1
|
Kinarivala N, Shah K, Abbruscato TJ, Trippier PC. Passage Variation of PC12 Cells Results in Inconsistent Susceptibility to Externally Induced Apoptosis. ACS Chem Neurosci 2017; 8:82-88. [PMID: 27718545 DOI: 10.1021/acschemneuro.6b00208] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The PC12 cell line is a widely used in vitro model for screening the neuroprotective activity of small molecule libraries. External insult due to serum deprivation or addition of etoposide induces cell death by apoptosis. While this screening method is commonly used in early stage drug discovery no protocol accounting for cell passage number effect on neuroprotective activity has been disclosed. We herein report that passage variation results in false-positive/false-negative identification of neuroprotective compounds; undifferentiated PC12 cells with high passage number are less sensitive to injury induced by serum-deprivation or etoposide treatment. In contrast, NGF differentiated PC12 cells of later passage number are more sensitive to injury induced by etoposide than lower passage number but only after 72 h. Passage number also affects the adherence phenotype of the PC12 cells, complicating screening assays. We report an optimized protocol for screening the neuroprotective activity of small molecules in PC12 cells, which accounts for passage number variations.
Collapse
Affiliation(s)
| | | | | | - Paul C. Trippier
- Center
for Chemical Biology, Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| |
Collapse
|
2
|
Aoyagi K, Ohara-Imaizumi M, Itakura M, Torii S, Akimoto Y, Nishiwaki C, Nakamichi Y, Kishimoto T, Kawakami H, Harada A, Takahashi M, Nagamatsu S. VAMP7 Regulates Autophagy to Maintain Mitochondrial Homeostasis and to Control Insulin Secretion in Pancreatic β-Cells. Diabetes 2016; 65:1648-59. [PMID: 26953164 DOI: 10.2337/db15-1207] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 03/03/2016] [Indexed: 11/13/2022]
Abstract
VAMP7 is a SNARE protein that mediates specific membrane fusions in intracellular trafficking and was recently reported to regulate autophagosome formation. However, its function in pancreatic β-cells is largely unknown. To elucidate the physiological role of VAMP7 in β-cells, we generated pancreatic β-cell-specific VAMP7 knockout (Vamp7(flox/Y);Cre) mice. VAMP7 deletion impaired glucose-stimulated ATP production and insulin secretion, though VAMP7 was not localized to insulin granules. VAMP7-deficient β-cells showed defective autophagosome formation and reduced mitochondrial function. p62/SQSTM1, a marker protein for defective autophagy, was selectively accumulated on mitochondria in VAMP7-deficient β-cells. These findings suggest that accumulation of dysfunctional mitochondria that are degraded by autophagy caused impairment of glucose-stimulated ATP production and insulin secretion in Vamp7(flox/Y);Cre β-cells. Feeding a high-fat diet to Vamp7(flox/Y);Cre mice exacerbated mitochondrial dysfunction, further decreased ATP production and insulin secretion, and consequently induced glucose intolerance. Moreover, we found upregulated VAMP7 expression in wild-type mice fed a high-fat diet and in db/db mice, a model for diabetes. Thus our data indicate that VAMP7 regulates autophagy to maintain mitochondrial quality and insulin secretion in response to pathological stress in β-cells.
Collapse
Affiliation(s)
- Kyota Aoyagi
- Department of Biochemistry, Kyorin University School of Medicine, Tokyo, Japan
| | - Mica Ohara-Imaizumi
- Department of Biochemistry, Kyorin University School of Medicine, Tokyo, Japan
| | - Makoto Itakura
- Department of Biochemistry, Kitasato University School of Medicine, Kanagawa, Japan
| | - Seiji Torii
- Biosignal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Yoshihiro Akimoto
- Department of Anatomy, Kyorin University School of Medicine, Tokyo, Japan
| | - Chiyono Nishiwaki
- Department of Biochemistry, Kyorin University School of Medicine, Tokyo, Japan
| | - Yoko Nakamichi
- Department of Biochemistry, Kyorin University School of Medicine, Tokyo, Japan
| | - Takuma Kishimoto
- Department of Biochemistry, Kyorin University School of Medicine, Tokyo, Japan
| | - Hayato Kawakami
- Department of Anatomy, Kyorin University School of Medicine, Tokyo, Japan
| | - Akihiro Harada
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Masami Takahashi
- Department of Biochemistry, Kitasato University School of Medicine, Kanagawa, Japan
| | - Shinya Nagamatsu
- Department of Biochemistry, Kyorin University School of Medicine, Tokyo, Japan
| |
Collapse
|
3
|
Mejía M, Salgado-Bustamante M, Castillo CG, Jiménez-Capdeville ME. Passage determines toxicity and neuronal markers expression in PC12 cells with altered phenotype. Toxicol Res (Camb) 2013. [DOI: 10.1039/c3tx50010a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
4
|
Ohnuma K, Hayashi Y, Furue M, Kaneko K, Asashima M. Serum-free culture conditions for serial subculture of undifferentiated PC12 cells. J Neurosci Methods 2005; 151:250-61. [PMID: 16169086 DOI: 10.1016/j.jneumeth.2005.08.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2005] [Revised: 07/24/2005] [Accepted: 08/03/2005] [Indexed: 10/25/2022]
Abstract
PC12 cells, a widely used model neuronal cell line, are usually cultured in serum-supplemented medium. This report describes a serum-free medium for the culture of PC12 cells. PC12 cells grown in the two media types had similar growth rates and released dopamine in response to high potassium-induced calcium elevation. However, the levels of dopamine and of dopamine release in cells cultured in the serum-free medium were less than 10% of that in cells cultured in serum-supplemented medium. Dopamine levels recovered within 10 days if cells were returned to serum-supplemented medium, but dopamine release could not be recovered. Nerve growth factor (NGF) induced similar responses in PC12 cells cultured in both media, including phosphorylation of extracellular signal-regulated protein kinases and neurite extension. Transferrin was necessary for survival of neurite-bearing PC12 cells subcultured in serum-free medium and insulin promoted the cells proliferation. Ten days culture with NGF produced a similar increase in neurofilament expression and acetylcholinesterase activity in both media. These results suggest that PC12 in the hormonally defined serum-free media are qualitatively the same as those cultured in serum-supplemented media, and therefore this new culture protocol should enable more precise studies of PC12 cells culture in the absence of confounding unknown factors.
Collapse
Affiliation(s)
- Kiyoshi Ohnuma
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| | | | | | | | | |
Collapse
|
5
|
Kolesnikova EÉ. Molecular mechanisms underlying oxygen reception. NEUROPHYSIOLOGY+ 2004. [DOI: 10.1007/s11062-005-0021-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Schiller ED, Champney TH, Reiter CK, Dohrman DP. Melatonin inhibition of nicotine-stimulated dopamine release in PC12 cells. Brain Res 2003; 966:95-102. [PMID: 12646312 DOI: 10.1016/s0006-8993(02)04200-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Melatonin, a pineal hormone, modifies numerous physiologic processes including circadian rhythms and sleep. In specific tissues, melatonin appears to have an inverse relationship with dopamine. To examine this relationship, a pheochromocytoma cell line (PC12) was used to determine the extent of melatonin's ability to inhibit nicotine-stimulated dopamine release. Multiple experiments were conducted that examined: (1). the dose response of acute melatonin (5 min); (2). the effects of chronic melatonin (16 h pre-exposure); (3). the effects of prior nicotine or melatonin exposure (5 min) on melatonin's ability to alter dopamine release from a second 5-min nicotine exposure; and (4). the role of melatonin receptors (by pertussis toxin inhibition) on nicotine-stimulated dopamine release. In the dose response studies, melatonin inhibited nicotine-stimulated dopamine release with an ED50 of 8.6 microM. Chronic exposure to melatonin had no effect on melatonin's acute inhibition of nicotine-stimulated dopamine release. Prior nicotine or melatonin exposure had little effect on subsequent melatonin or nicotine exposure, except that the cells exposed to nicotine were not responsive to a second exposure to nicotine. Blockade of melatonin receptor function by pre-exposure to pertussis toxin (16 h) did not prevent melatonin's inhibition of nicotine-stimulated dopamine release. However, the toxin-treated cells were less inhibited by melatonin when compared to control cells suggesting a partial role for melatonin receptors. These results indicate that melatonin can acutely inhibit nicotine-stimulated dopamine release in PC12 cells. This model system allows detailed examination of melatonin's cellular actions as well as supporting a role for melatonin on neuronal dopamine release.
Collapse
Affiliation(s)
- Edward D Schiller
- Department of Human Anatomy and Medical Neurobiology, College of Medicine, Texas A&M University System Health Science Center, College Station, TX 77843-1114, USA
| | | | | | | |
Collapse
|
7
|
Fearon IM, Thompson RJ, Samjoo I, Vollmer C, Doering LC, Nurse CA. O2-sensitive K+ channels in immortalised rat chromaffin-cell-derived MAH cells. J Physiol 2002; 545:807-18. [PMID: 12482887 PMCID: PMC2290717 DOI: 10.1113/jphysiol.2002.028415] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The regulation of K(+) channels by O(2) levels is a key link between hypoxia and neurotransmitter release in neuroendocrine cells. Here, we examined the effects of hypoxia on K(+) channels in the immortalised v-myc, adrenal-derived HNK1(+) (MAH) cell line. MAH cells possess a K(+) conductance that is sensitive to Cd(2+), iberiotoxin and apamin, and which is inhibited by ~24 % when exposed to a hypoxic perfusate (O(2) tension 20 mmHg). This conductance was attributed to high-conductance Ca(2+)-activated K(+) (BK) and small-conductance Ca(2+)-activated K(+) (SK) channels, which are major contributors to the O(2)-sensitive K(+) conductance in adrenomedullary chromaffin cells. Under low [Ca(2+)](i) conditions that prevented activation of Ca(2+)-dependent K(+) conductances, a rapidly activating and slowly inactivating K(+) conductance, sensitive to both TEA and 4-aminopyridine (4-AP), but insensitive to 100 nM charybdotoxin (CTX), was identified. This current was also reduced (by ~25 %) when exposed to hypoxia. The hypoxia-sensitive component of this current was greatly attenuated by 10 mM 4-AP, but was only slightly reduced by 10 mM TEA. This suggests the presence of delayed-rectifier O(2)-sensitive channels comprising homomultimeric Kv1.5 or heteromultimeric Kv1.5/Kv1.2 channel subunits. The presence of both Kv1.5 and Kv1.2 alpha-subunits was confirmed using immunocytochemical techniques. We also demonstrated that these K(+) channel subunits are present in neonatal rat adrenomedullary chromaffin cells in situ. These data indicate that MAH cells possess O(2)-sensitive K(+) channels with characteristics similar to those observed previously in isolated chromaffin cells, and therefore provide an excellent model for examining the cellular mechanisms of O(2) sensing in adrenomedullary chromaffin cells.
Collapse
Affiliation(s)
- Ian M Fearon
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | | | | | | | | | | |
Collapse
|
8
|
Bieger S, Morinville A, Maysinger D. Bisperoxovanadium complex promotes dopamine exocytosis in PC12 cells. Neurochem Int 2002; 40:307-14. [PMID: 11792460 DOI: 10.1016/s0197-0186(01)00093-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The effects of the peroxovanadium complex potassium bisperoxo(1,10-phenanthroline)-oxovanadate (bpV[phen]) have been studied on dopamine (DA) exocytosis in PC12 cells. Bisperoxo(1,10-phenanthroline)-oxovanadate does not elicit dopamine secretion in PC12 cells. However, treatment of PC12 cells with 30 microM bpV[phen] for 20 min significantly enhances the secretion induced by the Ca(2+)-ionophore A23187. The effects appear to be irreversible, and strikingly different from the transient and suppressing effects of orthovanadate, which, like bpV[phen], is also a protein tyrosine phosphatase inhibitor. Contrastingly, the short-lived peroxovanadates, formed in situ by the addition of hydrogen peroxide and orthovanadate, are relatively ineffective. The Ca(2+) chelating agent EGTA abolishes bpV[phen]-enhanced dopamine release. The extracellular-regulated protein kinases (ERK) and synaptophysin, proteins implicated in exocytosis, are both tyrosine-phosphorylated by bpV[phen] in a dose- and time-dependent manner, with a maximal effect at 30 microM. Pre-treatment of cells with PD98059 significantly reduced dopamine release (P<0.05). These results suggest that this peroxovanadium complex enhances dopamine exocytosis, at least in part, by ERK-mediated signaling pathway and synaptophysin-associated phosphatase(s).
Collapse
Affiliation(s)
- S Bieger
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir William Osler, Montreal, Canada H3G 1Y6
| | | | | |
Collapse
|
9
|
Shoji-Kasai Y, Itakura M, Kataoka M, Yamamori S, Takahashi M. Protein kinase C-mediated translocation of secretory vesicles to plasma membrane and enhancement of neurotransmitter release from PC12 cells. Eur J Neurosci 2002; 15:1390-4. [PMID: 11994133 DOI: 10.1046/j.1460-9568.2002.01972.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In order to elucidate the molecular mechanism of phorbol ester-induced potentiation of neurotransmitter release, changes in the subcellular distribution of secretory vesicles were studied in PC12 cells. Dopamine (DA) and acetylcholine containing vesicles were selectively labelled by expressing green fluorescent protein-conjugated vesicular monoamine transporter and vesicular acetylcholine transporter, respectively. In the resting state, these vesicles were distributed throughout the cytoplasm. Phorbol-12-myristate-13-acetate (PMA), but not the inactive analogue 4 alpha-PMA, induced a redistribution of both types of secretory vesicles near the plasma membrane, and this change was abolished by a protein kinase C (PKC) inhibitor, bisindolylmaleimide I (BIS). PMA also induced a marked enhancement of depolarization-induced DA release and phosphorylation of SNAP-25 at Ser187. BIS completely inhibited PMA-induced SNAP-25 phosphorylation but suppressed PMA-induced enhancement of DA release only partially. These results suggest that PMA enhances neurotransmitter release from PC12 cells by both PKC-dependent and PKC-independent mechanisms, and PKC enhances neurotransmitter release by recruiting secretory vesicles to the plasma membrane.
Collapse
Affiliation(s)
- Yoko Shoji-Kasai
- Mitsubishi Kagaku Institute of Life Sciences, Machida, Tokyo 194-8511, Japan
| | | | | | | | | |
Collapse
|