1
|
Does GEC1 Enhance Expression and Forward Trafficking of the Kappa Opioid Receptor (KOR) via Its Ability to Interact with NSF Directly? Handb Exp Pharmacol 2022; 271:83-96. [PMID: 33404775 PMCID: PMC9126001 DOI: 10.1007/164_2020_398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We reported previously that GEC1 (glandular epithelial cell 1), a member of microtubule-associated proteins (MAPs), interacted directly with the C-tail of KOR (KCT) and tubulin and enhanced cell surface expression of KOR in CHO cells by facilitating its trafficking along the export pathway. Two GEC1 analogs (GABARAP and GATE16) were also shown to increase KOR expression. In addition, to understand the underlying mechanism, we demonstrated that N-ethylmaleimide-sensitive factor (NSF), an essential component for membrane fusion, co-immunoprecipitated with GEC1 from brain extracts. In this study, using pull-down techniques, we have found that (1) GEC1 interacts with NSF directly and prefers the ADP-bound NSF to the ATP-bound NSF; (2) D1 and/or D2 domain(s) of NSF interact with GEC1, but the N domain of NSF does not; (3) NSF does not interact with KCT directly, but forms a protein complex with KCT via GEC1; (4) NSF and/or α-SNAP do not affect KCT-GEC1 interaction. Thus, GEC1 (vs the α-SNAP/SNAREs complex) binds to NSF in distinctive ways in terms of the ADP- or ATP-bound form and domains of NSF involved. In conclusion, GEC1 may, via its direct interactions with KOR, NSF, and tubulin, enhance trafficking and fusion of KOR-containing vesicles selectively along the export pathway, which leads to increase in surface expression of KOR. GABARAP and GATE16 may enhance KOR expression in a similar way.
Collapse
|
2
|
Sanwald JL, Dobner J, Simons IM, Poschmann G, Stühler K, Üffing A, Hoffmann S, Willbold D. Lack of GABARAP-Type Proteins Is Accompanied by Altered Golgi Morphology and Surfaceome Composition. Int J Mol Sci 2020; 22:E85. [PMID: 33374830 PMCID: PMC7795684 DOI: 10.3390/ijms22010085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023] Open
Abstract
GABARAP (γ-aminobutyric acid type A receptor-associated protein) and its paralogues GABARAPL1 and GABARAPL2 comprise a subfamily of autophagy-related Atg8 proteins. They are studied extensively regarding their roles during autophagy. Originally, however, especially GABARAPL2 was discovered to be involved in intra-Golgi transport and homotypic fusion of post-mitotic Golgi fragments. Recently, a broader function of mammalian Atg8s on membrane trafficking through interaction with various soluble N-ethylmaleimide-sensitive factor-attachment protein receptors SNAREs was suggested. By immunostaining and microscopic analysis of the Golgi network, we demonstrate the importance of the presence of individual GABARAP-type proteins on Golgi morphology. Furthermore, triple knockout (TKO) cells lacking the whole GABARAP subfamily showed impaired Golgi-dependent vesicular trafficking as assessed by imaging of fluorescently labelled ceramide. With the Golgi apparatus being central within the secretory pathway, we sought to investigate the role of the GABARAP-type proteins for cell surface protein trafficking. By analysing the surfaceome compositionofTKOs, we identified a subset of cell surface proteins with altered plasma membrane localisation. Taken together, we provide novel insights into an underrated aspect of autophagy-independent functions of the GABARAP subfamily and recommend considering the potential impact of GABARAP subfamily proteins on a plethora of processes during experimental analysis of GABARAP-deficient cells not only in the autophagic context.
Collapse
Affiliation(s)
- Julia L. Sanwald
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany; (J.L.S.); (J.D.); (I.M.S.); (A.Ü.)
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Leo-Brandt-Straße, 52428 Jülich, Germany
| | - Jochen Dobner
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany; (J.L.S.); (J.D.); (I.M.S.); (A.Ü.)
| | - Indra M. Simons
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany; (J.L.S.); (J.D.); (I.M.S.); (A.Ü.)
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Leo-Brandt-Straße, 52428 Jülich, Germany
| | - Gereon Poschmann
- Institute of Molecular Medicine I, Proteome Research, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany; (G.P.); (K.S.)
| | - Kai Stühler
- Institute of Molecular Medicine I, Proteome Research, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany; (G.P.); (K.S.)
- Molecular Proteomics Laboratory, Biologisch-Medizinisches Forschungszentrum (BMFZ), Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Alina Üffing
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany; (J.L.S.); (J.D.); (I.M.S.); (A.Ü.)
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Leo-Brandt-Straße, 52428 Jülich, Germany
| | - Silke Hoffmann
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Leo-Brandt-Straße, 52428 Jülich, Germany
| | - Dieter Willbold
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany; (J.L.S.); (J.D.); (I.M.S.); (A.Ü.)
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Leo-Brandt-Straße, 52428 Jülich, Germany
| |
Collapse
|
3
|
Direct binding to GABARAP family members is essential for HIV-1 Nef plasma membrane localization. Sci Rep 2017; 7:5979. [PMID: 28729737 PMCID: PMC5519724 DOI: 10.1038/s41598-017-06319-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 06/12/2017] [Indexed: 12/29/2022] Open
Abstract
HIV-1 Nef is an important pathogenic factor for HIV/AIDS pathogenesis. Studies have shown that the association of Nef with the inner leaflet of the plasma membrane and with endocytic and perinuclear vesicles is essential for most activities of Nef. Using purified recombinant proteins in pull-down assays and by co-immunoprecipitation assays we demonstrate that Nef binds directly and specifically to all GABARAP family members, but not to LC3 family members. Based on nuclear magnetic resonance (NMR) experiments we showed that Nef binds to GABARAP via two surface exposed hydrophobic pockets. S53 and F62 of GABARAP were identified as key residues for the interaction with Nef. During live-cell fluorescence microscopy an accumulation of Nef and all GABARAP family members in vesicular structures throughout the cytoplasm and at the plasma membrane was observed. This plasma membrane accumulation was significantly reduced after knocking down GABARAP, GABARAPL1 and GABARAPL2 with respective siRNAs. We identified GABARAPs as the first known direct interaction partners of Nef that are essential for its plasma membrane localization.
Collapse
|
4
|
Abstract
Selective autophagy is a quality control pathway through which cellular components are sequestered into double-membrane vesicles and delivered to specific intracellular compartments. This process requires autophagy receptors that link cargo to growing autophagosomal membranes. Selective autophagy is also implicated in various membrane trafficking events. Here we discuss the current view on how cargo selection and transport are achieved during selective autophagy, and point out molecular mechanisms that are congruent between autophagy and vesicle trafficking pathways.
Collapse
|
5
|
Brigger D, Torbett BE, Chen J, Fey MF, Tschan MP. Inhibition of GATE-16 attenuates ATRA-induced neutrophil differentiation of APL cells and interferes with autophagosome formation. Biochem Biophys Res Commun 2013; 438:283-8. [PMID: 23891751 PMCID: PMC4225710 DOI: 10.1016/j.bbrc.2013.07.056] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 07/16/2013] [Indexed: 12/11/2022]
Abstract
Autophagy is an intracellular bulk degradation process involved in cell survival upon stress induction, but also with a newly identified function in myeloid differentiation. The autophagy-related (ATG)8 protein family, including the GABARAP and LC3 subfamilies, is crucial for autophagosome biogenesis. In order to evaluate the significance of the GABARAPs in the pathogenesis of acute myeloid leukemia (AML), we compared their expression in primary AML patient samples, CD34(+) progenitor cells and in granulocytes from healthy donors. GABARAPL1 and GABARAPL2/GATE-16, but not GABARAP, were significantly downregulated in particular AML subtypes compared to normal granulocytes. Moreover, the expression of GABARAPL1 and GATE-16 was significantly induced during ATRA-induced neutrophil differentiation of acute promyelocytic leukemia cells (APL). Lastly, knocking down GABARAPL2/GATE-16 in APL cells attenuated neutrophil differentiation and decreased autophagic flux. In conclusion, low GABARAPL2/GATE-16 expression is associated with an immature myeloid leukemic phenotype and these proteins are necessary for neutrophil differentiation of APL cells.
Collapse
Affiliation(s)
- Daniel Brigger
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
- Experimental Oncology/Hematology, Department of Clinical Research, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Bruce E. Torbett
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Joy Chen
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Martin F. Fey
- Experimental Oncology/Hematology, Department of Clinical Research, University of Bern, Bern, Switzerland
- Department of Medical Oncology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Mario P. Tschan
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
- Experimental Oncology/Hematology, Department of Clinical Research, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
- Department of Medical Oncology, Inselspital, Bern University Hospital, Bern, Switzerland
| |
Collapse
|
6
|
Zhang Y, Kweon HK, Shively C, Kumar A, Andrews PC. Towards systematic discovery of signaling networks in budding yeast filamentous growth stress response using interventional phosphorylation data. PLoS Comput Biol 2013; 9:e1003077. [PMID: 23825934 PMCID: PMC3694812 DOI: 10.1371/journal.pcbi.1003077] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 04/17/2013] [Indexed: 11/19/2022] Open
Abstract
Reversible phosphorylation is one of the major mechanisms of signal transduction, and signaling networks are critical regulators of cell growth and development. However, few of these networks have been delineated completely. Towards this end, quantitative phosphoproteomics is emerging as a useful tool enabling large-scale determination of relative phosphorylation levels. However, phosphoproteomics differs from classical proteomics by a more extensive sampling limitation due to the limited number of detectable sites per protein. Here, we propose a comprehensive quantitative analysis pipeline customized for phosphoproteome data from interventional experiments for identifying key proteins in specific pathways, discovering the protein-protein interactions and inferring the signaling network. We also made an effort to partially compensate for the missing value problem, a chronic issue for proteomics studies. The dataset used for this study was generated using SILAC (Stable Isotope Labeling with Amino acids in Cell culture) technique with interventional experiments (kinase-dead mutations). The major components of the pipeline include phosphopeptide meta-analysis, correlation network analysis and causal relationship discovery. We have successfully applied our pipeline to interventional experiments identifying phosphorylation events underlying the transition to a filamentous growth form in Saccharomyces cerevisiae. We identified 5 high-confidence proteins from meta-analysis, and 19 hub proteins from correlation analysis (Pbi2p and Hsp42p were identified by both analyses). All these proteins are involved in stress responses. Nine of them have direct or indirect evidence of involvement in filamentous growth. In addition, we tested four of our predicted proteins, Nth1p, Pbi2p, Pdr12p and Rcn2p, by interventional phenotypic experiments and all of them present differential invasive growth, providing prospective validation of our approach. This comprehensive pipeline presents a systematic way for discovering signaling networks using interventional phosphoproteome data and can suggest candidate proteins for further investigation. We anticipate the methodology to be applicable as well to other interventional studies via different experimental platforms.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Hye Kyong Kweon
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Christian Shively
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Anuj Kumar
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Philip C. Andrews
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
7
|
Collins R, Holz R, Zimmerberg J. 5.14 The Biophysics of Membrane Fusion. COMPREHENSIVE BIOPHYSICS 2012. [PMCID: PMC7151979 DOI: 10.1016/b978-0-12-374920-8.00523-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A crucial interplay between protein conformations and lipid membrane energetics emerges as the guiding principle for the regulation and mechanism of membrane fusion in biological systems. As some of the basics of fusion become clear, a myriad of compelling questions come to the fore. Is the interior of the fusion pore protein or lipid? Why is synaptic release so fast? Why is PIP2 needed for exocytosis? How does fusion peptide insertion lead to fusion of viruses to cell membranes? What role does the TMD play? How can studies on membrane fission contribute to our understanding of membrane fusion? What exactly are SNARE proteins doing?
Collapse
|
8
|
Shpilka T, Weidberg H, Pietrokovski S, Elazar Z. Atg8: an autophagy-related ubiquitin-like protein family. Genome Biol 2011; 12:226. [PMID: 21867568 PMCID: PMC3218822 DOI: 10.1186/gb-2011-12-7-226] [Citation(s) in RCA: 400] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Autophagy-related (Atg) proteins are eukaryotic factors participating in various stages of the autophagic process. Thus far 34 Atgs have been identified in yeast, including the key autophagic protein Atg8. The Atg8 gene family encodes ubiquitin-like proteins that share a similar structure consisting of two amino-terminal α helices and a ubiquitin-like core. Atg8 family members are expressed in various tissues, where they participate in multiple cellular processes, such as intracellular membrane trafficking and autophagy. Their role in autophagy has been intensively studied. Atg8 proteins undergo a unique ubiquitin-like conjugation to phosphatidylethanolamine on the autophagic membrane, a process essential for autophagosome formation. Whereas yeast has a single Atg8 gene, many other eukaryotes contain multiple Atg8 orthologs. Atg8 genes of multicellular animals can be divided, by sequence similarities, into three subfamilies: microtubule-associated protein 1 light chain 3 (MAP1LC3 or LC3), γ-aminobutyric acid receptor-associated protein (GABARAP) and Golgi-associated ATPase enhancer of 16 kDa (GATE-16), which are present in sponges, cnidarians (such as sea anemones, corals and hydras) and bilateral animals. Although genes from all three subfamilies are found in vertebrates, some invertebrate lineages have lost the genes from one or two subfamilies. The amino terminus of Atg8 proteins varies between the subfamilies and has a regulatory role in their various functions. Here we discuss the evolution of Atg8 proteins and summarize the current view of their function in intracellular trafficking and autophagy from a structural perspective.
Collapse
Affiliation(s)
- Tomer Shpilka
- Department of Biological Chemistry, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | | | | | | |
Collapse
|
9
|
Hanson HH, Kang S, Fernández-Monreal M, Oung T, Yildirim M, Lee R, Suyama K, Hazan RB, Phillips GR. LC3-dependent intracellular membrane tubules induced by gamma-protocadherins A3 and B2: a role for intraluminal interactions. J Biol Chem 2010; 285:20982-92. [PMID: 20439459 DOI: 10.1074/jbc.m109.092031] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Clustered protocadherins (Pcdhs) are a family of cadherin-like molecules arranged in gene clusters (alpha, beta, and gamma). gamma-Protocadherins (Pcdh-gammas) are involved in cell-cell interactions, but their prominent intracellular distribution in vivo and different knock-out phenotypes suggest that these molecules participate in still unidentified processes. We found using correlative light and electron microscopy that Pcdh-gammaA3 and -gammaB2, but not -gammaC4, -alpha1, or N-cadherin, generate intracellular juxtanuclear membrane tubules when expressed in cells. These tubules recruit the autophagy marker MAP1A/1B LC3 (LC3) but are not associated with autophagic vesicles. Lipidation of LC3 is required for its coclustering with Pcdh-gamma tubules, suggesting the involvement of an autophagic-like molecular cascade. Expression of wild-type LC3 with Pcdh-gammaA3 increased tubule length whereas expression of lipidation-defective LC3 decreased tubule length relative to Pcdh-gammaA3 expressed alone. The tubules were found to emanate from lysosomes. Deletion of the luminal/extracellular domain of Pcdh-gammaA3 preserved lysosomal targeting but eliminated tubule formation whereas cytoplasmic deletion eliminated both lysosomal targeting and tubule formation. Deletion of the membrane-proximal three cadherin repeats resulted in tubes that were narrower than those produced by full-length molecules. These results suggest that Pcdh-gammaA and -gammaB families can influence the shape of intracellular membranes by mediating intraluminal interactions within organelles.
Collapse
Affiliation(s)
- Hugo H Hanson
- Department of Neuroscience, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Nakamura T, Hayashi T, Nasu-Nishimura Y, Sakaue F, Morishita Y, Okabe T, Ohwada S, Matsuura K, Akiyama T. PX-RICS mediates ER-to-Golgi transport of the N-cadherin/beta-catenin complex. Genes Dev 2008; 22:1244-56. [PMID: 18451111 DOI: 10.1101/gad.1632308] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Cadherins mediate Ca2+-dependent cell-cell adhesion. Efficient export of cadherins from the endoplasmic reticulum (ER) is known to require complex formation with beta-catenin. However, the molecular mechanisms underlying this requirement remain elusive. Here we show that PX-RICS, a beta-catenin-interacting GTPase-activating protein (GAP) for Cdc42, mediates ER-to-Golgi transport of the N-cadherin/beta-catenin complex. Knockdown of PX-RICS expression induced the accumulation of the N-cadherin/beta-catenin complex in the ER and ER exit site, resulting in a decrease in cell-cell adhesion. PX-RICS was also required for ER-to-Golgi transport of the fibroblast growth factor-receptor 4 (FGFR4) associated with N-cadherin. PX-RICS-mediated ER-to-Golgi transport was dependent on its interaction with beta-catenin, phosphatidylinositol-4-phosphate (PI4P), Cdc42, and its novel binding partner gamma-aminobutyric acid type A receptor-associated protein (GABARAP). These results suggest that PX-RICS ensures the efficient entry of the N-cadherin/beta-catenin complex into the secretory pathway, and thereby regulates the amount of N-cadherin available for cell adhesion and FGFR4-mediated signaling.
Collapse
Affiliation(s)
- Tsutomu Nakamura
- Laboratory of Molecular and Genetic Information, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo 113-0032, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Tolle F, Risold PY, Mansuy-Schlick V, Rossi E, Boyer-Guittaut M, Fraichard A, Jouvenot M. Specific regional distribution of gec1 mRNAs in adult rat central nervous system. Brain Res 2008; 1210:103-15. [PMID: 18423580 DOI: 10.1016/j.brainres.2008.02.077] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Revised: 02/27/2008] [Accepted: 02/27/2008] [Indexed: 10/22/2022]
Abstract
GEC1 protein shares high identity with GABARAP (GABA(A) Receptor-Associated Protein), interacts with tubulin and GABA(A) receptors and is potentially involved in intracellular transport processes. Recently, using quantitative real time PCR, we have reported the gec1 mRNA expression in different rat brain areas. In the present study, we investigated the cell types expressing gec1 in rat brain. Sense and anti-sense gec1 RNA probes, corresponding to the 3'-untranslated region, were generated. In northern blotting experiments, the anti-sense probe revealed only the 1.75 kb gec1 mRNAs. On the other hand, in immunohistochemistry experiments, GEC1 polyclonal antibodies did not discriminate between GEC1 and GABARAP proteins. Therefore, we used digoxigenin-labeled RNA probes for in situ hybridization (ISH) experiments to map the gec1 expression. Using the anti-sense probe, we detected the gec1 mRNAs specifically in neurons throughout the rostrocaudal extent of the brain as well as in the spinal cord. Although a majority of neurons expressed the gec1 mRNAs, different intensities of labeling were observed depending on the areas: the strongest labeling was observed in the isocortex, hippocampus, basal telencephalon, some thalamic and most of hypothalamic nuclei, cerebellum, and numerous brainstem nuclei. Furthermore, the gec1 mRNAs were intensely expressed in neurons involved in somatomotor and neuroendocrine functions and weakly expressed in sensory and reticular structures. These results corroborate the putative role of the GEC1 protein in the trafficking of receptor GABA(A).
Collapse
Affiliation(s)
- Fabrice Tolle
- Université de Franche-Comté, IFR 133, U.F.R. Sciences et Techniques, Equipe Estrogènes, Expression Génique et Pathologies du Système Nerveux Central, 16 route de Gray, 25030 Besançon Cedex, France
| | | | | | | | | | | | | |
Collapse
|
12
|
Slavikova S, Ufaz S, Avin-Wittenberg T, Levanony H, Galili G. An autophagy-associated Atg8 protein is involved in the responses of Arabidopsis seedlings to hormonal controls and abiotic stresses. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:4029-43. [PMID: 18836138 PMCID: PMC2576633 DOI: 10.1093/jxb/ern244] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Revised: 08/27/2008] [Accepted: 09/08/2008] [Indexed: 05/18/2023]
Abstract
Eukaryotes contain a ubiquitous family of autophagy-associated Atg8 proteins. In animal cells, these proteins have multiple functions associated with growth, cancer, and degenerative diseases, but their functions in plants are still largely unknown. To search for novel functions of Atg8 in plants, the present report tested the effect of expression of a recombinant AtAtg8 protein, fused at its N-terminus to green fluorescent protein (GFP) and at its C-terminus to the haemagglutinin epitope tag, on the response of Arabidopsis thaliana plants to the hormones cytokinin and auxin as well as to salt and osmotic stresses. Expression of this AtAtg8 fusion protein modulates the effect of cytokinin on root architecture. Moreover, expression of this fusion protein also reduces shoot anthocyanin accumulation in response to cytokinin feeding to the roots, implying the participation of AtAtg8 in cytokinin-regulated root-shoot communication. External application of cytokinin leads to the formation of novel GFP-AtAtg8-containing structures in cells located in the vicinity of the root vascular system, which are clearly distinct in size and dynamic movement from the GFP-AtAtg8-containing autophagosome-resembling structures that were observed in root epidermis cells. Expression of the AtAtg8 fusion construct also renders the plants more sensitive to a mild salt stress and to a lesser extent to a mild osmotic stress. This sensitivity is also associated with various changes in the root architecture, which are morphologically distinct from those observed in response to cytokinin. The results imply multiple functions for AtAtg8 in different root tissues that may also be regulated by different mechanisms.
Collapse
Affiliation(s)
| | | | | | | | - Gad Galili
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
13
|
Takeuchi Y, Nomura W, Ohdate T, Tamasu S, Masutani H, Murata K, Izawa S, Yodoi J, Inoue Y. Release of thioredoxin from Saccharomyces cerevisiae with environmental stimuli: solubilization of thioredoxin with ethanol. Appl Microbiol Biotechnol 2007; 75:1393-9. [PMID: 17390130 DOI: 10.1007/s00253-007-0949-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Revised: 03/13/2007] [Accepted: 03/14/2007] [Indexed: 11/30/2022]
Abstract
Thioredoxin is crucial for the maintenance of the redox status of cells of all types. Mammalian thioredoxin is secreted from various types of cells, although the mechanism underlying has not yet been clarified. Previously, we demonstrated that thioredoxin was released from Saccharomyces cerevisiae after treatment with ethanol. In this paper, we show that as well as ethanol, low-pH shock and hypoosmotic shock release thioredoxin. Low-molecular-weight proteins in yeast cells were preferentially released by treatment with ethanol and low-pH shock. A cell wall integrity pathway seems partially involved in the hypoosmotic shock-induced release of thioredoxin. Considerable amounts of thioredoxin were present in the insoluble fractions of the cells, a portion of which was associated with lipid microdomains that are resistant to nonionic detergent at 4 degrees C. The intracellular localization of thioredoxin may influence the efficiency of its release from yeast cells with ethanol.
Collapse
Affiliation(s)
- Yoko Takeuchi
- Laboratory of Molecular Microbiology, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Zhao C, Slevin JT, Whiteheart SW. Cellular functions of NSF: not just SNAPs and SNAREs. FEBS Lett 2007; 581:2140-9. [PMID: 17397838 PMCID: PMC1948069 DOI: 10.1016/j.febslet.2007.03.032] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Accepted: 03/07/2007] [Indexed: 12/26/2022]
Abstract
N-ethylmaleimide sensitive factor (NSF) is an ATPases associated with various cellular activities protein (AAA), broadly required for intracellular membrane fusion. NSF functions as a SNAP receptor (SNARE) chaperone which binds, through soluble NSF attachment proteins (SNAPs), to SNARE complexes and utilizes the energy of ATP hydrolysis to disassemble them thus facilitating SNARE recycling. While this is a major function of NSF, it does seem to interact with other proteins, such as the AMPA receptor subunit, GluR2, and beta2-AR and is thought to affect their trafficking patterns. New data suggest that NSF may be regulated by transient post-translational modifications such as phosphorylation and nitrosylation. These new aspects of NSF function as well as its role in SNARE complex dynamics will be discussed.
Collapse
Affiliation(s)
- Chunxia Zhao
- Departmental of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY, USA
| | - John T. Slevin
- Neurology Service, Department of Veterans Affairs Medical Center, Departments of Neurology and Molecular and Biomedical Pharmacology, University of Kentucky Medical Center, Lexington, KY, USA
| | - Sidney W. Whiteheart
- Departmental of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY, USA
- *Corresponding author. 741 South Limestone, BBSRB B261, Lexington, KY 40536, USA. Phone: 1-859-257-4882. Fax: 1-859-257-2283. E-mail address:
| |
Collapse
|
15
|
Abstract
gamma-Aminobutyric acid (GABA), an important inhibitory neurotransmitter in both vertebrates and invertebrates, acts on GABA receptors that are ubiquitously expressed in the CNS. GABA(A) receptors also represent a major site of action of clinically relevant drugs, such as benzodiazepines, barbiturates, ethanol, and general anesthetics. It has been shown that the intracellular M3-M4 loop of GABA(A) receptors plays an important role in regulating GABA(A) receptor function. Therefore, studies of the function of receptor intracellular loop associated proteins become important for understanding mechanisms of regulating receptor activity. Recently, several labs have used the yeast two-hybrid assay to identify proteins interacting with GABA(A) receptors, for example, the interaction of GABA(A) receptor associated protein (GABARAP) and Golgi-specific DHHC zinc finger protein (GODZ) with gamma subunits, PRIP, phospholipase C-related, catalytically inactive proteins (PRIP-1) and (PRIP-2) with GABARAP and receptor gamma2 and beta subunits, Plic-1 with some alpha and beta subunits, radixin with the alpha5 subunit, HAP1 with the beta1 subunit, GABA(A) receptor interacting factor-1 (GRIF-1) with the beta2 subunit, and brefeldin A-inhibited GDP/GTP exchange factor 2 (BIG2) with the beta3 subunit. These proteins have been shown to play important roles in modulating the activities of GABA(A) receptors ranging from enhancing trafficking, to stabilizing surface and internalized receptors, to regulating modification of GABA(A) receptors. This article reviews the current studies of GABA(A) receptor intracellular loop-associated proteins.
Collapse
Affiliation(s)
- Zi-Wei Chen
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, California, 90095- 1735, USA
| | | |
Collapse
|
16
|
Amar N, Lustig G, Ichimura Y, Ohsumi Y, Elazar Z. Two newly identified sites in the ubiquitin-like protein Atg8 are essential for autophagy. EMBO Rep 2006; 7:635-42. [PMID: 16680092 PMCID: PMC1479593 DOI: 10.1038/sj.embor.7400698] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2005] [Revised: 01/13/2006] [Accepted: 03/28/2006] [Indexed: 12/19/2022] Open
Abstract
Atg8, a member of a novel ubiquitin-like protein family, is an essential component of the autophagic machinery in yeast. This protein undergoes reversible conjugation to phosphatidylethanolamine through a multistep process in which cleavage of Atg8 by a specific protease is followed by ubiquitin-like conjugation processes. Here, we identify two essential sites in Atg8, one of them involving residues Phe 77 and Phe 79 and the other, located on the opposite surface of Atg8, residues Tyr 49 and Leu 50. We show that these two sites are associated with different functions of Atg8: Phe 77 and Phe 79 seem to be part of the recognition site for Atg4, a cystein protease that acts also as a deubiquitination enzyme, whereas Tyr 49 and Leu 50 act downstream of the lipidation step. These two newly identified distinct sites that are essential for Atg8 activity provide an explanation for the many protein-protein interactions of this low-molecular-weight protein.
Collapse
Affiliation(s)
- Nira Amar
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Gila Lustig
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yoshinobu Ichimura
- Division of Molecular Cell Biology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki 444-8585, Japan
| | - Yoshinori Ohsumi
- Division of Molecular Cell Biology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki 444-8585, Japan
| | - Zvulun Elazar
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
- Tel: +972 8 9343682; Fax: +972 8 9344112; E-mail:
| |
Collapse
|
17
|
Chen C, Li JG, Chen Y, Huang P, Wang Y, Liu-Chen LY. GEC1 Interacts with the κ Opioid Receptor and Enhances Expression of the Receptor. J Biol Chem 2006; 281:7983-93. [PMID: 16431922 DOI: 10.1074/jbc.m509805200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We identified a truncated form (38-117) of GEC1 that interacts with the C-tail of the human kappa opioid receptor (hKOR) by yeast two-hybrid screening. GEC1-(38-117) did not interact with the C-tail of the mu or delta opioid receptors. GEC1, a 117-amino acid protein (Pellerin, I., Vuillermoz, C., Jouvenot, M., Ordener, C., Royez, M., and Adessi, G. L. (1993) Mol. Cell Endocrinol. 90, R17-R21), is highly homologous to GABARAP, GATE-16, and Apg8/aut7, all members of the microtubule associated protein (MAP) family. In pull-down assays, GST-GEC1 interacted directly with the hKOR C-tail, full-length hKOR, and tubulin. When expressed in Chinese hamster ovary (CHO) cells, GEC1 co-immunoprecipitated with FLAG-hKOR. Expression of GEC1 greatly increased total and cell-surface KOR but not mu or delta opioid receptors. GEC1 expression slightly reduced U50,488H-promoted down-regulation, without affecting ligand binding affinity, receptor-G protein coupling, or U50,488H-induced desensitization and internalization. HA-GEC1 expressed in CHO cells was localized in the Golgi apparatus and endoplasmic reticulum (ER). When cells were pulsed with [35S]Met/Cys, GEC1 expression enhanced the level of the mature form (55-kDa band) of FLAG-hKOR at 4, 8, and 22 h after pulse without affecting the precursors (39- and 45-kDa bands), indicating that GEC1 facilitates trafficking of FLAG-hKOR from the ER/Golgi to plasma membranes. GEC1 interacted with N-ethylmaleimide-sensitive factor (NSF) in pull-down assays and co-immunoprecipitated with NSF in rat brain extracts. The interaction with NSF may contribute to GEC1 effects. This is the first report on biological functions of GEC1 and the first demonstration that a GPCR interacts with a protein of the MAP family. The interaction is important for trafficking of the receptor in the biosynthesis pathway.
Collapse
MESH Headings
- 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer/pharmacology
- Adaptor Proteins, Signal Transducing
- Amino Acid Sequence
- Analgesics, Non-Narcotic/pharmacology
- Animals
- Blotting, Western
- Brain/metabolism
- CHO Cells
- Cell Membrane/metabolism
- Cricetinae
- Cysteine/chemistry
- DNA, Complementary/metabolism
- Down-Regulation
- Electrophoresis, Polyacrylamide Gel
- Endoplasmic Reticulum/metabolism
- Estrogens/metabolism
- Ethylmaleimide/pharmacology
- Flow Cytometry
- Gene Expression Regulation
- Glutathione Transferase/metabolism
- Glycoside Hydrolases/metabolism
- Glycosylation
- Golgi Apparatus/metabolism
- Histidine/chemistry
- Humans
- Immunoblotting
- Immunohistochemistry
- Immunoprecipitation
- Kinetics
- Methionine/chemistry
- Microscopy, Fluorescence
- Microtubule-Associated Proteins/metabolism
- Microtubule-Associated Proteins/physiology
- Molecular Sequence Data
- Protein Binding
- Protein Structure, Tertiary
- RNA, Messenger/metabolism
- Rats
- Receptors, Opioid, kappa/metabolism
- Recombinant Fusion Proteins/metabolism
- Sequence Homology, Amino Acid
- Signal Transduction
- Soluble N-Ethylmaleimide-Sensitive Factor Attachment Proteins/metabolism
- Time Factors
- Transfection
- Tubulin/chemistry
- Two-Hybrid System Techniques
Collapse
Affiliation(s)
- Chongguang Chen
- Department of Pharmacology and Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | | | | | | | | | |
Collapse
|
18
|
Leil TA, Chen ZW, Chang CSS, Olsen RW. GABAA receptor-associated protein traffics GABAA receptors to the plasma membrane in neurons. J Neurosci 2005; 24:11429-38. [PMID: 15601949 PMCID: PMC6730371 DOI: 10.1523/jneurosci.3355-04.2004] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The trafficking of GABA(A) receptors is an important component of the pathway that regulates plasticity of inhibitory synapses. The 17 kDa GABA(A) receptor-associated protein (GABARAP) has been implicated in the trafficking of GABA(A) receptors because of its ability to interact not only with the gamma2 subunit of the receptor but also with microtubules and the N-ethylmaleimide-sensitive factor (NSF). To elucidate the role of GABARAP in the trafficking of GABA(A) receptors, we have constructed a yellow fluorescent protein (YFP) fusion protein of GABARAP and expressed it in neurons using adenovirus, so that its function may be examined. YFP-GABARAP colocalized with gamma2 subunit-containing GABA(A) receptors and NSF to the perinuclear cytoplasm in cultured hippocampal neurons and to the proximal regions of dendrites that are making synaptic contact. Expression of YFP-GABARAP in Cos7 cells and cultured hippocampal neurons was able to increase the level of GABA(A) receptors detected at the plasma membrane, even at low levels of YFP-GABARAP expression. This effect is specific to the function of GABARAP on GABA(A) receptor trafficking, because point mutations in the gamma2-binding domain of YFP-GABARAP interfered with the ability of YFP-GABARAP to increase GABA(A) receptor surface levels. These mutations also disrupted the colocalization of YFP-GABARAP with the gamma2 subunit and with NSF in hippocampal neurons. The results of this study show for the first time that GABARAP has a functional effect on the trafficking of GABA(A) receptors and provide decisive evidence for the role of GABARAP in transporting GABA(A) receptors to the plasma membrane in neurons.
Collapse
Affiliation(s)
- Tarek A Leil
- Department of Molecular and Medical Pharmacology, Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095-1735
| | | | | | | |
Collapse
|
19
|
Meyer HH. Golgi reassembly after mitosis: the AAA family meets the ubiquitin family. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1744:108-19. [PMID: 15878210 DOI: 10.1016/j.bbamcr.2005.03.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2004] [Revised: 03/22/2005] [Accepted: 03/23/2005] [Indexed: 11/30/2022]
Abstract
The Golgi apparatus in animal cells breaks down at the onset of mitosis and is later rebuilt in the two daughter cells. Two AAA ATPases, NSF and p97/VCP, have been implicated in regulating membrane fusion steps that lead to regrowth of Golgi cisternae from mitotic fragments. NSF dissociates complexes of SNARE proteins, thereby reactivating them to mediate membrane fusion. However, NSF has a second function in regulating SNARE pairing together with the ubiquitin-like protein GATE-16. p97/VCP, on the other hand, is involved in a cycle of ubiquitination and deubiquitination of an unknown target that governs Golgi membrane dynamics. Here, these findings are reviewed and discussed in the context of the increasingly evident role of ubiquitin in membrane traffic processes.
Collapse
Affiliation(s)
- Hemmo H Meyer
- Swiss Federal School of Technology (ETH), Institute of Biochemistry, ETH Honggerberg HPM, Zurich.
| |
Collapse
|
20
|
Affiliation(s)
- Yoshinori Ohsumi
- Department of Cell Biology, National Institute for Basic Biology, Myodaiji-cho, Okazaki 444-8585, Japan.
| | | |
Collapse
|
21
|
Shiozawa K, Maita N, Tomii K, Seto A, Goda N, Akiyama Y, Shimizu T, Shirakawa M, Hiroaki H. Structure of the N-terminal domain of PEX1 AAA-ATPase. Characterization of a putative adaptor-binding domain. J Biol Chem 2004; 279:50060-8. [PMID: 15328346 DOI: 10.1074/jbc.m407837200] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Peroxisomes are responsible for several pathways in primary metabolism, including beta-oxidation and lipid biosynthesis. PEX1 and PEX6 are hexameric AAA-type ATPases, both of which are indispensable in targeting over 50 peroxisomal resident proteins from the cytosol to the peroxisomes. Although the tandem AAA-ATPase domains in the central region of PEX1 and PEX6 are highly similar, the N-terminal sequences are unique. To better understand the distinct molecular function of these two proteins, we analyzed the unique N-terminal domain (NTD) of PEX1. Extensive computational analysis revealed weak similarity (<10% identity) of PEX1 NTD to the N-terminal domains of other membrane-related type II AAA-ATPases, such as VCP (p97) and NSF. We have determined the crystal structure of mouse PEX1 NTD at 2.05-A resolution, which clearly demonstrated that the domain belongs to the double-psi-barrel fold family found in the other AAA-ATPases. The N-domains of both VCP and NSF are structural neighbors of PEX1 NTD with a 2.7- and 2.1-A root mean square deviation of backbone atoms, respectively. Our findings suggest that the supradomain architecture, which is composed of a single N-terminal domain followed by tandem AAA domains, is a common feature of organellar membrane-associating AAA-ATPases. We propose that PEX1 functions as a protein unfoldase in peroxisomal biogenesis, using its N-terminal putative adaptor-binding domain.
Collapse
Affiliation(s)
- Kumiko Shiozawa
- Graduate School of Integrated Science, Yokohama City University, 1-7-29 Suehiro, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Genetic and biochemical analyses of the secretory pathway have produced a detailed picture of the molecular mechanisms involved in selective cargo transport between organelles. This transport occurs by means of vesicular intermediates that bud from a donor compartment and fuse with an acceptor compartment. Vesicle budding and cargo selection are mediated by protein coats, while vesicle targeting and fusion depend on a machinery that includes the SNARE proteins. Precise regulation of these two aspects of vesicular transport ensures efficient cargo transfer while preserving organelle identity.
Collapse
Affiliation(s)
- Juan S Bonifacino
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|