1
|
Wang T, Lin M, Yan Y, Jiang S, Dai Q, Zhou Z, Wang J. Identification of a novel glycoside hydrolase family 8 xylanase from Deinococcus geothermalis and its application at low temperatures. Arch Microbiol 2024; 206:307. [PMID: 38884653 DOI: 10.1007/s00203-024-04055-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/12/2024] [Accepted: 06/15/2024] [Indexed: 06/18/2024]
Abstract
Xylanase is the most important hydrolase in the xylan hydrolase system, the main function of which is β-1,4-endo-xylanase, which randomly cleaves xylans to xylo-oligosaccharides and xylose. Xylanase has wide ranging of applications, but there remains little research on the cold-adapted enzymes required in some low-temperature industries. Glycoside hydrolase family 8 (GH8) xylanases have been reported to have cold-adapted enzyme activity. In this study, the xylanase gene dgeoxyn was excavated from Deinococcus geothermalis through sequence alignment. The recombinant xylanase DgeoXyn encodes 403 amino acids with a theoretical molecular weight of 45.39 kDa. Structural analysis showed that DgeoXyn has a (α/α)6-barrel fold structure typical of GH8 xylanase. At the same time, it has strict substrate specificity, is only active against xylan, and its hydrolysis products include xylobiose, xylotrinose, xytetranose, xylenanose, and a small amount of xylose. DgeoXyn is most active at 70 ℃ and pH 6.0. It is very stable at 10, 20, and 30 ℃, retaining more than 80% of its maximum enzyme activity. The enzyme activity of DgeoXyn increased by 10% after the addition of Mn2+ and decreased by 80% after the addition of Cu2+. The Km and Vmax of dgeox were 42 mg/ml and 20,000 U/mg, respectively, at a temperature of 70 ℃ and pH of 6.0 using 10 mg/ml beechwood xylan as the substrate. This research on DgeoXyn will provide a theoretical basis for the development and application of low-temperature xylanase.
Collapse
Affiliation(s)
- Tingting Wang
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621000, China
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Key Laboratory of Agricultural Microbiome (MARA), Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Min Lin
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621000, China
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Key Laboratory of Agricultural Microbiome (MARA), Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yongliang Yan
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Key Laboratory of Agricultural Microbiome (MARA), Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shijie Jiang
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621000, China
| | - Qilin Dai
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621000, China
| | - Zhengfu Zhou
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
- Key Laboratory of Agricultural Microbiome (MARA), Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Jin Wang
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621000, China
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Key Laboratory of Agricultural Microbiome (MARA), Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
2
|
Draft Genome Sequence of the Lignocellulolytic and Thermophilic Bacterium Thermobacillus xylanilyticus XE. Microbiol Resour Announc 2022; 11:e0093421. [PMID: 35258325 PMCID: PMC9022518 DOI: 10.1128/mra.00934-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Thermobacillus xylanilyticus is a thermophilic and hemicellulolytic bacterium able to use several lignocelluloses as its main carbon source. This draft genome sequence gives insight into the genomic potential of this bacterium and provides new resources to understand the enzymatic mechanisms used by the bacterium during lignocellulose degradation and will allow the identification of robust lignocellulolytic enzymes.
Collapse
|
3
|
Verma D. Extremophilic Prokaryotic Endoxylanases: Diversity, Applicability, and Molecular Insights. Front Microbiol 2021; 12:728475. [PMID: 34566933 PMCID: PMC8458939 DOI: 10.3389/fmicb.2021.728475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/06/2021] [Indexed: 11/13/2022] Open
Abstract
Extremophilic endoxylanases grabbed attention in recent years due to their applicability under harsh conditions of several industrial processes. Thermophilic, alkaliphilic, and acidophilic endoxylanases found their employability in bio-bleaching of paper pulp, bioconversion of lignocellulosic biomass into xylooligosaccharides, bioethanol production, and improving the nutritious value of bread and other bakery products. Xylanases obtained from extremophilic bacteria and archaea are considered better than fungal sources for several reasons. For example, enzymatic activity under broad pH and temperature range, low molecular weight, cellulase-free activity, and longer stability under extreme conditions of prokaryotic derived xylanases make them a good choice. In addition, a short life span, easy cultivation/harvesting methods, higher yield, and rapid DNA manipulations of bacterial and archaeal cells further reduces the overall cost of the product. This review focuses on the diversity of prokaryotic endoxylanases, their characteristics, and their functional attributes. Besides, the molecular mechanisms of their extreme behavior have also been presented here.
Collapse
Affiliation(s)
- Digvijay Verma
- Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| |
Collapse
|
4
|
Li G, Zhou X, Li Z, Liu Y, Liu D, Miao Y, Wan Q, Zhang R. Significantly improving the thermostability of a hyperthermophilic GH10 family xylanase XynAF1 by semi-rational design. Appl Microbiol Biotechnol 2021; 105:4561-4576. [PMID: 34014347 DOI: 10.1007/s00253-021-11340-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/16/2021] [Accepted: 05/09/2021] [Indexed: 11/28/2022]
Abstract
Xylanases have a broad range of applications in industrial biotechnologies, which require the enzymes to resist the high-temperature environments. The majority of xylanases have maximum activity at moderate temperatures, which limited their potential applications in industries. In this study, a thermophilic GH10 family xylanase XynAF1 from the high-temperature composting strain Aspergillus fumigatus Z5 was characterized and engineered to further improve its thermostability. XynAF1 has the optimal reaction temperature of 90 °C. The crystal structure of XynAF1 was obtained by X-ray diffraction after heterologous expression, purification, and crystallization. The high-resolution X-ray crystallographic structure of the protein-product complex was obtained by soaking the apo-state crystal with xylotetraose. Structure analysis indicated that XynAF1 has a rigid skeleton, which helps to maintain the hyperthermophilic characteristic. The homologous structure analysis and the catalytic center mutant construction of XynAF1 indicated the conserved catalytic center contributed to the high optimum catalytic temperature. The amino acids in the surface of xylanase XynAF1 which might influence the enzyme thermostability were identified by the structure analysis. Combining the rational design with the saturation mutation at the high B-value regions, the integrative mutant XynAF1-AC with a 6-fold increase of thermostability was finally obtained. This study efficiently improved the thermostability of a GH10 family xylanase by semi-rational design, which provided a new biocatalyst for high-temperature biotechnological applications. KEY POINTS: • Obtained the crystal structure of GH10 family hyperthermophilic xylanase XynAF1. • Shed light on the understanding of the GH10 family xylanase thermophilic mechanism. • Constructed a 6-fold increased thermostability recombinant xylanase.
Collapse
Affiliation(s)
- Guangqi Li
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China.,Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Xuan Zhou
- National Agricultural Technology Extension and Service Center, Beijing, 100125, People's Republic of China
| | - Zhihong Li
- College of Science, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Yunpeng Liu
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Dongyang Liu
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Youzhi Miao
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Qun Wan
- College of Science, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China. .,The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| | - Ruifu Zhang
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China. .,Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
5
|
Cloning, expression and characterization of a thermo-alkali-stable xylanase from Aspergillus oryzae LC1 in Escherichia coli BL21(DE3). Protein Expr Purif 2020; 168:105551. [DOI: 10.1016/j.pep.2019.105551] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 09/26/2019] [Accepted: 12/11/2019] [Indexed: 11/21/2022]
|
6
|
Li G, Chen X, Zhou X, Huang R, Li L, Miao Y, Liu D, Zhang R. Improvement of GH10 family xylanase thermostability by introducing of an extra α-helix at the C-terminal. Biochem Biophys Res Commun 2019; 515:417-422. [DOI: 10.1016/j.bbrc.2019.05.163] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 05/27/2019] [Indexed: 10/26/2022]
|
7
|
Ariaeenejad S, Maleki M, Hosseini E, Kavousi K, Moosavi-Movahedi AA, Salekdeh GH. Mining of camel rumen metagenome to identify novel alkali-thermostable xylanase capable of enhancing the recalcitrant lignocellulosic biomass conversion. BIORESOURCE TECHNOLOGY 2019; 281:343-350. [PMID: 30831513 DOI: 10.1016/j.biortech.2019.02.059] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/09/2019] [Accepted: 02/11/2019] [Indexed: 06/09/2023]
Abstract
The aim of this study was to isolate and characterize novel alkali-thermostable xylanase genes from the mixed genome DNA of camel rumen metagenome. In this study, a five-stage computational screening procedure was utilized to find the primary candidate enzyme with superior properties from the camel rumen metagenome. This enzyme was subjected to cloning, purification, and structural and functional characterization. It showed high thermal stability, high activity in a broad range of pH (6-11) and temperature (30-90 °C) and effectivity in recalcitrant lignocellulosic biomass degradation. Our results demonstrated the power of in silico analysis to discover novel alkali-thermostable xylanases, effective for the bioconversion of lignocellulosic biomass.
Collapse
Affiliation(s)
- Shohreh Ariaeenejad
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREO), Karaj, Iran
| | - Morteza Maleki
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREO), Karaj, Iran
| | - Elnaz Hosseini
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Kaveh Kavousi
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | | | - Ghasem Hosseini Salekdeh
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREO), Karaj, Iran.
| |
Collapse
|
8
|
A novel trifunctional, family GH10 enzyme from Acidothermus cellulolyticus 11B, exhibiting endo-xylanase, arabinofuranosidase and acetyl xylan esterase activities. Extremophiles 2017; 22:109-119. [DOI: 10.1007/s00792-017-0981-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 11/14/2017] [Indexed: 10/18/2022]
|
9
|
Passos AA, Park I, Ferket P, von Heimendahl E, Kim SW. Effect of dietary supplementation of xylanase on apparent ileal digestibility of nutrients, viscosity of digesta, and intestinal morphology of growing pigs fed corn and soybean meal based diet. ACTA ACUST UNITED AC 2015; 1:19-23. [PMID: 29766982 PMCID: PMC5884468 DOI: 10.1016/j.aninu.2015.02.006] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 02/05/2015] [Indexed: 01/10/2023]
Abstract
This study was to determine apparent ileal digestibility of acid detergent fiber (ADF), neutral detergent fiber (NDF), dry matter (DM), energy, organic matter (OM), crude ash, digesta viscosity, and gut morphology in nursery pigs fed diets containing xylanase (Lohmann Animal Nutrition GmbH, Cuxhaven, Germany). The diet (61% corn, 35% soybean meal, 1% poultry fat, and 3% minerals and vitamins) was mixed with 3 levels of xylanase (0, 700, and 1400 LXU/kg). Thirty-six barrows (17.6 ± 3.3 kg) received one of 3 treatment diets based on a randomized complete block design with the initial body weight (BW) as a block. Pigs were individually housed and received experimental diets twice daily (0700 and 1700 h) at a fixed amount based on BW of pigs (0.09 × BW0.75 kg). Pigs were fed diets for 10 d, and chromium oxide (0.3%) was added to the diets from d 6 as an indigestible external marker. Pigs were euthanized at the end of d 10 for the collection of digesta and tissues. Jejunal digesta were centrifuged to measure viscosity using a viscometer (Brookfield Engineering Laboratories, Stoughton, MA). Diets and freeze-dried ileal digesta were used to measure ADF, NDF, and chromium to calculate apparent ileal digestibility of ADF and NDF. Villus height and crypt depth of jejunum were measured using a microscope (Fisher Scientific, Hampton, NH). Data were analyzed using polynomial contrasts in the MIXED procedure of SAS version 9.3 (SAS Inc., Cary, NC, USA). Morphological measurements and ileal ADF digestibility were not affected by increasing xylanase. However, increasing xylanase supplementation from 0 to 1400 LXU/kg enhanced ileal digestibility of NDF (P < 0.042, linear) from 27.9 to 40.3%, DM (P < 0.006, linear) from 55.4 to 64.6%, OM (P < 0.006, linear) from 59.2 to 67.7%, and energy (P < 0.003, linear) from 58.8 to 68.0%. Viscosity of jejunal digesta decreased (P < 0.023) in a non-linear manner from 2.9 to 2.5 centipoises (cP). In conclusion, the usage of xylanase in corn and soybean meal based pig diets linearly enhanced digestibility of nutrients and affected viscosity of digesta in a non-linear manner.
Collapse
Affiliation(s)
| | - Inkyung Park
- North Carolina State University, Raleigh 27695, USA
| | - Peter Ferket
- North Carolina State University, Raleigh 27695, USA
| | | | - Sung Woo Kim
- North Carolina State University, Raleigh 27695, USA
| |
Collapse
|
10
|
Molecular and Biochemical Characterization of a Novel Multidomain Xylanase from Arthrobacter sp. GN16 Isolated from the Feces of Grus nigricollis. Appl Biochem Biotechnol 2014; 175:573-88. [DOI: 10.1007/s12010-014-1295-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 10/10/2014] [Indexed: 11/26/2022]
|
11
|
Rakotoarivonina H, Hermant B, Aubry N, Rabenoelina F, Baillieul F, Rémond C. Dynamic study of how the bacterial breakdown of plant cell walls allows the reconstitution of efficient hemicellulasic cocktails. BIORESOURCE TECHNOLOGY 2014; 170:331-341. [PMID: 25151078 DOI: 10.1016/j.biortech.2014.07.097] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 07/20/2014] [Accepted: 07/23/2014] [Indexed: 06/03/2023]
Abstract
Designing more efficient mixtures of enzymes is necessary to produce molecules of interest from biomass lignocellulosic fractionation. The present study aims to investigate the strategies used by the thermophilic and hemicellulolytic bacterium Thermobacillus xylanilyticus to fractionate wheat bran and wheat straw during its growth. Results demonstrated ratios and levels of hemicellulases produced varied during growth on both biomasses. Xylanase activity was mainly produced during stationary stages of growth whereas esterase and arabinosidase activities were detected earlier. This enzymatic profile is correlated with the expression pattern of genes encoding four hemicellulases (two xylanases, one arabinosidase and one esterase) produced by T. xylanilyticus during growth. Based on identification of the bacterial strategy, the synergistic efficiency of the four hemicellulases during the hydrolysis of both substrates was evaluated. The four hemicellulases worked together with high degree of synergy and released high amounts of xylose, arabinose and phenolic acids from wheat bran and wheat straw.
Collapse
Affiliation(s)
- H Rakotoarivonina
- Université de Reims Champagne-Ardenne, UMR614 Fractionnement des AgroRessources et Environnement, F-51100 Reims, France; INRA, UMR614 Fractionnement des AgroRessources et Environnement, F-51100 Reims, France.
| | - B Hermant
- Université de Reims Champagne-Ardenne, UMR614 Fractionnement des AgroRessources et Environnement, F-51100 Reims, France; INRA, UMR614 Fractionnement des AgroRessources et Environnement, F-51100 Reims, France
| | - N Aubry
- Université de Reims Champagne-Ardenne, UMR614 Fractionnement des AgroRessources et Environnement, F-51100 Reims, France; INRA, UMR614 Fractionnement des AgroRessources et Environnement, F-51100 Reims, France
| | - F Rabenoelina
- Université de Reims Champagne-Ardenne, Unité de Recherche Vignes et Vins de Champagne, EA 4707, F-51687 Reims, France
| | - F Baillieul
- Université de Reims Champagne-Ardenne, Unité de Recherche Vignes et Vins de Champagne, EA 4707, F-51687 Reims, France
| | - C Rémond
- Université de Reims Champagne-Ardenne, UMR614 Fractionnement des AgroRessources et Environnement, F-51100 Reims, France; INRA, UMR614 Fractionnement des AgroRessources et Environnement, F-51100 Reims, France
| |
Collapse
|
12
|
Ying Y, Meng D, Chen X, Li F. An extremely thermophilic anaerobic bacterium Caldicellulosiruptor sp. F32 exhibits distinctive properties in growth and xylanases during xylan hydrolysis. Enzyme Microb Technol 2013; 53:194-9. [DOI: 10.1016/j.enzmictec.2013.04.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 03/12/2013] [Accepted: 04/15/2013] [Indexed: 10/26/2022]
|
13
|
Rakotoarivonina H, Hermant B, Monthe N, Rémond C. The hemicellulolytic enzyme arsenal of Thermobacillus xylanilyticus depends on the composition of biomass used for growth. Microb Cell Fact 2012; 11:159. [PMID: 23241174 PMCID: PMC3541102 DOI: 10.1186/1475-2859-11-159] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 11/21/2012] [Indexed: 11/26/2022] Open
Abstract
Background Thermobacillus xylanilyticus is a thermophilic and highly xylanolytic bacterium. It produces robust and stable enzymes, including glycoside hydrolases and esterases, which are of special interest for the development of integrated biorefineries. To investigate the strategies used by T. xylanilyticus to fractionate plant cell walls, two agricultural by-products, wheat bran and straw (which differ in their chemical composition and tissue organization), were used in this study and compared with glucose and xylans. The ability of T. xylanilyticus to grow on these substrates was studied. When the bacteria used lignocellulosic biomass, the production of enzymes was evaluated and correlated with the initial composition of the biomass, as well as with the evolution of any residues during growth. Results Our results showed that T. xylanilyticus is not only able to use glucose and xylans as primary carbon sources but can also use wheat bran and straw. The chemical compositions of both lignocellulosic substrates were modified by T. xylanilyticus after growth. The bacteria were able to consume 49% and 20% of the total carbohydrates in bran and straw, respectively, after 24 h of growth. The phenolic and acetyl ester contents of these substrates were also altered. Bacterial growth on both lignocellulosic biomasses induced hemicellulolytic enzyme production, and xylanase was the primary enzyme secreted. Debranching activities were differentially produced, as esterase activities were more important to bacterial cultures grown on wheat straw; arabinofuranosidase production was significantly higher in bacterial cultures grown on wheat bran. Conclusion This study provides insight into the ability of T. xylanilyticus to grow on abundant agricultural by-products, which are inexpensive carbon sources for enzyme production. The composition of the biomass upon which the bacteria grew influenced their growth, and differences in the biomass provided resulted in dissimilar enzyme production profiles. These results indicate the importance of using different biomass sources to encourage the production of specific enzymes.
Collapse
|
14
|
A thermostable feruloyl-esterase from the hemicellulolytic bacterium Thermobacillus xylanilyticus releases phenolic acids from non-pretreated plant cell walls. Appl Microbiol Biotechnol 2011; 90:541-52. [DOI: 10.1007/s00253-011-3103-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 12/22/2010] [Accepted: 12/23/2010] [Indexed: 10/18/2022]
|
15
|
Gallardo O, Pastor FIJ, Polaina J, Diaz P, Łysek R, Vogel P, Isorna P, González B, Sanz-Aparicio J. Structural insights into the specificity of Xyn10B from Paenibacillus barcinonensis and its improved stability by forced protein evolution. J Biol Chem 2009; 285:2721-33. [PMID: 19940147 DOI: 10.1074/jbc.m109.064394] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Paenibacillus barcinonensis is a soil bacterium bearing a complex set of enzymes for xylan degradation, including several secreted enzymes and Xyn10B, one of the few intracellular xylanases reported to date. The crystal structure of Xyn10B has been determined by x-ray analysis. The enzyme folds into the typical (beta/alpha)(8) barrel of family 10 glycosyl hydrolases (GH10), with additional secondary structure elements within the beta/alpha motifs. One of these loops -L7- located at the beta7 C terminus, was essential for xylanase activity as its partial deletion yielded an inactive enzyme. The loop contains residues His(249)-Glu(250), which shape a pocket opened to solvent in close proximity to the +2 subsite, which has not been described in other GH10 enzymes. This wide cavity at the +2 subsite, where methyl-2,4-pentanediol from the crystallization medium was found, is a noteworthy feature of Xyn10B, as compared with the narrow crevice described for other GH10 xylanases. Docking analysis showed that this open cavity can accommodate glucuronic acid decorations of xylo-oligosaccharides. Co-crystallization experiments with conduramine derivative inhibitors supported the importance of this open cavity at the +2 subsite for Xyn10B activity. Several mutant derivatives of Xyn10B with improved thermal stability were obtained by forced evolution. Among them, mutant xylanases S15L and M93V showed increased half-life, whereas the double mutant S15L/M93V exhibited a further increase in stability, showing a 20-fold higher heat resistance than the wild type xylanase. All the mutations obtained were located on the surface of Xyn10B. Replacement of a Ser by a Leu residue in mutant xylanase S15L can increase hydrophobic packing efficiency and fill a superficial indentation of the protein, giving rise to a more compact structure of the enzyme.
Collapse
Affiliation(s)
- Oscar Gallardo
- Department of Microbiology, Faculty of Biology, University of Barcelona, Av. Diagonal 645, 08028 Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Alteration of Bacillus subtilis XynA endoxylanase substrate selectivity by site-directed mutagenesis. Enzyme Microb Technol 2007. [DOI: 10.1016/j.enzmictec.2006.12.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Wu S, Liu B, Zhang X. Characterization of a recombinant thermostable xylanase from deep-sea thermophilic Geobacillus sp. MT-1 in East Pacific. Appl Microbiol Biotechnol 2006; 72:1210-6. [PMID: 16607523 DOI: 10.1007/s00253-006-0416-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Revised: 03/06/2006] [Accepted: 03/09/2006] [Indexed: 11/30/2022]
Abstract
A novel xylanase-producing thermophilic strain MT-1 was isolated from a deep-sea hydrothermal field in east Pacific. A xylanase gene encoding 331 amino-acid peptide from this isolate was cloned and expressed in Escherichia coli. The recombinant xylanase exhibited maximum activity at 70 degrees C and had an optimum pH of 7.0. It was active up to 90 degrees C and showed activity over a wide pH ranging from 5.5 to 10.0. The crude xylanase presented similar properties in temperature and pH to those of the recombinant xylanase. The recombinant xylanase was stable in 1 mM of enzyme inhibitors (PMSF, EDTA, 2-ME or DTT) and in 0.1% detergents (Tween 20, Chaps or Triton X-100), whereas, it was strongly inhibited by sodium dodecyl sulfate (SDS) (1 mM). In addition, its catalytic function was stable in the presence of Li(+), Na(+) or K(+). However, it was strongly inhibited by Ni(2+), Mn(2+), Co(2+), Cu(2+), Zn(2+), Cd(2+), Hg(2+) and Al(3+) (1 or 0.1 mM). The K (m) and V (max) of the recombinant xylanase for oat spelt xylan were calculated to be 1.579 mg/ml and 289 micromol/(min x mg), respectively. Our study, therefore, presented a rapid overexpression and purification of xylanase from deep-sea thermophile aimed at improving the enzyme yield for industrial applications and scientific research.
Collapse
Affiliation(s)
- Suijie Wu
- School of Life Sciences, Xiamen University, Xiamen 361005, People's Republic of China
| | | | | |
Collapse
|
18
|
Collins T, Gerday C, Feller G. Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol Rev 2005; 29:3-23. [PMID: 15652973 DOI: 10.1016/j.femsre.2004.06.005] [Citation(s) in RCA: 1036] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2003] [Revised: 06/10/2004] [Accepted: 06/14/2004] [Indexed: 11/28/2022] Open
Abstract
Xylanases are hydrolytic enzymes which randomly cleave the beta 1,4 backbone of the complex plant cell wall polysaccharide xylan. Diverse forms of these enzymes exist, displaying varying folds, mechanisms of action, substrate specificities, hydrolytic activities (yields, rates and products) and physicochemical characteristics. Research has mainly focused on only two of the xylanase containing glycoside hydrolase families, namely families 10 and 11, yet enzymes with xylanase activity belonging to families 5, 7, 8 and 43 have also been identified and studied, albeit to a lesser extent. Driven by industrial demands for enzymes that can operate under process conditions, a number of extremophilic xylanases have been isolated, in particular those from thermophiles, alkaliphiles and acidiphiles, while little attention has been paid to cold-adapted xylanases. Here, the diverse physicochemical and functional characteristics, as well as the folds and mechanisms of action of all six xylanase containing families will be discussed. The adaptation strategies of the extremophilic xylanases isolated to date and the potential industrial applications of these enzymes will also be presented.
Collapse
Affiliation(s)
- Tony Collins
- Laboratory of Biochemistry, Institute of Chemistry B6, University of Liège, B-4000 Liège, Belgium.
| | | | | |
Collapse
|
19
|
Jiang Z, Deng W, Zhu Y, Li L, Sheng Y, Hayashi K. The recombinant xylanase B of Thermotoga maritima is highly xylan specific and produces exclusively xylobiose from xylans, a unique character for industrial applications. ACTA ACUST UNITED AC 2004. [DOI: 10.1016/j.molcatb.2003.11.012] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Margolles A, de los Reyes-Gavilán CG. Purification and functional characterization of a novel alpha-L-arabinofuranosidase from Bifidobacterium longum B667. Appl Environ Microbiol 2003; 69:5096-103. [PMID: 12957891 PMCID: PMC194971 DOI: 10.1128/aem.69.9.5096-5103.2003] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gene encoding a novel alpha-L-arabinofuranosidase from Bifidobacterium longum B667, abfB, was cloned and sequenced. The deduced protein had a molecular mass of about 61 kDa, and analysis of its amino acid sequence revealed significant homology and conservation of different catalytic residues with alpha-L-arabinofuranosidases belonging to family 51 of the glycoside hydrolases. Regions flanking the gene comprised two divergently transcribed open reading frames coding for hypothetical proteins involved in sugar metabolism. A histidine tag was introduced at the C terminus of AbfB, and the recombinant protein was overexpressed in Lactococcus lactis under control of the tightly regulated, nisin-inducible nisA promoter. The enzyme was purified by nickel affinity chromatography. The molecular mass of the native protein, as determined by gel filtration, was about 260 kDa, suggesting a homotetrameric structure. AbfB was active at a broad pH range (pH 4.5 to 7.5) and at a broad temperature range (20 to 70 degrees C), and it had an optimum pH of 6.0 and an optimum temperature of 45 degrees C. The enzyme seemed to be less thermostable than most previously described arabinofuranosidases and had a half-life of about 3 h at 55 degrees C. Chelating and reducing agents did not have any effect on its activity, but the presence of Cu(2+), Hg(2+), and Zn(2+) markedly reduced enzymatic activity. The protein exhibited a high level of activity with p-nitrophenyl alpha-L-arabinofuranoside, with apparent K(m) and V(max) values of 0.295 mM and 417 U/mg, respectively. AbfB released L-arabinose from arabinan, arabinoxylan, arabinobiose, arabinotriose, arabinotetraose, and arabinopentaose. No endoarabinanase activity was detected. These findings suggest that AbfB is an exo-acting enzyme and may play a role, together with other glycosidases, in the degradation of L-arabinose-containing polysaccharides.
Collapse
Affiliation(s)
- Abelardo Margolles
- Instituto de Productos Lácteos de Asturias, CSIC, Villaviciosa, Asturias, Spain
| | | |
Collapse
|
21
|
Gallardo O, Diaz P, Pastor FIJ. Characterization of a Paenibacillus cell-associated xylanase with high activity on aryl-xylosides: a new subclass of family 10 xylanases. Appl Microbiol Biotechnol 2003; 61:226-33. [PMID: 12698280 DOI: 10.1007/s00253-003-1239-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2002] [Revised: 12/13/2002] [Accepted: 12/16/2002] [Indexed: 11/25/2022]
Abstract
The sequence of gene xynB encoding xylanase B from Paenibacillus sp. BP-23 was determined. It revealed an open reading frame of 999 nucleotides encoding a protein of 38,561 Da. The deduced amino acid sequence of xylanase B shows that the N-terminal region of the enzyme lacks the features of a signal peptide. When the xylan-degrading system of Paenibacillus sp. BP-23 was analysed in zymograms, it revealed that xylanase B was not secreted to the extracellular medium but instead remained cell-associated, even in late stationary-phase cultures. When xynB was expressed in a Bacillus subtilis secreting host, it also remained associated with the cells. Sequence homology analysis showed that xylanase B from Paenibacillus sp. BP-23 belongs to family 10 glycosyl hydrolases, exhibiting a distinctive high homology to six xylanases of this family. The homologous enzymes were also found to be devoid of a signal peptide and seem to constitute, together with xylanase B, a separate group of enzymes. They all have two conserved amino acid regions not found in the other family 10 xylanases, and cluster in a separate group after dendrogram analysis. We propose that these enzymes constitute a new subclass of family 10 xylanases, that are cell-associated, and that hydrolyse the xylooligosaccharides resulting from extracellular xylan hydrolysis. Xylanase B shows similar specific activity on aryl-xylosides and xylans. This can be correlated to some, not yet identified, trait of catalytic activity of the enzyme on plant xylan.
Collapse
Affiliation(s)
- O Gallardo
- Department of Microbiology, Faculty of Biology, University of Barcelona, Avinguda Diagonal 645, 08028, Barcelona, Spain
| | | | | |
Collapse
|
22
|
Paiardini A, Gianese G, Bossa F, Pascarella S. Structural plasticity of thermophilic serine hydroxymethyltransferases. Proteins 2003; 50:122-34. [PMID: 12471605 DOI: 10.1002/prot.10268] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Serine hydroxymethyltransferase (SHMT) catalyzes the reversible cleavage of serine to form glycine and monocarbonic groups, essential in several biosynthetic pathways. The availability of crystallographic structures of SHMT from mesophilic organisms and information produced by the genomic projects prompted the analysis of the adaptation of SHMT to "extreme" environments, such as high temperatures, by exploitation of structural data from thermophilic organisms. The sequences of 10 thermophilic/hyperthermophilic SHMTs were multiply aligned to 53 mesophilic homologs and analyzed by a comparative approach, examining the amino acid compositions and preferred residue exchanges between mesophiles and extremophiles. The structural basis of the observed exchanges was further investigated through the application of homology modeling to the 10 extremophilic SHMTs. The results of this study indicate that, in SHMT, thermal stability can be achieved mainly through three strategies: (i) increased number of charged residues at the protein surface; (ii) increased hydrophobicity of the protein core; and (iii) substitution of thermolabile residues exposed to the solvent. Additional features of the archaeal SHMTs, for which no structural data are available yet, were also investigated to explain their quaternary assemblage and the interaction with modified folates.
Collapse
Affiliation(s)
- Alessandro Paiardini
- Dipartimento di Scienze Biochimiche A. Rossi Fanelli and Centro di Biologia Molecolare del Consiglio Nazionale delle Ricerche, Università La Sapienza, Rome, Italy
| | | | | | | |
Collapse
|
23
|
Gusakov AV, Sinitsyn AP, Markov AV, Sinitsyna OA, Ankudimova NV, Berlin AG. Study of protein adsorption on indigo particles confirms the existence of enzyme--indigo interaction sites in cellulase molecules. J Biotechnol 2001; 87:83-90. [PMID: 11267701 DOI: 10.1016/s0168-1656(01)00234-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Adsorption of several crude and purified cellulases (from Trichoderma reesei, Penicillium verruculosum and Chrysosporium lucknowense) on indigo particles and Avicel cellulose was studied. Much higher amounts of protein were bound to indigo than to cellulose under similar conditions. For different purified enzymes, the quantity of bound protein per mg of adsorbent (indigo or cellulose) varied in the range of 57-111 and 0-62 microg x mg(-1), respectively. However, in general, the enzyme adsorption on indigo was less specific than the adsorption on cellulose. Three endoglucanases, having the highest indigo-binding ability, demonstrated the best washing performance in the process of enzymatic denim treatment. These data confirmed our previous findings that certain cellulases, which have indigo-binding sites (clusters of closely located aromatic and other non-polar residues) on the surface of their molecules, may remove indigo from the denim fabric better than cellulases with lower content of hydrophobic residues exposed to solvent.
Collapse
Affiliation(s)
- A V Gusakov
- Department of Chemistry, M.V. Lomonosov Moscow State University, 119899, Moscow, Russia
| | | | | | | | | | | |
Collapse
|
24
|
Debeche T, Cummings N, Connerton I, Debeire P, O'Donohue MJ. Genetic and biochemical characterization of a highly thermostable alpha-L-arabinofuranosidase from Thermobacillus xylanilyticus. Appl Environ Microbiol 2000; 66:1734-6. [PMID: 10742272 PMCID: PMC92053 DOI: 10.1128/aem.66.4.1734-1736.2000] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gene encoding an alpha-L-arabinofuranosidase from Thermobacillus xylanilyticus D3, AbfD3, was isolated. Characterization of the purified recombinant alpha-L-arabinofuranosidase produced in Escherichia coli revealed that it is highly stable with respect to both temperature (up to 90 degrees C) and pH (stable in the pH range 4 to 12). On the basis of amino acid sequence similarities, this 56, 071-Da enzyme could be assigned to family 51 of the glycosyl hydrolase classification system. However, substrate specificity analysis revealed that AbfD3, unlike the majority of F51 members, displays high activity in the presence of polysaccharides.
Collapse
Affiliation(s)
- T Debeche
- INRA, Unité de Physicochimie et Biotechnologie des Polymères, 51687 Reims Cedex 02, France
| | | | | | | | | |
Collapse
|