1
|
Schmitz M, Ballestin JB, Liang J, Tomas F, Freist L, Voigt K, Di Ventura B, Öztürk MA. Int&in: A machine learning-based web server for active split site identification in inteins. Protein Sci 2024; 33:e4985. [PMID: 38717278 PMCID: PMC11078102 DOI: 10.1002/pro.4985] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/06/2024] [Accepted: 03/24/2024] [Indexed: 05/12/2024]
Abstract
Inteins are proteins that excise themselves out of host proteins and ligate the flanking polypeptides in an auto-catalytic process called protein splicing. In nature, inteins are either contiguous or split. In the case of split inteins, the two fragments must first form a complex for the splicing to occur. Contiguous inteins have previously been artificially split in two fragments because split inteins allow for distinct applications than contiguous ones. Even naturally split inteins have been split at unnatural split sites to obtain fragments with reduced affinity for one another, which are useful to create conditional inteins or to study protein-protein interactions. So far, split sites in inteins have been heuristically identified. We developed Int&in, a web server freely available for academic research (https://intein.biologie.uni-freiburg.de) that runs a machine learning model using logistic regression to predict active and inactive split sites in inteins with high accuracy. The model was trained on a dataset of 126 split sites generated using the gp41-1, Npu DnaE and CL inteins and validated using 97 split sites extracted from the literature. Despite the limited data size, the model, which uses various protein structural features, as well as sequence conservation information, achieves an accuracy of 0.79 and 0.78 for the training and testing sets, respectively. We envision Int&in will facilitate the engineering of novel split inteins for applications in synthetic and cell biology.
Collapse
Affiliation(s)
- Mirko Schmitz
- BIOSS and CIBSS Research Signalling Centers, University of FreiburgFreiburgGermany
- Institute of Biology II, University of FreiburgFreiburgGermany
- 4HF Biotec GmbHFreiburgGermany
| | - Jara Ballestin Ballestin
- BIOSS and CIBSS Research Signalling Centers, University of FreiburgFreiburgGermany
- Institute of Biology II, University of FreiburgFreiburgGermany
- Bioprocess Innovation Unit, ViraTherapeutics GmbHRumAustria
| | - Junsheng Liang
- BIOSS and CIBSS Research Signalling Centers, University of FreiburgFreiburgGermany
- Institute of Biology II, University of FreiburgFreiburgGermany
| | - Franziska Tomas
- BIOSS and CIBSS Research Signalling Centers, University of FreiburgFreiburgGermany
- Institute of Biology II, University of FreiburgFreiburgGermany
- Department of Molecular Life SciencesUniversity of ZurichZurichSwitzerland
| | - Leon Freist
- Institute of Biology III, University of FreiburgFreiburgGermany
| | - Karsten Voigt
- Institute of Biology III, University of FreiburgFreiburgGermany
| | - Barbara Di Ventura
- BIOSS and CIBSS Research Signalling Centers, University of FreiburgFreiburgGermany
- Institute of Biology II, University of FreiburgFreiburgGermany
| | - Mehmet Ali Öztürk
- BIOSS and CIBSS Research Signalling Centers, University of FreiburgFreiburgGermany
- Institute of Biology II, University of FreiburgFreiburgGermany
| |
Collapse
|
2
|
Yang T, Nakanishi H, Itaka K. Development of a new caged intein for multi-input conditional translation of synthetic mRNA. Sci Rep 2024; 14:9988. [PMID: 38693346 PMCID: PMC11063168 DOI: 10.1038/s41598-024-60809-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/26/2024] [Indexed: 05/03/2024] Open
Abstract
mRNA medicines can be used to express therapeutic proteins, but the production of such proteins in non-target cells has a risk of adverse effects. To accurately distinguish between therapeutic target and nontarget cells, it is desirable to utilize multiple proteins expressed in each cell as indicators. To achieve such multi-input translational regulation of mRNA medicines, in this study, we engineered Rhodothermus marinus (Rma) DnaB intein to develop "caged Rma DnaB intein" that enables conditional reconstitution of full-length translational regulator protein from split fragments. By combining the caged Rma DnaB intein, the split translational regulator protein, and target protein-binding domains, we succeeded in target protein-dependent translational repression of mRNA in human cells. In addition, the caged Rma intein showed orthogonality to the previously reported Nostoc punctiforme (Npu) DnaE-based caged intein. Finally, by combining these two orthogonal caged inteins, we developed an mRNA-based logic gate that regulates translation based on the expression of multiple intracellular proteins. This study provides important information to develop safer mRNA medicines.
Collapse
Affiliation(s)
- Tingting Yang
- Department of Biofunction Research, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Tokyo, 101-0062, Japan
| | - Hideyuki Nakanishi
- Department of Biofunction Research, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Tokyo, 101-0062, Japan.
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Osaka, 565-0871, Japan.
| | - Keiji Itaka
- Department of Biofunction Research, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Tokyo, 101-0062, Japan.
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Osaka, 565-0871, Japan.
| |
Collapse
|
3
|
Fages-Lartaud M, Mueller Y, Elie F, Courtade G, Hohmann-Marriott MF. Standard Intein Gene Expression Ramps (SIGER) for Protein-Independent Expression Control. ACS Synth Biol 2023; 12:1058-1071. [PMID: 36920366 PMCID: PMC10127266 DOI: 10.1021/acssynbio.2c00530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Coordination of multigene expression is one of the key challenges of metabolic engineering for the development of cell factories. Constraints on translation initiation and early ribosome kinetics of mRNA are imposed by features of the 5'UTR in combination with the start of the gene, referred to as the "gene ramp", such as rare codons and mRNA secondary structures. These features strongly influence the translation yield and protein quality by regulating the ribosome distribution on mRNA strands. The utilization of genetic expression sequences, such as promoters and 5'UTRs in combination with different target genes, leads to a wide variety of gene ramp compositions with irregular translation rates, leading to unpredictable levels of protein yield and quality. Here, we present the Standard Intein Gene Expression Ramp (SIGER) system for controlling protein expression. The SIGER system makes use of inteins to decouple the translation initiation features from the gene of a target protein. We generated sequence-specific gene expression sequences for two inteins (DnaB and DnaX) that display defined levels of protein expression. Additionally, we used inteins that possess the ability to release the C-terminal fusion protein in vivo to avoid the impairment of protein functionality by the fused intein. Overall, our results show that SIGER systems are unique tools to mitigate the undesirable effects of gene ramp variation and to control the relative ratios of enzymes involved in molecular pathways. As a proof of concept of the potential of the system, we also used a SIGER system to express two difficult-to-produce proteins, GumM and CBM73.
Collapse
Affiliation(s)
- Maxime Fages-Lartaud
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim N-7491, Norway
| | - Yasmin Mueller
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim N-7491, Norway
| | - Florence Elie
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim N-7491, Norway
| | - Gaston Courtade
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim N-7491, Norway
| | - Martin Frank Hohmann-Marriott
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim N-7491, Norway.,United Scientists CORE (Limited), Dunedin 9016, Aotearoa, New Zealand
| |
Collapse
|
4
|
Park KS, Son RG, Kim SH, Abdelhamid MA, Pack SP. Soluble preparation and characterization of tripartite split GFP for In Vitro reconstitution applications. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
5
|
Chung CZ, Krahn N. The selenocysteine toolbox: A guide to studying the 21st amino acid. Arch Biochem Biophys 2022; 730:109421. [DOI: 10.1016/j.abb.2022.109421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 11/28/2022]
|
6
|
Xia HF, Luo JP, Yu SR, Zhou TJ. Modification of C-Segment of Cfa DnaE Split Intein for Improving Clean-in-Place in Chromatography Process. Biotechnol Prog 2022; 38:e3266. [PMID: 35488391 DOI: 10.1002/btpr.3266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 11/08/2022]
Abstract
This research focuses on the construction of an affinity purification system based on Cfa DnaE split intein. Cfa DnaE intein is an artificially constructed intein with the advantages of a fast cleavage reaction and good stability. In a previous study, a purification system that uses Cfa intein as a tag was constructed, the separation of the target protein and the tag during the purification process was completed, and the purity of the purified target protein reached 98.21%. Guided by molecular docking results, we identified flexible regions in the split intein and inserted several glycines into the protein to decrease the stability of the Cfa IC , thereby improving the regenerability of the IN media. Inserting 6 glycines between amino acids 14 and 15 of IC improved the regeneration rate of IC -GFP on the column to approximately 96%.
Collapse
Affiliation(s)
- Hai-Feng Xia
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China
| | - Jiu-Pei Luo
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Shi-Rui Yu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Ting-Jun Zhou
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
7
|
Haim A, Neubacher S, Grossmann TN. Protein Macrocyclization for Tertiary Structure Stabilization. Chembiochem 2021; 22:2672-2679. [PMID: 34060202 PMCID: PMC8453710 DOI: 10.1002/cbic.202100111] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/26/2021] [Indexed: 12/30/2022]
Abstract
Proteins possess unique molecular recognition capabilities and enzymatic activities, features that are usually tied to a particular tertiary structure. To make use of proteins for biotechnological and biomedical purposes, it is often required to enforce their tertiary structure in order to ensure sufficient stability under the conditions inherent to the application of interest. The introduction of intramolecular crosslinks has proven efficient in stabilizing native protein folds. Herein, we give an overview of methods that allow the macrocyclization of expressed proteins, discussing involved reaction mechanisms and structural implications.
Collapse
Affiliation(s)
- Anissa Haim
- Department of Chemistry and Pharmaceutical SciencesVU University AmsterdamAmsterdamThe Netherlands
| | - Saskia Neubacher
- Department of Chemistry and Pharmaceutical SciencesVU University AmsterdamAmsterdamThe Netherlands
- Incircular B.V.De Boelelaan 11081081 HZAmsterdamThe Netherlands
| | - Tom N. Grossmann
- Department of Chemistry and Pharmaceutical SciencesVU University AmsterdamAmsterdamThe Netherlands
- Amsterdam Institute of Molecular and Life SciencesVU University AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
8
|
Williams JE, Jaramillo MV, Li Z, Zhao J, Wang C, Li H, Mills KV. An alternative domain-swapped structure of the Pyrococcus horikoshii PolII mini-intein. Sci Rep 2021; 11:11680. [PMID: 34083592 PMCID: PMC8175363 DOI: 10.1038/s41598-021-91090-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/19/2021] [Indexed: 01/09/2023] Open
Abstract
Protein splicing is a post-translational process by which an intein catalyzes its own excision from flanking polypeptides, or exteins, concomitant with extein ligation. Many inteins have nested homing endonuclease domains that facilitate their propagation into intein-less alleles, whereas other inteins lack the homing endonuclease (HEN) and are called mini-inteins. The mini-intein that interrupts the DNA PolII of Pyrococcus horikoshii has a linker region in place of the HEN domain that is shorter than the linker in a closely related intein from Pyrococcus abyssi. The P. horikoshii PolII intein requires a higher temperature for catalytic activity and is more stable to digestion by the thermostable protease thermolysin, suggesting that it is more rigid than the P. abyssi intein. We solved a crystal structure of the intein precursor that revealed a domain-swapped dimer. Inteins found as domain swapped dimers have been shown to promote intein-mediated protein alternative splicing, but the solved P. horikoshii PolII intein structure has an active site unlikely to be catalytically competent.
Collapse
Affiliation(s)
- Jennie E Williams
- Department of Chemistry, College of the Holy Cross, 1 College Street, Worcester, MA, USA
| | - Mario V Jaramillo
- Department of Chemistry, College of the Holy Cross, 1 College Street, Worcester, MA, USA
| | - Zhong Li
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, NY, 12208, USA
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA
| | - Jing Zhao
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
- China Agricultural University, Beijing, China
| | - Chunyu Wang
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Hongmin Li
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, NY, 12208, USA
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY, USA
| | - Kenneth V Mills
- Department of Chemistry, College of the Holy Cross, 1 College Street, Worcester, MA, USA.
| |
Collapse
|
9
|
Kawase M, Fujioka M, Takahashi T. Activation of Protease and Luciferase Using Engineered Nostoc punctiforme PCC73102 DnaE Intein with Altered Split Position. Chembiochem 2020; 22:577-584. [PMID: 32969142 DOI: 10.1002/cbic.202000609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/17/2020] [Indexed: 12/22/2022]
Abstract
Inteins, self-catalytic enzymes, have been widely used in the field of protein engineering and chemical biology. Here, Nostoc punctiforme PCC73102 (Npu) DnaE intein was engineered to have an altered split position. An 11-residue N-intein of DnaE in which Gly and Asp were substituted for Tyr4 and Glu5, respectively, was designed, and the active C-intein variants were acquired by a GFP fluorescence-based screening. The designed N-intein and the obtained active C-intein variants were used to construct a turn-on system for enzyme activities such as human immunodeficiency 1 protease and NanoLuc luciferase. Based on the NanoLuc-intein fusion, we developed two intein pairs, each of which is capable of reacting preferentially, by interchanging the charged amino acids on N- and C-inteins. The specific splicing reactions were easily monitored and discriminated by bioluminescence resonance energy transfer (BRET).
Collapse
Affiliation(s)
- Misaki Kawase
- Faculty of Engineering, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| | - Meiko Fujioka
- Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| | - Tsuyoshi Takahashi
- Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| |
Collapse
|
10
|
Robinzon S, Cawood AR, Ruiz MA, Gophna U, Altman-Price N, Mills KV. Protein Splicing Activity of the Haloferax volcanii PolB-c Intein Is Sensitive to Homing Endonuclease Domain Mutations. Biochemistry 2020; 59:3359-3367. [PMID: 32822531 DOI: 10.1021/acs.biochem.0c00512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Inteins are selfish genetic elements residing in open reading frames that can splice post-translationally, resulting in the ligation of an uninterrupted, functional protein. Like other inteins, the DNA polymerase B (PolB) intein of the halophilic archaeon Haloferax volcanii has an active homing endonuclease (HEN) domain, facilitating its horizontal transmission. Previous work has shown that the presence of the PolB intein exerts a significant fitness cost on the organism compared to an intein-free isogenic H. volcanii. Here, we show that mutation of a conserved residue in the HEN domain not only reduces intein homing but also slows growth. Surprisingly, although this mutation is far from the protein splicing active site, it also significantly reduces in vitro protein splicing. Moreover, two additional HEN domain mutations, which could not be introduced to H. volcanii, presumably due to lethality, also eliminate protein splicing activity in vitro. These results suggest an interplay between HEN residues and the protein splicing domain, despite an over 35 Å separation in a PolB intein homology model. The combination of in vivo and in vitro evidence strongly supports a model of codependence between the self-splicing domain and the HEN domain that has been alluded to by previous in vitro studies of protein splicing with HEN domain-containing inteins.
Collapse
Affiliation(s)
- Shachar Robinzon
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Alexandra R Cawood
- Department of Chemistry, College of the Holy Cross, Worcester, Massachusetts 01610, United States
| | - Mercedes A Ruiz
- Department of Chemistry, College of the Holy Cross, Worcester, Massachusetts 01610, United States
| | - Uri Gophna
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Neta Altman-Price
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.,The Open University, Raanana 43107, Israel
| | - Kenneth V Mills
- Department of Chemistry, College of the Holy Cross, Worcester, Massachusetts 01610, United States
| |
Collapse
|
11
|
Abstract
Protein semisynthesis-defined herein as the assembly of a protein from a combination of synthetic and recombinant fragments-is a burgeoning field of chemical biology that has impacted many areas in the life sciences. In this review, we provide a comprehensive survey of this area. We begin by discussing the various chemical and enzymatic methods now available for the manufacture of custom proteins containing noncoded elements. This section begins with a discussion of methods that are more chemical in origin and ends with those that employ biocatalysts. We also illustrate the commonalities that exist between these seemingly disparate methods and show how this is allowing for the development of integrated chemoenzymatic methods. This methodology discussion provides the technical foundation for the second part of the review where we cover the great many biological problems that have now been addressed using these tools. Finally, we end the piece with a short discussion on the frontiers of the field and the opportunities available for the future.
Collapse
Affiliation(s)
| | - Tom W. Muir
- Department of Chemistry, Princeton University, Frick Laboratory, Princeton, New Jersey 08544, United States
| |
Collapse
|
12
|
Fu L, Wang Y, Ju J, Cheng L, Xu Y, Yu B, Wang L. Extracellular production of active-form Streptomyces mobaraensis transglutaminase in Bacillus subtilis. Appl Microbiol Biotechnol 2019; 104:623-631. [PMID: 31797004 DOI: 10.1007/s00253-019-10256-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/06/2019] [Accepted: 11/12/2019] [Indexed: 12/11/2022]
Abstract
Transglutaminase (TG) from Streptomyces mobaraensis has been widely used in the food industry. It is secreted naturally as an inactive zymogen, which is then activated by the removal of the N-terminal pro-peptide. In this study, the mtg gene from S. mobaraensis was expressed in a food-grade strain of bacterium, Bacillus subtilis. When its native signal peptide was replaced by signal peptide SacB (SPsacB) and the pro-peptide was replaced by that derived from S. hygroscopicus, an extracellular activity of 16.1 U/mg was observed. A modified Saccharomyces cerevisiae vacuolar ATPase subunit (VMA) intein was introduced into the zymogen to simplify its activation process by controlling temperature. When the cleavage site in the C-terminal of VMA was placed between the pro-peptide and core domain, the activation process was carried out at 18 °C. Promoter replacement further increased the enzymatic activity. Finally, the extracellular enzymatic activity reached 2.6 U/mg under the control of the constitutive promoter PyvyD. This is the first report on the extracellular production of active-form Streptomyces TG in B. subtilis without splicing with the cleavage enzyme.
Collapse
Affiliation(s)
- Lihong Fu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China.,College of Life Science, Hebei Normal University, Shijiazhuang, 050024, People's Republic of China
| | - Yu Wang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China.,College of Life Science, Hebei Normal University, Shijiazhuang, 050024, People's Republic of China
| | - Jiansong Ju
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, People's Republic of China
| | - Lei Cheng
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, 100048, People's Republic of China
| | - Youqiang Xu
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, 100048, People's Republic of China
| | - Bo Yu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China.,Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, 100048, People's Republic of China
| | - Limin Wang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China. .,Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China.
| |
Collapse
|
13
|
Takahashi T. Generation of Active Protease Depending on Peptide-Protein Interactions Using Interaction-Dependent Native Chemical Ligation and Protein Trans-Splicing. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20190159] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Tsuyoshi Takahashi
- Chemistry and Chemical Biology, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjincho, Kiryu, Gunma 376-8515, Japan
| |
Collapse
|
14
|
Fu J, Yi Z, Cui H, Song C, Yu M, Liu Y. Intein-mediated expression and purification of common carp IFN-γ and its protective effect against spring viremia of carp virus. FISH & SHELLFISH IMMUNOLOGY 2019; 88:403-406. [PMID: 30862516 DOI: 10.1016/j.fsi.2019.03.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/03/2019] [Accepted: 03/08/2019] [Indexed: 06/09/2023]
Abstract
IFN-γ is a pleiotropic cytokine with significant roles in antiviral, antitumor and immune regulation. It could be used as an immuno-enhancer to improve fish protectiveness against pathogens. In this study, the prokaryotic expression plasmid pTwin1-N-IFN-γ was constructed to express Cyprinus carpio (common carp) IFN-γ fused with a chitin binding domain (CBD) and a self-cleavable intein-tag, Synechocystis sp DnaB. The recombinant protein CBD-DnaB-IFN-γ with the molecular weight of 44.25 kD was successfully expressed in soluble form, and the rIFN-γ (approximate 18.61 kD) was further cleaved and eluted under pH = 7.0 at 25 °C. rIFN-γ could be recognized by western blotting with rabbit anti-grass carp IFN-γ polyclonal antibody. Cytotoxicity studies on EPC cells showed that only 500 ng/ml rIFN-γ had a subtle effect on cells growth and its proliferation rate was reduced to 76.2%. EPC cells incubated with 100 ng/ml rIFN-γ showed significantly higher resistance against SVCV, reducing the TCID50/ml by more than 800-fold. In vivo studies suggested that intraperitoneal injection of rIFN-γ significantly improved the survival rate of common carps compared with SVCV challenge alone. These results implied that rIFN-γ would act as an immuno-enhancer in carp aquaculture.
Collapse
Affiliation(s)
- Jianping Fu
- College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi Province, 330022, China
| | - Zhiqiang Yi
- College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi Province, 330022, China
| | - Hao Cui
- College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi Province, 330022, China
| | - Chunhui Song
- College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi Province, 330022, China
| | - Miao Yu
- College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi Province, 330022, China
| | - Yi Liu
- College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi Province, 330022, China.
| |
Collapse
|
15
|
Böcker JK, Dörner W, Mootz HD. Rational design of an improved photo-activatable intein for the production of head-to-tail cyclized peptides. Biol Chem 2018; 400:417-427. [DOI: 10.1515/hsz-2018-0367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 10/31/2018] [Indexed: 01/13/2023]
Abstract
Abstract
Head-to-tail cyclization of genetically encoded peptides and proteins can be achieved with the split intein circular ligation of peptides and proteins (SICLOPPS) method by inserting the desired polypeptide between the C- and N-terminal fragments of a split intein. To prevent the intramolecular protein splicing reaction from spontaneously occurring upon folding of the intein domain, we have previously rendered this process light-dependent in a photo-controllable variant of the M86 intein, using genetically encoded ortho-nitrobenzyltyrosine at a structurally important position. Here, we report improvements on this photo-intein with regard to expression yields and rate of cyclic peptide formation. The temporally defined photo-activation of the purified stable intein precursor enabled a kinetic analysis that identified the final resolution of the branched intermediate as the rate-determining individual reaction of the three steps catalyzed by the intein. With this knowledge, we prepared an R143H mutant with a block F histidine residue. This histidine is conserved in most inteins and helps catalyze the third step of succinimide formation. The engineered intein formed the cyclic peptide product up to 3-fold faster within the first 15 min after irradiation, underlining the potential of protein splicing pathway engineering. The broader utility of the intein was also shown by formation of the 14-mer sunflower trypsin inhibitor 1.
Collapse
Affiliation(s)
- Jana K. Böcker
- Department of Chemistry and Pharmacy, Institute of Biochemistry , University of Münster , Wilhelm-Klemm-Str. 2 , D-48149 Münster , Germany
| | - Wolfgang Dörner
- Department of Chemistry and Pharmacy, Institute of Biochemistry , University of Münster , Wilhelm-Klemm-Str. 2 , D-48149 Münster , Germany
| | - Henning D. Mootz
- Department of Chemistry and Pharmacy, Institute of Biochemistry , University of Münster , Wilhelm-Klemm-Str. 2 , D-48149 Münster , Germany
| |
Collapse
|
16
|
Friedel K, Popp MA, Matern JCJ, Gazdag EM, Thiel IV, Volkmann G, Blankenfeldt W, Mootz HD. A functional interplay between intein and extein sequences in protein splicing compensates for the essential block B histidine. Chem Sci 2018; 10:239-251. [PMID: 30713635 PMCID: PMC6333167 DOI: 10.1039/c8sc01074a] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 10/03/2018] [Indexed: 01/28/2023] Open
Abstract
Steric bulk can compensate for a catalytically critical histidine in an intein's active site and promote the N–S acyl shift.
Inteins remove themselves from a precursor protein by protein splicing. Due to the concomitant structural changes of the host protein, this self-processing reaction has enabled many applications in protein biotechnology and chemical biology. We show that the evolved M86 mutant of the Ssp DnaB intein displays a significantly improved tolerance towards non-native amino acids at the N-terminally flanking (–1) extein position compared to the parent intein, in the form of both an artificially trans-splicing split intein and the cis-splicing mini-intein. Surprisingly, side chains with increased steric bulk compared to the native Gly(–1) residue, including d-amino acids, were found to compensate for the essential block B histidine in His73Ala mutants in the initial N–S acyl shift of the protein splicing pathway. In the case of the M86 intein, large (–1) side chains can even rescue protein splicing activity as a whole. With the comparison of three crystal structures, namely of the M86 intein as well as of its Gly(–1)Phe and Gly(–1)Phe/His73Ala mutants, our data supports a model in which the intein's active site can exert a strain by varying mechanisms on the different angles of the scissile bond at the extein–intein junction to effect a ground-state destabilization. The compensatory mechanism of the block B histidine is the first example for the direct functional role of an extein residue in protein splicing. It sheds new light on the extein–intein interplay and on possible consequences of their co-evolution as well as on the laboratory engineering of improved inteins.
Collapse
Affiliation(s)
- Kristina Friedel
- Institute of Biochemistry , University of Muenster , Wilhelm-Klemm-Str. 2 , 48149 Münster , Germany .
| | - Monika A Popp
- Structure and Function of Proteins , Helmholtz Centre for Infection Research , Inhoffenstraße 7 , 38124 , Braunschweig , Germany
| | - Julian C J Matern
- Institute of Biochemistry , University of Muenster , Wilhelm-Klemm-Str. 2 , 48149 Münster , Germany .
| | - Emerich M Gazdag
- Structure and Function of Proteins , Helmholtz Centre for Infection Research , Inhoffenstraße 7 , 38124 , Braunschweig , Germany
| | - Ilka V Thiel
- Institute of Biochemistry , University of Muenster , Wilhelm-Klemm-Str. 2 , 48149 Münster , Germany .
| | - Gerrit Volkmann
- Institute of Biochemistry , University of Muenster , Wilhelm-Klemm-Str. 2 , 48149 Münster , Germany .
| | - Wulf Blankenfeldt
- Structure and Function of Proteins , Helmholtz Centre for Infection Research , Inhoffenstraße 7 , 38124 , Braunschweig , Germany.,Institute for Biochemistry, Biotechnology and Bioinformatics , Technische Universität Braunschweig , Spielmannstraße 7 , 38106 Braunschweig , Germany
| | - Henning D Mootz
- Institute of Biochemistry , University of Muenster , Wilhelm-Klemm-Str. 2 , 48149 Münster , Germany .
| |
Collapse
|
17
|
Enhanced Production of Recombinant Protein by Fusion Expression with Ssp DnaB Mini-Intein in the Baculovirus Expression System. Viruses 2018; 10:v10100523. [PMID: 30257457 PMCID: PMC6213604 DOI: 10.3390/v10100523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/19/2018] [Accepted: 09/24/2018] [Indexed: 01/16/2023] Open
Abstract
The baculovirus expression system (BES) is considered to be a very powerful tool for the expression of numerous difficult to express vertebrate proteins. Ssp DnaB mini-intein is a useful fusion partner for the production of recombinant proteins because it can be self-cleaved by controlling the pH and temperature, without additional treatment. To evaluate the utility of Ssp DnaB mini-intein in the BES, recombinant viruses were generated to express the enhanced green fluorescent protein, the VP2 protein of porcine parvovirus, and the E2 protein of classical swine fever virus fused to a mini-intein. As expected, intracellular self-cleavage of the mini-intein occurred during virus infection, but the cleavage initiation time varied depending on the target protein. Significantly enhanced protein production was observed for all of the target proteins that were fused to the mini-intein. This increase was enough to overcome the decrease in the fusion protein due to intracellular self-cleavage. The mini-intein in all of the recombinant fusion proteins was successfully cleaved by controlling the pH and temperature. These results suggest that the Ssp DnaB mini-intein is a useful fusion partner in the BES for easy purification and enhanced production of target proteins.
Collapse
|
18
|
Matern JCJ, Friedel K, Binschik J, Becher KS, Yilmaz Z, Mootz HD. Altered Coordination of Individual Catalytic Steps in Different and Evolved Inteins Reveals Kinetic Plasticity of the Protein Splicing Pathway. J Am Chem Soc 2018; 140:11267-11275. [PMID: 30111090 DOI: 10.1021/jacs.8b04794] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Protein splicing performed by inteins provides powerful opportunities to manipulate protein structure and function, however, detailed mechanistic knowledge of the multistep pathway to help engineering optimized inteins remains scarce. A typical intein has to coordinate three steps to maximize the product yield of ligated exteins. We have revealed a new type of coordination in the Ssp DnaB intein, in which the initial N- S acyl shift appears rate-limiting and acts as an up-regulation switch to dramatically accelerate the last step of succinimide formation, which is thus coupled to the first step. The structure-activity relationship at the N-terminal scissile bond was studied with atomic precision using a semisynthetic split intein. We show that the removal of the extein acyl group from the α-amino moiety of the intein's first residue is strictly required and sufficient for the up-regulation switch. Even an acetyl group as the smallest possible extein moiety completely blocked the switch. Furthermore, we investigated the M86 intein, a mutant with faster splicing kinetics previously obtained by laboratory evolution of the Ssp DnaB intein, and the individual impact of its eight mutations. The succinimide formation was decoupled from the first step in the M86 intein, but the acquired H143R mutation acts as a brake to prevent premature C-terminal cleavage and thereby maximizes splicing yields. Together, these results revealed a high degree of plasticity in the kinetic coordination of the splicing pathway. Furthermore, our study led to the rational design of improved M86 mutants with the highest yielding trans-splicing and fastest trans-cleavage activities.
Collapse
Affiliation(s)
- Julian C J Matern
- Institute of Biochemistry, Department of Chemistry and Pharmacy , University of Muenster , Wilhelm-Klemm-Str. 2 , 48149 Münster , Germany
| | - Kristina Friedel
- Institute of Biochemistry, Department of Chemistry and Pharmacy , University of Muenster , Wilhelm-Klemm-Str. 2 , 48149 Münster , Germany
| | - Jens Binschik
- Institute of Biochemistry, Department of Chemistry and Pharmacy , University of Muenster , Wilhelm-Klemm-Str. 2 , 48149 Münster , Germany
| | - Kira-Sophie Becher
- Institute of Biochemistry, Department of Chemistry and Pharmacy , University of Muenster , Wilhelm-Klemm-Str. 2 , 48149 Münster , Germany
| | - Zahide Yilmaz
- Institute of Biochemistry, Department of Chemistry and Pharmacy , University of Muenster , Wilhelm-Klemm-Str. 2 , 48149 Münster , Germany
| | - Henning D Mootz
- Institute of Biochemistry, Department of Chemistry and Pharmacy , University of Muenster , Wilhelm-Klemm-Str. 2 , 48149 Münster , Germany
| |
Collapse
|
19
|
Wang J, Scheibel T. Recombinant Production of Mussel Byssus Inspired Proteins. Biotechnol J 2018; 13:e1800146. [DOI: 10.1002/biot.201800146] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 06/28/2018] [Indexed: 12/30/2022]
Affiliation(s)
- Jia Wang
- Lehrstuhl BiomaterialienUniversität BayreuthUniversitätsstraße 3095440BayreuthGermany
| | - Thomas Scheibel
- Lehrstuhl BiomaterialienUniversität BayreuthUniversitätsstraße 3095440BayreuthGermany
- Forschungszentrum für Bio‐Makromoleküle (BIOmac)Universität BayreuthBayreuthGermany
- Bayreuther Zentrum für Kolloide und Grenzflächen (BZKG)Universität BayreuthBayreuthGermany
- Bayreuther Materialzentrum (BayMat)Universität BayreuthBayreuthGermany
- Bayreuther Zentrum für Molekulare Biowissenschaften (BZMB)Universität BayreuthBayreuthGermany
| |
Collapse
|
20
|
Li X, Zhang XL, Cai YM, Zhang L, Lin Y, Meng Q. Site specific labeling of two proteins in one system by atypical split inteins. Int J Biol Macromol 2018; 109:921-931. [DOI: 10.1016/j.ijbiomac.2017.11.077] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/06/2017] [Accepted: 11/12/2017] [Indexed: 01/25/2023]
|
21
|
Esipov RS, Makarov DA, Stepanenko VN, Kostromina MA, Muravyova TI, Andreev YA, Dyachenko IA, Kozlov SA, Grishin EV. Pilot production of the recombinant peptide toxin of Heteractis crispa as a potential analgesic by intein-mediated technology. Protein Expr Purif 2017; 145:71-76. [PMID: 29289634 DOI: 10.1016/j.pep.2017.12.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 12/22/2017] [Accepted: 12/24/2017] [Indexed: 10/18/2022]
Abstract
APHC3 is an analgesic polypeptide that was found in the sea anemone (Heteractis crispa), and contains 56 amino acid residues. This polypeptide is of interest for the development of medications for diseases, associated with inflammatory or neuropathological processes, as well as its use as an analgesic. This work presents an innovative biotechnological method for APHC3 production. We have constructed a recombinant plasmid intended for biosynthesizing the fusion protein consisting of a chitin-binding domain, DnaB mini-intein from Synechocystis sp. capable of undergoing pH-dependent self-cleavage, and the target peptide. In the process of biosynthesis the fusion protein aggregates and forms the inclusion bodies that are welcomed since APHC3 is a cytotoxic peptide. The target peptide recovery process developed by us involves 3 chromatographic steps. The method developed by us enables to produce 940 mg of the recombinant APHC3 from 100 g of the inclusion bodies. The method is straightforward to implement and scale up. The recombinant APHC3 activity and effectiveness as an analgesic was proved by animal testing.
Collapse
Affiliation(s)
- Roman S Esipov
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, GSP-7, Miklukho-Maklaya str., 16/10, 117997, Moscow, Russian Federation.
| | - Dmitry A Makarov
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, GSP-7, Miklukho-Maklaya str., 16/10, 117997, Moscow, Russian Federation.
| | - Vasily N Stepanenko
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, GSP-7, Miklukho-Maklaya str., 16/10, 117997, Moscow, Russian Federation.
| | - Maria A Kostromina
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, GSP-7, Miklukho-Maklaya str., 16/10, 117997, Moscow, Russian Federation.
| | - Tatyana I Muravyova
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, GSP-7, Miklukho-Maklaya str., 16/10, 117997, Moscow, Russian Federation.
| | - Yaroslav A Andreev
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, GSP-7, Miklukho-Maklaya str., 16/10, 117997, Moscow, Russian Federation.
| | - Igor A Dyachenko
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, GSP-7, Miklukho-Maklaya str., 16/10, 117997, Moscow, Russian Federation.
| | - Sergey A Kozlov
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, GSP-7, Miklukho-Maklaya str., 16/10, 117997, Moscow, Russian Federation.
| | - Evgeny V Grishin
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, GSP-7, Miklukho-Maklaya str., 16/10, 117997, Moscow, Russian Federation.
| |
Collapse
|
22
|
Iwaï H, Mikula KM, Oeemig JS, Zhou D, Li M, Wlodawer A. Structural Basis for the Persistence of Homing Endonucleases in Transcription Factor IIB Inteins. J Mol Biol 2017; 429:3942-3956. [PMID: 29055778 PMCID: PMC6309676 DOI: 10.1016/j.jmb.2017.10.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/29/2017] [Accepted: 10/12/2017] [Indexed: 11/19/2022]
Abstract
Inteins are mobile genetic elements that are spliced out of proteins after translation. Some inteins contain a homing endonuclease (HEN) responsible for their propagation. Hedgehog/INTein (HINT) domains catalyzing protein splicing and their nested HEN domains are thought to be functionally independent because of the existence of functional mini-inteins without HEN domains. Despite the lack of obvious mutualism between HEN and HINT domains, HEN domains are persistently found at one specific site in inteins, indicating their potential functional role in protein splicing. Here we report crystal structures of inactive and active mini-inteins derived from inteins residing in the transcription factor IIB of Methanococcus jannaschii and Methanocaldococcus vulcanius, revealing a novel modified HINT fold that might provide new insights into the mutualism between the HEN and HINT domains. We propose an evolutionary model of inteins and a functional role of HEN domains in inteins.
Collapse
Affiliation(s)
- Hideo Iwaï
- Research Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, P.O. Box 65, Helsinki FIN-00014, Finland.
| | - Kornelia M Mikula
- Research Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, P.O. Box 65, Helsinki FIN-00014, Finland
| | - Jesper S Oeemig
- Research Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, P.O. Box 65, Helsinki FIN-00014, Finland
| | - Dongwen Zhou
- Macromolecular Crystallography Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Mi Li
- Macromolecular Crystallography Laboratory, National Cancer Institute, Frederick, MD 21702, USA; Basic Science Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Alexander Wlodawer
- Macromolecular Crystallography Laboratory, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
23
|
Chauhan S, Hou CY, Jung ST, Kang TJ. Detection and purification of backbone-cyclized proteins using a bacterially expressed anti-myc-tag single chain antibody. Anal Biochem 2017; 532:38-44. [PMID: 28600127 DOI: 10.1016/j.ab.2017.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 06/01/2017] [Accepted: 06/05/2017] [Indexed: 11/26/2022]
Abstract
A myc-tag and of which recognition by an antibody 9E10 has long been used for the detection and purification of recombinant proteins. We have previously expanded the application of the tag to the specific detection and purification of backbone-cyclized proteins. Here we sought a more practical way to using the 9E10 antibody by expressing its single chain antibody (scAb) form in Escherichia coli. The combined use of a strong T7 promoter and auto-induction strategy rather than early to mid-log induction of a Lac promoter resulted in the soluble over-expression of 9E10 scAb. However, the co-expression of a chaperone, Skp, was absolutely necessary for the activity even when the protein was expressed in a soluble manner. We could purify about 4 mg of 9E10 scAb from 1 l of culture, and the resulting scAb could be used to detect and purify the backbone-cyclized protein as the parental full-length 9E10. Moreover, the immunoaffinity resin prepared using 9E10 scAb could be regenerated several times after the elution of bound proteins using an acid, which added more value to the ready preparation of the active antibody in bacteria.
Collapse
Affiliation(s)
- Sushma Chauhan
- Department of Chemical and Biochemical Engineering, Dongguk University-Seoul, Seoul 04620, South Korea
| | - Chen Yuan Hou
- Department of Chemical and Biochemical Engineering, Dongguk University-Seoul, Seoul 04620, South Korea
| | - Sang Taek Jung
- Department of Bio and Nano Chemistry, Kookmin University, Seoul, 02707, South Korea
| | - Taek Jin Kang
- Department of Chemical and Biochemical Engineering, Dongguk University-Seoul, Seoul 04620, South Korea.
| |
Collapse
|
24
|
Zhao Q, Zhou B, Gao X, Xing L, Wang X, Lin Z. A cleavable self-assembling tag strategy for preparing proteins and peptides with an authentic N-terminus. Biotechnol J 2017; 12. [DOI: 10.1002/biot.201600656] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 03/14/2017] [Accepted: 03/15/2017] [Indexed: 10/20/2022]
Affiliation(s)
- Qing Zhao
- Department of Chemical Engineering; Tsinghua University; Beijing China
| | - Bihong Zhou
- Department of Chemical Engineering; Tsinghua University; Beijing China
- Blue Moon Industrial Co. Ltd.; Guangzhou Guangdong China
| | - Xianxing Gao
- Department of Chemical Engineering; Tsinghua University; Beijing China
| | - Lei Xing
- Department of Chemical Engineering; Tsinghua University; Beijing China
- China National Petroleum & Chemical Planning Institute; Beijing China
| | - Xu Wang
- Department of Chemical Engineering; Tsinghua University; Beijing China
| | - Zhanglin Lin
- Department of Chemical Engineering; Tsinghua University; Beijing China
- School of Biology and Biological Engineering; South China University of Technology; Guangzhou Guangdong China
| |
Collapse
|
25
|
Qi X, Xiong S. Intein-mediated backbone cyclization of VP1 protein enhanced protection of CVB3-induced viral myocarditis. Sci Rep 2017; 7:41485. [PMID: 28148910 PMCID: PMC5288654 DOI: 10.1038/srep41485] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 12/21/2016] [Indexed: 01/27/2023] Open
Abstract
CVB3 is a common human pathogen to be highly lethal to newborns and causes viral myocarditis and pancreatitis in adults. However, there is no vaccine available for clinical use. CVB3 capsid protein VP1 is an immunodominant structural protein, containing several B- and T-cell epitopes. However, immunization of mice with VP1 protein is ineffective. Cyclization of peptide is commonly used to improve their in vivo stability and biological activity. Here, we designed and synthesizd cyclic VP1 protein by using engineered split Rma DnaB intein and the cyclization efficiency was 100% in E. coli. As a result, the cyclic VP1 was significantly more stable against irreversible aggregation upon heating and against carboxypeptidase in vitro and the degradation rate was more slowly in vivo. Compared with linear VP1, immunization mice with circular VP1 significantly increased CVB3-specific serum IgG level and augmented CVB3-specific cellular immune responses, consequently afforded better protection against CVB3-induced viral myocarditis. The cyclic VP1 may be a novel candidate protein vaccine for preventing CVB3 infection and similar approaches could be employed to a variety of protein vaccines to enhance their protection effect.
Collapse
Affiliation(s)
- Xingmei Qi
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Sidong Xiong
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
26
|
Bosmans RPG, Hendriksen WE, Verheijden M, Eelkema R, Jonkheijm P, van Esch JH, Brunsveld L. Supramolecular Protein Immobilization on Lipid Bilayers. Chemistry 2015; 21:18466-73. [DOI: 10.1002/chem.201502461] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Indexed: 01/08/2023]
|
27
|
Bachmann AL, Mootz HD. An Unprecedented Combination of Serine and Cysteine Nucleophiles in a Split Intein with an Atypical Split Site. J Biol Chem 2015; 290:28792-804. [PMID: 26453311 DOI: 10.1074/jbc.m115.677237] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Indexed: 11/06/2022] Open
Abstract
Protein splicing mediated by inteins is a self-processive reaction leading to the excision of the internal intein domain from a precursor protein and the concomitant ligation of the flanking sequences, the extein-N and extein-C parts, thereby reconstituting the host protein. Most inteins employ a splicing pathway in which the upstream scissile peptide bond is consecutively rearranged into two thioester or oxoester intermediates before intein excision and rearrangement into the new peptide bond occurs. The catalytically critical amino acids involved at the two splice junctions are cysteine, serine, or threonine. Notably, the only potential combination not observed so far in any of the known or engineered inteins corresponds to the transesterification from an oxoester to a thioester, which suggested that this formal uphill reaction with regard to the thermodynamic stability might be incompatible with intein-mediated catalysis. We show that corresponding mutations also led to inactive gp41-1 and AceL-TerL inteins. We report the novel GOS-TerL split intein identified from metagenomic databases as the first intein harboring the combination of Ser1 and Cys+1 residues. Mutational analysis showed that its efficient splicing reaction indeed follows the shift from oxoester to thioester and thus represents a rare diversion from the canonical pathway. Furthermore, the GOS-TerL intein has an atypical split site close to the N terminus. The Int(N) fragment could be shortened from 37 to 28 amino acids and exchanged with the 25-amino acid Int(N) fragment from the AceL-TerL intein, indicating a high degree of promiscuity of the Int(C) fragment of the GOS-TerL intein.
Collapse
Affiliation(s)
- Anne-Lena Bachmann
- From the Department of Chemistry and Pharmacy, Institute of Biochemistry, University of Muenster, 48149 Münster, Germany
| | - Henning D Mootz
- From the Department of Chemistry and Pharmacy, Institute of Biochemistry, University of Muenster, 48149 Münster, Germany
| |
Collapse
|
28
|
Postsynthetic Domain Assembly with NpuDnaE and SspDnaB Split Inteins. Appl Biochem Biotechnol 2015; 177:1137-51. [DOI: 10.1007/s12010-015-1802-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 08/04/2015] [Indexed: 10/23/2022]
|
29
|
Li Y. Split-inteins and their bioapplications. Biotechnol Lett 2015; 37:2121-37. [DOI: 10.1007/s10529-015-1905-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 06/29/2015] [Indexed: 01/01/2023]
|
30
|
Abstract
Protein splicing in trans by split inteins has increasingly become a powerful protein-engineering tool for protein ligation, both in vivo and in vitro. Over 100 naturally occurring and artificially engineered split inteins have been reported for protein ligation using protein trans-splicing. Here, we review the current status of the reported split inteins in order to delineate an empirical or rational strategy for constructing new split inteins suitable for various applications in biotechnology and chemical biology.
Collapse
Affiliation(s)
- A Sesilja Aranko
- Research Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, P.O. Box 65, Helsinki FIN-00014, Finland
| | - Alexander Wlodawer
- Macromolecular Crystallography Laboratory, National Cancer Institute-Frederick, MD 21702, USA
| | - Hideo Iwaï
- Research Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, P.O. Box 65, Helsinki FIN-00014, Finland
| |
Collapse
|
31
|
Jiang A, Jin W, Zhao F, Tang Y, Sun Z, Liu JN. Split Ssp DnaB mini-intein-mediated production of recombinant human glucagon-like peptide-1/7-36. Biotechnol Appl Biochem 2015; 62:309-15. [DOI: 10.1002/bab.1274] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 07/22/2014] [Indexed: 11/06/2022]
Affiliation(s)
- Aiqin Jiang
- Institute of Molecular Medicine; Nanjing University; Nanjing People's Republic of China
| | - Wenbo Jin
- Institute of Molecular Medicine; Nanjing University; Nanjing People's Republic of China
| | - Feng Zhao
- Institute of Molecular Medicine; Nanjing University; Nanjing People's Republic of China
| | - Yanchun Tang
- Institute of Molecular Medicine; Nanjing University; Nanjing People's Republic of China
| | - Ziyong Sun
- Institute of Molecular Medicine; Nanjing University; Nanjing People's Republic of China
| | - Jian-Ning Liu
- Institute of Molecular Medicine; Nanjing University; Nanjing People's Republic of China
| |
Collapse
|
32
|
Matern JCJ, Bachmann AL, Thiel IV, Volkmann G, Wasmuth A, Binschik J, Mootz HD. Ligation of synthetic peptides to proteins using semisynthetic protein trans-splicing. Methods Mol Biol 2015; 1266:129-143. [PMID: 25560072 DOI: 10.1007/978-1-4939-2272-7_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Protein trans-splicing using split inteins is a powerful and convenient reaction to chemically modify recombinantly expressed proteins under mild conditions. In particular, semisynthetic protein trans-splicing with one intein fragment short enough to be accessible by solid-phase peptide synthesis can be used to transfer a short peptide segment with the desired synthetic moiety to the protein of interest. In this chapter, we provide detailed protocols for two such split intein systems. The M86 mutant of the Ssp DnaB intein and the MX1 mutant of the AceL-TerL intein are two highly engineered split inteins with very short N-terminal intein fragments of only 11 and 25 amino acids, respectively, and allow the efficient N-terminal labeling of proteins.
Collapse
Affiliation(s)
- Julian C J Matern
- Department of Chemistry and Pharmacy, Institute of Biochemistry, University of Muenster, Wilhelm-Klemm-Str. 2, 48149, Münster, Germany
| | | | | | | | | | | | | |
Collapse
|
33
|
Miraula M, Enculescu C, Schenk G, Mitić N. Inteins—A Focus on the Biotechnological Applications of Splicing-Promoting Proteins. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/ajmb.2015.52005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
34
|
Böcker JK, Friedel K, Matern JCJ, Bachmann AL, Mootz HD. Generation of a Genetically Encoded, Photoactivatable Intein for the Controlled Production of Cyclic Peptides. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201409848] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
35
|
Böcker JK, Friedel K, Matern JCJ, Bachmann AL, Mootz HD. Generation of a Genetically Encoded, Photoactivatable Intein for the Controlled Production of Cyclic Peptides. Angew Chem Int Ed Engl 2014; 54:2116-20. [DOI: 10.1002/anie.201409848] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 11/04/2014] [Indexed: 01/19/2023]
|
36
|
Aranko AS, Oeemig JS, Zhou D, Kajander T, Wlodawer A, Iwaï H. Structure-based engineering and comparison of novel split inteins for protein ligation. MOLECULAR BIOSYSTEMS 2014; 10:1023-34. [PMID: 24574026 PMCID: PMC7709711 DOI: 10.1039/c4mb00021h] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Protein splicing is an autocatalytic process involving self-excision of an internal protein domain, the intein, and concomitant ligation of the two flanking sequences, the exteins, with a peptide bond. Protein splicing can also take place in trans by naturally split inteins or artificially split inteins, ligating the exteins on two different polypeptide chains into one polypeptide chain. Protein trans-splicing could work in foreign contexts by replacing the native extein sequences with other protein sequences. Protein ligation using protein trans-splicing increasingly becomes a useful tool for biotechnological applications such as semi-synthesis of proteins, segmental isotopic labeling, and in vivo protein engineering. However, only a few split inteins have been successfully applied for protein ligation. Naturally split inteins have been widely used, but they are cross-reactive to each other, limiting their applications to multiple-fragment ligation. Based on the three-dimensional structures including two newly determined intein structures, we derived 21 new split inteins from four highly efficient cis-splicing inteins, in order to develop novel split inteins suitable for protein ligation. We systematically compared trans-splicing of 24 split inteins and tested the cross-activities among them to identify orthogonal split intein fragments that could be used in chemical biology and biotechnological applications.
Collapse
Affiliation(s)
- A Sesilja Aranko
- Research Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, P.O. Box 65, Helsinki, FIN-00014, Finland.
| | | | | | | | | | | |
Collapse
|
37
|
Wood DW, Camarero JA. Intein applications: from protein purification and labeling to metabolic control methods. J Biol Chem 2014; 289:14512-9. [PMID: 24700459 DOI: 10.1074/jbc.r114.552653] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The discovery of inteins in the early 1990s opened the door to a wide variety of new technologies. Early engineered inteins from various sources allowed the development of self-cleaving affinity tags and new methods for joining protein segments through expressed protein ligation. Some applications were developed around native and engineered split inteins, which allow protein segments expressed separately to be spliced together in vitro. More recently, these early applications have been expanded and optimized through the discovery of highly efficient trans-splicing and trans-cleaving inteins. These new inteins have enabled a wide variety of applications in metabolic engineering, protein labeling, biomaterials construction, protein cyclization, and protein purification.
Collapse
Affiliation(s)
- David W Wood
- From the Department of Chemical and Biomolecular Engineering, Ohio State University, Columbus, Ohio 43210 and
| | - Julio A Camarero
- the Departments of Pharmacology and Pharmaceutical Sciences and Department of Chemistry, University of Southern California, Los Angeles, California 90033
| |
Collapse
|
38
|
Luan C, Xie YG, Pu YT, Zhang HW, Han FF, Feng J, Wang YZ. Recombinant expression of antimicrobial peptides using a novel self-cleaving aggregation tag in Escherichia coli. Can J Microbiol 2014; 60:113-20. [DOI: 10.1139/cjm-2013-0652] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Antimicrobial peptides (AMPs) are part of the innate immune system of complex multicellular organisms. Despite the fact that AMPs show great potential as a novel class of antibiotics, the lack of a cost-effective means for their mass production limits both basic research and clinical use. In this work, we describe a novel expression system for the production of antimicrobial peptides in Escherichia coli by combining ΔI-CM mini-intein with the self-assembling amphipathic peptide 18A to drive the formation of active aggregates. Two AMPs, human β-defensin 2 and LL-37, were fused to the self-cleaving tag and expressed as active protein aggregates. The active aggregates were recovered by centrifugation and the intact antimicrobial peptides were released into solution by an intein-mediated cleavage reaction in cleaving buffer (phosphate-buffered saline supplemented with 40 mmol/L Bis–Tris, 2 mmol/L EDTA, pH 6.2). The peptides were further purified by cation-exchange chromatography. Peptides yields of 0.82 ± 0.24 and 0.59 ± 0.11 mg/L were achieved for human β-defensin 2 and LL-37, respectively, with demonstrated antimicrobial activity. Using our expression system, intact antimicrobial peptides were recovered by simple centrifugation from active protein aggregates after the intein-mediated cleavage reaction. Thus, we provide an economical and efficient way to produce intact antimicrobial peptides in E. coli.
Collapse
Affiliation(s)
- Chao Luan
- Institute of Feed Science, Zhejiang University, Key Laboratory of Animal Nutrition and Feed Science, Ministry of Agriculture (East China), Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou 310058, People’s Republic of China
| | - Yong Gang Xie
- Institute of Feed Science, Zhejiang University, Key Laboratory of Animal Nutrition and Feed Science, Ministry of Agriculture (East China), Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou 310058, People’s Republic of China
| | - Yu Tian Pu
- Institute of Feed Science, Zhejiang University, Key Laboratory of Animal Nutrition and Feed Science, Ministry of Agriculture (East China), Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou 310058, People’s Republic of China
| | - Hai Wen Zhang
- Institute of Feed Science, Zhejiang University, Key Laboratory of Animal Nutrition and Feed Science, Ministry of Agriculture (East China), Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou 310058, People’s Republic of China
| | - Fei Fei Han
- Institute of Feed Science, Zhejiang University, Key Laboratory of Animal Nutrition and Feed Science, Ministry of Agriculture (East China), Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou 310058, People’s Republic of China
| | - Jie Feng
- Institute of Feed Science, Zhejiang University, Key Laboratory of Animal Nutrition and Feed Science, Ministry of Agriculture (East China), Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou 310058, People’s Republic of China
| | - Yi Zhen Wang
- Institute of Feed Science, Zhejiang University, Key Laboratory of Animal Nutrition and Feed Science, Ministry of Agriculture (East China), Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou 310058, People’s Republic of China
| |
Collapse
|
39
|
Topilina NI, Mills KV. Recent advances in in vivo applications of intein-mediated protein splicing. Mob DNA 2014; 5:5. [PMID: 24490831 PMCID: PMC3922620 DOI: 10.1186/1759-8753-5-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 01/07/2014] [Indexed: 01/27/2023] Open
Abstract
Intein-mediated protein splicing has become an essential tool in modern biotechnology. Fundamental progress in the structure and catalytic strategies of cis- and trans-splicing inteins has led to the development of modified inteins that promote efficient protein purification, ligation, modification and cyclization. Recent work has extended these in vitro applications to the cell or to whole organisms. We review recent advances in intein-mediated protein expression and modification, post-translational processing and labeling, protein regulation by conditional protein splicing, biosensors, and expression of trans-genes.
Collapse
Affiliation(s)
| | - Kenneth V Mills
- Department of Chemistry, College of the Holy Cross, 1 College Street, Worcester, MA 01610, USA.
| |
Collapse
|
40
|
pH-dependent activation of Streptomyces hygroscopicus transglutaminase mediated by intein. Appl Environ Microbiol 2013; 80:723-9. [PMID: 24242235 DOI: 10.1128/aem.02820-13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microbial transglutaminase (MTG) from Streptomyces is naturally secreted as a zymogen (pro-MTG), which is then activated by the removal of its N-terminal proregion by additional proteases. Inteins are protein-intervening sequences that catalyze protein splicing without cofactors. In this study, a pH-dependent Synechocystis sp. strain PCC6803 DnaB mini-intein (SDB) was introduced into pro-MTG to simplify its activation process by controlling pH. The recombinant protein (pro-SDB-MTG) was obtained, and the activation process was determined to take 24 h at pH 7 in vitro. To investigate the effect of the first residue in MTG on the activity and the cleavage time, two variants, pro-SDB-MTG(D1S) and pro-SDB-MTG(ΔD1), were expressed, and the activation time was found to be 6 h and 30 h, respectively. The enzymatic property and secondary structure of the recombinant MTG and two variants were similar to those of the wild type, indicating that the insertion of mini-intein did not affect the function of MTG. This insignificant effect was further illustrated by molecular dynamics simulations. This study revealed a controllable and effective strategy to regulate the activation process of pro-MTG mediated by a mini-intein, and it may have great potential for industrial MTG production.
Collapse
|
41
|
Zettler J, Eppmann S, Busche A, Dikovskaya D, Dötsch V, Mootz HD, Sonntag T. SPLICEFINDER - a fast and easy screening method for active protein trans-splicing positions. PLoS One 2013; 8:e72925. [PMID: 24023792 PMCID: PMC3759424 DOI: 10.1371/journal.pone.0072925] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 07/15/2013] [Indexed: 11/18/2022] Open
Abstract
Split intein enabled protein trans-splicing (PTS) is a powerful method for the ligation of two protein fragments, thereby paving the way for various protein modification or protein function control applications. PTS activity is strongly influenced by the amino acids directly flanking the splice junctions. However, to date no reliable prediction can be made whether or not a split intein is active in a particular foreign extein context. Here we describe SPLICEFINDER, a PCR-based method, allowing fast and easy screening for active split intein insertions in any target protein. Furthermore we demonstrate the applicability of SPLICEFINDER for segmental isotopic labeling as well as for the generation of multi-domain and enzymatically active proteins.
Collapse
Affiliation(s)
- Joachim Zettler
- Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Simone Eppmann
- Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Alena Busche
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt/Main, Germany
| | - Dina Dikovskaya
- CRUK Beatson Laboratories, University of Glasgow, Glasgow, United Kingdom
| | - Volker Dötsch
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt/Main, Germany
| | - Henning D. Mootz
- Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Tim Sonntag
- Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
- * E-mail:
| |
Collapse
|
42
|
Sorci M, Dassa B, Liu H, Anand G, Dutta AK, Pietrokovski S, Belfort M, Belfort G. Oriented covalent immobilization of antibodies for measurement of intermolecular binding forces between zipper-like contact surfaces of split inteins. Anal Chem 2013; 85:6080-8. [PMID: 23679912 PMCID: PMC3760192 DOI: 10.1021/ac400949t] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In order to measure the intermolecular binding forces between two halves (or partners) of naturally split protein splicing elements called inteins, a novel thiol-hydrazide linker was designed and used to orient immobilized antibodies specific for each partner. Activation of the surfaces was achieved in one step, allowing direct intermolecular force measurement of the binding of the two partners of the split intein (called protein trans-splicing). Through this binding process, a whole functional intein is formed resulting in subsequent splicing. Atomic force microscopy (AFM) was used to directly measure the split intein partner binding at 1 μm/s between native (wild-type) and mixed pairs of C- and N-terminal partners of naturally occurring split inteins from three cyanobacteria. Native and mixed pairs exhibit similar binding forces within the error of the measurement technique (~52 pN). Bioinformatic sequence analysis and computational structural analysis discovered a zipper-like contact between the two partners with electrostatic and nonpolar attraction between multiple aligned ion pairs and hydrophobic residues. Also, we tested the Jarzynski's equality and demonstrated, as expected, that nonequilibrium dissipative measurements obtained here gave larger energies of interaction as compared with those for equilibrium. Hence, AFM coupled with our immobilization strategy and computational studies provides a useful analytical tool for the direct measurement of intermolecular association of split inteins and could be extended to any interacting protein pair.
Collapse
Affiliation(s)
- Mirco Sorci
- Howard P. Isermann Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Bareket Dassa
- Molecular Genetics Department, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Hongwei Liu
- Howard P. Isermann Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Gaurav Anand
- Howard P. Isermann Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Amit K. Dutta
- Howard P. Isermann Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Shmuel Pietrokovski
- Molecular Genetics Department, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Marlene Belfort
- Department of Biological Sciences, University at Albany, SUNY, Albany, NY 12222
| | - Georges Belfort
- Howard P. Isermann Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies Rensselaer Polytechnic Institute, Troy, NY 12180
| |
Collapse
|
43
|
Selgrade DF, Lohmueller JJ, Lienert F, Silver PA. Protein scaffold-activated protein trans-splicing in mammalian cells. J Am Chem Soc 2013; 135:7713-9. [PMID: 23621664 DOI: 10.1021/ja401689b] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Conditional protein splicing is a powerful biotechnological tool that can be used to rapidly and post-translationally control the activity of a given protein. Here we demonstrate a novel conditional splicing system in which a genetically encoded protein scaffold induces the splicing and activation of an enzyme in mammalian cells. In this system the protein scaffold binds to two inactive split intein/enzyme extein protein fragments leading to intein fragment complementation, splicing, and activation of the firefly luciferase enzyme. We first demonstrate the ability of antiparallel coiled-coils (CCs) to mediate splicing between two intein fragments, effectively creating two new split inteins. We then generate and test two versions of the scaffold-induced splicing system using two pairs of CCs. Finally, we optimize the linker lengths of the proteins in the system and demonstrate 13-fold activation of luciferase by the scaffold compared to the activity of negative controls. Our protein scaffold-triggered conditional splicing system is an effective strategy to control enzyme activity using a protein input, enabling enhanced genetic control over protein splicing and the potential creation of splicing-based protein sensors and autoregulatory systems.
Collapse
Affiliation(s)
- Daniel F Selgrade
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
44
|
Lin Y, Li M, Song H, Xu L, Meng Q, Liu XQ. Protein trans-splicing of multiple atypical split inteins engineered from natural inteins. PLoS One 2013; 8:e59516. [PMID: 23593141 PMCID: PMC3620165 DOI: 10.1371/journal.pone.0059516] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 02/15/2013] [Indexed: 11/30/2022] Open
Abstract
Protein trans-splicing by split inteins has many uses in protein production and research. Splicing proteins with synthetic peptides, which employs atypical split inteins, is particularly useful for site-specific protein modifications and labeling, because the synthetic peptide can be made to contain a variety of unnatural amino acids and chemical modifications. For this purpose, atypical split inteins need to be engineered to have a small N-intein or C-intein fragment that can be more easily included in a synthetic peptide that also contains a small extein to be trans-spliced onto target proteins. Here we have successfully engineered multiple atypical split inteins capable of protein trans-splicing, by modifying and testing more than a dozen natural inteins. These included both S1 split inteins having a very small (11–12 aa) N-intein fragment and S11 split inteins having a very small (6 aa) C-intein fragment. Four of the new S1 and S11 split inteins showed high efficiencies (85–100%) of protein trans-splicing both in E. coli cells and in vitro. Under in vitro conditions, they exhibited reaction rate constants ranging from ∼1.7×10−4 s−1 to ∼3.8×10−4 s−1, which are comparable to or higher than those of previously reported atypical split inteins. These findings should facilitate a more general use of trans-splicing between proteins and synthetic peptides, by expanding the availability of different atypical split inteins. They also have implications on understanding the structure-function relationship of atypical split inteins, particularly in terms of intein fragment complementation.
Collapse
Affiliation(s)
- Ying Lin
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai, P.R. China
| | - Mengmeng Li
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai, P.R. China
| | - Huiling Song
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai, P.R. China
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Lingling Xu
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai, P.R. China
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Qing Meng
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai, P.R. China
- * E-mail: (QM); (XQL)
| | - Xiang-Qin Liu
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- * E-mail: (QM); (XQL)
| |
Collapse
|
45
|
Wasmuth A, Ludwig C, Mootz HD. Structure-activity studies on the upstream splice junction of a semisynthetic intein. Bioorg Med Chem 2013; 21:3495-503. [PMID: 23618706 DOI: 10.1016/j.bmc.2013.03.065] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 03/24/2013] [Accepted: 03/26/2013] [Indexed: 01/30/2023]
Abstract
Protein trans-splicing by split inteins holds great potential for the chemical modification and semisynthesis of proteins. However, the structural requirements of the extein sequences immediately flanking the intein are only poorly understood. This knowledge is of particular importance for protein labeling, when synthetic moieties are to be attached to the protein of interest as seamlessly as possible. Using the semisynthetic Ssp DnaB intein both in form of its wild-type sequence and its evolved M86 mutant, we systematically varied the sequence upstream of the short synthetic Int(N) fragment using both proteinogenic amino acids and unnatural building blocks. We could show for the wild-type variant that the native N-extein sequence could be reduced to the glycine residue at the (-1) position directly flanking the intein without significant loss of activity. The glycine at this position is strongly preferred over building blocks containing a phenyl group or extended alkyl chain adjacent to the scissile amide bond of the N-terminal splice junction. Despite their negative effects on the splicing yields, these unnatural substrates were well processed in the N-S acyl shift to form the respective thioesters and did not result in an increased decoupling of the asparagine cyclization step at the C-terminal splicing junction. Therefore, the transesterification step appeared to be the bottleneck of the protein splicing pathway. The fluorophore 7-hydroxycoumarinyl-4-acetic acid as a minimal N-extein was efficiently ligated to the model protein, in particular with the M86 mutant, probably because of its higher resemblance to glycine with an aliphatic c-α carbon atom at the (-1) position. This finding indicates a way for the virtually traceless labeling of proteins without inserting extra flanking residues. Due to its overall higher activity, the M86 mutant appears most promising for many protein labeling and chemical modification schemes using the split intein approach.
Collapse
Affiliation(s)
- Alexandra Wasmuth
- Institute of Biochemistry, University of Muenster, Wilhelm-Klemm-Str. 2, 48149 Münster, Germany
| | | | | |
Collapse
|
46
|
Volkmann G, Mootz HD. Recent progress in intein research: from mechanism to directed evolution and applications. Cell Mol Life Sci 2013; 70:1185-206. [PMID: 22926412 PMCID: PMC11113529 DOI: 10.1007/s00018-012-1120-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 07/23/2012] [Accepted: 08/06/2012] [Indexed: 10/27/2022]
Abstract
Inteins catalyze a post-translational modification known as protein splicing, where the intein removes itself from a precursor protein and concomitantly ligates the flanking protein sequences with a peptide bond. Over the past two decades, inteins have risen from a peculiarity to a rich source of applications in biotechnology, biomedicine, and protein chemistry. In this review, we focus on developments of intein-related research spanning the last 5 years, including the three different splicing mechanisms and their molecular underpinnings, the directed evolution of inteins towards improved splicing in exogenous protein contexts, as well as novel applications of inteins for cell biology and protein engineering, which were made possible by a clearer understanding of the protein splicing mechanism.
Collapse
Affiliation(s)
- Gerrit Volkmann
- Institute of Biochemistry, University of Münster, Wilhelm-Klemm-Str. 2, 48149 Münster, Germany
| | - Henning D. Mootz
- Institute of Biochemistry, University of Münster, Wilhelm-Klemm-Str. 2, 48149 Münster, Germany
| |
Collapse
|
47
|
Inter-chain disulfide bond improved protein trans-splicing increases plasma coagulation activity in C57BL/6 mice following portal vein FVIII gene delivery by dual vectors. SCIENCE CHINA-LIFE SCIENCES 2013; 56:262-7. [DOI: 10.1007/s11427-013-4455-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 01/30/2013] [Indexed: 11/25/2022]
|
48
|
Sudheer PDVN, Pack SP, Kang TJ. Cyclization tag for the detection and facile purification of backbone-cyclized proteins. Anal Biochem 2013; 436:137-41. [PMID: 23439382 DOI: 10.1016/j.ab.2013.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 02/08/2013] [Accepted: 02/11/2013] [Indexed: 11/27/2022]
Abstract
Backbone-cyclized proteins, with their characteristic stability toward denaturants such as heat and chemicals, are becoming increasingly significant in many applications. Intein-mediated protein cyclization is the most efficient and frequently used method of choice and has been successfully applied to various targets, achieving stable proteins. However, the detection and isolation of the cyclic protein from the linear one after cyclization is very difficult because the backbone-cyclized protein and the linear one (a by-product formed during the cyclization reaction), which originated from the same molecule, are almost identical in terms of their size. Thus, we first developed a split c-myc tag system; the active c-myc tag was formed only in the backbone-cyclized protein and not in the linear by-product from the inactive precursor, and this helps both the detection and purification of the backbone-cyclized proteins. This tag system, which we called a cyclization tag, was further engineered in its sequence to develop an engineered c-myc (e-myc) tag with enhanced efficiency in the backbone cyclization reaction while keeping its specificity toward the commercial antibody intact. Using two different proteins as models, we show that the cyclization tag developed here can be used as a specific tag for the backbone-cyclized protein, thereby facilitating detection and purification.
Collapse
Affiliation(s)
- Pamidimarri D V N Sudheer
- Department of Chemical and Biochemical Engineering, Dongguk University-Seoul, Seoul 100-715, Republic of Korea
| | | | | |
Collapse
|
49
|
Michel E, Skrisovska L, Wüthrich K, Allain FHT. Amino Acid-Selective Segmental Isotope Labeling of Multidomain Proteins for Structural Biology. Chembiochem 2013; 14:457-66. [DOI: 10.1002/cbic.201200732] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Indexed: 11/12/2022]
|
50
|
Roberts SA, Dong B, Firrman JA, Moore AR, Sang N, Xiao W. Engineering Factor Viii for Hemophilia Gene Therapy. ACTA ACUST UNITED AC 2012; 1. [PMID: 23565342 DOI: 10.4172/2157-7412.s1-006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Current treatment of hemophilia A by intravenous infusion of factor VIII (fVIII) concentrates is very costly and has a potential adverse effect of developing inhibitors. Gene therapy, on the other hand, can potentially overcome these limitations associated with fVIII replacement therapy. Although hemophilia B gene therapy has achieved promising outcomes in human clinical trials, hemophilia A gene therapy lags far behind. Compared to factor IX, fVIII is a large protein which is difficult to express at sustaining therapeutic levels when delivered by either viral or non-viral vectors. To improve fVIII gene delivery, numerous strategies have been exploited to engineer the fVIII molecule and overcome the hurdles preventing long term and high level expression. Here we reviewed these strategies, and discussed their pros and cons in human gene therapy of hemophilia A.
Collapse
Affiliation(s)
- Sean A Roberts
- Sol Sherry Thrombosis Research Center, Philadelphia PA 19140, USA
| | | | | | | | | | | |
Collapse
|