1
|
Water-soluble variant of human Lynx1 induces cell cycle arrest and apoptosis in lung cancer cells via modulation of α7 nicotinic acetylcholine receptors. PLoS One 2019; 14:e0217339. [PMID: 31150435 PMCID: PMC6544245 DOI: 10.1371/journal.pone.0217339] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 05/10/2019] [Indexed: 12/14/2022] Open
Abstract
Lynx1 is the first three-finger prototoxin found in the mammalian central nervous system. It is a GPI-anchored protein modulating nicotinic acetylcholine receptors (nAChRs) in the brain. Besides the brain, the Lynx1 protein was found in the lung and kidney. Endogenous Lynx1 controls the nicotine-induced up-regulation of the expression of α7 type nAChRs in lung adenocarcinoma A549 cells as well as the cell growth. Here, we analyzed the Lynx1 expression in the set of human epithelial cells. The Lynx1 expression both at the mRNA and protein level was detected in normal oral keratinocytes, and lung, colon, epidermal, and breast cancer cells, but not in embryonic kidney cells. Co-localization of Lynx1 with α7-nAChRs was revealed in a cell membrane for lung adenocarcinoma A549 and colon carcinoma HT-29 cells, but not for breast adenocarcinoma MCF-7 and epidermoid carcinoma A431 cells. The recombinant water-soluble variant of Lynx1 without a GPI-anchor (ws-Lynx1) inhibited the growth of A549 cells causing cell cycle arrest via modulation of α7-nAChRs and activation of different intracellular signaling cascades, including PKC/IP3, MAP/ERK, p38, and JNK pathways. A549 cells treatment with ws-Lynx1 resulted in phosphorylation of the proapoptotic tumor suppressor protein p53 and different kinases participated in the regulation of gene transcription, cell growth, adhesion, and differentiation. Externalization of phosphatidylserine, an early apoptosis marker, observed by flow cytometry, confirmed the induction of apoptosis in A549 cells upon the ws-Lynx1 treatment. Our data revealed the ability of ws-Lynx1 to regulate homeostasis of epithelial cancer cells.
Collapse
|
2
|
Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP) and Cyclic ADP-Ribose (cADPR) Mediate Ca2+ Signaling in Cardiac Hypertrophy Induced by β-Adrenergic Stimulation. PLoS One 2016; 11:e0149125. [PMID: 26959359 PMCID: PMC4784992 DOI: 10.1371/journal.pone.0149125] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/27/2016] [Indexed: 01/19/2023] Open
Abstract
Ca2+ signaling plays a fundamental role in cardiac hypertrophic remodeling, but the underlying mechanisms remain poorly understood. We investigated the role of Ca2+-mobilizing second messengers, NAADP and cADPR, in the cardiac hypertrophy induced by β-adrenergic stimulation by isoproterenol. Isoproterenol induced an initial Ca2+ transients followed by sustained Ca2+ rises. Inhibition of the cADPR pathway with 8-Br-cADPR abolished only the sustained Ca2+ increase, whereas inhibition of the NAADP pathway with bafilomycin-A1 abolished both rapid and sustained phases of the isoproterenol-mediated signal, indicating that the Ca2+ signal is mediated by a sequential action of NAADP and cADPR. The sequential production of NAADP and cADPR was confirmed biochemically. The isoproterenol-mediated Ca2+ increase and cADPR production, but not NAADP production, were markedly reduced in cardiomyocytes obtained from CD38 knockout mice. CD38 knockout mice were rescued from chronic isoproterenol infusion-induced myocardial hypertrophy, interstitial fibrosis, and decrease in fractional shortening and ejection fraction. Thus, our findings indicate that β-adrenergic stimulation contributes to the development of maladaptive cardiac hypertrophy via Ca2+ signaling mediated by NAADP-synthesizing enzyme and CD38 that produce NAADP and cADPR, respectively.
Collapse
|
3
|
Kim SY, Cho BH, Kim UH. CD38-mediated Ca2+ signaling contributes to angiotensin II-induced activation of hepatic stellate cells: attenuation of hepatic fibrosis by CD38 ablation. J Biol Chem 2009; 285:576-82. [PMID: 19910464 DOI: 10.1074/jbc.m109.076216] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CD38 is a type II glycoprotein that is responsible for the synthesis and hydrolysis of cyclic ADP-ribose (cADPR) and nicotinic acid adenine dinucleotide phosphate (NAADP), Ca(2+)-mobilizing second messengers. The activation of hepatic stellate cells (HSCs) is a critical event in hepatic fibrosis because these cells are the main producers of extracellular matrix proteins in the liver. Recent evidence indicates that the renin-angiotensin system plays a major role in liver fibrosis. In this study, we showed that angiotensin II (Ang II) evoked long lasting Ca(2+) rises and induced NAADP or cADPR productions via CD38 in HSCs. Inositol 1,4,5-trisphosphate as well as NAADP-induced initial Ca(2+) transients were prerequisite for the production of cADPR, which was responsible for later sustained Ca(2+) rises in the Ang II-treated HSCs. Ang II-mediated inositol 1,4,5-trisphosphate- and NAADP-stimulated Ca(2+) signals cross-talked in a dependent manner with each other. We also demonstrated that CD38 plays an important role in Ang II-induced proliferation and overproduction of extracellular matrix proteins in HSCs, which were reduced by an antagonistic cADPR analog, 8-bromo-cADPR, or in CD38(-/-) HSCs. Moreover, we presented evidence to implicate CD38 in the bile duct ligation-induced liver fibrogenesis; infiltration of inflammatory cells and expressions of alpha-smooth muscle actin, transforming growth factor-beta1, collagen alphaI(1), and fibronectin were reduced in CD38(-/-) mice compared with those in CD38(+/+) mice. These results demonstrate that CD38-mediated Ca(2+) signals contribute to liver fibrosis via HSCs activation, suggesting that intervention of CD38 activation may help prevent hepatic fibrosis.
Collapse
Affiliation(s)
- Seon-Young Kim
- Department of Biochemistry, Chonbuk National University Medical School, Jeonju 561-182, Republic of Korea
| | | | | |
Collapse
|
4
|
NAADP-mediated Ca2+ signaling via type 1 ryanodine receptor in T cells revealed by a synthetic NAADP antagonist. Proc Natl Acad Sci U S A 2009; 106:10678-83. [PMID: 19541638 DOI: 10.1073/pnas.0809997106] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The nucleotide NAADP was recently discovered as a second messenger involved in the initiation and propagation of Ca(2+) signaling in lymphoma T cells, but its impact on primary T cell function is still unknown. An optimized, synthetic, small molecule inhibitor of NAADP action, termed BZ194, was designed and synthesized. BZ194 neither interfered with Ca(2+) mobilization by d-myo-inositol 1,4,5-trisphosphate or cyclic ADP-ribose nor with capacitative Ca(2+) entry. BZ194 specifically and effectively blocked NAADP-stimulated [(3)H]ryanodine binding to the purified type 1 ryanodine receptor. Further, in intact T cells, Ca(2+) mobilization evoked by NAADP or by formation of the immunological synapse between primary effector T cells and astrocytes was inhibited by BZ194. Downstream events of Ca(2+) mobilization, such as nuclear translocation of "nuclear factor of activated T cells" (NFAT), T cell receptor-driven interleukin-2 production, and proliferation in antigen-experienced CD4(+) effector T cells, were attenuated by the NAADP antagonist. Taken together, specific inhibition of the NAADP signaling pathway constitutes a way to specifically and effectively modulate T-cell activation and has potential in the therapy of autoimmune diseases.
Collapse
|
5
|
The role of dietary niacin intake and the adenosine-5'-diphosphate-ribosyl cyclase enzyme CD38 in spatial learning ability: is cyclic adenosine diphosphate ribose the link between diet and behaviour? Nutr Res Rev 2009; 21:42-55. [PMID: 19079853 DOI: 10.1017/s0954422408945182] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The pyridine nucleotide NAD+ is derived from dietary niacin and serves as the substrate for the synthesis of cyclic ADP-ribose (cADPR), an intracellular Ca signalling molecule that plays an important role in synaptic plasticity in the hippocampus, a region of the brain involved in spatial learning. cADPR is formed in part via the activity of the ADP-ribosyl cyclase enzyme CD38, which is widespread throughout the brain. In the present review, current evidence of the relationship between dietary niacin and behaviour is presented following investigations of the effect of niacin deficiency, pharmacological nicotinamide supplementation and CD38 gene deletion on brain nucleotides and spatial learning ability in mice and rats. In young male rats, both niacin deficiency and nicotinamide supplementation significantly altered brain NAD+ and cADPR, both of which were inversely correlated with spatial learning ability. These results were consistent across three different models of niacin deficiency (pair feeding, partially restricted feeding and niacin recovery). Similar changes in spatial learning ability were observed in Cd38- / - mice, which also showed decreases in brain cADPR. These findings suggest an inverse relationship between spatial learning ability, dietary niacin intake and cADPR, although a direct link between cADPR and spatial learning ability is still missing. Dietary niacin may therefore play a role in the molecular events regulating learning performance, and further investigations of niacin intake, CD38 and cADPR may help identify potential molecular targets for clinical intervention to enhance learning and prevent or reverse cognitive decline.
Collapse
|
6
|
Kang M, Othmer HG. The variety of cytosolic calcium responses and possible roles of PLC and PKC. Phys Biol 2007; 4:325-43. [DOI: 10.1088/1478-3975/4/4/009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
7
|
Grimaldi M. Astrocytes refill intracellular Ca2+ stores in the absence of cytoplasmic [Ca2+] elevation: a functional rather than a structural ability. J Neurosci Res 2007; 84:1738-49. [PMID: 17016852 DOI: 10.1002/jnr.21064] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Capacitative Ca(2+) entry (CCE) is a phenomenon triggered by depletion of Ca(2+) content in intracellular stores (ICS). Data about this phenomenon in astrocytes are limited. We analyzed CCE in astrocytes by means of fura-2 based digital imaging. We found that in astrocytes CCE is not associated with an increase of cytosolic Ca(2+) concentration ([Ca(2+)](i)), although ICS are efficiently refilled. We used Mn(2+), thapsigargin and prolonged ATP exposure to show that CCE is not associated with cytosolic diffusion of Ca(2+) entering astrocytes. Our data suggest that the ion is being quickly sequestered in the ICS by the smooth endoplasmic reticulum Ca(2+)-ATP-ase (SERCA). Several experiments were carried out with the goal of failing the efficient uptake in the endoplasmic reticulum (ER). In fact, inhibition of SERCA activity, increased extracellular [Ca(2+)](i) or pharmacologic potentiation of CCE all caused [Ca(2+)](i) elevation during CCE, suggesting that the control of this phenomenon could have physiologic and pathological relevance. The molecular components involved in CCE have been proposed to be organized in a multi-molecular complex tethered by cytoskeleton components and arranged via a secretion coupling model. We show here that the efficient routing of Ca(2+) into the ICS in astrocytes is not affected by disruption of cytoskeleton organization or Golgi's function, but it is instead linked to the high efficiency of SERCA. We conclude that depleted ICS in astrocytes are efficiently refilled by CCE activation, although Ca(2+) influx is not accompanied by elevation of [Ca(2+)](i). This ability seems to be functional rather than structural in nature.
Collapse
Affiliation(s)
- Maurizio Grimaldi
- Laboratory of Neuropharmacology, Department of Biochemistry, Drug Discovery Division, Southern Research Institute, Birmingham, AL 35025, USA.
| |
Collapse
|
8
|
Khoo KM, Chang CF, Schubert J, Wondrak E, Chng HH. Expression and purification of the recombinant His-tagged GST-CD38 fusion protein using the baculovirus/insect cell expression system. Protein Expr Purif 2005; 40:396-403. [PMID: 15766882 DOI: 10.1016/j.pep.2004.11.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2004] [Indexed: 11/28/2022]
Abstract
CD38 is a type II transmembrane glycoprotein found in myriad mammalian tissues and cell types. It is known for its involvement in the metabolism of cyclic ADP-ribose and nicotinic acid adenine dinucleotide phosphate, two nucleotides with calcium mobilizing activity independent of inositol trisphosphate. CD38 itself has been shown to have clinical significance in certain diseases with possible utilization in diagnostic and prognostic applications. Previous studies on several autoimmune diseases have shown the usefulness of recombinant CD38 protein expressed from Escherichia coli and Pichia pastoris in the detection of autoantibodies to CD38 via Western blot and ELISA. In this study, we produced a 6 x His-tagged GST-CD38 fusion protein using a recombinant baculovirus/insect cell expression technique that was purified as a soluble protein. The fusion protein was purified to homogeneity by affinity and gel filtration chromatography steps. It has an apparent molecular mass of 56 kDa on SDS-PAGE gel stained with Coomassie blue and was recognized on Western blots by antibodies against human CD38 as well as the polyhistidine tag. Peptide mass fingerprinting analysis confirmed the identity of human CD38 in the fusion protein.
Collapse
Affiliation(s)
- Keng Meng Khoo
- Department of Rheumatology, Allergy, and Immunology, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore.
| | | | | | | | | |
Collapse
|
9
|
Affiliation(s)
- Gregor Rothe
- Bremer Zentrum für Laboratoriumsmedizin GmbH, D-28205 Bremen, Germany
| | | |
Collapse
|
10
|
Mort CJW, Migaud ME, Galione A, Potter BVL. Aplysia californica mediated cyclisation of novel 3'-modified NAD+ analogues: a role for hydrogen bonding in the recognition of cyclic adenosine 5'-diphosphate ribose. Bioorg Med Chem 2004; 12:475-87. [PMID: 14723966 DOI: 10.1016/j.bmc.2003.10.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cyclic ADP-ribose mobilizes intracellular Ca2+ in a variety of cells. To elucidate the nature of the interaction between the C3' substituent of cADP-ribose and the cADPR receptor, three analogues of NAD+ modified in the adenosine ribase (xyloNAD+ 3'F-xyloNAD+ and 3'F-NAD+ were chemically synthesised from D-xylose and adenine starting materials. 3'F-NAD+ was readily converted to cyclic 3'F-ADP ribose by the action of the cyclase enzyme derived from the mollusc Aplysia californica. XyloNAD+ and 3'F-xyloNAD+ were cyclised only reluctantly and in poor yield to afford unstable cyclic products. Biological evaluation of cyclic 3'F-ADP ribose for calcium release in sea urchin egg homogenate gave an EC(50) of 1.5+/-0.5 microM. This high value suggests that the ability of the C3' substituent to donate a hydrogen bond is crucial for agonism.
Collapse
Affiliation(s)
- Christopher J W Mort
- Wolfson Laboratory of Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | | | | | | |
Collapse
|
11
|
Abstract
Cardiovascular function relies on complex servo-controlled regulation mechanisms that involve both fast-acting feedback responses and long-lasting adaptations affecting the gene expression. The adrenergic system, with its specific receptor subtypes and intracellular signalling cascades provides the major regulatory system, while the parasympathetic system plays a minor role. At the molecular level, Ca(2+) acts as the general signal trigger for the majority of cell activities including contraction, metabolism and growth. During recent years, important new results have emerged allowing an integrated view of how the multifarious Ca(2+)-signalling mechanisms transmit adrenergic impulses to intracellular target sites. These insights into cellular and molecular mechanisms are pivotal in improving pharmacological control of the sympathetic responses to surgical trauma and perioperative stress. They are examined in detail in this review, with particular emphasis being given to the differences in intracellular signalling between cardiomyocytes and vascular smooth muscle cells.
Collapse
Affiliation(s)
- M Zaugg
- Institute of Anaesthesiology, University Hospital Zurich, Switzerland. michael.zaugg.usz.ch
| | | |
Collapse
|
12
|
Kunerth S, Langhorst MF, Schwarzmann N, Gu X, Huang L, Yang Z, Zhang L, Mills SJ, Zhang LH, Potter BVL, Guse AH. Amplification and propagation of pacemaker Ca2+ signals by cyclic ADP-ribose and the type 3 ryanodine receptor in T cells. J Cell Sci 2004; 117:2141-9. [PMID: 15054112 DOI: 10.1242/jcs.01063] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Ligation of the T-cell receptor/CD3 complex results in global Ca(2+) signals that are essential for T-cell activation. We have recently reported that these global Ca(2+) signals are preceded by localized pacemaker Ca(2+) signals. Here, we demonstrate for the first time for human T cells that an increase in signal frequency of subcellular pacemaker Ca(2+) signals at sites close to the plasma membrane, in the cytosol and in the nucleus depends on the type 3 ryanodine receptor (RyR) and its modulation by cyclic ADP-ribose. The spatial distribution of D-myo-inositol 1,4,5-trisphosphate receptors and RyRs indicates a concerted action of both of these receptors/Ca(2+) channels in the generation of initial pacemaker signals localized close to the plasma membrane. Inhibition or knockdown of RyRs resulted in significant decreases in (1) the frequency of initial pacemaker signals localized close to the plasma membrane, and (2) the frequency of localized pacemaker Ca(2+) signals in the inner cytosol. Moreover, upon microinjection of cyclic ADP-ribose or upon extracellular addition of its novel membrane-permeant mimic N-1-ethoxymethyl-substituted cyclic inosine diphosphoribose, similarly decreased Ca(2+) signals were observed in both type 3 RyR-knockdown cells and in control cells microinjected with the RyR antagonist Ruthenium Red. Taken together, our results show that, under physiological conditions in human T cells, RyRs play crucial roles in the local amplification and the spatiotemporal development of subcellular Ca(2+) pacemaker signals.
Collapse
Affiliation(s)
- Svenja Kunerth
- University Hospital Hamburg-Eppendorf, Center for Experimental Medicine, Institute of Biochemistry and Molecular Biology I: Cellular Signal Transduction, Martinistr. 52, 20246 Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Nagy G, Koncz A, Perl A. T cell activation-induced mitochondrial hyperpolarization is mediated by Ca2+- and redox-dependent production of nitric oxide. THE JOURNAL OF IMMUNOLOGY 2004; 171:5188-97. [PMID: 14607919 PMCID: PMC4078644 DOI: 10.4049/jimmunol.171.10.5188] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Activation, proliferation, or programmed cell death of T lymphocytes is regulated by the mitochondrial transmembrane potential (Deltapsi(m)) through controlling ATP synthesis, production of reactive oxygen intermediates (ROI), and release of cell death-inducing factors. Elevation of Deltapsi(m) or mitochondrial hyperpolarization is an early and reversible event associated with both T cell activation and apoptosis. In the present study, T cell activation signals leading to mitochondrial hyperpolarization were investigated. CD3/CD28 costimulation of human PBL elevated cytoplasmic and mitochondrial Ca(2+) levels, ROI production, and NO production, and elicited mitochondrial hyperpolarization. Although T cell activation-induced Ca(2+) release, ROI levels, and NO production were diminished by inositol 1,4,5-triphosphate receptor antagonist 2-aminoethoxydiphenyl borane, superoxide dismutase mimic manganese (III) tetrakis (4-benzoic acid) porphyrin chloride, spin trap 5-diisopropoxyphosphoryl-5-methyl-1-pyrroline-N-oxide, and NO chelator carboxy-2-phenyl-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide, mitochondrial hyperpolarization was selectively inhibited by carboxy-2-phenyl-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide (-85.0 +/- 10.0%; p = 0.008) and, to a lesser extent, by 2-aminoethoxydiphenyl borane. Moreover, NO precursor (Z)-1-[2-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate diethylenetriamine elicited NO and ROI production, Ca(2+) release, transient ATP depletion, and robust mitochondrial hyperpolarization (3.5 +/- 0.8-fold; p = 0.002). Western blot analysis revealed expression of Ca-dependent endothelial NO synthase and neuronal NO synthase isoforms and absence of Ca-independent inducible NO synthase in PBL. CD3/CD28 costimulation or H(2)O(2) elicited severalfold elevations of endothelial NO synthase and neuronal NO synthase expression, as compared with beta-actin. H(2)O(2) also led to moderate mitochondrial hyperpolarization; however, Ca(2+) influx by ionomycin or Ca(2+) release from intracellular stores by thapsigargin alone failed to induce NO synthase expression, NO production, or Deltapsi(m) elevation. The results suggest that T cell activation-induced mitochondrial hyperpolarization is mediated by ROI- and Ca(2+)-dependent NO production.
Collapse
Affiliation(s)
- Gyorgy Nagy
- Department of Medicine, State University of New York, College of Medicine, Syracuse, NY 13210
| | - Agnes Koncz
- Department of Medicine, State University of New York, College of Medicine, Syracuse, NY 13210
| | - Andras Perl
- Department of Medicine, State University of New York, College of Medicine, Syracuse, NY 13210
- Department of Microbiology and Immunology, State University of New York, College of Medicine, Syracuse, NY 13210
- Address correspondence and reprint requests to Dr. Andras Perl, Department of Medicine, State University of New York, 750 East Adams Street, Syracuse, NY 13210.
| |
Collapse
|
14
|
Calcium, Calmodulin, and Phospholipids. Mol Endocrinol 2004. [DOI: 10.1016/b978-012111232-5/50010-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
15
|
Grafton G, Stokes L, Toellner KM, Gordon J. A non-voltage-gated calcium channel with L-type characteristics activated by B cell receptor ligation. Biochem Pharmacol 2003; 66:2001-9. [PMID: 14599558 DOI: 10.1016/j.bcp.2003.07.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In mature B cells engagement of the antigen-receptor (BCR) results in a peak of Ca(2+) from mobilisation of internal stores followed by a lower but sustained elevation that is dependent upon extracellular Ca(2+). The Ca(2+) channel involved in the sustained elevation remains uncharacterised. Here we have presented evidence that although non-excitable, B cells expressed a BCR-activated Ca(2+) channel sharing some properties of conventional L-type voltage-gated channels. Human lymphoma B cells expressed a transcript having homology to a highly conserved region on the pore-forming alpha(1.2) subunit of L-type voltage-gated Ca(2+) channels. The alpha(1.2) protein was expressed together with the beta1 subunit, while an antibody raised against the extracellular portion of L-type Ca(2+) channels caused a Ca(2+) flux in these cells. Drugs that block classical L-type channels abolished the BCR-induced Ca(2+) flux while directly activating a plasma membrane Ca(2+) channel: activation of the channel, separate from Ca(2+) influx, inhibited BCR-induced Ca(2+) release from intracellular stores. BAYK8644-a drug that binds to open L-type channels-failed to release intracellular Ca(2+) in the absence of BCR cross-linking but instantly abolished the BCR-induced Ca(2+) peak and established the sustained phase of the response. The BCR-activated calcium channel appeared to terminate the initial peak of BCR-induced Ca(2+) release and initiate the sustained phase of the signal.
Collapse
Affiliation(s)
- Gillian Grafton
- MRC Centre for Immune Regulation, The Medical School, University of Birmingham, Birmingham B15 2TT, Edgbaston, UK.
| | | | | | | |
Collapse
|
16
|
Bruzzone S, Kunerth S, Zocchi E, De Flora A, Guse AH. Spatio-temporal propagation of Ca2+ signals by cyclic ADP-ribose in 3T3 cells stimulated via purinergic P2Y receptors. ACTA ACUST UNITED AC 2003; 163:837-45. [PMID: 14623867 PMCID: PMC2173669 DOI: 10.1083/jcb.200307016] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The role of cyclic ADP-ribose in the amplification of subcellular and global Ca2+ signaling upon stimulation of P2Y purinergic receptors was studied in 3T3 fibroblasts. Either (1) 3T3 fibroblasts (CD38- cells), (2) 3T3 fibroblasts preloaded by incubation with extracellular cyclic ADP-ribose (cADPR), (3) 3T3 fibroblasts microinjected with ryanodine, or (4) 3T3 fibroblasts transfected to express the ADP-ribosyl cyclase CD38 (CD38+ cells) were used. Both preincubation with cADPR and CD38 expression resulted in comparable intracellular amounts of cyclic ADP-ribose (42.3 +/- 5.2 and 50.5 +/- 8.0 pmol/mg protein). P2Y receptor stimulation of CD38- cells yielded a small increase of intracellular Ca2+ concentration and a much higher Ca2+ signal in CD38-transfected cells, in cADPR-preloaded cells, or in cells microinjected with ryanodine. Confocal Ca2+ imaging revealed that stimulation of ryanodine receptors by cADPR or ryanodine amplified localized pacemaker Ca2+ signals with properties resembling Ca2+ quarks and triggered the propagation of such localized signals from the plasma membrane toward the internal environment, thereby initiating a global Ca2+ wave.
Collapse
Affiliation(s)
- Santina Bruzzone
- Department of Experimental Medicine, University of Genova, Italy
| | | | | | | | | |
Collapse
|
17
|
Abstract
Cells use signalling networks to translate with high fidelity extracellular signals into specific cellular functions. Signalling networks are often composed of multiple signalling pathways that act in concert to regulate a particular cellular function. In the centre of the networks are the receptors that receive and transduce the signals. A versatile family of receptors that detect a remarkable variety of signals are the G protein-coupled receptors (GPCRs). Virtually all cells express several GPCRs that use the same biochemical machinery to transduce their signals. Considering the specificity and fidelity of signal transduction, a central question in cell signalling is how signalling specificity is achieved, in particular among GPCRs that use the same biochemical machinery. Ca(2+) signalling is particularly suitable to address such questions, since [Ca(2+)](i) can be recorded with excellent spatial and temporal resolutions in living cells and tissues and now in living animals. Ca(2+) is a unique second messenger in that both biochemical and biophysical components form the Ca(2+) signalling complex to regulate its concentration. Both components act in concert to generate repetitive [Ca(2+)](i) oscillations that can be either localized or in the form of global, propagating Ca(2+) waves. Most of the key proteins that form Ca(2+) signalling complexes are known and their activities are reasonably well understood on the biochemical and biophysical levels. We review here the information gained from studying Ca(2+) signalling by GPCRs to gain further understanding of the mechanisms used to generate cellular signalling specificity.
Collapse
Affiliation(s)
- Kirill Kiselyov
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | |
Collapse
|
18
|
Modulation of Calcium Homeostasis by the Endoplasmic Reticulum in Health and Disease. CALRETICULIN 2003. [DOI: 10.1007/978-1-4419-9258-1_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
19
|
Schwarzmann N, Kunerth S, Weber K, Mayr GW, Guse AH. Knock-down of the type 3 ryanodine receptor impairs sustained Ca2+ signaling via the T cell receptor/CD3 complex. J Biol Chem 2002; 277:50636-42. [PMID: 12354756 DOI: 10.1074/jbc.m209061200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Jurkat T cells, the type 3 ryanodine receptor (RyR) was knocked-down by stable integration of plasmid expressing type 3 ryanodine receptor antisense RNA. Stable integration of the antisense plasmid in individual clones was demonstrated by PCR of genomic DNA, expression of antisense RNA by reverse transcriptase PCR, and efficiently reduced expression of type 3 ryanodine receptor protein by Western blot. Selected clones were successfully used to analyze T cell receptor/CD3 complex-mediated Ca(2+) signaling. Reduced expression of the type 3 RyR resulted in (i) significantly decreased Ca(2+) signaling in the sustained phase and (ii) in permeabilized cells in a significantly impaired response toward cyclic ADP-ribose but not to d-myo-inositol 1,4,5-trisphosphate. For the first time, the role of the type 3 RyR in sustained Ca(2+) signaling was directly visualized by confocal Ca(2+) imaging as a significant contribution to the number and the magnitude of subcellular Ca(2+) signals. These data suggest that the type 3 ryanodine receptor is essential in the sustained Ca(2+) response in T cells.
Collapse
Affiliation(s)
- Nadine Schwarzmann
- University Hospital Hamburg-Eppendorf, Center for Theoretical Medicine, Institute for Cellular Signal Transduction, Martinistr. 52, D-20246 Hamburg, Germany
| | | | | | | | | |
Collapse
|
20
|
Schuster S, Marhl M, Höfer T. Modelling of simple and complex calcium oscillations. From single-cell responses to intercellular signalling. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:1333-55. [PMID: 11874447 DOI: 10.1046/j.0014-2956.2001.02720.x] [Citation(s) in RCA: 315] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This review provides a comparative overview of recent developments in the modelling of cellular calcium oscillations. A large variety of mathematical models have been developed for this wide-spread phenomenon in intra- and intercellular signalling. From these, a general model is extracted that involves six types of concentration variables: inositol 1,4,5-trisphosphate (IP3), cytoplasmic, endoplasmic reticulum and mitochondrial calcium, the occupied binding sites of calcium buffers, and the fraction of active IP3 receptor calcium release channels. Using this framework, the models of calcium oscillations can be classified into 'minimal' models containing two variables and 'extended' models of three and more variables. Three types of minimal models are identified that are all based on calcium-induced calcium release (CICR), but differ with respect to the mechanisms limiting CICR. Extended models include IP3--calcium cross-coupling, calcium sequestration by mitochondria, the detailed gating kinetics of the IP3 receptor, and the dynamics of G-protein activation. In addition to generating regular oscillations, such models can describe bursting and chaotic calcium dynamics. The earlier hypothesis that information in calcium oscillations is encoded mainly by their frequency is nowadays modified in that some effect is attributed to amplitude encoding or temporal encoding. This point is discussed with reference to the analysis of the local and global bifurcations by which calcium oscillations can arise. Moreover, the question of how calcium binding proteins can sense and transform oscillatory signals is addressed. Recently, potential mechanisms leading to the coordination of oscillations in coupled cells have been investigated by mathematical modelling. For this, the general modelling framework is extended to include cytoplasmic and gap-junctional diffusion of IP3 and calcium, and specific models are compared. Various suggestions concerning the physiological significance of oscillatory behaviour in intra- and intercellular signalling are discussed. The article is concluded with a discussion of obstacles and prospects.
Collapse
Affiliation(s)
- Stefan Schuster
- Max Delbrück Centre for Molecular Medicine, Department of Bioinformatics, Berlin-Buch, Germany.
| | | | | |
Collapse
|
21
|
Yusufi ANK, Cheng J, Thompson MA, Burnett JC, Grande JP. Differential mechanisms of Ca(2+) release from vascular smooth muscle cell microsomes. Exp Biol Med (Maywood) 2002; 227:36-44. [PMID: 11788782 DOI: 10.1177/153537020222700107] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The release of Ca(2+) from intracellular stores is a fundamental element of signaling pathways involved in regulation of vascular tone, proliferation, apoptosis, and gene expression. Studies of sea urchin eggs have led to the identification of three functionally distinct Ca(2+) signaling pathways triggered by IP3, cADPR, and NAADP. The coexistence and functional relevance of these distinct intracellular Ca(2+) release systems has only been described in a few mammalian cell types. The purpose of this study was to determine whether the IP3, cADPR, and NAADP Ca(2+) release systems coexist in smooth muscle cells (SMC) and to determine the specificity of these intracellular Ca(2+) release pathways. Microsomes were prepared from rat aortic SMC (VSMC) and were loaded with 45Ca(2+). cADPR, NAADP, and IP3 induced Ca(2+) release from VSMC microsomes in a dose-dependent fashion. Heparin blocked only IP3-mediated Ca(2+) release, whereas the ryanodine channel inhibitors 8-Br-cADPR and ruthenium red blocked only cADPR-induced Ca(2+) release. Nifedipine, an L-type Ca(2+) channel blocker, inhibited NAADP elicited Ca(2+) release, but had no effect on IP3- or cADPR-mediated Ca(2+) release. An increase in pH from 7.2 to 8.2 inhibited cADPR-mediated Ca(2+) release, but had no effect on IP3- or NAADP-induced Ca(2+) release. By RT-PCR, VSMC expressed ryanodine receptor types 1, 2, and 3. Ca(2+)-dependent binding of [3H]-ryanodine to VSMC microsomes was enhanced by the ryanodine receptor agonists 4-chloro-methyl-phenol (CMP) and caffeine, but was inhibited by ruthenium red and cADPR. We conclude that VSMC possess at least three functionally distinct pathways that promote intracellular Ca(2+) release. IP3-, cADPR-, and NAADP-induced intracellular Ca(2+) release may play a critical role in the maladaptive responses of VSMC to environmental stimuli that are characteristically associated with hypertension and/or atherogenesis.
Collapse
Affiliation(s)
- Ahad N K Yusufi
- Renal Pathophysiology Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic, Mayo Medical School, Rochester, Minnesota 55905, USA
| | | | | | | | | |
Collapse
|
22
|
Schweitzer K, Mayr GW, Guse AH. Assay for ADP-ribosyl cyclase by reverse-phase high-performance liquid chromatography. Anal Biochem 2001; 299:218-26. [PMID: 11730346 DOI: 10.1006/abio.2001.5419] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cyclic ADP-ribose (cADPR), a natural metabolite of beta-NAD(+), is a second messenger for Ca(2+) signaling in T cells. As a tool for purification and identification of ADP-ribosyl cyclase(s) in T cells, a sensitive and specific enzymatic assay using 1,N(6)-etheno-NAD(+) as substrate was developed. A major problem-the sensitivity of 1,N(6)-etheno-cADPR toward the extraction medium perchloric acid-was solved by replacing the perchloric acid extraction procedure of nucleotides by a filtration step. Standard compounds for the HPLC analysis of ADP-ribosyl cyclases and NAD(+)-glycohydrolases, e.g., 1,N(6)-etheno-cADPR, 1,N(6)-etheno-ADPR, and 1,N(6)-etheno-AMP, were produced by ADP-ribosyl cyclase from Aplysia californica and dinucleotide pyrophosphatase. The assay was applied to subcellular fractions prepared from human Jurkat T cells. As a result ADP-ribosyl cyclase and NAD(+)-glycohydrolase activity could be detected and precisely quantified in different subcellular fractions indicating the presence of different isoenzymes in T cells.
Collapse
Affiliation(s)
- K Schweitzer
- University Hospital Hamburg-Eppendorf, Institute for Medical Biochemistry and Molecular Biology, Division of Cellular Signal Transduction, University of Hamburg, Martinistrasse 52, D-20246 Hamburg, Germany
| | | | | |
Collapse
|
23
|
Schöttelndreier H, Potter BV, Mayr GW, Guse AH. Mechanisms involved in alpha6beta1-integrin-mediated Ca(2+) signalling. Cell Signal 2001; 13:895-9. [PMID: 11728829 DOI: 10.1016/s0898-6568(01)00225-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Contact of Jurkat T-lymphocytes with the extracellular matrix (ECM) protein laminin resulted in long-lasting alpha6beta1-integrin-mediated Ca(2+) signalling. Both Ca(2+) release from thapsigargin-sensitive Ca(2+) stores and capacitative Ca(2+) entry via Ca(2+) channels sensitive to SKF 96365 constitute important parts of this process. Inhibition of alpha6beta1-integrin-mediated Ca(2+) signalling by (1) the src kinase inhibitor PP2, (2) the PLC inhibitor U73122, and (3) the cyclic adenosine diphosphoribose (cADPR) antagonist 7-deaza-8-Br-cADPR indicate the involvement of src tyrosine kinases and the Ca(2+)-releasing second messengers D-myo-inositol 1,4,5-trisphosphate (InsP3) and cADPR.
Collapse
Affiliation(s)
- H Schöttelndreier
- Institute for Medical Biochemistry and Molecular Biology, Division of Cellular Signal Transduction, University of Hamburg, University Hospital Eppendorf, Martinistr. 52, D-20246, Hamburg, Germany
| | | | | | | |
Collapse
|
24
|
Lerner F, Niere M, Ludwig A, Ziegler M. Structural and functional characterization of human NAD kinase. Biochem Biophys Res Commun 2001; 288:69-74. [PMID: 11594753 DOI: 10.1006/bbrc.2001.5735] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
NADP is essential for biosynthetic pathways, energy, and signal transduction. Its synthesis is catalyzed by NAD kinase. Very little is known about the structure, function, and regulation of this enzyme from multicellular organisms. We identified a human NAD kinase cDNA and the corresponding gene using available database information. A cDNA was amplified from a human fibroblast cDNA library and functionally overexpressed in Escherichia coli. The obtained cDNA, slightly different from that deposited in the database, encodes a protein of 49 kDa. The gene is expressed in most human tissues, but not in skeletal muscle. Human NAD kinase differs considerably from that of prokaryotes by subunit molecular mass (49 kDa vs 30-35 kDa). The catalytically active homotetramer is highly selective for its substrates, NAD and ATP. It did not phosphorylate the nicotinic acid derivative of NAD (NAAD) suggesting that the potent calcium-mobilizing pyridine nucleotide NAADP is synthesized by an alternative route.
Collapse
Affiliation(s)
- F Lerner
- Freie Universität Berlin, Institut für Biochemie, Thielallee 63, 14195 Berlin, Germany
| | | | | | | |
Collapse
|
25
|
Affiliation(s)
- G Grafton
- MRC Centre for Immune Regulation, University of Birmingham, The Medical School, Edgbaston, Birmingham B15 2TT, UK.
| | | |
Collapse
|
26
|
Romanello M, Padoan M, Franco L, Veronesi V, Moro L, D'Andrea P. Extracellular NAD(+) induces calcium signaling and apoptosis in human osteoblastic cells. Biochem Biophys Res Commun 2001; 285:1226-31. [PMID: 11478787 DOI: 10.1006/bbrc.2001.5325] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ADP-ribosyl cyclase/CD38 is a bifunctional enzyme that catalyzes at its ectocellular domain the synthesis from NAD(+) (cyclase) and the hydrolysis (hydrolase) of the calcium-mobilizing second messenger cyclic ADP ribose (cADPR). Furthermore, CD38 mediates cADPR influx inside a number of cells, thereby inducing Ca(2+) mobilization. Intracellularly, cADPR releases Ca(2+) from ryanodine-sensitive pools, thus activating several Ca(2+)-dependent functions. Among these, the inhibition of osteoclastic-mediated bone resorption has been demonstrated. We found that HOBIT human osteoblastic cells display ADP-ribosyl cyclase activity and we examined the effects of CD38 stimulation on osteoblasts function. Extracellular NAD(+) induced elevation of cytosolic calcium due to both Ca(2+) influx from the extracellular medium and Ca(2+) release from ryanodine-sensitive intracellular stores. Culturing these cells in the presence of NAD(+) caused a complete growth arrest with a time-dependent decrease of cell number and the appearance of apoptotic nuclei. The first changes could be observed after 24 h of treatment and became fully evident after 72-96 h. We propose a role of extracellular NAD(+) in bone homeostatic control.
Collapse
Affiliation(s)
- M Romanello
- Dipartimento di Biochimica, Biofisica e Chimica delle Macromolecole, G. Gaslini Institute, via Licio Giorgieri 1, Trieste, I-34127, Italy
| | | | | | | | | | | |
Collapse
|