-PTP has been recently demonstrated to be sufficient to induce neoplastic transformation. We recently demonstrated that overexpression of LMW-PTP strongly potentiates the stability of cell-cell contacts at the adherens junction level, which powerfully suggests that LMW-PTP may also contribute to cancer invasivity. Focusing on mechanisms by which LMW-PTP is involved in cancer onset and progression, the emerging picture is that LMW-PTP strongly increases fibronectin-mediated cell adhesion and mobility but, paradoxically, decreases cell proliferation. Nevertheless, LMW-PTP-transfected NIH3T3 fibroblasts engrafted in nude mice induce the onset of larger fibrosarcomas, which are endowed with higher proliferation activity as compared to mock-transfected controls. Quite opposite effects have been obtained with engrafted fibroblasts transfected with a dominant-negative form of LMW-PTP. Notably, in sarcoma extracts, LMW-PTP overexpression greatly influences the ephrin A2 (EphA2) but not PDGF receptor or beta-catenin tyrosine phosphorylation. The high association of dephosphorylated EphA2 overexpression with most human cancers and our observation that cell growth stimulation by LMW-PTP overexpression is restricted to the in vivo model, strongly suggest that LMW-PTP oncogenic potential is mediated by its EphA2 tyrosine dephosphorylating activity.
Collapse
Affiliation(s)
- Paola Chiarugi
- Department of Biochemical Sciences of the University of Florence, viale Morgagni 50, 50134 Firenze, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Giannoni E, Chiarugi P, Cozzi G, Magnelli L, Taddei ML, Fiaschi T, Buricchi F, Raugei G, Ramponi G. Lymphocyte function-associated antigen-1-mediated T cell adhesion is impaired by low molecular weight phosphotyrosine phosphatase-dependent inhibition of FAK activity. J Biol Chem 2003; 278:36763-76. [PMID: 12815062 DOI: 10.1074/jbc.m302686200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein tyrosine phosphorylation is one of the earliest signaling events detected in response to lymphocyte function-associated antigen-1 (LFA-1) engagement during lymphocyte adhesion. In particular, the focal adhesion kinase p125FAK, involved in the modulation and rearrangement of the actin cytoskeleton, seems to be a crucial mediator of LFA-1 signaling. Herein, we investigate the role of a FAK tyrosine phosphatase, namely low molecular weight phosphotyrosine phosphatase (LMW-PTP), in the modulation of LFA-1-mediated T cell adhesion. Overexpression of LMW-PTP in Jurkat cells revealed an impairment of LFA-1-dependent cell-cell adhesion upon T cell receptor (TCR) stimulation. Moreover, in these conditions LMW-PTP causes FAK dephosphorylation, thus preventing the activation of FAK downstream pathways. Our results also demonstrated that, upon antigen stimulation, LMW-PTP-dependent FAK inhibition is associated to a strong reduction of LFA-1 and TCR co-clustering toward a single region of T cell surface, thus causing an impairment of receptor activity by preventing changes in their avidity state. Because co-localization of both LFA-1 and TCR is an essential event during encounters of T cells with antigen-presenting cells and immunological synapse (IS) formation, we suggest an intriguing role of LMW-PTP in IS establishment and stabilization through the negative control of FAK activity and, in turn, of cell surface receptor redistribution.
Collapse
Affiliation(s)
- Elisa Giannoni
- Dipartimento di Scienze Biochimiche, Università di Firenze, V.le Morgagni 50, 50134 Firenze, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Ganem C, Devaux F, Torchet C, Jacq C, Quevillon-Cheruel S, Labesse G, Facca C, Faye G. Ssu72 is a phosphatase essential for transcription termination of snoRNAs and specific mRNAs in yeast. EMBO J 2003; 22:1588-98. [PMID: 12660165 PMCID: PMC152886 DOI: 10.1093/emboj/cdg141] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Ssu72 is an essential yeast protein that is involved in transcription. It physically interacts with transcription initiation and termination complexes. In this report, we provide evidence that Ssu72 is a phosphatase that physically interacts with the CTD kinase Kin28 and functionally interacts with the CTD phosphatase Fcp1. A genome-wide expression analysis of mutant ssu72-ts69 during growth in complete medium revealed a number of defects, including the accumulation of a limited number of mRNAs and the read-through transcription of small nucleolar RNAs and of some mRNAs. We hypothesize that Ssu72 plays a key role in the transcription termination of certain transcripts, possibly by promoting RNA polymerase pausing and release. The possibility that the CTD of the largest subunit of RNA polymerase II is a substrate of Ssu72 is discussed.
Collapse
Affiliation(s)
- Carine Ganem
- Institut Curie-CNRS UMR2027, Bât. 110, Centre Universitaire, 91405 Orsay, France
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Bottini N, Otsu A, Borgiani P, Saccucci P, Stefanini L, Greco E, Fontana L, Hopkins JM, Mao XQ. Genetic control of serum IgE levels: a study of low molecular weight protein tyrosine phosphatase. Clin Genet 2003; 63:228-31. [PMID: 12694235 DOI: 10.1034/j.1399-0004.2003.00002.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Protein tyrosine phosphatases (PTPases) have recently been recognized as important modulators of various signal transduction pathways in immune cells. Genetic polymorphisms have been described in genes codifying for members of this family of enzymes, and the genetics of PTPases is predicted to play an important role in the etiology of immune diseases and of their clinical variability. The low molecular weight protein tyrosine phosphatase (ACP1 or LMPTP) is one of the few PTPases with a known genetic polymorphism, and has been proposed to be associated with atopic dermatitis in a small sample from an Italian population. In this paper we describe the association of the ACP1 polymorphism with total IgE levels in two independent samples from English and Italian populations. In both the samples the mean value of serum IgE is lower among subjects carrying the BC genotype than in other ACP1 genotypes. The BC genotype is associated with the highest total ACP1 enzymatic activity. Our data suggest that one or both of the ACP1 isoforms exert an inhibitory role on some signal transduction pathway relevant for IgE hyperproduction.
Collapse
Affiliation(s)
- N Bottini
- Experimental Medicine Unit, University of Wales, Swansea, Wales, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Thomas CL, McKinnon E, Granger BL, Harms E, Van Etten RL. Kinetic and spectroscopic studies of Tritrichomonas foetus low-molecular weight phosphotyrosyl phosphatase. Hydrogen bond networks and electrostatic effects. Biochemistry 2002; 41:15601-9. [PMID: 12501188 DOI: 10.1021/bi0203740] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Virtually all of the eukaryotic low-molecular weight protein tyrosine phosphatases (LMW PTPases) studied to date contain a conserved, high-pK(a) histidine residue that is hydrogen bonded to a conserved active site asparagine residue of the phosphate binding loop. However, in the putative enzyme encoded by the genome of the trichomonad parasite Tritrichomonas foetus, this otherwise highly conserved histidine is replaced with a glutamine residue. We have cloned the gene, expressed the enzyme, demonstrated its catalytic activity, and examined the structural and functional roles of the glutamine residue using site-directed mutagenesis, kinetic measurements, and NMR spectroscopy. Titration studies of the two native histidine residues in the T. foetus enzyme as monitored by (1)H NMR revealed that H44 has a pK(a) of 6.4 and H143 has a pK(a) of 5.3. When a histidine residue was introduced in place of the native glutamine at position 67, a pK(a) of 8.2 was measured for this residue. Steady state kinetic methods were employed to study how mutation of the native glutamine to alanine, asparagine, and histidine affected the catalytic activity of the enzyme. Examination of k(cat)/K(m) showed that Q67H exhibits a substrate selectivity comparable to that of the wild-type (WT) enzyme, while Q67N and Q67A show reduced activity. The effect of pH on the reaction rate was examined. Importantly, the pH-rate profile of the WT TPTP enzyme revealed a much more clearly defined acidic limb than that which can be observed for other wild-type LMW PTPases. The pH-rate curve of the Q67H mutant shows a shift to a lower pH optimum relative to that seen for the wild-type enzyme. The Q67N and Q67A mutants showed curves that were shifted to higher pH optima. Although the active site of this enzyme is likely to be similar to that of other LMW PTPases, the hydrogen bonding and electrostatic changes afford new insight into factors affecting the pH dependence and catalysis by this family of enzymes.
Collapse
Affiliation(s)
- Christin L Thomas
- Department of Chemistry, Purdue University, West Lafayette, IN 47907-1393, USA
| | | | | | | | | |
Collapse
|
47
|
Bottini N, Mao XQ, Borgiani P, Saccucci P, Stefanini L, Greco E, Fontana L, Shirakawa T, Hopkin JM. Low molecular weight PTP-IL-4RA interaction in atopy predisposition. Allergy 2002; 57 Suppl 72:10-2. [PMID: 12144546 DOI: 10.1034/j.1398-9995.57.s72.4.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We recently described a protective effect of the low molecular weight protein tyrosine phosphatase (LMPTP) BC genotype, associated with the highest total enzymatic activity, against high serum IgE levels both in the English and the Italian populations. Here we test the hypothesis of a role of LMPTP in the negative modulation of IL-4 signal transduction checking for genetic interaction between interleukin-4 receptor alpha chain (IL-4RA) genetic polymorphisms and LMPTP polymorphism in the predisposition to high total IgE levels in the English population. We find a significant interaction between LMPTP polymorphism and the intracellular Gln/Arg polymorphism in position 551 of IL-4RA. Our data support the hypothesis of a direct or indirect biochemical interaction between LMPTP and IL-4RA resulting in different modulation of IL-4 signal transduction among joint genotypes.
Collapse
Affiliation(s)
- Nunzio Bottini
- Department of Internal Medicine, University of Rome Tor Vergata, 135 via di Tor Vergata, I-00133 Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Bottini N, Saccucci P, Piciullo A, Iannetti P, Lucarini N, Lucarelli P, Gloria-Bottini F, Curatolo P. Convulsive disorder and the genetics of signal transduction; a study of a low molecular weight protein tyrosine phosphatase in a pediatric sample. Neurosci Lett 2002; 333:159-62. [PMID: 12429372 DOI: 10.1016/s0304-3940(02)00758-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Recent studies point to an involvement of kinases and phosphatases in ionic channel regulation and in physiopathologic mechanisms leading to convulsive disorders. Acid phosphatase locus 1 (ACP1), also named cytosolic low molecular weight phosphotyrosine phosphatase, is a highly polymorphic phosphatase that is especially abundant in the central nervous system and is known to be involved in several signal transduction pathways. We studied ACP1 in 122 children with idiopathic generalized tonic-clonic seizures, 80 children with febrile convulsions, and 417 controls from the population of Rome. Low activity phenotypes of ACP1 (*A/*A and *A/*B) were found to be over-represented while high activity phenotypes (*C/*C and *B/*C) were under-represented in generalized seizures cases compared to controls (P < 0.005). No significant difference was observed between febrile convulsion cases and controls. These observations suggest a protective role of the high activity ACP1 phenotypes against seizures in children.
Collapse
|
49
|
Bottini N, MacMurray J, Peters W, Rostamkhani M, Comings DE. Association of the acid phosphatase (ACP1) gene with triglyceride levels in obese women. Mol Genet Metab 2002; 77:226-9. [PMID: 12409270 DOI: 10.1016/s1096-7192(02)00120-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The acid phosphatase (ACP1) locus codes for a low molecular weight protein tyrosine phosphatase (LMPTP) that is found ubiquitously in human tissues. The *A allele of the ACP1 gene is associated with lower total enzymatic activity than the *B and *C alleles. An association between the *A allele and extreme values of body-mass-index (BMI) and dyslipidemia has previously been described in several samples of obese subjects from the Italian population. In the present study, we investigated the relationship between ACP1 *A allele genotypes (*A/*A, *A/*B, and *A/*C) and non-*A allele genotypes (*B/*B, *B/*C, and *C/*C) and metabolic variables in 277 Caucasian post-menopausal subjects consisting of 82 non-obese subjects (BMI</=29), 60 moderately obese (BMI 30-34) and 135 very obese (BMI>/=35) subjects. ACP1 genotypes were found to be significantly associated with total cholesterol (p</=0.002) and triglyceride (p</=0.001) levels in the obese and very obese women only. The significantly lower levels of triglycerides in *A carriers in this group suggest a protective effect of the *A allele against hypertriglyceridemia. It has been unclear why some individuals who gain weight develop dyslipidemia and other aspects of the metabolic syndrome while others do not. The present study suggests that those who gain weight and carry the ACP1 *A allele may be partially protected against developing the metabolic syndrome. The confirmation of ACP1 as a modifier gene of the metabolic complications could open the door to the prevention of the lethal complications of obesity.
Collapse
|
50
|
Bottini N, MacMurray J, Rostamkani M, McGue M, Iacono WG, Comings DE. Association between the low molecular weight cytosolic acid phosphatase gene ACP1*A and comorbid features of Tourette syndrome. Neurosci Lett 2002; 330:198-200. [PMID: 12231445 DOI: 10.1016/s0304-3940(02)00750-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Protein tyrosine phosphatases have been implicated in the regulation of serotonergic and dopaminergic activity in the central nervous system. In a recent study we found that nonA/nonA homozygosity at the locus codifying for the low molecular weight protein tyrosine phosphatase (ACP1) was associated with increased rates of major depression in males (P<0.00003), suggesting that the ACP1*A single nucleotide polymorphism (SNP) may be an important marker for psychopathology. In the present study we examined the ACP1*A SNP in 539 screened controls and 184 male Tourette syndrome (TS) cases, all Caucasians of European descent. The frequency of the nonA allele was markedly increased in TS cases relative to controls (P<0.0005), but this difference was restricted to cases with comorbid attention-deficit hyperactivity disorder (P<0.0001) and conduct disorder (P<0.0002), while having little relevance to TS itself.
Collapse
|