1
|
Miyakawa Y, Chiba-Ohkuma R, Karakida T, Yamamoto R, Kobayashi S, Yamakoshi Y, Asada Y. Response of TGF-β isoforms in epithelial-mesenchymal transition of enamel epithelial cells. Arch Oral Biol 2022; 143:105540. [PMID: 36087522 DOI: 10.1016/j.archoralbio.2022.105540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/02/2022]
Abstract
OBJECTIVE During enamel formation, transforming growth factor-beta (TGF-β) isoforms exhibit different activities for gene expression, apoptosis, and endocytosis. This study aimed to investigate the differential response of TGF-β isoforms to epithelial-mesenchymal transition (EMT) in enamel epithelial cells. DESIGN Using a mouse enamel epithelial cell line (mHAT9d) cultured in the presence of each TGF-β isoform, (1) the morphological changes in EMT were explored, (2) EMT-related genes were analyzed by next-generation sequencing (NGS), (3) TGF-β pathway for EMT was identified by inhibition experiments, and (4) the expression of the TGF-β receptor gene in response to the binding affinity of the TGF-β isoform were analyzed. RESULTS EMT was observed in mHAT9d cultured in the presence of TGF-β1 and β3 but not TGF-β2. The expression of both epithelial and mesenchymal marker genes was observed in mHAT9d exhibiting EMT. NGS analysis suggested extracellular signal-regulated kinase (ERK) and Rho pathways as TGF-β signaling pathways associated with EMT. However, EMT in mHAT9d cultured in the presence of TGF-β1 or β3 occurred even in presence of an ERK1/2 inhibitor and was suppressed by Rho-kinase inhibitor. The expression of co-receptors for TGF-β signaling in mHAT9d cells reduced following stimulation with each TGF-β isoform. In contrast, endoglin levels increased following TGF-β1 or β3 stimulation, but no change was noted in response to TGF-β2. CONCLUSIONS We propose that in TGF-β-stimulated enamel epithelial cells, EMT mainly occurred via the Rho signaling pathway, and the differences in response across TGF-β isoforms were due to their endoglin-mediated binding affinity for the TGF-β receptor.
Collapse
Affiliation(s)
- Yuri Miyakawa
- Department of Pediatric Dentistry, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan.
| | - Risako Chiba-Ohkuma
- Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan.
| | - Takeo Karakida
- Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan.
| | - Ryuji Yamamoto
- Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan.
| | - Saeko Kobayashi
- Department of Pediatric Dentistry, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan.
| | - Yasuo Yamakoshi
- Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan.
| | - Yoshinobu Asada
- Department of Pediatric Dentistry, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan.
| |
Collapse
|
2
|
Ni XQ, Zhu JH, Yao NH, Qian J, Yang XJ. Statins suppress glucose-induced plasminogen activator inhibitor-1 expression by regulating RhoA and nuclear factor-κB activities in cardiac microvascular endothelial cells. Exp Biol Med (Maywood) 2013; 238:37-46. [PMID: 23479762 DOI: 10.1258/ebm.2012.012127] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The aim of this study was to investigate the possible proinflammatory signaling pathways involved in statin inhibition of glucose-induced plasminogen activator inhibitor-1 (PAI-1) expression in cardiac microvascular endothelial cells (CMECs). Primary rat CMECs were grown in the presence of 5.7 or 23 mmol/L glucose. PAI-1 mRNA and protein expression levels were measured by realtime polymerase chain reaction, Western blotting and enzyme-linked immunosorbent assay, respectively. A pull-down assay was performed to determine RhoA activity. IκBα protein expression was measured by Western blotting, nuclear factor (NF)-κB activation was detected by electrophoretic mobility shift assay and its transcription activity was determined by a dual luciferase reporter gene assay. PAI-1 mRNA and protein expression levels were both increased with high glucose concentrations, but they were significantly suppressed by simvastatin and atorvastatin treatment (P < 0.01) and the effects were reversed by mevalonate (100 μmol/L) and geranylgeranyl pyrophosphate (10 μmol/L) but not farnesyl pyrophosphate (10 μmol/L). Such effects were similar to those of a RhoA inhibitor, C3 exoenzyme (5 μg/mL), inhibitors of RhoA kinase (ROCK), Y-27632 (10 μmol/L) and hydroxyfasudil (10 μmol/L) and an NF-κB inhibitor, BAY 11-7082 (5 μmol/L). High glucose-induced RhoA and NF-κB activations in CMECs were both significantly inhibited by statins (P < 0.01). Simvastatin and atorvastatin equally suppress high glucose-induced PAI-1 expression. These effects of statins may occur partly by regulating the RhoA/ROCK-NF-κB pathway. The multifunctional roles of statins may be particularly beneficial for patients with metabolic syndrome.
Collapse
Affiliation(s)
- Xiao-Qing Ni
- Department of Cardiology, First Affiliated Hospital of Soochow University, Shizi St 188, Suzhou, Jiangsu 215006, China
| | | | | | | | | |
Collapse
|
3
|
Sakamoto K, Osaki M, Hozumi A, Goto H, Fukushima T, Baba H, Shindo H. Simvastatin suppresses dexamethasone-induced secretion of plasminogen activator inhibitor-1 in human bone marrow adipocytes. BMC Musculoskelet Disord 2011; 12:82. [PMID: 21524281 PMCID: PMC3114799 DOI: 10.1186/1471-2474-12-82] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 04/27/2011] [Indexed: 11/10/2022] Open
Abstract
Background Osteonecrosis of the femoral head is a common complication of high-dose glucocorticoid treatment. Intravascular thrombosis is thought to be associated with the ischemic state of the femoral head. Plasminogen activator inhibitor-1 (PAI-1) is an adipokine, which are physiologically active substances secreted from visceral and subcutaneous adipocytes. PAI-1 suppresses fibrinolysis by binding tissue-type plasminogen activator. Several reports have described the relationship between PAI-1 and steroid-induced osteonecrosis of the femoral head, and the preventive effects of lipid-lowering agents (statins) against steroid-induced osteonecrosis of the femoral head. We previously reported that adipokines and dexamethasone induced PAI-1 secretion from bone marrow adipocytes. The purpose of the present study is to examine the effects of simvastatin on PAI-1 secretion from human bone marrow adipocytes in vitro. Methods Primary bone marrow adipocytes were extracted from collagenase-treated bone marrow fluid obtained from the femoral necks of 40 patients (6 men, 34 women; age range, 52-81 years) undergoing hip joint replacement surgery. After suspended culture with or without dexamethasone or simvastatin, PAI-1 mRNA expression was assessed by real-time RT-PCR. Total PAI-1 protein secretion in culture medium was assessed by enzyme-linked immunosorbent assay. Results PAI-1 mRNA expression was up-regulated by 388% (P = 0.002) with dexamethasone, and down-regulated by 45% (P = 0.002) with simvastatin, as compared to control levels. Dexamethasone increased total PAI-1 secretion by 166% (P = 0.001) and simvastatin decreased total PAI-1 secretion by 64% (P = 0.002). No significant changes were observed in adiponectin mRNA expression and secretion by dexamethasone and simvastatin, while pre-treatment with simvastatin reversed dexamethasone induced PAI-1 secretion by 89%, as compared to control levels. Conclusion The present study confirmed the suppressive effects of simvastatin on PAI-1 expression and secretion from bone marrow adipocytes. Furthermore, pre-treatment with simvastatin reversed dexamethasone induced PAI-1 secretion. Simvastatin may thus exhibit preventive effects against steroid-induced osteonecrosis of the femoral head by suppressing PAI-1 secretion.
Collapse
Affiliation(s)
- Kazutaka Sakamoto
- Department of Orthopaedic Surgery, Graduate School of Biomedical Science, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, Nagasaki 852-8501, Japan.
| | | | | | | | | | | | | |
Collapse
|
4
|
Cáceres M, Romero A, Copaja M, Díaz-Araya G, Martínez J, Smith PC. Simvastatin alters fibroblastic cell responses involved in tissue repair. J Periodontal Res 2011; 46:456-63. [PMID: 21395587 DOI: 10.1111/j.1600-0765.2011.01360.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND OBJECTIVE Statins have been used to control hypercholesterolemia. However, these drugs also exert pleiotropic effects that include the modulation of inflammation and cell signaling. The present study has analyzed the effects of simvastatin on several cell responses involved in tissue repair, including cell adhesion, cell migration and invasion, actin cytoskeleton remodeling and cell viability. MATERIAL AND METHODS Primary cultures of gingival fibroblasts were stimulated with simvastatin. Cell adhesion was evaluated using a colorimetric assay. Cell spreading was evaluated microscopically. Cell migration and invasion were assessed using a scratch wound-healing assay and a bicameral cell culture system, respectively. Changes in actin cytoskeleton and focal adhesion assembly were evaluated through immunofluorescence for actin, vinculin and active β1 integrin. Rac activation was evaluated by means of a pull-down assay. Cell viability was assessed using a colorimetric assay that determines mitochondrial functionality. Data analysis was performed using the Mann-Whitney U-test. RESULTS Simvastatin diminished cell adhesion and spreading over a fibronectin matrix. It also altered the closure of scratch wounds induced on cell monolayers and cell invasion through a Transwell system. Simvastatin-treated cells displayed an altered lamellipodia with poorly developed focal adhesion contacts and reduced levels of β1 integrin activation. During cell spreading, simvastatin diminished Rac activation. CONCLUSION The present study shows that simvastatin may alter cell migration by disrupting the cell signaling networks that regulate the actin cytoskeleton dynamics. This mechanism may affect the response of gingival mesenchymal cells during wound healing.
Collapse
Affiliation(s)
- M Cáceres
- Laboratory of Periodontal Physiology, Dentistry Academic Unit, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | | | | | |
Collapse
|
5
|
Biphasic regulation of tissue plasminogen activator activity in ischemic rat brain and in cultured neural cells: essential role of astrocyte-derived plasminogen activator inhibitor-1. Neurochem Int 2010; 58:423-33. [PMID: 21193004 DOI: 10.1016/j.neuint.2010.12.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 12/21/2010] [Accepted: 12/21/2010] [Indexed: 11/20/2022]
Abstract
In brain, the serine protease tissue plasminogen activator (tPA) and its endogenous inhibitor plasminogen activator inhibitor-1 (PAI-1) have been implicated in the regulation of various neurophysiological and pathological responses. In this study, we investigated the differential role of neurons and astrocytes in the regulation of tPA/PAI-1 activity in ischemic brain. The activity of tPA peaked transiently and then decreased in cortex and striatum along with delayed induction of PAI-1 in the inflammatory stage after MCAO/reperfusion injury. In cultured primary cells, glutamate stimulation increased tPA activity in neurons but not in other cells such as microglia and astrocytes. With LPS stimulation, a model of neuroinflammatory insults, robust PAI-1 induction was observed in astrocytes but not in neurons and microglia. The upregulation of PAI-1 by LPS in astrocytes was also verified by RT-PCR analysis as well as PAI-1 promoter reporter assay. Lastly, we checked the effects of hypoxia on tPA/PAI-1 activity. Hypoxia increased tPA release from neurons without effects on microglia, while the activity of tPA in astrocyte was decreased consistent with increased PAI-1 activity in astrocyte. Taken together, the results from the present study suggest that neurons are the major source of tPA and that the glutamate-induced stimulated release is mainly governed by neurons in the acute phase. In contrast, the massive up-regulation of PAI-1 in astrocytes during subchronic and chronic inflammatory conditions, leads to decreased tPA activity in the later stages of MCAO. Differential regulation of tPA and PAI-1 in neurons, astrocytes and microglia suggest more attention is required to understand the role of local tPA activity in the vicinity of individual cell types.
Collapse
|
6
|
Ohkawara H, Ishibashi T, Shiomi M, Sugimoto K, Uekita H, Kamioka M, Takuwa Y, Teramoto T, Maruyama Y, Takeishi Y. RhoA and Rac1 changes in the atherosclerotic lesions of WHHLMI rabbits. J Atheroscler Thromb 2009; 16:846-56. [PMID: 20032577 DOI: 10.5551/jat.2394] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
AIM The activation of RhoA and Rac1 is crucial for the pathogenesis of atherosclerosis. This study investigated the changes of unprocessed and mature forms of RhoA and Rac1 in the progression of atherosclerosis. METHODS Unprocessed and geranylgeranylated forms of RhoA and Rac1 in aortic atherosclerotic lesions were separated by the Triton X-114 partition method using Watanabe heritable hyperlipidemic (WHHLMI) rabbits prone to myocardial infarction. The activation of RhoA and Rac1 was determined by membrane translocation and pull-down assays. RESULTS The levels of unprocessed RhoA and Rac1 of the aortas were higher at 7 months than 3 months, accompanied by increased levels of total RhoA and Rac1. Membrane-bound RhoA and Rac1 levels of the aortas at 7 months were significantly increased compared with those at 3 months, consistent with the results of GTP-loading. Unprocessed and activated forms of RhoA and Rac1 had gradually decreas at 15 and 24 months compared to 7 months. CONCLUSIONS We show evidence of marked increases in unprocessed RhoA and Rac1 with enhanced activities in the progression of atherosclerosis in WHHLMI rabbits. This is important for better understanding of the pathogenesis of hyperlipidemia-dependent atherosclerosis.
Collapse
Affiliation(s)
- Hiroshi Ohkawara
- Department of Cardiology and Hematology, Fukushima Medical University, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Viasus D, Garcia-Vidal C, Gudiol F, Carratalà J. Statins for community-acquired pneumonia: current state of the science. Eur J Clin Microbiol Infect Dis 2009; 29:143-52. [DOI: 10.1007/s10096-009-0835-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Accepted: 10/17/2009] [Indexed: 01/13/2023]
|
8
|
Kirmizis D, Chatzidimitriou D. Pleiotropic vasoprotective effects of statins: the chicken or the egg? Drug Des Devel Ther 2009; 3:191-204. [PMID: 19920934 PMCID: PMC2769241 DOI: 10.2147/dddt.s5407] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Statins (3-hydroxy-3-methyl glutaryl coenzyme A [HMG-CoA] reductase inhibitors) are the most commonly used lipid-lowering drugs. Their main lipid-lowering effect is achieved by an increase in the expression of low-density lipoprotein cholesterol receptors associated with inhibition of cholesterol synthesis through inhibition of HMG-CoA reductase - the first and rate-limiting step in cholesterol synthesis. However, beyond cholesterol synthesis inhibition, inhibition of the HMG-CoA reductase affects as well the synthesis of other molecules with significant roles in different, yet often intercalating, metabolic pathways. On this basis, and supported by an increasing series of advocating epidemiological and experimental data, an extended dialogue has been established over the last few years regarding the nonlipid or "pleiotropic" actions of statins.
Collapse
Affiliation(s)
- Dimitrios Kirmizis
- Aristotle University, Karavangeli 19 Str., Kalamaria, Thessaloniki, Greece.
| | | |
Collapse
|
9
|
Kosugi T, Nakamura M, Sunagawa M. Transition of pathophysiological significance of plasminogen activator inhibitor-From a chief player in antiinflammation, antifibrinolysis to that in the development of insulin resistance. ACTA ACUST UNITED AC 2009; 17:109-18. [PMID: 19515539 DOI: 10.1016/j.pathophys.2009.03.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Revised: 02/26/2009] [Accepted: 03/31/2009] [Indexed: 12/29/2022]
Abstract
In the early phase of research, plasminogen activator inhibitor (PAI) was regarded as a negative regulator of fibrinolytic system, but the later study clarified that the changes in PAI level is closely related to risk factors of various pathologic processes of the lifestyle-related diseases. It is accepted that PAI-1 is a risk factor of the cardiovascular event in lifestyle-related diseases by recent researches analyzing the detailed function of PAI-1. In this review paper, we described the transition of pathophysiological significance of PAI based on many research papers especially from ours, which clarified the mechanism on protein expression of PAI, especially PAI-1.
Collapse
Affiliation(s)
- Tadayoshi Kosugi
- 1st Department of Physiology, Unit of Physiological Science, School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa 903-0215, Japan
| | | | | |
Collapse
|
10
|
Rawlings R, Nohria A, Liu PY, Donnelly J, Creager MA, Ganz P, Selwyn A, Liao JK. Comparison of effects of rosuvastatin (10 mg) versus atorvastatin (40 mg) on rho kinase activity in caucasian men with a previous atherosclerotic event. Am J Cardiol 2009; 103:437-41. [PMID: 19195498 DOI: 10.1016/j.amjcard.2008.10.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 10/07/2008] [Accepted: 10/07/2008] [Indexed: 10/24/2022]
Abstract
In addition to inhibiting cholesterol biosynthesis, statins also inhibit the formation of isoprenoid intermediates, which are required for the activation of the Rho/Rho kinase (ROCK) pathway. Increased ROCK activity has been implicated in causing endothelial dysfunction and atherosclerosis. However, it is not known whether statins, at doses used to lower cholesterol levels, inhibit ROCK activity in humans with atherosclerosis. Furthermore, it is not known whether lipophilic and hydrophilic statins differ in their ability to inhibit ROCK activity. Accordingly, we enrolled 30 men with stable atherosclerosis (low-density lipoprotein [LDL] > or =100 mg/dL) in a randomized, double-blind study comparing equivalent LDL-lowering doses of a hydrophilic statin (rosuvastatin 10 mg once a day) with a lipophilic statin (atorvastatin 40 mg once a day) for 28 days. We assessed the change in lipids, ROCK activity, and flow-mediated dilation (FMD) of the brachial artery before and after statin therapy. Both treatment groups exhibited comparable 30% to 32% and 42% to 45% reductions in total and LDL cholesterol, respectively. Only atorvastatin reduced triglycerides, and neither statin altered high-density lipoprotein cholesterol. Whereas both statins inhibited ROCK activity (p <0.0001), the extent of inhibition was greater with rosuvastatin (18 +/- 2% vs 8 +/- 2%, p = 0.0006). Statins also improved FMD from 7.4 +/- 0.6 to 9.3 +/- 0.4 (p = 0.003) with rosuvastatin being slightly better than atorvastatin. The inhibition of ROCK activity by statins did not correlate with reductions in LDL (p = 0.57) but was associated with improvement in FMD. In conclusion, these findings provide direct clinical evidence that statins, at clinically relevant doses, could differentially inhibit ROCK activity and improve endothelial function by cholesterol-independent mechanism.
Collapse
|
11
|
Waiczies S, Bendix I, Prozorovski T, Ratner M, Nazarenko I, Pfueller CF, Brandt AU, Herz J, Brocke S, Ullrich O, Zipp F. Geranylgeranylation but not GTP loading determines rho migratory function in T cells. THE JOURNAL OF IMMUNOLOGY 2007; 179:6024-32. [PMID: 17947676 DOI: 10.4049/jimmunol.179.9.6024] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Rho GTPases orchestrate signaling pathways leading to cell migration. Their function depends on GTP loading and isoprenylation by geranylgeranyl pyrophosphate (GGpp). In this study, we show that in human T cells, geranylgeranylation-and not GTP loading-is necessary for RhoA-mediated downstream events. As a result of GGpp depletion with the 3-hydroxy-3-methylglutaryl-CoA reductase inhibitor atorvastatin, RhoA was sequestered from the membrane to the cytosol and, notwithstanding increased GTP loading, the constitutive activation of its substrate Rho-associated coiled-coil protein kinase-1 was blocked. In line with this, T cells expressing increased GTP-RhoA failed to form an intact cytoskeleton and to migrate toward a chemokine gradient. In vivo treatment with atorvastatin in the rodent model of multiple sclerosis markedly decreased the capacity of activated T cells to traffic within the brain, as demonstrated by multiphoton analysis. Thus, tethering of RhoA to the membrane by GGpp is determinant for T cell migration and provides a mechanism for preventing T cell infiltration into inflamed compartments by 3-hydroxy-3-methylglutaryl-CoA reductase inhibitors.
Collapse
Affiliation(s)
- Sonia Waiczies
- Cecilie-Vogt-Clinic for Molecular Neurology, Charité-University Medicine and Max Delbruck Center for Molecular Medicine, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Ishimaru K, Ueno H, Kagitani S, Takabayashi D, Takata M, Inoue H. Fasudil Attenuates Myocardial Fibrosis in Association With Inhibition of Monocyte/Macrophage Infiltration in the Heart of DOCA/Salt Hypertensive Rats. J Cardiovasc Pharmacol 2007; 50:187-94. [PMID: 17703135 DOI: 10.1097/fjc.0b013e318064f150] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OBJECTIVE To determine the effects of fasudil, a Rho-kinase inhibitor, on mineralocorticoid-induced myocardial remodeling, we investigated whether fasudil would suppress myocardial fibrosis and inflammation in deoxycorticosterone-acetate (DOCA)/salt hypertensive rats. METHODS Sprague-Dawley rats treated with DOCA combined with 1% NaCl and 0.2% KCl in the drinking water after receiving left nephrectomy were given fasudil (10 mg/kg/day; n = 20) or vehicle (n = 20). Systolic blood pressure (SBP) was measured biweekly. Myocardial monocyte/macrophage infiltration and myocardial fibrosis were determined histologically. Expressions of mRNA of procollagen I (PI), procollagen III (PIII), monocyte chemoattractant protein (MCP)-1, interleukin (IL)-6, type-1 plasminogen activator inhibitor (PAI-1), transforming growth factor (TGF)-beta1, and c-fos were determined. RESULTS SBP was significantly increased on day 14 after treatment with DOCA/salt. Extent of interstitial and perivascular fibrosis was significantly increased on day 28. Expressions of mRNA of PI, PIII, MCP-1, IL-6, PAI-1, TGF-beta1, and c-fos were significantly increased on day 14. Although SBP did not differ between the fasudil and vehicle groups, extent of monocyte/macrophage infiltration and fibrosis was attenuated in the fasudil group. Expressions of mRNA of these factors except TGF-beta1 were also attenuated. CONCLUSION Fasudil attenuates myocardial fibrosis possibly via suppression of monocyte/macrophage infiltration of the heart in DOCA/salt hypertensive rats.
Collapse
Affiliation(s)
- Kazuhiro Ishimaru
- Second Department of Internal Medicine, University of Toyama, Toyama, Japan
| | | | | | | | | | | |
Collapse
|
13
|
Sakamoto T, Ishibashi T, Sugimoto K, Sakamoto N, Ohkawara H, Niinuma M, Nagata K, Kamioka M, Sugimoto N, Watanabe A, Kurabayashi M, Takuwa Y, Maruyama Y. RhoA-dependent PAI-1 gene expression induced in endothelial cells by monocyte adhesion mediates geranylgeranyl transferase I and Ca2+ signaling. Atherosclerosis 2007; 193:44-54. [PMID: 16973169 DOI: 10.1016/j.atherosclerosis.2006.08.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2005] [Revised: 08/07/2006] [Accepted: 08/11/2006] [Indexed: 11/29/2022]
Abstract
We investigated the role of RhoA activation and its mechanism in plasminogen activator inhibitor-1 (PAI-1) gene expression induced in endothelial cells by monocyte adhesion. Isolated human peripheral blood monocytes were added to cultured human coronary endothelial cells. Monocyte adhesion to endothelial cells increased PAI-1 expression at the transcriptional level and activated RhoA which was accompanied by an increase in the activity of geranylgeranyl transferase I (GGTase I), an enzyme responsible for geranylgeranylation, and actin stress fiber formation. Inhibition of RhoA by C3 exoenzyme or by adenovirus-mediated expression of N19RhoA, as well as by pravastatin, prevented the upregulation of PAI-1 induced by monocyte adhesion. GGTI-286, an inhibitor of GGTase I, prevented the monocyte-induced RhoA activation and PAI-1 expression in endothelial cells. Monocyte attachment induced an increase in intracellular Ca(2+) concentration ([Ca(2+)](i)) in endothelial cells and Ca(2+) chelation prevented the increased promoter activity and expression of PAI-1 induced by monocyte adhesion. C3 exoenzyme and GGTI-286 also suppressed endothelial intracellular Ca(2+) mobilization and Ca(2+) entry induced by monocytes. The present study shows that GGTase I plays a role in the RhoA activation in endothelial cells induced by monocyte adhesion and that GGTase I-mediated Ca(2+) signaling may contribute to RhoA-dependent PAI-1 gene expression.
Collapse
Affiliation(s)
- Takayuki Sakamoto
- First Department of Internal Medicine, Fukushima Medical University, Fukushima, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Li M, Liu Y, Dutt P, Fanburg BL, Toksoz D. Inhibition of serotonin-induced mitogenesis, migration, and ERK MAPK nuclear translocation in vascular smooth muscle cells by atorvastatin. Am J Physiol Lung Cell Mol Physiol 2007; 293:L463-71. [PMID: 17545489 DOI: 10.1152/ajplung.00133.2007] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The HMG-CoA reductase inhibitors, statins, have pleiotropic effects which may include interference with the isoprenylation of Ras and Rho small GTPases. Statins have beneficial effects in animal models of pulmonary hypertension, although their mechanisms of action remain to be determined. Serotonin [5-hydroxytryptamine (5-HT)] is implicated in the process of pulmonary artery smooth muscle (PASM) remodeling as part of the pathophysiology of pulmonary hypertension. We examined the effect of atorvastatin on 5-HT-induced PASM cell responses. Atorvastatin dose dependently inhibits 5-HT-induced mitogenesis and migration of cultured bovine PASM cells. Inhibition by atorvastatin was reversed by mevalonate and geranylgeranylpyrophosphate (GGPP) supplement, suggesting that the statin targets a geranylgeranylated protein such as Rho. Concordantly, atorvastatin inhibits 5-HT-induced cellular RhoA activation, membrane localization, and Rho kinase-mediated phosphorylation of myosin phosphatase-1 subunit. Atorvastatin reduced activated RhoA-induced serum response factor-mediated reporter activity in HEK293 cells, indicating that atorvastatin inhibits Rho signaling, and this was reversed by GGPP. While 5-HT-induced ERK MAP and Akt kinase activation were unaffected by atorvastatin, 5-HT-induced ERK nuclear translocation was attenuated in a GGPP-dependent fashion. These studies suggest that atorvastatin inhibits 5-HT-induced PASM cell mitogenesis and migration through targeting isoprenylation which may, in part, attenuate the Rho pathway, a mechanism that may apply to statin effects on in vivo models of pulmonary hypertension.
Collapse
Affiliation(s)
- Min Li
- Pulmonary and Critical Care Division, Tupper Research Institute, Tufts-New England Medical Center, Boston, MA 02111, USA
| | | | | | | | | |
Collapse
|
15
|
Roncal C, Orbe J, Belzunce M, Rodríguez JA, Páramo JA. The 4G/5G PAI-1 polymorphism influences the endothelial response to IL-1 and the modulatory effect of pravastatin. J Thromb Haemost 2006; 4:1798-803. [PMID: 16879223 DOI: 10.1111/j.1538-7836.2006.02031.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Increased plasminogen activator inhibitor (PAI-1) levels lead to impaired fibrinolytic function associated with higher cardiovascular risk. PAI-1 expression may be regulated by different inflammatory cytokines such as interleukin-1alpha (IL-1). Several polymorphisms have been described in the PAI-1 gene. AIM We examined the influence of the 4G/5G polymorphism in the promoter region on IL-1alpha-induced PAI-1 expression by human umbilical vein endothelial cells (HUVEC) in presence or absence of pravastatin. METHODS AND RESULTS Genotyped HUVEC were incubated with IL-1alpha (500 U mL(-1)) in presence or absence of pravastatin (1-10 microm). PAI-1 expression was analyzed by real time polymerase chain reaction (PCR), and PAI-1 antigen measured in supernatants by ELISA. IL-1alpha increased PAI-1 secretion in a genotype-dependent manner, and higher values were observed for 4G/4G compared with both 4G/5G and 5G/5G cultures (P < 0.05). Preincubation of HUVEC with 10 microm pravastatin significantly reduced IL-1-induced PAI-1 expression in 4G/4G HUVEC compared with untreated cultures (177.5% +/- 24.5% vs. 257.9% +/- 39.0%, P < 0.05). Pravastatin also attenuated the amount of secreted PAI-1 by 4G/4G HUVEC after IL-1 stimulation (5020.6 +/- 165.7 ng mL(-1) vs. 4261.1 +/- 309.8 ng mL(-1), P < 0.05). This effect was prevented by coincubation with mevalonate, indicating a dependence on HMG-CoA reductase inhibition. CONCLUSIONS The endothelial 4G/5G PAI-1 genotype influences the PAI-1 response to IL-1alpha and the modulatory effect of pravastatin. As increased PAI-1 levels have been linked to cardiovascular disease the observed endothelial modulation by pravastatin may have potential clinical implications.
Collapse
Affiliation(s)
- C Roncal
- Atherosclerosis Research Laboratory, Division of Cardiovascular Sciences, Centre for Applied Medical Research, University of Navarra, Pamplona, Spain.
| | | | | | | | | |
Collapse
|
16
|
Puddu GM, Cravero E, Arnone G, Muscari A, Puddu P. Molecular aspects of atherogenesis: new insights and unsolved questions. J Biomed Sci 2005; 12:839-53. [PMID: 16328782 DOI: 10.1007/s11373-005-9024-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Accepted: 08/17/2005] [Indexed: 10/25/2022] Open
Abstract
The development of atherosclerotic disease results from the interaction between environment and genetic make up. A key factor in atherogenesis is the oxidative modification of lipids, which is involved in the recruitment of mononuclear leukocytes to the arterial intima--a process regulated by several groups of adhesion molecules and cytokines. Activated leukocytes, as well as endothelial mitochondria, can produce reactive oxygen species (ROS) that are associated with endothelial dysfunction, a cause of reduced nitric oxide (NO) bioactivity and further ROS production. Peroxisome proliferator-activated receptors (PPAR) and liver X receptors (LXR) are nuclear receptors significantly involved in the control of lipid metabolism, inflammation and insulin sensitivity. Also, an emerging role has been suggested for G protein coupled receptors and for the small Ras and Rho GTPases in the regulation of the expression of endothelial NO synthase (eNOS) and of tissue factor, which are involved in thrombus formation and modulation of vascular tone. Further, the interactions among eNOS, cholesterol, oxidated LDL and caveola membranes are probably involved in some molecular changes observed in vascular diseases. Despite the relevance of oxidative processes in atherogenesis, anti-oxidants have failed to significantly improve atherosclerosis (ATS) prevention, while statins have proved to be the most successful drugs.
Collapse
Affiliation(s)
- Giovanni Maria Puddu
- Department of Internal Medicine and Aging, S. Orsola-Malpighi Hospital, Bologna, Italy
| | | | | | | | | |
Collapse
|
17
|
Cordle A, Koenigsknecht-Talboo J, Wilkinson B, Limpert A, Landreth G. Mechanisms of statin-mediated inhibition of small G-protein function. J Biol Chem 2005; 280:34202-9. [PMID: 16085653 DOI: 10.1074/jbc.m505268200] [Citation(s) in RCA: 176] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
3-Hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) have been reported to reduce the risk of Alzheimer disease. We have shown previously that statins inhibit a beta-amyloid (Abeta)-mediated inflammatory response through mechanisms independent of cholesterol reduction. Specifically, statins exert anti-inflammatory actions through their ability to prevent the isoprenylation of members of the Rho family of small G-proteins, resulting in the functional inactivation of these G-proteins. We report that statin treatment of microglia results in perturbation of the cytoskeleton and morphological changes due to alteration in Rho family function. Statins also block Abeta-stimulated phagocytosis through inhibition of Rac action. Paradoxically, the statin-mediated inactivation of G-protein function was associated with increased GTP loading of Rac and RhoA, and this effect was observed in myeloid lineage cells and other cell types. Statin treatment disrupted the interaction of Rac with its negative regulator the Rho guanine nucleotide dissociation inhibitor (RhoGDI), an interaction that is dependent on protein isoprenylation. We propose that lack of negative regulation accounts for the increased GTP loading. Isoprenylation of Rac is also required for efficient interaction with the plasma membrane, and we report that statin treatment dramatically reduces the capacity of Rac to interact with membranes. These results suggest a mechanism by which statins inhibit the actions of Rho GTPases and attenuate Abeta-stimulated inflammation.
Collapse
Affiliation(s)
- Andrew Cordle
- Department of Neuroscience, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | | | | | | | | |
Collapse
|
18
|
Maeda S, Matsuoka I, Iwamoto T, Kurose H, Kimura J. Down-Regulation of Na+/Ca2+Exchanger by Fluvastatin in Rat Cardiomyoblast H9c2 Cells: Involvement of RhoB in Na+/Ca2+Exchanger mRNA Stability. Mol Pharmacol 2005; 68:414-20. [PMID: 15879517 DOI: 10.1124/mol.104.000786] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We investigated the effect of fluvastatin (Flv), an HMG-CoA reductase inhibitor, on Na(+)/Ca(2+) exchanger 1 (NCX1) expression in H9c2 cardiomyoblasts. Reverse transcriptase-polymerase chain reaction analyses revealed that Flv decreased NCX1 mRNA in a concentration- and time-dependent manner and NCX1 protein. This effect of Flv was caused by the inhibition of HMG-CoA reductase, because Flv did not affect the NCX1 mRNA in the presence of mevalonate. Flv-induced down-regulation of NCX1 mRNA was also cancelled by farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP), suggesting an involvement of small G-proteins. However, overexpression of neither constitutive active RhoA nor Ras affected NCX1 mRNA. In contrast, intracellular expression of C3 toxin, a specific inhibitor of Rho family proteins, decreased NCX1 mRNA, suggesting that Flv decreases NCX1 mRNA by inhibiting a signaling pathway of Rho family proteins other than RhoA. On the other hand, lysophosphatidylcholine (LPC), an activator of Rho signaling, increased both NCX1 mRNA and protein in a C3 toxin-sensitive manner. Western blot analyses revealed that membrane-associated RhoB, which is isoprenylated by either FPP or GGPP, was decreased by Flv but was increased by LPC. Selective inhibition of gene expression by short interfering RNA duplex showed that RhoB but not RhoA is involved in the regulation of NCX1 mRNA and protein. When transcription was blocked by 5,6-dichlorobenzimidazole riboside, the NCX1 mRNA stability was decreased by Flv. Long-term treatment of rat with Flv in vivo also down-regulated the cardiac NCX1 mRNA. These results suggest that a RhoB-mediated signaling pathway regulates cardiac NCX1 levels by controlling the NCX1 mRNA stability.
Collapse
Affiliation(s)
- Sachiko Maeda
- Department of Pharmacology, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
| | | | | | | | | |
Collapse
|
19
|
Cicha I, Schneiderhan-Marra N, Yilmaz A, Garlichs CD, Goppelt-Struebe M. Monitoring the cellular effects of HMG-CoA reductase inhibitors in vitro and ex vivo. Arterioscler Thromb Vasc Biol 2004; 24:2046-50. [PMID: 15388523 DOI: 10.1161/01.atv.0000145943.19099.a3] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Inhibition of 3hydroxy3methylglutaryl-coenzyme A (HMG-CoA) reductase by statins and the subsequent reduction in Rho protein isoprenylation inactivates these important signaling molecules. The purpose of this study was to directly monitor statin effects on Rho proteins. METHODS AND RESULTS We used biphasic Triton X-114 system, 1-dimensional isoelectric focusing, and 2D-electrophoresis for the separation of modified and nonmodified Rho proteins. These methods were evaluated in human fibroblasts treated with simvastatin. 2D-electrophoresis, which proved to be the most sensitive method, revealed 2 major spots of identical molecular weight but different isoelectric points, with the more basic spot representing the carboxymethylated form of RhoA. In control cells, 90% of RhoA was fully modified (carboxymethylated). After treatment with simvastatin, a significant shift toward the unmethylated form was observed, representing inhibition of isoprenylation, which is a prerequisite to further modification. Similar shifts were observed for Rac1 and Cdc42. In freshly isolated peripheral blood mononuclear cells, a shift toward nonmodified RhoA was observed after treatment with atorvastatin in vitro and in vivo. There was a significant increase in unmethylated RhoA in statin-treated individuals versus control individuals. CONCLUSIONS 2D-electrophoresis is a sensitive method for detecting changes in the amount of nonisoprenylated Rho proteins, allowing monitoring the direct cellular effects of statins.
Collapse
Affiliation(s)
- Iwona Cicha
- Medical Clinic IV, University of Erlangen-Nuremberg, Erlangen, Germany
| | | | | | | | | |
Collapse
|
20
|
Jiang H, Van De Ven C, Satwani P, Baxi LV, Cairo MS. Differential gene expression patterns by oligonucleotide microarray of basal versus lipopolysaccharide-activated monocytes from cord blood versus adult peripheral blood. THE JOURNAL OF IMMUNOLOGY 2004; 172:5870-9. [PMID: 15128766 DOI: 10.4049/jimmunol.172.10.5870] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Monocytes (Mo) are critically important in the generation of inflammatory mediators, cytokines/chemokines, and regulation of innate and adaptive immune responses. We and others have previously demonstrated significant dysregulated cytokine gene expression and protein production and in vitro functional activities of activated cord blood (CB) vs adult peripheral blood (APB) mononuclear cells (MNC). In this study, we compared, by oligonucleotide microarray, the differential gene expression profiles of basal and LPS-activated APB vs CB Mo. We demonstrated a significant increase in the gene expression of several important functional groups of CB genes compared with basal levels including cytokine (IL-12p40, 5-fold), immunoregulatory (signaling lymphocytic activation molecule, 4-fold), signal transduction (Pim-2, 3-fold), and cell structure (Rho7, 4-fold) among others. Furthermore, there was significantly differentially amplified gene expression in LPS-activated APB vs LPS-activated CB Mo, including cytokine (G-CSF, 14-fold), chemokine (macrophage-inflammatory protein 1alpha, 5-fold), immunoregulatory (MHC DRB1, 5-fold), transcription factor (JunB, 4-fold), signal transduction (STAT4, 5-fold), apoptotic regulation (BAX, 5-fold), and cell structure (ladinin 1, 6-fold) among others. These results provide insight into the molecular basis for normal genetic regulation of Mo development and cellular function and differential inflammatory and innate and adaptive immune responses between activated CB and APB Mo.
Collapse
Affiliation(s)
- Hong Jiang
- Department of Pediatrics, Children's Hospital of New York-Presbyterian, Columbia University, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
21
|
Brogren H, Karlsson L, Andersson M, Wang L, Erlinge D, Jern S. Platelets synthesize large amounts of active plasminogen activator inhibitor 1. Blood 2004; 104:3943-8. [PMID: 15315974 DOI: 10.1182/blood-2004-04-1439] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous studies have suggested that plasminogen activator inhibitor 1 (PAI-1) released from platelets convey resistance of platelet-rich blood clots to thrombolysis. However, the majority of PAI-1 in platelets is inactive and therefore its role in clot stabilization is unclear. Because platelets retain mRNA and capacity for synthesis of some proteins, we investigated if platelets can de novo synthesize PAI-1 with an active configuration. PAI-1 mRNA was quantified with real-time polymerase chain reaction and considerable amounts of PAI-1 mRNA were detected in all platelet samples. Over 24 hours, the amount of PAI-1 protein as determined by an enzyme-linked immunosorbent assay increased by 25% (P = .001). Metabolic radiolabeling with (35)S-methionine followed by immunoprecipitation confirmed an ongoing PAI-1 synthesis, which could be further stimulated by thrombin and inhibited by puromycin. The activity of the newly formed PAI-1 was investigated by incubating platelets in the presence of tissue-type plasminogen activator (tPA). This functional assay showed that the majority of the new protein was in an active configuration and could complex-bind tPA. Thus, there is a continuous production of large amounts of active PAI-1 in platelets, which could be a mechanism by which platelets contribute to stabilization of blood clots.
Collapse
Affiliation(s)
- Helén Brogren
- Clinical Experimental Research Laboratory, Department of Medicine, Sahlfrenska University Hospital/Ostra, Cardiovascular Institute, Göteborg, Sweden
| | | | | | | | | | | |
Collapse
|
22
|
Krysiak R, Okopień B, Herman Z. Effects of HMG-CoA reductase inhibitors on coagulation and fibrinolysis processes. Drugs 2004; 63:1821-54. [PMID: 12921488 DOI: 10.2165/00003495-200363170-00005] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Recent large clinical trials have demonstrated that HMG-CoA reductase inhibitors, or statins, markedly reduce morbidity and mortality when used in the primary and secondary prevention of cardiovascular disease. It has been established that the benefits of statin therapy in cardiovascular disease can be explained not only by the lipid-lowering potential of statins but also by nonlipid-related mechanisms (so-called "pleiotropic effects") that contribute to the positive effect of statins on the incidence of cardiovascular events. The coagulation and fibrinolytic systems are two separate but reciprocally linked enzyme cascades that regulate the formation and breakdown of fibrin. Numerous studies have demonstrated that disturbances of coagulation and fibrinolysis contribute to the development and progression of atherosclerosis, and that they affect the incidence of atherosclerosis-related clinical events. High plasma levels or activities of fibrinogen, factor VII, factor VIII, von Willebrand factor (vWF), soluble thrombomodulin, tissue plasminogen activator (tPA) and plasminogen activator inhibitor-1 (PAI-1) are thought to be associated with increased morbidity and mortality related to cardiovascular disease. Experimental studies and many clinical studies have recently shown that statins produce favourable effects on haemostatic parameters, including those that are risk factors for cardiovascular disease. Statins diminish procoagulant activity, which is observed at different stages of the coagulation cascade, including tissue factor (TF) activity, conversion of prothrombin to thrombin and thrombin activity. In some studies, statins also reduced fibrinogen levels. By altering the levels and activities of tPA and PAI-1, statins seem to stimulate fibrinolysis. The data on the effects of combined treatment with statins and other drugs on haemostasis are rather limited. They suggest that statins combined with fibric acid derivatives, omega-3 fatty acids and 17beta-estradiol are superior to statins alone. The only two clinical studies performed in patients with acute coronary syndromes showed a relatively weak effect of statins on haemostasis in those patients. Although various statins may produce different effects on individual variables, there are no convincing data showing that differences in their physicochemical and pharmacokinetic properties significantly alter their net effect on excessive procoagulant activity. Apart from the lipid-lowering effect, statins suppress the synthesis of several important nonsterol isoprenoids derived from the mevalonate pathway, especially farnesyl and geranylgeranyl pyrophosphates, which via enhanced protein prenylation, are involved in the regulation of many cellular processes. It is presumed that the inhibitory effect of statins on the mevalonate pathway is involved in the regulation of some key steps of coagulation and fibrinolysis processes. In this way they probably regulate the synthesis of TF, tPA and PAI-1, and perhaps they also control the generation and activity of thrombin. The beneficial effects of statins on coagulation and fibrinolysis may be responsible for their ability to decrease the number of cardiovascular events. The lipid-independent effects of statins on haemostasis may contribute to the marked decrease in the incidence rates of mortality, hospitalisation and revascularisation in patients treated with these drugs.
Collapse
Affiliation(s)
- Robert Krysiak
- Department of Clinical Pharmacology, Medical University of Silesia, Medyków 18, PL 40-752 Katowice, Poland.
| | | | | |
Collapse
|
23
|
Monick MM, Powers LS, Butler NS, Hunninghake GW. Inhibition of Rho family GTPases results in increased TNF-alpha production after lipopolysaccharide exposure. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:2625-30. [PMID: 12928415 DOI: 10.4049/jimmunol.171.5.2625] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
These studies demonstrate that treatment of macrophages with lovastatin, a cholesterol-lowering drug that blocks farnesylation and geranylgeranylation of target proteins, increases LPS-induced TNF-alpha production. This is reversed by the addition of mevalonate, which bypasses the lovastatin block. Examination of membrane localization of RhoA, Cdc42, Rac1, and Ras demonstrated decreased membrane localization of the geranylgeranylated Rho family members (RhoA, Cdc42, and Rac1) with no change in the membrane localization of farnesylated Ras. LPS-induced TNF-alpha production in the presence of the Rho family-specific blocker (toxin B from Clostridium difficile) was significantly enhanced consistent with the lovastatin data. One intracellular signaling pathway that is required for TNF-alpha production by LPS is the extracellular signal-regulated kinase (ERK). Significantly, we found prolonged ERK activation after LPS stimulation of lovastatin-treated macrophages. When we inhibited ERK, we blocked the lovastatin-induced increase in TNF-alpha production. As a composite, these studies demonstrate a negative role for one or more Rho family GTPases in LPS-induced TNF-alpha production.
Collapse
Affiliation(s)
- Martha M Monick
- Division of Pulmonary, Critical Care, and Occupational Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Room 100, Ekstein Medical Research Building, Iowa City, IA 52242, USA.
| | | | | | | |
Collapse
|
24
|
Abstract
The 3-hydroxy-3-methyl glutaryl coenzyme A (HMG-CoA) reductase inhibitors, more commonly known as statins, are a class of drug widely used for the treatment of hypercholesterolaemia in patients with established cardiovascular disease as well as those at high risk of developing atherosclerosis. Their predominant action is to reduce circulating levels of low-density lipoprotein (LDL) cholesterol; to a smaller degree, they also increase high-density lipoprotein (HDL) cholesterol and reduce triglyceride concentrations. In recent years, however, there has been an increasing body of evidence that their effects on lipid profile cannot fully account for their cardiovascular protective actions: their beneficial effects are too rapid to be easily explained by their relatively slow effects on atherogenesis and too large to be accounted for by their relatively small effects on plaque regression. Experimental models have revealed that statins exert a variety of other cardiovascular effects, which would be predicted to be of clinical benefit: they possess anti-inflammatory properties, as evidenced by their ability to reduce the accumulation of inflammatory cells in atherosclerotic plaques; they inhibit vascular smooth muscle cell proliferation, a key event in atherogenesis; they inhibit platelet function, thereby limiting both atherosclerosis and superadded thrombosis; and they improve vascular endothelial function, largely through augmentation of nitric oxide (NO) generation. The relative importance of the lipid- and non-lipid-related effects of the statins in the clinical situation remains the subject of much continuing research.
Collapse
Affiliation(s)
- Anthony S Wierzbicki
- Department of Chemical Pathology, GKT School of Medicine, King's College London, London, UK
| | | | | |
Collapse
|
25
|
Goto D, Fujii S, Kaneko T, Furumoto T, Sugawara T, Tarikuz Zaman AKM, Imagawa S, Dong J, Nakai Y, Mishima T, Sobel BE, Kitabatake A. Intracellular signal transduction modulating expression of plasminogen activator inhibitor-1 in adipocytes. Biochem Pharmacol 2003; 65:1907-14. [PMID: 12781343 DOI: 10.1016/s0006-2952(03)00162-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The concentrations in blood of plasminogen activator inhibitor-1 (PAI-1), an inhibitor of fibrinolysis and proteolysis, are elevated in obese and insulin-resistant subjects, predispose them to the risk of thrombosis, and may accelerate atherogenesis. Adipose tissue is a prominent source. Accordingly, intracellular signaling pathways that may influence PAI-1 expression in adipocytes have been the focus of considerable study. Rho, a small GTP binding and GTPase protein, when activated in turn activates its target, Rho-associated coiled-coil forming protein, to yield an active kinase, Rho-kinase, an effector in the Rho pathway. Rho-kinase exerts calcium-sensitizing effects in vascular smooth muscle cells and inhibitory effects on transforming growth factor-beta (TGF-beta) expression in chicken embryonic heart cells. Because TGF-beta is a powerful agonist of PAI-1 expression, we characterized the effects of inhibition of Rho-kinase in 3T3-L1 adipocytes. PAI-1 mRNA was determined by Northern blotting, and PAI-1 protein was determined by Western blotting. The Rho-kinase inhibitor, Y-27632 [(R)-(+)-trans-N-(4-pyridyl)-4-(1-aminoethyl)-cyclohexanecarboxamide], increased PAI-1 expression markedly. Although genistein, a flavonoid tyrosine kinase, attenuated the increase of PAI-1 induced by Y-27632, other non-flavonoid tyrosine kinase inhibitors did not. However, another flavonoid, daidzein, which lacks tyrosine kinase activity, decreased basal PAI-1 expression and attenuated the induction of PAI-1 expression by Y-27632. Thus, the Rho/Rho-kinase system inhibits PAI-1 expression by a flavonoid-sensitive mechanism in adipocytes. Therefore, flavonoids may be useful in decreasing elevated PAI-1 expression in adipose tissue and its consequent pathophysiologic sequelae.
Collapse
Affiliation(s)
- Daisuke Goto
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Dong J, Fujii S, Goto D, Furumoto T, Kaneko T, Zaman TA, Nakai Y, Mishima T, Imagawa S, Kitabatake A. Increased Expression of Plasminogen Activator Inhibitor-1 by Mediators of the Acute Phase Response: a Potential Progenitor of Vasculopathy in Hypertensives. Hypertens Res 2003; 26:723-9. [PMID: 14620928 DOI: 10.1291/hypres.26.723] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Hypertension is an important risk factor for coronary atherosclerosis, which is accelerated by inflammation and diminished fibrinolysis. We have previously shown that levels of plasminogen activator inhibitor-1 (PAI-1), the major physiologic inhibitor of fibrinolysis, are increased with atherogenic metabolic derangement. Because the liver is one of the major sources of circulating PAI-1, we here examined the effects of two proinflammatory cytokines, interleukin (IL)-1beta, and IL-6, on PAI-1 production in a human hepatoma cell line, HepG2. IL-1beta (1 ng/ml) and IL-6 (1 ng/ml) increased the accumulation of PAI-1 in the conditioned media over 24 h (IL-1beta: 2.1 +/- 0.2 (mean +/- SD) fold over the control; IL-6:1.4 +/- 0.2 fold; Western blot, p < 0.05). The increase in PAI-1 protein accumulation correlated with the increased expression of PAI-1 mRNA (Northern blot). An HMG-CoA reductase inhibitor (mevastatin, 10 micromol/l) attenuated the PAI-1 production induced by IL-1beta and IL-6. The plasma PAI-1 activity level was higher in hypertensives than in normotensives (10.0 +/- 9.8 AU/ml vs. 6.2 +/- 4.5 AU/ml, p < 0.05). The plasma PAI-1 antigen level was also higher in hypertensives than in normotensives (30.9 +/- 22.4 ng/ml vs. 24.4 +/- 13.3 ng/ml, p < 0.05). Thus, 1) IL-1beta and IL-6 can increase PAI-1 production in hepatic cells and 2) mevastatin may exert anti-thrombotic effects by decreasing the PAI-1 protein production induced by these proinflammatory cytokines. These results provide further insights into how inflammation is involved in the atherothrombotic complications observed in hypertensives, which may be ameliorated by HMG-CoA reductase inhibitors.
Collapse
Affiliation(s)
- Jie Dong
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Bisoendial RJ, Hovingh GK, de Groot E, Kastelein JJP, Lansberg PJ, Stroes ESG. Measurement of subclinical atherosclerosis: beyond risk factor assessment. Curr Opin Lipidol 2002; 13:595-603. [PMID: 12441883 DOI: 10.1097/00041433-200212000-00002] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Assessment of subclinical atherosclerosis using the current available noninvasive imaging modalities holds promise for individual cardiovascular risk management and monitoring efficacy of therapeutic interventions (i.e. surrogate end-points). The present review addresses benefits and limitations of flow-mediated dilatation, intima-media thickness, electron-beam computed tomography and magnetic resonance coronary angiography. RECENT FINDINGS Both carotid intima-media thickness and peripheral flow-mediated dilatation correlate inversely with cardiovascular risk factors and coronary artery disease. They have been shown to carry predictive value for future cardiovascular events, but clinical application of both intima-media thickness and flow-mediated dilatation demands further methodological maturation of these techniques. Intima thickening has been successfully targeted in numerous intervention trials, but determination of an explicit threshold value beyond which cardiovascular risk significantly increases will facilitate its utility as a routine clinical tool. Electron-beam computed tomography can accurately detect and quantify coronary artery calcification (an established marker of the total coronary plaque burden). However, lack of evidence of its additional predictive power for future coronary events warrants for further research. Finally, magnetic resonance coronary angiography appears to be a promising technique, integrating both functional and anatomical aspects of coronary artery disease. Properly designed studies are needed to determine its value in clinical practice. SUMMARY Various noninvasive imaging techniques have recently emerged that may find applications in clinical research. However, before widespread clinical utilization, further technical refinement of all of the cited imaging modalities is mandatory. It will be a challenge over the coming few years to clarify whether improvements in surrogate end-points can directly be translated into improved outcomes.
Collapse
Affiliation(s)
- Radjesh J Bisoendial
- Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|