1
|
Kelnhofer-Millevolte LE, Smith JR, Nguyen DH, Wilson LS, Lewis HC, Arnold EA, Brinkley MR, Geballe AP, Ramachandran S, Avgousti DC. Human cytomegalovirus induces neuronal gene expression for viral maturation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.13.598910. [PMID: 38915666 PMCID: PMC11195207 DOI: 10.1101/2024.06.13.598910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Viral invasion of the host cell causes some of the most dramatic changes in biology. Human cytomegalovirus (HCMV) extensively remodels host cells, altering nuclear shape and generating a cytoplasmic viral-induced assembly compartment (vIAC). How these striking morphology changes take place in the context of host gene regulation is still emerging. Here, we discovered that histone variant macroH2A1 is essential for producing infectious progeny. Because virion maturation and cellular remodeling are closely linked processes, we investigated structural changes in the host cell upon HCMV infection. We discovered that macroH2A1 is necessary for HCMV-induced reorganization of the host nucleus, cytoskeleton, and endoplasmic reticulum. Furthermore, using RNA-seq we found that while all viral genes were highly expressed in the absence of macroH2A1, many HCMV-induced host genes were not. Remarkably, hundreds of these HCMV-induced macroH2A1-dependent host genes are associated with neuronal synapse formation and vesicle trafficking. Knock-down of these HCMV-induced neuronal genes during infection resulted in malformed vIACs and smaller plaques, establishing their importance to HCMV infection. Together, our findings demonstrate that HCMV manipulates host gene expression by hijacking a dormant neuronal secretory pathway for efficient virion maturation.
Collapse
Affiliation(s)
- Laurel E Kelnhofer-Millevolte
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Molecular and Cellular Biology, Graduate Program, University of Washington and Fred Hutchinson Cancer Center, Seattle, WA, USA
- University of Washington Medical Scientist Training Program, Seattle, WA, USA
| | - Julian R Smith
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Daniel H Nguyen
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Lea S Wilson
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Hannah C Lewis
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Molecular and Cellular Biology, Graduate Program, University of Washington and Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Edward A Arnold
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Mia R Brinkley
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Adam P Geballe
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Srinivas Ramachandran
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Daphne C Avgousti
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| |
Collapse
|
2
|
Zeng Z, Peng Q, Yang F, Wu J, Guo H, Deng H, Zhao L, Long K, Wang X. Transcriptome analysis of pigeon pituitary gland: expression changes of genes encoding protein and peptide hormones at different breeding stages. Poult Sci 2024; 103:103742. [PMID: 38670056 PMCID: PMC11068619 DOI: 10.1016/j.psj.2024.103742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Unlike other poultry, parent pigeons produce "pigeon milk" in their crops to nurture their squabs, which is mainly controlled by prolactin (PRL). Exception for PRL, the pituitary gland may also release various other peptide and protein hormones. However, whether these hormones change during pigeon crop lactation and their potential physiological functions remain unclear. Here, to identify potential peptide or protein hormone genes that regulate crop lactation, we conducted transcriptome analysis of pigeon pituitary glands at 3 different breeding stages (the ceased stage-nonincubation and non-nurturing stage, the 11th d of the incubation, and the 1st d of the nurturing stage) using RNA sequencing (RNA-Seq). Our analysis identified a total of 15,191 mRNAs and screened out 297 differentially expressed genes (DEG), including PRL, VIP, etc. The expression abundance of PRL mRNA on the 1st d of the nurturing stage was respectively 4.93 and 3.62 folds higher when compared to the ceased stage and the 11th d of the incubation stage. Additionally, the expression abundance of VIP is higher in the 1st d of the nurturing stage than in the ceased stage. Protein-protein interaction (PPI) network and Molecular Complex Detection (MCODE) analysis identified several vital DEGs (e.g., GHRHR, VIP, etc.), being closely linked with hormone and enriched in neuropeptide signaling pathway and response to the hormone. Expression pattern analysis revealed that these DEGs exhibited 4 distinct expression patterns (profile 10, 16, 18, 19). Genes in profile 10 and 19 presented a trend with the highest expression level on 1st d of the nurturing stage, and functional enrichment analysis indicated that these genes are involved in neuropeptide hormone activity, receptor-ligand activity, and the extracellular matrix, etc. Taken together, being consistent with PRL, some genes encoding peptide and protein hormones (e.g., VIP) presented differentially expressed in different breeding stages. It suggests that these hormones may be involved in regulation of the crop lactation process or corresponding behavior in domestic pigeons. The results of this study help to gain new insights into the role of pituitary gland in regulating pigeon lactation.
Collapse
Affiliation(s)
- Zhanggui Zeng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P. R. China
| | - Qiyi Peng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P. R. China
| | - Fuxing Yang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P. R. China
| | - Jie Wu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P. R. China
| | - Hongrui Guo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, P. R. of China
| | - Huidan Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, P. R. of China
| | - Ling Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, P. R. of China
| | - Keren Long
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, P. R. China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P. R. China
| | - Xun Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, P. R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, P. R. China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P. R. China.
| |
Collapse
|
3
|
Dong G. Two heads are better than one: Cooperation of two CAPS domains in membrane binding. Structure 2023; 31:372-374. [PMID: 37028394 DOI: 10.1016/j.str.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 04/09/2023]
Abstract
In this issue of Structure, Zhang et al. report their structural studies on the C2 and PH domains of Ca2+-dependent activator proteins for secretion (CAPS). The two domains form a tightly packed module and generate a continuous basic patch across both domains to substantially enhance CAPS binding to PI(4,5)P2-containing membranes.
Collapse
Affiliation(s)
- Gang Dong
- Max Perutz Labs, Vienna Biocenter, Medical University of Vienna, 1030 Vienna, Austria.
| |
Collapse
|
4
|
Zhang L, Li L, Wei Z, Zhou H, Liu H, Wang S, Ren Y, Dai T, Wang J, Hu Z, Ma C. The C 2 and PH domains of CAPS constitute an effective PI(4,5)P2-binding unit essential for Ca 2+-regulated exocytosis. Structure 2023; 31:424-434.e6. [PMID: 36863339 DOI: 10.1016/j.str.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/05/2023] [Accepted: 02/03/2023] [Indexed: 03/04/2023]
Abstract
Ca2+-dependent activator proteins for secretion (CAPSs) are required for Ca2+-regulated exocytosis in neurons and neuroendocrine cells. CAPSs contain a pleckstrin homology (PH) domain that binds PI(4,5)P2-membrane. There is also a C2 domain residing adjacent to the PH domain, but its function remains unclear. In this study, we solved the crystal structure of the CAPS-1 C2PH module. The structure showed that the C2 and PH tandem packs against one another mainly via hydrophobic residues. With this interaction, the C2PH module exhibited enhanced binding to PI(4,5)P2-membrane compared with the isolated PH domain. In addition, we identified a new PI(4,5)P2-binding site on the C2 domain. Disruption of either the tight interaction between the C2 and PH domains or the PI(4,5)P2-binding sites on both domains significantly impairs CAPS-1 function in Ca2+-regulated exocytosis at the Caenorhabditis elegans neuromuscular junction (NMJ). These results suggest that the C2 and PH domains constitute an effective unit to promote Ca2+-regulated exocytosis.
Collapse
Affiliation(s)
- Li Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Li
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Ziqing Wei
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China; Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hao Zhou
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Haowen Liu
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Shen Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yijing Ren
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Tiankai Dai
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jiafan Wang
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Zhitao Hu
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia.
| | - Cong Ma
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
5
|
Zhao X, Wu Y, Li H, Li J, Yao Y, Cao Y, Mei Z. Comprehensive analysis of differentially expressed profiles of mRNA, lncRNA, and miRNA of Yili geese ovary at different egg-laying stages. BMC Genomics 2022; 23:607. [PMID: 35986230 PMCID: PMC9392330 DOI: 10.1186/s12864-022-08774-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/19/2022] [Indexed: 11/20/2022] Open
Abstract
Background The development of the ovaries is an important factor that affects egg production performance in geese. Ovarian development is regulated by genes that are expressed dynamically and stage-specifically. The transcriptome profile analysis on ovarian tissues of goose at different egg laying stages could provide an important basis for screening and identifying key genes regulating ovarian development. Results In this study, 4 ovary tissues at each breeding period of pre-laying (PP), laying (LP), and ceased-laying period (CP), respectively, with significant morphology difference, were used for RNA extraction and mRNAs, lncRNAs, and miRNAs comparison in Yili geese. CeRNA regulatory network was constructed for key genes screening. A total of 337, 1136, and 525 differentially expressed DE mRNAs, 466, 925, and 742 DE lncRNAs and 258, 1131 and 909 DE miRNAs were identified between PP and LP, between CP and LP, and between CP and PP groups, respectively. Functional enrichment analysis showed that the differentially expressed mRNAs and non-coding RNA target genes were mainly involved in the cell process, cytokine-cytokine receptor interaction, phagosome, calcium signaling pathway, steroid biosynthesis and ECM-receptor interaction. Differential genes and non-coding RNAs, PDGFRB, ERBB4, LHCGR, MSTRG.129094.34, MSTRG.3524.1 and gga-miR-145–5p, related to reproduction and ovarian development were highly enriched. Furthermore, lncRNA-miRNA-mRNA regulatory networks related to ovary development were constructed. Conclusions Our study found dramatic transcriptomic differences in ovaries of Yili geese at different egg-laying stages, and a differential lncRNA-miRNA-mRNA regulatory network related to cell proliferation, differentiation and apoptosis and involved in stromal follicle development were established and preliminarily validated, which could be regarded as a key regulatory pathway of ovarian development in Yili geese. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08774-4.
Collapse
|
6
|
Comparative transcriptomics in the hypothalamic-pituitary-gonad axis of mammals and poultry. Genomics 2022; 114:110396. [DOI: 10.1016/j.ygeno.2022.110396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 05/25/2022] [Accepted: 06/01/2022] [Indexed: 11/22/2022]
|
7
|
Prasai B, Haber GJ, Strub MP, Ahn R, Ciemniecki JA, Sochacki KA, Taraska JW. The nanoscale molecular morphology of docked exocytic dense-core vesicles in neuroendocrine cells. Nat Commun 2021; 12:3970. [PMID: 34172739 PMCID: PMC8233335 DOI: 10.1038/s41467-021-24167-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 06/04/2021] [Indexed: 12/31/2022] Open
Abstract
Rab-GTPases and their interacting partners are key regulators of secretory vesicle trafficking, docking, and fusion to the plasma membrane in neurons and neuroendocrine cells. Where and how these proteins are positioned and organized with respect to the vesicle and plasma membrane are unknown. Here, we use correlative super-resolution light and platinum replica electron microscopy to map Rab-GTPases (Rab27a and Rab3a) and their effectors (Granuphilin-a, Rabphilin3a, and Rim2) at the nanoscale in 2D. Next, we apply a targetable genetically-encoded electron microscopy labeling method that uses histidine based affinity-tags and metal-binding gold-nanoparticles to determine the 3D axial location of these exocytic proteins and two SNARE proteins (Syntaxin1A and SNAP25) using electron tomography. Rab proteins are distributed across the entire surface and t-SNARE proteins at the base of docked vesicles. We propose that the circumferential distribution of Rabs and Rab-effectors could aid in the efficient transport, capture, docking, and rapid fusion of calcium-triggered exocytic vesicles in excitable cells.
Collapse
Affiliation(s)
- Bijeta Prasai
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Gideon J Haber
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Marie-Paule Strub
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Regina Ahn
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - John A Ciemniecki
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kem A Sochacki
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Justin W Taraska
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
8
|
Kučka M, Gonzalez-Iglesias AE, Tomić M, Prévide RM, Smiljanic K, Sokanovic SJ, Fletcher PA, Sherman A, Balla T, Stojilkovic SS. Calcium-Prolactin Secretion Coupling in Rat Pituitary Lactotrophs Is Controlled by PI4-Kinase Alpha. Front Endocrinol (Lausanne) 2021; 12:790441. [PMID: 35058881 PMCID: PMC8764672 DOI: 10.3389/fendo.2021.790441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/02/2021] [Indexed: 11/13/2022] Open
Abstract
The role of calcium, but not of other intracellular signaling molecules, in the release of pituitary hormones by exocytosis is well established. Here, we analyzed the contribution of phosphatidylinositol kinases (PIKs) to calcium-driven prolactin (PRL) release in pituitary lactotrophs: PI4Ks - which control PI4P production, PIP5Ks - which synthesize PI(4, 5)P2 by phosphorylating the D-5 position of the inositol ring of PI4P, and PI3KCs - which phosphorylate PI(4, 5)P2 to generate PI(3, 4, 5)P3. We used common and PIK-specific inhibitors to evaluate the strength of calcium-secretion coupling in rat lactotrophs. Gene expression was analyzed by single-cell RNA sequencing and qRT-PCR analysis; intracellular and released hormones were assessed by radioimmunoassay and ELISA; and single-cell calcium signaling was recorded by Fura 2 imaging. Single-cell RNA sequencing revealed the expression of Pi4ka, Pi4kb, Pi4k2a, Pi4k2b, Pip5k1a, Pip5k1c, and Pik3ca, as well as Pikfyve and Pip4k2c, in lactotrophs. Wortmannin, a PI3K and PI4K inhibitor, but not LY294002, a PI3K inhibitor, blocked spontaneous action potential driven PRL release with a half-time of ~20 min when applied in 10 µM concentration, leading to accumulation of intracellular PRL content. Wortmannin also inhibited increase in PRL release by high potassium, the calcium channel agonist Bay K8644, and calcium mobilizing thyrotropin-releasing hormone without affecting accompanying calcium signaling. GSK-A1, a specific inhibitor of PI4KA, also inhibited calcium-driven PRL secretion without affecting calcium signaling and Prl expression. In contrast, PIK93, a specific inhibitor of PI4KB, and ISA2011B and UNC3230, specific inhibitors of PIP5K1A and PIP5K1C, respectively, did not affect PRL release. These experiments revealed a key role of PI4KA in calcium-secretion coupling in pituitary lactotrophs downstream of voltage-gated and PI(4, 5)P2-dependent calcium signaling.
Collapse
Affiliation(s)
- Marek Kučka
- Section on Cellular Signaling, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Arturo E. Gonzalez-Iglesias
- Section on Cellular Signaling, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Melanija Tomić
- Section on Cellular Signaling, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Rafael M. Prévide
- Section on Cellular Signaling, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Kosara Smiljanic
- Section on Cellular Signaling, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Srdjan J. Sokanovic
- Section on Cellular Signaling, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Patrick A. Fletcher
- Laboratory of Biological Modeling, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Arthur Sherman
- Laboratory of Biological Modeling, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Tamas Balla
- Section on Molecular Signal Transduction, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Stanko S. Stojilkovic
- Section on Cellular Signaling, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: Stanko S. Stojilkovic,
| |
Collapse
|
9
|
Klein O, Azouz NP, Sagi-Eisenberg R. Measurement of Exocytosis in Genetically Manipulated Mast Cells. Methods Mol Biol 2021; 2233:181-192. [PMID: 33222135 DOI: 10.1007/978-1-0716-1044-2_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The hallmark of mast cell activation is secretion of immune mediators by regulated exocytosis. Measurements of mediator secretion from mast cells that are genetically manipulated by transient transfections provide a powerful tool for deciphering the underlying mechanisms of mast cell exocytosis. However, common methods to study regulated exocytosis in bulk culture of mast cells suffer from the drawback of high signal-to-noise ratio because of their failure to distinguish between the different mast cell populations, that is, genetically modified mast cells versus their non-transfected counterparts. In particular, the low transfection efficiency of mast cells poses a significant limitation on the use of conventional methodologies. To overcome this hurdle, we developed a method, which discriminates and allows detection of regulated exocytosis of transfected cells based on the secretion of a fluorescent secretory reporter. We used a plasmid encoding for Neuropeptide Y (NPY) fused to a monomeric red fluorescent protein (NPY-mRFP), yielding a fluorescent secretory granule-targeted reporter that is co-transfected with a plasmid encoding a gene of interest. Upon cell trigger, NPY-mRFP is released from the cells by regulated exocytosis, alongside the endogenous mediators. Therefore, using NPY-mRFP as a reporter for mast cell exocytosis allows either quantitative, via a fluorimeter assay, or qualitative analysis, via confocal microscopy, of the genetically manipulated mast cells. Moreover, this method may be easily modified to accommodate studies of regulated exocytosis in any other type of cell.
Collapse
Affiliation(s)
- Ofir Klein
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Nurit P Azouz
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Pediatrics, Cincinnati Children Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ronit Sagi-Eisenberg
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
10
|
Shen X, Bai X, Luo C, Jiang D, Li X, Zhang X, Tian Y, Huang Y. Quantitative proteomic analysis of chicken serum reveals key proteins affecting follicle development during reproductive phase transitions. Poult Sci 2020; 100:325-333. [PMID: 33357697 PMCID: PMC7772657 DOI: 10.1016/j.psj.2020.09.058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 09/11/2020] [Accepted: 09/24/2020] [Indexed: 12/14/2022] Open
Abstract
Avian reproductive behavior is regulated through the neuroendocrine system. The transition from laying to brooding is strictly controlled by the hypothalamus-pituitary-gonadal (HPG) axis. Cross talk on the HPG axis relies on the circulatory system, where the dynamics of serum proteins can be observed during different reproductive phases. Some canonical hormones, such as prolactin and luteinizing hormone, play important roles in the transition through reproductive phases. However, little is known at the whole-proteome level. To discover novel serum proteins, we employed isobaric tags for relative and absolute quantification to assay the serum proteome during different reproductive phases in chicken. We identified a total of 1,235 proteins from chicken serum; 239 of these proteins showed differential expression between the laying and brooding stages, including a low concentration of steroid metabolism-related proteins and a high concentration of calcium signaling-related proteins (fold change ≥1.5 or ≤0.66; P < 0.05). Pathway analysis and protein–protein interaction networks predicated the difference in follicle development between the brooding stage and laying stages and were related to the 14-3-3 protein family, which is associated with oocyte meiosis and maturation. Together, these results provided a proteomics foundation for investigating the dynamic changes taking place in the circulatory system during reproductive phase transition, and also uncovered new insights regarding follicle development that underlie the avian reproductive cycle.
Collapse
Affiliation(s)
- Xu Shen
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Xue Bai
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chenlong Luo
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Danli Jiang
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Xiujin Li
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Xumeng Zhang
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Yunbo Tian
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Yunmao Huang
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China.
| |
Collapse
|
11
|
Gundersen CB. Cysteine string proteins. Prog Neurobiol 2020; 188:101758. [DOI: 10.1016/j.pneurobio.2020.101758] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 01/06/2020] [Accepted: 01/13/2020] [Indexed: 12/17/2022]
|
12
|
Ye P, Ge K, Li M, Yang L, Jin S, Zhang C, Chen X, Geng Z. Egg-laying and brooding stage-specific hormonal response and transcriptional regulation in pituitary of Muscovy duck (Cairina moschata). Poult Sci 2020; 98:5287-5296. [PMID: 31376351 DOI: 10.3382/ps/pez433] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 07/16/2019] [Indexed: 01/24/2023] Open
Abstract
Broodiness is an interesting topic in reproductive biology for its reduced egg production. The strong brooding trait of Muscovy duck has become a major factor restricting the development of its industry. Broody phenotype and environmental factors influencing broodiness in poultry have been extensively studied, but the molecular regulation mechanism of broodiness remains unclear. In this research, the Muscovy duck reproductive endocrine hormones and pituitary transcriptome profiles during egg-laying phases (LP) and brooding phases (BP) were studied. During BP (n = 19), prolactin (PRL) levels was higher, while progesterone (P4) and estradiol (E2) were lower as compared to ducks during their LP (n = 20) (P < 0.01). We then examined the pituitary transcriptome of Muscovy duck at the 2 reproductive stages. A total of 398 differentially expressed genes included 20 transcription factors were identified (fold change ≥ 1.5, P < 0.01). There were 109 upregulated and 289 downregulated genes at brooding phases (n = 6) compared with egg-laying phases (n = 6). Real-time quantitative PCR analysis was carried out to verify the transcriptome results. The present study suggested that neuroactive ligand-receptor interaction pathway, calcium signaling pathway, and response to steroid hormones biological process are critical for controlling broodiness in the ducks. Further analysis revealed that SHH, PTGS2, RLN3, and transcription factor AP-1 may act as central signal modulators of hormonal and behavioral regulation mechanism associated with broodiness.
Collapse
Affiliation(s)
- Pengfei Ye
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China.,Anhui province key laboratory of local livestock and poultry genetic resource conservation and bio-breeding, Anhui Agricultural University, Hefei 230036, P.R. China
| | - Kai Ge
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China.,Anhui province key laboratory of local livestock and poultry genetic resource conservation and bio-breeding, Anhui Agricultural University, Hefei 230036, P.R. China.,College of biological and pharmaceutical engineering, West Anhui University, Liuan 237012, China
| | - Min Li
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China.,Anhui province key laboratory of local livestock and poultry genetic resource conservation and bio-breeding, Anhui Agricultural University, Hefei 230036, P.R. China
| | - Lei Yang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China.,Anhui province key laboratory of local livestock and poultry genetic resource conservation and bio-breeding, Anhui Agricultural University, Hefei 230036, P.R. China
| | - Sihua Jin
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China.,Anhui province key laboratory of local livestock and poultry genetic resource conservation and bio-breeding, Anhui Agricultural University, Hefei 230036, P.R. China
| | - Cheng Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China.,Anhui province key laboratory of local livestock and poultry genetic resource conservation and bio-breeding, Anhui Agricultural University, Hefei 230036, P.R. China
| | - Xingyong Chen
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China.,Anhui province key laboratory of local livestock and poultry genetic resource conservation and bio-breeding, Anhui Agricultural University, Hefei 230036, P.R. China
| | - Zhaoyu Geng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China.,Anhui province key laboratory of local livestock and poultry genetic resource conservation and bio-breeding, Anhui Agricultural University, Hefei 230036, P.R. China
| |
Collapse
|
13
|
In vitro fusion of single synaptic and dense core vesicles reproduces key physiological properties. Nat Commun 2019; 10:3904. [PMID: 31467284 PMCID: PMC6715626 DOI: 10.1038/s41467-019-11873-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 08/02/2019] [Indexed: 12/29/2022] Open
Abstract
Regulated exocytosis of synaptic vesicles is substantially faster than of endocrine dense core vesicles despite similar molecular machineries. The reasons for this difference are unknown and could be due to different regulatory proteins, different spatial arrangements, different vesicle sizes, or other factors. To address these questions, we take a reconstitution approach and compare regulated SNARE-mediated fusion of purified synaptic and dense core chromaffin and insulin vesicles using a single vesicle-supported membrane fusion assay. In all cases, Munc18 and complexin are required to restrict fusion in the absence of calcium. Calcium triggers fusion of all docked vesicles. Munc13 (C1C2MUN domain) is required for synaptic and enhanced insulin vesicle fusion, but not for chromaffin vesicles, correlating inversely with the presence of CAPS protein on purified vesicles. Striking disparities in calcium-triggered fusion rates are observed, increasing with curvature with time constants 0.23 s (synaptic vesicles), 3.3 s (chromaffin vesicles), and 9.1 s (insulin vesicles) and correlating with rate differences in cells.
Collapse
|
14
|
Padmanabhan P, Bademosi AT, Kasula R, Lauwers E, Verstreken P, Meunier FA. Need for speed: Super-resolving the dynamic nanoclustering of syntaxin-1 at exocytic fusion sites. Neuropharmacology 2019; 169:107554. [PMID: 30826343 DOI: 10.1016/j.neuropharm.2019.02.036] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 02/21/2019] [Accepted: 02/27/2019] [Indexed: 01/08/2023]
Abstract
Communication between cells relies on regulated exocytosis, a multi-step process that involves the docking, priming and fusion of vesicles with the plasma membrane, culminating in the release of neurotransmitters and hormones. Key proteins and lipids involved in exocytosis are subjected to Brownian movement and constantly switch between distinct motion states which are governed by short-lived molecular interactions. Critical biochemical reactions between exocytic proteins that occur in the confinement of nanodomains underpin the precise sequence of priming steps which leads to the fusion of vesicles. The advent of super-resolution microscopy techniques has provided the means to visualize individual molecules on the plasma membrane with high spatiotemporal resolution in live cells. These techniques are revealing a highly dynamic nature of the nanoscale organization of the exocytic machinery. In this review, we focus on soluble N-ethylmaleimide-sensitive factor attachment receptor (SNARE) syntaxin-1, which mediates vesicular fusion. Syntaxin-1 is highly mobile at the plasma membrane, and its inherent speed allows fast assembly and disassembly of syntaxin-1 nanoclusters which are associated with exocytosis. We reflect on recent studies which have revealed the mechanisms regulating syntaxin-1 nanoclustering on the plasma membrane and draw inferences on the effect of synaptic activity, phosphoinositides, N-ethylmaleimide-sensitive factor (NSF), α-soluble NSF attachment protein (α-SNAP) and SNARE complex assembly on the dynamic nanoscale organization of syntaxin-1. This article is part of the special issue entitled 'Mobility and trafficking of neuronal membrane proteins'.
Collapse
Affiliation(s)
- Pranesh Padmanabhan
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Queensland, Australia
| | - Adekunle T Bademosi
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Queensland, Australia
| | - Ravikiran Kasula
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Queensland, Australia
| | - Elsa Lauwers
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; Department of Neurosciences and Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
| | - Patrik Verstreken
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; Department of Neurosciences and Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
| | - Frédéric A Meunier
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Queensland, Australia.
| |
Collapse
|
15
|
Park Y, Ryu JK. Models of synaptotagmin-1 to trigger Ca 2+ -dependent vesicle fusion. FEBS Lett 2018; 592:3480-3492. [PMID: 30004579 DOI: 10.1002/1873-3468.13193] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/02/2018] [Accepted: 07/06/2018] [Indexed: 11/08/2022]
Abstract
Vesicles in neurons and neuroendocrine cells store neurotransmitters and peptide hormones, which are released by vesicle fusion in response to Ca2+ -evoking stimuli. Synaptotagmin-1 (Syt1), a Ca2+ sensor, mediates ultrafast exocytosis in neurons and neuroendocrine cells. After vesicle docking, Syt1 has two main groups of binding partners: anionic phospholipids and the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) complex. The molecular mechanisms by which Syt1 triggers vesicle fusion remain controversial. This Review introduces and summarizes six molecular models of Syt1: (a) Syt1 triggers SNARE unclamping by displacing complexin, (b) Syt1 clamps SNARE zippering, (c) Syt1 causes membrane curvature, (d) membrane bridging by Syt1, (e) Syt1 is a vesicle-plasma membrane distance regulator, and (f) Syt1 undergoes circular oligomerization. We discuss important conditions to test Syt1 activity in vitro and attempt to illustrate the possible roles of Syt1.
Collapse
Affiliation(s)
- Yongsoo Park
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| | - Je-Kyung Ryu
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, The Netherlands
| |
Collapse
|
16
|
Klein O, Roded A, Hirschberg K, Fukuda M, Galli SJ, Sagi-Eisenberg R. Imaging FITC-dextran as a Reporter for Regulated Exocytosis. J Vis Exp 2018. [PMID: 29985342 DOI: 10.3791/57936] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Regulated exocytosis is a process by which cargo, which is stored in secretory granules (SGs), is released in response to a secretory trigger. Regulated exocytosis is fundamental for intercellular communication and is a key mechanism for the secretion of neurotransmitters, hormones, inflammatory mediators, and other compounds, by a variety of cells. At least three distinct mechanisms are known for regulated exocytosis: full exocytosis, where a single SG fully fuses with the plasma membrane, kiss-and-run exocytosis, where a single SG transiently fuses with the plasma membrane, and compound exocytosis, where several SGs fuse with each other, prior to or after SG fusion with the plasma membrane. The type of regulated exocytosis undertaken by a cell is often dictated by the type of secretory trigger. However, in many cells, a single secretory trigger can activate multiple modes of regulated exocytosis simultaneously. Despite their abundance and importance across cell types and species, the mechanisms that determine the different modes of secretion are largely unresolved. One of the main challenges in investigating the different modes of regulated exocytosis, is the difficulty in distinguishing between them as well as exploring them separately. Here we describe the use of fluorescein isothiocyanate (FITC)-dextran as an exocytosis reporter, and live cell imaging, to differentiate between the different pathways of regulated exocytosis, focusing on compound exocytosis, based on the robustness and duration of the exocytic events.
Collapse
Affiliation(s)
- Ofir Klein
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University
| | - Amit Roded
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University
| | - Koret Hirschberg
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University
| | - Stephen J Galli
- Departments of Pathology and of Microbiology and Immunology and Sean N. Parker Center for Allergy and Asthma Research, School of Medicine, Stanford University
| | - Ronit Sagi-Eisenberg
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University;
| |
Collapse
|
17
|
Calahorro F, Izquierdo PG. The presynaptic machinery at the synapse of C. elegans. INVERTEBRATE NEUROSCIENCE : IN 2018; 18:4. [PMID: 29532181 PMCID: PMC5851683 DOI: 10.1007/s10158-018-0207-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 02/22/2018] [Indexed: 11/17/2022]
Abstract
Synapses are specialized contact sites that mediate information flow between neurons and their targets. Important physical interactions across the synapse are mediated by synaptic adhesion molecules. These adhesions regulate formation of synapses during development and play a role during mature synaptic function. Importantly, genes regulating synaptogenesis and axon regeneration are conserved across the animal phyla. Genetic screens in the nematode Caenorhabditis elegans have identified a number of molecules required for synapse patterning and assembly. C. elegans is able to survive even with its neuronal function severely compromised. This is in comparison with Drosophila and mice where increased complexity makes them less tolerant to impaired function. Although this fact may reflect differences in the function of the homologous proteins in the synapses between these organisms, the most likely interpretation is that many of these components are equally important, but not absolutely essential, for synaptic transmission to support the relatively undemanding life style of laboratory maintained C. elegans. Here, we review research on the major group of synaptic proteins, involved in the presynaptic machinery in C. elegans, showing a strong conservation between higher organisms and highlight how C. elegans can be used as an informative tool for dissecting synaptic components, based on a simple nervous system organization.
Collapse
Affiliation(s)
- Fernando Calahorro
- Biological Sciences, University of Southampton, Life Sciences Building 85, Southampton, SO17 1BJ, UK.
| | - Patricia G Izquierdo
- Biological Sciences, University of Southampton, Life Sciences Building 85, Southampton, SO17 1BJ, UK
| |
Collapse
|
18
|
Zhang XA, Martin TF. High Throughput NPY-Venus and Serotonin Secretion Assays for Regulated Exocytosis in Neuroendocrine Cells. Bio Protoc 2018; 8:e2680. [PMID: 29552592 PMCID: PMC5856254 DOI: 10.21769/bioprotoc.2680] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/18/2017] [Accepted: 01/04/2018] [Indexed: 11/02/2022] Open
Abstract
Here we describe two assays to measure dense core vesicle (DCV) exocytosis-mediated cargo secretion in neuroendocrine cells. To conduct siRNA screens for novel genes in regulated DCV exocytosis, we developed a plate reader-based secretion assay using DCV cargo, NPY-Venus, and an orthogonal 3H-serotonin secretion assay. The NPY-Venus secretion assay was successfully used for a high throughput siRNA screen, and the serotonin secretion assay was used to validate hits identified from the screen (Sorensen, 2017; Zhang et al., 2017).
Collapse
Affiliation(s)
- Xingmin Aaron Zhang
- Program in Cellular and Molecular Biology, University of Wisconsin Madison, Madison, WI, USA
- Department of Biochemistry, University of Wisconsin Madison, Madison, WI, USA
| | - Thomas F.J. Martin
- Department of Biochemistry, University of Wisconsin Madison, Madison, WI, USA
| |
Collapse
|
19
|
Fujiwara T, Kofuji T, Mishima T, Akagawa K. Syntaxin 1B contributes to regulation of the dopaminergic system through GABA transmission in the CNS. Eur J Neurosci 2017; 46:2867-2874. [PMID: 29139159 DOI: 10.1111/ejn.13779] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 11/09/2017] [Accepted: 11/09/2017] [Indexed: 12/17/2022]
Abstract
In neuronal plasma membrane, two syntaxin isoforms, HPC-1/syntaxin 1A (STX1A) and syntaxin 1B (STX1B), are predominantly expressed as soluble N-ethylmaleimide-sensitive fusion attachment protein receptors, also known as t-SNAREs. We previously reported that glutamatergic and GABAergic synaptic transmissions are impaired in Stx1b null mutant (Stx1b-/- ) mice but are almost normal in Stx1a null mutant (Stx1a-/- ) mice. These observations suggested that STX1A and STX1B have distinct functions in fast synaptic transmission in the central nervous system (CNS). Interestingly, recent studies indicated that Stx1a-/- or Stx1a+/- mice exhibit disruption in the monoaminergic system in the CNS, causing unusual behaviour that is similar to neuropsychological alterations observed in psychiatric patients. Here, we studied whether STX1B contributes to the regulation of monoaminergic system and if STX1B is related to neuropsychological properties in human neuropsychological disorders similar to STX1A. We found that monoamine release in vitro was normal in Stx1b+/- mice unlike Stx1a-/- or Stx1a+/- mice, but the basal extracellular dopamine (DA) concentration in the ventral striatum was increased. DA secretion in the ventral striatum is regulated by GABAergic neurons, and Stx1b+/- mice exhibited reduced GABA release both in vitro and in vivo, disrupting the DAergic system in the CNS of these mice. We also found that Stx1b+/- mice exhibited reduced pre-pulse inhibition (PPI), which is believed to represent one of the prominent schizotypal behavioural profiles of human psychiatric patients. The reduction in PPI was rescued by DA receptor antagonists. These observations indicated that STX1B contributes to excess activity of the DAergic system through regulation of GABAergic transmission.
Collapse
Affiliation(s)
- Tomonori Fujiwara
- Department of Cell Physiology, Kyorin University School of Medicine, Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| | - Takefumi Kofuji
- Department of Cell Physiology, Kyorin University School of Medicine, Shinkawa, Mitaka, Tokyo, 181-8611, Japan.,Radioisotope Laboratory, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Tatsuya Mishima
- Department of Cell Physiology, Kyorin University School of Medicine, Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| | - Kimio Akagawa
- Department of Cell Physiology, Kyorin University School of Medicine, Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| |
Collapse
|
20
|
Kreutzberger AJB, Kiessling V, Liang B, Seelheim P, Jakhanwal S, Jahn R, Castle JD, Tamm LK. Reconstitution of calcium-mediated exocytosis of dense-core vesicles. SCIENCE ADVANCES 2017; 3:e1603208. [PMID: 28776026 PMCID: PMC5517108 DOI: 10.1126/sciadv.1603208] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 06/15/2017] [Indexed: 05/11/2023]
Abstract
Regulated exocytosis is a process by which neurotransmitters, hormones, and secretory proteins are released from the cell in response to elevated levels of calcium. In cells, secretory vesicles are targeted to the plasma membrane, where they dock, undergo priming, and then fuse with the plasma membrane in response to calcium. The specific roles of essential proteins and how calcium regulates progression through these sequential steps are currently incompletely resolved. We have used purified neuroendocrine dense-core vesicles and artificial membranes to reconstruct in vitro the serial events that mimic SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor)-dependent membrane docking and fusion during exocytosis. Calcium recruits these vesicles to the target membrane aided by the protein CAPS (calcium-dependent activator protein for secretion), whereas synaptotagmin catalyzes calcium-dependent fusion; both processes are dependent on phosphatidylinositol 4,5-bisphosphate. The soluble proteins Munc18 and complexin-1 are necessary to arrest vesicles in a docked state in the absence of calcium, whereas CAPS and/or Munc13 are involved in priming the system for an efficient fusion reaction.
Collapse
Affiliation(s)
- Alex J. B. Kreutzberger
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22908, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
| | - Volker Kiessling
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22908, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
| | - Binyong Liang
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22908, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
| | - Patrick Seelheim
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22908, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
| | - Shrutee Jakhanwal
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Reinhard Jahn
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - J. David Castle
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22908, USA
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22908, USA
| | - Lukas K. Tamm
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22908, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
- Corresponding author.
| |
Collapse
|
21
|
Pérez de Sevilla Müller L, Solomon A, Sheets K, Hapukino H, Rodriguez AR, Brecha NC. Multiple cell types form the VIP amacrine cell population. J Comp Neurol 2017; 527:133-158. [PMID: 28472856 DOI: 10.1002/cne.24234] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 04/21/2017] [Accepted: 04/27/2017] [Indexed: 12/21/2022]
Abstract
Amacrine cells are a heterogeneous group of interneurons that form microcircuits with bipolar, amacrine and ganglion cells to process visual information in the inner retina. This study has characterized the morphology, neurochemistry and major cell types of a VIP-ires-Cre amacrine cell population. VIP-tdTomato and -Confetti (Brainbow2.1) mouse lines were generated by crossing a VIP-ires-Cre line with either a Cre-dependent tdTomato or Brainbow2.1 reporter line. Retinal sections and whole-mounts were evaluated by quantitative, immunohistochemical, and intracellular labeling approaches. The majority of tdTomato and Confetti fluorescent cell bodies were in the inner nuclear layer (INL) and a few cell bodies were in the ganglion cell layer (GCL). Fluorescent processes ramified in strata 1, 3, 4, and 5 of the inner plexiform layer (IPL). All tdTomato fluorescent cells expressed syntaxin 1A and GABA-immunoreactivity indicating they were amacrine cells. The average VIP-tdTomato fluorescent cell density in the INL and GCL was 535 and 24 cells/mm2 , respectively. TdTomato fluorescent cells in the INL and GCL contained VIP-immunoreactivity. The VIP-ires-Cre amacrine cell types were identified in VIP-Brainbow2.1 retinas or by intracellular labeling in VIP-tdTomato retinas. VIP-1 amacrine cells are bistratified, wide-field cells that ramify in strata 1, 4, and 5, VIP-2A and 2B amacrine cells are medium-field cells that mainly ramify in strata 3 and 4, and VIP-3 displaced amacrine cells are medium-field cells that ramify in strata 4 and 5 of the IPL. VIP-ires-Cre amacrine cells form a neuropeptide-expressing cell population with multiple cell types, which are likely to have distinct roles in visual processing.
Collapse
Affiliation(s)
- Luis Pérez de Sevilla Müller
- Department of Neurobiology, David Geffen School of Medicine at Los Angeles, University of California at Los Angeles, Los Angeles, California, 90095-1763
| | - Alexander Solomon
- Department of Neurobiology, David Geffen School of Medicine at Los Angeles, University of California at Los Angeles, Los Angeles, California, 90095-1763
| | - Kristopher Sheets
- Department of Neurobiology, David Geffen School of Medicine at Los Angeles, University of California at Los Angeles, Los Angeles, California, 90095-1763
| | - Hinekura Hapukino
- Department of Neurobiology, David Geffen School of Medicine at Los Angeles, University of California at Los Angeles, Los Angeles, California, 90095-1763
| | - Allen R Rodriguez
- Department of Neurobiology, David Geffen School of Medicine at Los Angeles, University of California at Los Angeles, Los Angeles, California, 90095-1763
| | - Nicholas C Brecha
- Department of Neurobiology, David Geffen School of Medicine at Los Angeles, University of California at Los Angeles, Los Angeles, California, 90095-1763.,Department of Medicine, David Geffen School of Medicine at Los Angeles, University of California at Los Angeles, Los Angeles, California, 90095-1763.,Department of Ophthalmology and the Stein Eye Institute, David Geffen School of Medicine at Los Angeles, University of California at Los Angeles, Los Angeles, California, 90095-1763.,CURE Digestive Diseases Research Center, David Geffen School of Medicine at Los Angeles, University of California at Los Angeles, Los Angeles, California, 90095-1763.,Veterans Administration Greater Los Angeles Health System, Los Angeles, California, 90073
| |
Collapse
|
22
|
Terasaka T, Adakama ME, Li S, Kim T, Terasaka E, Li D, Lawson MA. Reactive Oxygen Species Link Gonadotropin-Releasing Hormone Receptor Signaling Cascades in the Gonadotrope. Front Endocrinol (Lausanne) 2017; 8:286. [PMID: 29163358 PMCID: PMC5671645 DOI: 10.3389/fendo.2017.00286] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/10/2017] [Indexed: 12/31/2022] Open
Abstract
Biological rhythms lie at the center of regulatory schemes that control many aspects of living systems. At the cellular level, meaningful responses to external stimuli depend on propagation and quenching of a signal to maintain vigilance for subsequent stimulation or changes that serve to shape and modulate the response. The hypothalamus-pituitary-gonad endocrine axis that controls reproductive development and function relies on control through rhythmic stimulation. Central to this axis is the pulsatile stimulation of the gonadotropes by hypothalamic neurons through episodic release of the neuropeptide gonadotropin-releasing hormone. Alterations in pulsatile stimulation of the gonadotropes result in differential synthesis and secretion of the gonadotropins LH and FSH and changes in the expression of their respective hormone subunit genes. The requirement to amplify signals arising from activation of the gonadotropin-releasing hormone (GnRH) receptor and to rapidly quench the resultant signal to preserve an adaptive response suggests the need for rapid activation and feedback control operating at the level of intracellular signaling. Emerging data suggest that reactive oxygen species (ROS) can fulfill this role in the GnRH receptor signaling through activation of MAP kinase signaling cascades, control of negative feedback, and participation in the secretory process. Results obtained in gonadotrope cell lines or other cell models indicate that ROS can participate in each of these regulatory cascades. We discuss the potential advantage of reactive oxygen signaling for modulating the gonadotrope response to GnRH stimulation and the potential mechanisms for this action. These observations suggest further targets of study for regulation in the gonadotrope.
Collapse
Affiliation(s)
- Tomohiro Terasaka
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Mary E. Adakama
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Song Li
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, CA, United States
- Neonatal Intensive Care Unit, Dongguan Eighth People’s Hospital Dongguan City, Dongguan, China
| | - Taeshin Kim
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Eri Terasaka
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Danmei Li
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Mark A. Lawson
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, CA, United States
- *Correspondence: Mark A. Lawson,
| |
Collapse
|
23
|
Ludwig M, Apps D, Menzies J, Patel JC, Rice ME. Dendritic Release of Neurotransmitters. Compr Physiol 2016; 7:235-252. [PMID: 28135005 DOI: 10.1002/cphy.c160007] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Release of neuroactive substances by exocytosis from dendrites is surprisingly widespread and is not confined to a particular class of transmitters: it occurs in multiple brain regions, and includes a range of neuropeptides, classical neurotransmitters, and signaling molecules, such as nitric oxide, carbon monoxide, ATP, and arachidonic acid. This review is focused on hypothalamic neuroendocrine cells that release vasopressin and oxytocin and midbrain neurons that release dopamine. For these two model systems, the stimuli, mechanisms, and physiological functions of dendritic release have been explored in greater detail than is yet available for other neurons and neuroactive substances. © 2017 American Physiological Society. Compr Physiol 7:235-252, 2017.
Collapse
Affiliation(s)
- Mike Ludwig
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | - David Apps
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | - John Menzies
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Jyoti C Patel
- Department of Neurosurgery, New York University School of Medicine, New York, USA
| | - Margaret E Rice
- Department of Neurosurgery, New York University School of Medicine, New York, USA.,Department of Neuroscience and Physiology, New York University School of Medicine, New York, USA
| |
Collapse
|
24
|
Ludwig M, Stern J. Multiple signalling modalities mediated by dendritic exocytosis of oxytocin and vasopressin. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2014.0182. [PMID: 26009761 DOI: 10.1098/rstb.2014.0182] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The mammalian hypothalamic magnocellular neurons of the supraoptic and paraventricular nuclei are among the best understood of all peptidergic neurons. Through their anatomical features, vasopressin- and oxytocin-containing neurons have revealed many important aspects of dendritic functions. Here, we review our understanding of the mechanisms of somato-dendritic peptide release, and the effects of autocrine, paracrine and hormone-like signalling on neuronal networks and behaviour.
Collapse
Affiliation(s)
- Mike Ludwig
- Centre for Integrative Physiology, University of Edinburgh, George Square, Edinburgh EH8 9XD, UK
| | - Javier Stern
- Department of Physiology, Medical College of Georgia, Georgia Regents University, Augusta, GA, USA
| |
Collapse
|
25
|
Reid AT, Anderson AL, Roman SD, McLaughlin EA, McCluskey A, Robinson PJ, Aitken RJ, Nixon B. Glycogen synthase kinase 3 regulates acrosomal exocytosis in mouse spermatozoa via dynamin phosphorylation. FASEB J 2015; 29:2872-82. [PMID: 25808536 DOI: 10.1096/fj.14-265553] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 03/09/2015] [Indexed: 11/11/2022]
Abstract
The dynamin family of GTPases has been implicated as novel regulators of the acrosome reaction, a unique exocytotic event that is essential for fertilization. Dynamin activity during the acrosome reaction is accompanied by phosphorylation of key serine residues. We now tested the hypothesis that glycogen synthase kinase 3 (GSK3) is the protein kinase responsible for dynamin phosphorylation at these phosphosites in mouse spermatozoa. Pharmacologic inhibition of GSK3 in mature mouse spermatozoa (CHIR99021: IC50 = 6.7 nM) led to a significant reduction in dynamin phosphorylation (10.3% vs. 27.3%; P < 0.001), acrosomal exocytosis (9.7% vs. 25.7%; P < 0.01), and in vitro fertilization (53% vs. 100%; P < 0.01). GSK3 was shown to be present in developing germ cells where it colocalized with dynamin in the peri-acrosomal domain. However, additional GSK3 was acquired by maturing mouse spermatozoa within the male reproductive tract, via a novel mechanism involving direct interaction of sperm heads with extracellular structures known as epididymal dense bodies. These data reveal a novel mode for the cellular acquisition of a protein kinase and identify a key role for GSK3 in the regulation of sperm maturation and acrosomal exocytosis.
Collapse
Affiliation(s)
- Andrew T Reid
- *School of Environmental and Life Sciences, Discipline of Biological Sciences, and School of Environmental and Life Sciences, Discipline of Chemistry, The University of Newcastle, Callaghan, New South Wales, Australia; and Children's Medical Research Institute, The University of Sydney, Westmead, New South Wales, Australia
| | - Amanda L Anderson
- *School of Environmental and Life Sciences, Discipline of Biological Sciences, and School of Environmental and Life Sciences, Discipline of Chemistry, The University of Newcastle, Callaghan, New South Wales, Australia; and Children's Medical Research Institute, The University of Sydney, Westmead, New South Wales, Australia
| | - Shaun D Roman
- *School of Environmental and Life Sciences, Discipline of Biological Sciences, and School of Environmental and Life Sciences, Discipline of Chemistry, The University of Newcastle, Callaghan, New South Wales, Australia; and Children's Medical Research Institute, The University of Sydney, Westmead, New South Wales, Australia
| | - Eileen A McLaughlin
- *School of Environmental and Life Sciences, Discipline of Biological Sciences, and School of Environmental and Life Sciences, Discipline of Chemistry, The University of Newcastle, Callaghan, New South Wales, Australia; and Children's Medical Research Institute, The University of Sydney, Westmead, New South Wales, Australia
| | - Adam McCluskey
- *School of Environmental and Life Sciences, Discipline of Biological Sciences, and School of Environmental and Life Sciences, Discipline of Chemistry, The University of Newcastle, Callaghan, New South Wales, Australia; and Children's Medical Research Institute, The University of Sydney, Westmead, New South Wales, Australia
| | - Phillip J Robinson
- *School of Environmental and Life Sciences, Discipline of Biological Sciences, and School of Environmental and Life Sciences, Discipline of Chemistry, The University of Newcastle, Callaghan, New South Wales, Australia; and Children's Medical Research Institute, The University of Sydney, Westmead, New South Wales, Australia
| | - R John Aitken
- *School of Environmental and Life Sciences, Discipline of Biological Sciences, and School of Environmental and Life Sciences, Discipline of Chemistry, The University of Newcastle, Callaghan, New South Wales, Australia; and Children's Medical Research Institute, The University of Sydney, Westmead, New South Wales, Australia
| | - Brett Nixon
- *School of Environmental and Life Sciences, Discipline of Biological Sciences, and School of Environmental and Life Sciences, Discipline of Chemistry, The University of Newcastle, Callaghan, New South Wales, Australia; and Children's Medical Research Institute, The University of Sydney, Westmead, New South Wales, Australia
| |
Collapse
|
26
|
What optogenetic stimulation is telling us (and failing to tell us) about fast neurotransmitters and neuromodulators in brain circuits for wake-sleep regulation. Curr Opin Neurobiol 2014; 29:165-71. [PMID: 25064179 DOI: 10.1016/j.conb.2014.07.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 07/07/2014] [Accepted: 07/07/2014] [Indexed: 12/19/2022]
Abstract
In the last eight years optogenetic tools have been widely used to identify functional synaptic connectivity between specific neuronal populations. Most of our knowledge comes from the photo-activation of channelrhodopsin-2 (ChR2) expressing inputs that release glutamate and GABA. More recent studies have been reporting releases of acetylcholine and biogenic amines but direct evidence for photo-evoked released of neuropeptides is still limited particularly in brain slice studies. The high fidelity in the responses with photo-evoked amino-acid transmission is ideal for ChR2-assisted circuit mapping and this approach has been successfully used in different fields of neuroscience. Conversely, neuropeptides employ a slow mode of communication and might require higher frequency and prolonged stimulations to be released. These factors may have contributed to the apparent lack of success for optogenetic release of neuropeptides. In addition, once released, neuropeptides often act on multiple sites and at various distances from the site of release resulting in a greater complexity of postsynaptic responses. Here, we focus on what optogenetics is telling us-and failing to tell us-about fast neurotransmitters and neuropeptides.
Collapse
|
27
|
Luan X, Cao Z, Xu W, Gao M, Wang L, Zhang S. Gene expression profiling in the pituitary gland of laying period and ceased period huoyan geese. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2014; 26:921-9. [PMID: 25049869 PMCID: PMC4093504 DOI: 10.5713/ajas.2013.13083] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 04/02/2013] [Accepted: 03/22/2013] [Indexed: 11/27/2022]
Abstract
Huoyan goose is a Chinese local breed famous for its higher laying performance, but the problems of variety degeneration have emerged recently, especially a decrease in the number of eggs laid. In order to better understand the molecular mechanism that underlies egg laying in Huoyan geese, gene profiles in the pituitary gland of Huoyan geese taken during the laying period and ceased period were investigated using the suppression subtractive hybridization (SSH) method. Total RNA was extracted from pituitary glands of ceased period and laying period geese. The cDNA in the pituitary glands of ceased geese was subtracted from the cDNA in the pituitary glands of laying geese (forward subtraction); the reverse subtraction was also performed. After sequencing and annotation, a total of 30 and 24 up and down-regulated genes were obtained from the forward and reverse SSH libraries, respectively. These genes mostly related to biosynthetic process, cellular nitrogen compound metabolic process, transport, cell differentiation, cellular protein modification process, signal transduction, small molecule metabolic process. Furthermore, eleven genes were selected for further analyses by quantitative real-time PCR (qRT-PCR). The qRT-PCR results for the most part were consistent with the SSH results. Among these genes, Synaptotagmin-1 (SYT1) and Stathmin-2 (STMN2) were substantially over-expressed in laying period compared to ceased period. These results could serve as an important reference for elucidating the molecular mechanism of higher laying performance in Huoyan geese.
Collapse
Affiliation(s)
- Xinhong Luan
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhongzan Cao
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Wen Xu
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Ming Gao
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Laiyou Wang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Shuwei Zhang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
28
|
Meriney SD, Umbach JA, Gundersen CB. Fast, Ca2+-dependent exocytosis at nerve terminals: shortcomings of SNARE-based models. Prog Neurobiol 2014; 121:55-90. [PMID: 25042638 DOI: 10.1016/j.pneurobio.2014.07.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 04/14/2014] [Accepted: 07/03/2014] [Indexed: 11/30/2022]
Abstract
Investigations over the last two decades have made major inroads in clarifying the cellular and molecular events that underlie the fast, synchronous release of neurotransmitter at nerve endings. Thus, appreciable progress has been made in establishing the structural features and biophysical properties of the calcium (Ca2+) channels that mediate the entry into nerve endings of the Ca2+ ions that trigger neurotransmitter release. It is now clear that presynaptic Ca2+ channels are regulated at many levels and the interplay of these regulatory mechanisms is just beginning to be understood. At the same time, many lines of research have converged on the conclusion that members of the synaptotagmin family serve as the primary Ca2+ sensors for the action potential-dependent release of neurotransmitter. This identification of synaptotagmins as the proteins which bind Ca2+ and initiate the exocytotic fusion of synaptic vesicles with the plasma membrane has spurred widespread efforts to reveal molecular details of synaptotagmin's action. Currently, most models propose that synaptotagmin interfaces directly or indirectly with SNARE (soluble, N-ethylmaleimide sensitive factor attachment receptors) proteins to trigger membrane fusion. However, in spite of intensive efforts, the field has not achieved consensus on the mechanism by which synaptotagmins act. Concurrently, the precise sequence of steps underlying SNARE-dependent membrane fusion remains controversial. This review considers the pros and cons of the different models of SNARE-mediated membrane fusion and concludes by discussing a novel proposal in which synaptotagmins might directly elicit membrane fusion without the intervention of SNARE proteins in this final fusion step.
Collapse
Affiliation(s)
- Stephen D Meriney
- Department of Neuroscience, Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Joy A Umbach
- Department of Molecular and Medical Pharmacology, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Cameron B Gundersen
- Department of Molecular and Medical Pharmacology, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA.
| |
Collapse
|
29
|
Hoover CM, Edwards SL, Yu SC, Kittelmann M, Richmond JE, Eimer S, Yorks RM, Miller KG. A novel CaM kinase II pathway controls the location of neuropeptide release from Caenorhabditis elegans motor neurons. Genetics 2014; 196:745-65. [PMID: 24653209 PMCID: PMC3948804 DOI: 10.1534/genetics.113.158568] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 11/17/2013] [Indexed: 12/29/2022] Open
Abstract
Neurons release neuropeptides via the regulated exocytosis of dense core vesicles (DCVs) to evoke or modulate behaviors. We found that Caenorhabditis elegans motor neurons send most of their DCVs to axons, leaving very few in the cell somas. How neurons maintain this skewed distribution and the extent to which it can be altered to control DCV numbers in axons or to drive release from somas for different behavioral impacts is unknown. Using a forward genetic screen, we identified loss-of-function mutations in UNC-43 (CaM kinase II) that reduce axonal DCV levels by ∼90% and cell soma/dendrite DCV levels by ∼80%, leaving small synaptic vesicles largely unaffected. Blocking regulated secretion in unc-43 mutants restored near wild-type axonal levels of DCVs. Time-lapse video microscopy showed no role for CaM kinase II in the transport of DCVs from cell somas to axons. In vivo secretion assays revealed that much of the missing neuropeptide in unc-43 mutants is secreted via a regulated secretory pathway requiring UNC-31 (CAPS) and UNC-18 (nSec1). DCV cargo levels in unc-43 mutants are similarly low in cell somas and the axon initial segment, indicating that the secretion occurs prior to axonal transport. Genetic pathway analysis suggests that abnormal neuropeptide function contributes to the sluggish basal locomotion rate of unc-43 mutants. These results reveal a novel pathway controlling the location of DCV exocytosis and describe a major new function for CaM kinase II.
Collapse
Affiliation(s)
- Christopher M. Hoover
- Genetic Models of Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104
| | - Stacey L. Edwards
- Genetic Models of Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104
| | - Szi-chieh Yu
- Department of Biological Sciences, University of Illinois, Chicago, Illinois 60607
| | - Maike Kittelmann
- European Neuroscience Institute, Center for Molecular Physiology of the Brain, Georg-August University, Goettingen, Germany 37073
| | - Janet E. Richmond
- Department of Biological Sciences, University of Illinois, Chicago, Illinois 60607
| | - Stefan Eimer
- European Neuroscience Institute, Center for Molecular Physiology of the Brain, Georg-August University, Goettingen, Germany 37073
- BIOSS Center for Biological Signaling Studies, Albert-Ludwigs-University, Freiburg, Germany 79085
| | - Rosalina M. Yorks
- Genetic Models of Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104
| | - Kenneth G. Miller
- Genetic Models of Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104
| |
Collapse
|
30
|
Kabachinski G, Yamaga M, Kielar-Grevstad DM, Bruinsma S, Martin TFJ. CAPS and Munc13 utilize distinct PIP2-linked mechanisms to promote vesicle exocytosis. Mol Biol Cell 2013; 25:508-21. [PMID: 24356451 PMCID: PMC3923642 DOI: 10.1091/mbc.e12-11-0829] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Phosphoinositides provide compartment-specific signals for membrane trafficking. Plasma membrane phosphatidylinositol 4,5-bisphosphate (PIP2) is required for Ca(2+)-triggered vesicle exocytosis, but whether vesicles fuse into PIP2-rich membrane domains in live cells and whether PIP2 is metabolized during Ca(2+)-triggered fusion were unknown. Ca(2+)-dependent activator protein in secretion 1 (CAPS-1; CADPS/UNC31) and ubMunc13-2 (UNC13B) are PIP2-binding proteins required for Ca(2+)-triggered vesicle exocytosis in neuroendocrine PC12 cells. These proteins are likely effectors for PIP2, but their localization during exocytosis had not been determined. Using total internal reflection fluorescence microscopy in live cells, we identify PIP2-rich membrane domains at sites of vesicle fusion. CAPS is found to reside on vesicles but depends on plasma membrane PIP2 for its activity. Munc13 is cytoplasmic, but Ca(2+)-dependent translocation to PIP2-rich plasma membrane domains is required for its activity. The results reveal that vesicle fusion into PIP2-rich membrane domains is facilitated by sequential PIP2-dependent activation of CAPS and PIP2-dependent recruitment of Munc13. PIP2 hydrolysis only occurs under strong Ca(2+) influx conditions sufficient to activate phospholipase Cη2 (PLCη2). Such conditions reduce CAPS activity and enhance Munc13 activity, establishing PLCη2 as a Ca(2+)-dependent modulator of exocytosis. These studies provide a direct view of the spatial distribution of PIP2 linked to vesicle exocytosis via regulation of lipid-dependent protein effectors CAPS and Munc13.
Collapse
Affiliation(s)
- Greg Kabachinski
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706
| | | | | | | | | |
Collapse
|
31
|
Durán-Pastén ML, Fiordelisio T. GnRH-Induced Ca(2+) Signaling Patterns and Gonadotropin Secretion in Pituitary Gonadotrophs. Functional Adaptations to Both Ordinary and Extraordinary Physiological Demands. Front Endocrinol (Lausanne) 2013; 4:127. [PMID: 24137156 PMCID: PMC3786263 DOI: 10.3389/fendo.2013.00127] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Accepted: 08/31/2013] [Indexed: 11/13/2022] Open
Abstract
PITUITARY GONADOTROPHS ARE A SMALL FRACTION OF THE ANTERIOR PITUITARY POPULATION, YET THEY SYNTHESIZE GONADOTROPINS: luteinizing (LH) and follicle-stimulating (FSH), essential for gametogenesis and steroidogenesis. LH is secreted via a regulated pathway while FSH release is mostly constitutive and controlled by synthesis. Although gonadotrophs fire action potentials spontaneously, the intracellular Ca(2+) rises produced do not influence secretion, which is mainly driven by Gonadotropin-Releasing Hormone (GnRH), a decapeptide synthesized in the hypothalamus and released in a pulsatile manner into the hypophyseal portal circulation. GnRH binding to G-protein-coupled receptors triggers Ca(2+) mobilization from InsP3-sensitive intracellular pools, generating the global Ca(2+) elevations necessary for secretion. Ca(2+) signaling responses to increasing (GnRH) vary in stereotyped fashion from subthreshold to baseline spiking (oscillatory), to biphasic (spike-oscillatory or spike-plateau). This progression varies somewhat in gonadotrophs from different species and biological preparations. Both baseline spiking and biphasic GnRH-induced Ca(2+) signals control LH/FSH synthesis and exocytosis. Estradiol and testosterone regulate gonadotropin secretion through feedback mechanisms, while FSH synthesis and release are influenced by activin, inhibin, and follistatin. Adaptation to physiological events like the estrous cycle, involves changes in GnRH sensitivity and LH/FSH synthesis: in proestrus, estradiol feedback regulation abruptly changes from negative to positive, causing the pre-ovulatory LH surge. Similarly, when testosterone levels drop after orquiectomy the lack of negative feedback on pituitary and hypothalamus boosts both GnRH and LH secretion, gonadotrophs GnRH sensitivity increases, and Ca(2+) signaling patterns change. In addition, gonadotrophs proliferate and grow. These plastic changes denote a more vigorous functional adaptation in response to an extraordinary functional demand.
Collapse
Affiliation(s)
- Maria Luisa Durán-Pastén
- Departamento de Neurociencia Cognitiva, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), México DF, México
| | - Tatiana Fiordelisio
- Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México (UNAM), México DF, México
- *Correspondence: Tatiana Fiordelisio, Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México (UNAM), Circuito exterior s/n. Ciudad Universitaria, C.P. 04510 México DF, México e-mail:
| |
Collapse
|
32
|
Moghadam PK, Jackson MB. The functional significance of synaptotagmin diversity in neuroendocrine secretion. Front Endocrinol (Lausanne) 2013; 4:124. [PMID: 24065953 PMCID: PMC3776153 DOI: 10.3389/fendo.2013.00124] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Accepted: 08/31/2013] [Indexed: 11/25/2022] Open
Abstract
Synaptotagmins (syts) are abundant, evolutionarily conserved integral membrane proteins that play essential roles in regulated exocytosis in nervous and endocrine systems. There are at least 17 syt isoforms in mammals, all with tandem C-terminal C2 domains with highly variable capacities for Ca(2+) binding. Many syts play roles in neurotransmitter release or hormone secretion or both, and a growing body of work supports a role for some syts as Ca(2+) sensors of exocytosis. Work in many types of endocrine cells has documented the presence of a number of syt isoforms on dense-core vesicles containing various hormones. Syts can influence the kinetics of exocytotic fusion pores and the choice of release mode between kiss-and-run and full-fusion. Vesicles harboring different syt isoforms can preferentially undergo distinct modes of exocytosis with different forms of stimulation. The diverse properties of syt isoforms enable these proteins to shape Ca(2+) sensing in endocrine cells, thus contributing to the regulation of hormone release and the organization of complex endocrine functions.
Collapse
Affiliation(s)
| | - Meyer B. Jackson
- Department of Neuroscience, University of Wisconsin, Madison, WI, USA
- *Correspondence: Meyer B. Jackson, Department of Neuroscience, University of Wisconsin, 1300 University Avenue, Madison, WI 53706-1510, USA e-mail:
| |
Collapse
|
33
|
Synaptotagmins 1 and 2 as mediators of rapid exocytosis at nerve terminals: The dyad hypothesis. J Theor Biol 2013; 332:149-60. [DOI: 10.1016/j.jtbi.2013.04.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 04/24/2013] [Indexed: 11/16/2022]
|
34
|
Joshi S, Keith KJ, Ilyas A, Kapur J. GABAA receptor membrane insertion rates are specified by their subunit composition. Mol Cell Neurosci 2013; 56:201-11. [PMID: 23714576 DOI: 10.1016/j.mcn.2013.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 04/03/2013] [Accepted: 05/19/2013] [Indexed: 02/07/2023] Open
Abstract
γ Amino-butyric acid type-A receptors (GABARs) containing γ2 or δ subunits form separate pools of receptors in vivo, with distinct localization and function. We determined the rate of surface membrane insertion of native and recombinant γ2 and δ subunit-containing GABARs (γ2-GABARs and δ-GABARs). Insertion of the α-bungarotoxin binding site (BBS) tagged γ2 subunit (t-γ2)-containing GABARs in the surface membrane of HEK293 cells occurred within minutes and reached a peak by 30 min. In contrast, insertion of the BBS-tagged δ subunit (t-δ)-containing receptors required longer incubation and peaked in 120 min. Insertion of the t-γ2 subunit-containing receptors was not influenced by assembling α1 or α4 subunits. In contrast, insertion of the α4β3t-δ subunit-containing receptors was faster than those containing α1β3t-δ subunits. The rate of insertion of native GABARs in the surface membrane of cultured hippocampal neurons, determined by an antibody saturation assay, was similar to that of the recombinant receptors expressed in HEK293 cells. Insertion of the γ2-GABARs was rapid and new γ2-GABARs were detected on the surface membrane of cell soma and dendrites within minutes. In contrast, insertion of the δ-GABARs was slow and newly inserted receptors were initially present only in the surface membrane of cell soma and later also appeared over the dendrites. Thus the rate of insertion of GABARs was dependent on their subunit composition.
Collapse
Affiliation(s)
- Suchitra Joshi
- Department of Neurology, University of Virginia, Charlottesville, VA 22908, United States
| | | | | | | |
Collapse
|
35
|
Moussavi M, Wlasichuk M, Chang JP, Habibi HR. Seasonal effect of gonadotrophin inhibitory hormone on gonadotrophin-releasing hormone-induced gonadotroph functions in the goldfish pituitary. J Neuroendocrinol 2013; 25:506-16. [PMID: 23331955 DOI: 10.1111/jne.12024] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 12/28/2012] [Accepted: 01/10/2013] [Indexed: 11/29/2022]
Abstract
We have shown that native goldfish gonadotrophin inhibitory hormone (gGnIH) differentially regulates luteinsing hormone (LH)-β and follicle-stimulating hormone (FSH)-β expression. To further understand the functions of gGnIH, we examined its interactions with two native goldfish gonadotrophin-releasing hormones, salmon gonadotrophin-releasing hormone (sGnRH) and chicken (c)GnRH-II in vivo and in vitro. Intraperitoneal injections of gGnIH alone reduced serum LH levels in fish in early and mid gonadal recrudescence; this inhibition was also seen in fish co-injected with either sGnRH or cGnRH-II during early recrudescence. Injection of gGnIH alone elevated pituitary LH-β and FSH-β mRNA levels at early and mid recrudescence, and FSH-β mRNA at late recrudescence. Co-injection of gGnIH attenuated the stimulatory influences of sGnRH on LH-β in early recrudescence, and LH-β and FSH-β mRNA levels in mid and late recrudescence, as well as the cGnRH-II-elicited increase in LH-β, but not FSH-β, mRNA expression at mid and late recrudescence. sGnRH and cGnRH-II injection increased pituitary gGnIH-R mRNA expression in mid and late recrudescence but gGnIH reduced gGnIH-R mRNA levels in late recrudescence. gGnIH did not affect basal LH release from perifused pituitary cells and continual exposure to gGnIH did not alter the LH responses to acute applications of GnRH. However, a short 5-min GnIH treatment in the middle of a 60-min GnRH perifusion selectively reduced the cGnRH-II-induced release of LH. These novel results indicate that, in goldfish, gGnIH and GnRH modulate pituitary GnIH-R expression and gGnIH differentially affects sGnRH and cGnRH-II regulation of LH secretion and gonadotrophin subunit mRNA levels. Furthermore, these actions are manifested in a reproductive stage-dependent manner.
Collapse
Affiliation(s)
- M Moussavi
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| | | | | | | |
Collapse
|
36
|
Lavi A, Sheinin A, Shapira R, Zelmanoff D, Ashery U. DOC2B and Munc13-1 differentially regulate neuronal network activity. ACTA ACUST UNITED AC 2013; 24:2309-23. [PMID: 23537531 DOI: 10.1093/cercor/bht081] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Alterations in the levels of synaptic proteins affect synaptic transmission and synaptic plasticity. However, the precise effects on neuronal network activity are still enigmatic. Here, we utilized microelectrode array (MEA) to elucidate how manipulation of the presynaptic release process affects the activity of neuronal networks. By combining pharmacological tools and genetic manipulation of synaptic proteins, we show that overexpression of DOC2B and Munc13-1, proteins known to promote vesicular maturation and release, elicits opposite effects on the activity of the neuronal network. Although both cause an increase in the overall number of spikes, the distribution of spikes is different. While DOC2B enhances, Munc13-1 reduces the firing rate within bursts of spikes throughout the network; however, Munc13-1 increases the rate of network bursts. DOC2B's effects were mimicked by Strontium that elevates asynchronous release but not by a DOC2B mutant that enhances spontaneous release rate. This suggests for the first time that increased asynchronous release on the single-neuron level promotes bursting activity in the network level. This innovative study demonstrates the complementary role of the network level in explaining the physiological relevance of the cellular activity of presynaptic proteins and the transformation of synaptic release manipulation from the neuron to the network level.
Collapse
Affiliation(s)
- Ayal Lavi
- Department of Neurobiology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Anton Sheinin
- Department of Neurobiology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ronit Shapira
- Department of Neurobiology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Daniel Zelmanoff
- Department of Neurobiology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Uri Ashery
- Department of Neurobiology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
37
|
Kasai H, Takahashi N, Tokumaru H. Distinct Initial SNARE Configurations Underlying the Diversity of Exocytosis. Physiol Rev 2012; 92:1915-64. [DOI: 10.1152/physrev.00007.2012] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The dynamics of exocytosis are diverse and have been optimized for the functions of synapses and a wide variety of cell types. For example, the kinetics of exocytosis varies by more than five orders of magnitude between ultrafast exocytosis in synaptic vesicles and slow exocytosis in large dense-core vesicles. However, in all cases, exocytosis is mediated by the same fundamental mechanism, i.e., the assembly of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins. It is often assumed that vesicles need to be docked at the plasma membrane and SNARE proteins must be preassembled before exocytosis is triggered. However, this model cannot account for the dynamics of exocytosis recently reported in synapses and other cells. For example, vesicles undergo exocytosis without prestimulus docking during tonic exocytosis of synaptic vesicles in the active zone. In addition, epithelial and hematopoietic cells utilize cAMP and kinases to trigger slow exocytosis of nondocked vesicles. In this review, we summarize the manner in which the diversity of exocytosis reflects the initial configurations of SNARE assembly, including trans-SNARE, binary-SNARE, unitary-SNARE, and cis-SNARE configurations. The initial SNARE configurations depend on the particular SNARE subtype (syntaxin, SNAP25, or VAMP), priming proteins (Munc18, Munc13, CAPS, complexin, or snapin), triggering proteins (synaptotagmins, Doc2, and various protein kinases), and the submembraneous cytomatrix, and they are the key to determining the kinetics of subsequent exocytosis. These distinct initial configurations will help us clarify the common SNARE assembly processes underlying exocytosis and membrane trafficking in eukaryotic cells.
Collapse
Affiliation(s)
- Haruo Kasai
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; and Faculty of Pharmaceutical Sciences at Kagawa, Tokushima Bunri University, Kagawa, Japan
| | - Noriko Takahashi
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; and Faculty of Pharmaceutical Sciences at Kagawa, Tokushima Bunri University, Kagawa, Japan
| | - Hiroshi Tokumaru
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; and Faculty of Pharmaceutical Sciences at Kagawa, Tokushima Bunri University, Kagawa, Japan
| |
Collapse
|
38
|
Multiple roles for the actin cytoskeleton during regulated exocytosis. Cell Mol Life Sci 2012; 70:2099-121. [PMID: 22986507 DOI: 10.1007/s00018-012-1156-5] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 08/28/2012] [Accepted: 08/30/2012] [Indexed: 01/01/2023]
Abstract
Regulated exocytosis is the main mechanism utilized by specialized secretory cells to deliver molecules to the cell surface by virtue of membranous containers (i.e., secretory vesicles). The process involves a series of highly coordinated and sequential steps, which include the biogenesis of the vesicles, their delivery to the cell periphery, their fusion with the plasma membrane, and the release of their content into the extracellular space. Each of these steps is regulated by the actin cytoskeleton. In this review, we summarize the current knowledge regarding the involvement of actin and its associated molecules during each of the exocytic steps in vertebrates, and suggest that the overall role of the actin cytoskeleton during regulated exocytosis is linked to the architecture and the physiology of the secretory cells under examination. Specifically, in neurons, neuroendocrine, endocrine, and hematopoietic cells, which contain small secretory vesicles that undergo rapid exocytosis (on the order of milliseconds), the actin cytoskeleton plays a role in pre-fusion events, where it acts primarily as a functional barrier and facilitates docking. In exocrine and other secretory cells, which contain large secretory vesicles that undergo slow exocytosis (seconds to minutes), the actin cytoskeleton plays a role in post-fusion events, where it regulates the dynamics of the fusion pore, facilitates the integration of the vesicles into the plasma membrane, provides structural support, and promotes the expulsion of large cargo molecules.
Collapse
|
39
|
Masedunskas A, Porat-Shliom N, Weigert R. Regulated exocytosis: novel insights from intravital microscopy. Traffic 2012; 13:627-34. [PMID: 22243493 DOI: 10.1111/j.1600-0854.2012.01328.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 01/11/2012] [Accepted: 01/13/2012] [Indexed: 12/20/2022]
Abstract
Regulated exocytosis is a fundamental process that every secretory cell uses to deliver molecules to the cell surface and the extracellular space by virtue of membranous carriers. This process has been extensively studied using various approaches such as biochemistry, electrophysiology and electron microscopy. However, recent developments in time-lapse light microscopy have made possible imaging individual exocytic events, hence, advancing our understanding of this process at a molecular level. In this review, we focus on intravital microscopy (IVM), a light microscopy-based approach that enables imaging subcellular structures in live animals, and discuss its recent application to study regulated exocytosis. IVM has revealed differences in regulation and modality of regulated exocytosis between in vitro and in vivo model systems, unraveled novel aspects of this process that can be appreciated only in in vivo settings and provided valuable and novel information on its molecular machinery. In conclusion, we make the case for IVM being a mature technique that can be used to investigate the molecular machinery of several intracellular events under physiological conditions.
Collapse
Affiliation(s)
- Andrius Masedunskas
- Intracellular Membrane Trafficking Unit, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Dr. 303A, Bethesda, MD 20892-4340, USA
| | | | | |
Collapse
|
40
|
Abstract
Synaptic transmission is amongst the most sophisticated and tightly controlled biological phenomena in higher eukaryotes. In the past few decades, tremendous progress has been made in our understanding of the molecular mechanisms underlying multiple facets of neurotransmission, both pre- and postsynaptically. Brought under the spotlight by pioneer studies in the areas of secretion and signal transduction, phosphoinositides and their metabolizing enzymes have been increasingly recognized as key protagonists in fundamental aspects of neurotransmission. Not surprisingly, dysregulation of phosphoinositide metabolism has also been implicated in synaptic malfunction associated with a variety of brain disorders. In the present chapter, we summarize current knowledge on the role of phosphoinositides at the neuronal synapse and highlight some of the outstanding questions in this research field.
Collapse
Affiliation(s)
- Samuel G Frere
- Department of Pathology and Cell Biology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, 630 West 168th Street, P&S 12-420C, 10032, New York, USA
| | | | | |
Collapse
|
41
|
Abstract
HPC-1/syntaxin1A (STX1A) is considered to regulate exocytosis in neurones and endocrine cells. Previously, we reported that STX1A null mutant (STX1A KO) mice unexpectedly showed normal glutamatergic and GABAergic fast synaptic transmission but exhibited disturbances in monoaminergic transmission, such as serotonin, 5-hydroxytryptamine (5-HT), which may induce attenuation of latent inhibition. These results suggest that STX1A may contribute to dense-core vesicle exocytosis in vivo. Thus, we hypothesised that the lack of STX1A might affect the secretion of several hormones, as also mediated by dense-core vesicles exocytosis. In the present study, we focused on the hypothalamic-pituitary-adrenal (HPA) axis, which is a neuroendocrine system that regulates responses to stress stimuli and is considered to be associated with neuropsychiatric disorders. Specifically, we examined whether the HPA axis is impaired in STX1A KO mice. Interestingly, plasma concentrations of both corticosterone (CORT) and adrenocorticotrophin hormone (ACTH) during the resting condition decreased in STX1A KO mice compared to WT mice. Additionally, elevated plasma CORT, ACTH and corticotrophin-releasing hormone (CRH) which were usually observed after acute restraint stress, were also reduced in STX1A KO mice. We also observed the suppression of 5-HT-induced CRH release in STX1A KO mice in vitro. Furthermore, an in vivo microdialysis study revealed that the elevation of extracellular 5-HT in the hypothalamus, which was induced by the selective serotonin reuptake inhibitor, fluoxetine, was significantly reduced in STX1A KO mice compared to WT mice. 5-HT elevation in the hypothalamus, which was induced by acute restraint stress, was also reduced in STX1A KO mice. Finally, STX1A KO mice showed abnormal behavioural responses after mild restraint stress. These results indicate that the lack of STX1A could induce dysfunction of the HPA axis, and the deficit may result in abnormal behavioural properties, such as unusual responses to stress stimuli.
Collapse
Affiliation(s)
- T Fujiwara
- Department of Cell Physiology, Kyorin University School of Medicine, Mitaka, Tokyo, Japan.
| | | | | |
Collapse
|
42
|
Merighi A, Salio C, Ferrini F, Lossi L. Neuromodulatory function of neuropeptides in the normal CNS. J Chem Neuroanat 2011; 42:276-87. [PMID: 21385606 DOI: 10.1016/j.jchemneu.2011.02.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 02/08/2011] [Accepted: 02/09/2011] [Indexed: 01/15/2023]
Abstract
Neuropeptides are small protein molecules produced and released by discrete cell populations of the central and peripheral nervous systems through the regulated secretory pathway and acting on neural substrates. Inside the nerve cells, neuropeptides are selectively stored within large granular vesicles (LGVs), and commonly coexist in neurons with low-molecular-weight neurotransmitters (acetylcholine, amino acids, and catecholamines). Storage in LGVs is responsible for a relatively slow response to secretion that requires enhanced or repeated stimulation. Coexistence (i.e. the concurrent presence of a neuropeptide with other messenger molecules in individual neurons), and co-storage (i.e. the localization of two or more neuropeptides within individual LGVs in neurons) give rise to a complicated series of pre- and post-synaptic functional interactions with low-molecular-weight neurotransmitters. The typically slow response and action of neuropeptides as compared to fast-neurotransmitters such as excitatory/inhibitory amino acids and catecholamines is also due to the type of receptors that trigger neuropeptide actions onto target cells. Almost all neuropeptides act on G-protein coupled receptors that, upon ligand binding, activate an intracellular cascade of molecular enzymatic events, eventually leading to cellular responses. The latter occur in a time span (seconds or more) considerably longer (milliseconds) than that of low-molecular-weight fast-neurotransmitters, directly operating through ion channel receptors. As reviewed here, combined immunocytochemical visualization of neuropeptides and their receptors at the ultrastructural level and electrophysiological studies, have been fundamental to better unravel the role of neuropeptides in neuron-to-neuron communication.
Collapse
Affiliation(s)
- Adalberto Merighi
- University of Turin, Department of Veterinary Morphophysiology, Via Leonardo da Vinci 44, 10095 Grugliasco, Torino, Italy.
| | | | | | | |
Collapse
|
43
|
Abstract
Endocrine pituitary cells are neuronlike; they express numerous voltage-gated sodium, calcium, potassium, and chloride channels and fire action potentials spontaneously, accompanied by a rise in intracellular calcium. In some cells, spontaneous electrical activity is sufficient to drive the intracellular calcium concentration above the threshold for stimulus-secretion and stimulus-transcription coupling. In others, the function of these action potentials is to maintain the cells in a responsive state with cytosolic calcium near, but below, the threshold level. Some pituitary cells also express gap junction channels, which could be used for intercellular Ca(2+) signaling in these cells. Endocrine cells also express extracellular ligand-gated ion channels, and their activation by hypothalamic and intrapituitary hormones leads to amplification of the pacemaking activity and facilitation of calcium influx and hormone release. These cells also express numerous G protein-coupled receptors, which can stimulate or silence electrical activity and action potential-dependent calcium influx and hormone release. Other members of this receptor family can activate calcium channels in the endoplasmic reticulum, leading to a cell type-specific modulation of electrical activity. This review summarizes recent findings in this field and our current understanding of the complex relationship between voltage-gated ion channels, ligand-gated ion channels, gap junction channels, and G protein-coupled receptors in pituitary cells.
Collapse
Affiliation(s)
- Stanko S Stojilkovic
- Program in Developmental Neuroscience, National Institute of Child Health and Human Development, National Institutes of Health, Building 49, Room 6A-36, 49 Convent Drive, Bethesda, Maryland 20892-4510, USA.
| | | | | |
Collapse
|
44
|
James DJ, Kowalchyk J, Daily N, Petrie M, Martin TFJ. CAPS drives trans-SNARE complex formation and membrane fusion through syntaxin interactions. Proc Natl Acad Sci U S A 2009; 106:17308-13. [PMID: 19805029 PMCID: PMC2765074 DOI: 10.1073/pnas.0900755106] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Indexed: 12/18/2022] Open
Abstract
Ca(2+)-dependent activator protein for secretion (CAPS) is an essential factor for regulated vesicle exocytosis that functions in priming reactions before Ca(2+)-triggered fusion of vesicles with the plasma membrane. However, the precise events that CAPS regulates to promote vesicle fusion are unclear. In the current work, we reconstituted CAPS function in a SNARE-dependent liposome fusion assay using VAMP2-containing donor and syntaxin-1/SNAP-25-containing acceptor liposomes. The CAPS stimulation of fusion required PI(4,5)P(2) in acceptor liposomes and was independent of Ca(2+), but Ca(2+) dependence was restored by inclusion of synaptotagmin. CAPS stimulated trans-SNARE complex formation concomitant with the stimulation of full membrane fusion at physiological SNARE densities. CAPS bound syntaxin-1, and CAPS truncations that competitively inhibited syntaxin-1 binding also inhibited CAPS-dependent fusion. The results revealed an unexpected activity of a priming protein to accelerate fusion by efficiently promoting trans-SNARE complex formation. CAPS may function in priming by organizing SNARE complexes on the plasma membrane.
Collapse
Affiliation(s)
- Declan J. James
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706
| | - Judith Kowalchyk
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706
| | - Neil Daily
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706
| | - Matt Petrie
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706
| | | |
Collapse
|
45
|
Brunger AT, Weninger K, Bowen M, Chu S. Single-molecule studies of the neuronal SNARE fusion machinery. Annu Rev Biochem 2009; 78:903-28. [PMID: 19489736 DOI: 10.1146/annurev.biochem.77.070306.103621] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
SNAREs are essential components of the machinery for Ca(2+)-triggered fusion of synaptic vesicles with the plasma membrane, resulting in neurotransmitter release into the synaptic cleft. Although much is known about their biophysical and structural properties and their interactions with accessory proteins such as the Ca(2+) sensor synaptotagmin, their precise role in membrane fusion remains an enigma. Ensemble studies of liposomes with reconstituted SNAREs have demonstrated that SNAREs and accessory proteins can trigger lipid mixing/fusion, but the inability to study individual fusion events has precluded molecular insights into the fusion process. Thus, this field is ripe for studies with single-molecule methodology. In this review, we discuss applications of single-molecule approaches to observe reconstituted SNAREs, their complexes, associated proteins, and their effect on biological membranes. Some of the findings are provocative, such as the possibility of parallel and antiparallel SNARE complexes or of vesicle docking with only syntaxin and synaptobrevin, but have been confirmed by other experiments.
Collapse
Affiliation(s)
- Axel T Brunger
- The Howard Hughes Medical Institute and Departments of Molecular and Cellular Physiology, Neurology and Neurological Sciences, Structural Biology, and Photon Science, Stanford University, CA 94305, USA.
| | | | | | | |
Collapse
|
46
|
Muretta JM, Mastick CC. How insulin regulates glucose transport in adipocytes. VITAMINS AND HORMONES 2009; 80:245-86. [PMID: 19251041 DOI: 10.1016/s0083-6729(08)00610-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Insulin stimulates glucose storage and metabolism by the tissues of the body, predominantly liver, muscle and fat. Storage in muscle and fat is controlled to a large extent by the rate of facilitative glucose transport across the plasma membrane of the muscle and fat cells. Insulin controls this transport. Exactly how remains debated. Work presented in this review focuses on the pathways responsible for the regulation of glucose transport by insulin. We present some historical work to show how the prevailing model for regulation of glucose transport by insulin was originally developed, then some more recent data challenging this model. We finish describing a unifying model for the control of glucose transport, and some very recent data illustrating potential molecular machinery underlying this regulation. This review is meant to give an overview of our current understanding of the regulation of glucose transport through the regulation of the trafficking of Glut4, highlighting important questions that remain to be answered. A more detailed treatment of specific aspects of this pathway can be found in several excellent recent reviews (Brozinick et al., 2007 Hou and Pessin, 2007; Huang and Czech, 2007;Larance et al., 2008 Sakamoto and Holman, 2008; Watson and Pessin, 2007; Zaid et al., 2008)One of the main objectives of this review is to discuss the results of the experiments measuring the kinetics of Glut4 movement between subcellular compartments in the context of our emerging model of the Glut4 trafficking pathway.
Collapse
Affiliation(s)
- Joseph M Muretta
- Department of Biochemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | |
Collapse
|
47
|
Park D, Taghert PH. Peptidergic neurosecretory cells in insects: organization and control by the bHLH protein DIMMED. Gen Comp Endocrinol 2009; 162:2-7. [PMID: 19135054 DOI: 10.1016/j.ygcen.2008.12.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Revised: 11/19/2008] [Accepted: 12/10/2008] [Indexed: 11/15/2022]
Abstract
This review considers evidence that defines a role for the transcription factor DIMMED in the regulation of insect neurosecretory cells. Genetic anatomical and molecular data all suggest DIMMED is a dedicated controller of the regulated secretory pathway. DIMM is normally expressed within diverse neuropeptide-expressing cells and appears highly correlated with a neurosecretory cell fate. Loss of DIMM is associated with deficits in display of neuropeptides and neuropeptide-associated enzymes. Gain of DIMM promotes such display in peptidergic cells and can confer such neurosecretory properties onto conventional neurons. We review models proposed to explain how DIMMED regulates these essential cellular properties.
Collapse
Affiliation(s)
- Dongkook Park
- Department of Anatomy & Neurobiology, Washington University Medical School, 660 South Euclid Avenue, Saint Louis, MO 63110, USA.
| | | |
Collapse
|
48
|
Xia X, Lessmann V, Martin TFJ. Imaging of evoked dense-core-vesicle exocytosis in hippocampal neurons reveals long latencies and kiss-and-run fusion events. J Cell Sci 2008; 122:75-82. [PMID: 19066284 DOI: 10.1242/jcs.034603] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Evoked neuropeptide secretion in the central nervous system occurs slowly, but the basis for slow release is not fully understood. Whereas exocytosis of single synaptic vesicles in neurons and of dense-core vesicles (DCVs) in endocrine cells have been directly visualized, single DCV exocytic events in neurons of the central nervous system have not been previously studied. We imaged DCV exocytosis in primary cultured hippocampal neurons using fluorescent propeptide cargo and total internal reflectance fluorescence microscopy. The majority of Ca(2+)-triggered exocytic events occurred from immobile plasma-membrane-proximal DCVs in the cell soma, whereas there were few events in the neurites. Strikingly, DCVs in the cell soma exhibited 50-fold greater release probabilities than those in neurites. Latencies to depolarization-evoked fusion for DCVs were surprisingly long, occurring with an average time constant (tau) of 16 seconds for DCVs in the soma and even longer for DCVs in neurites. All of the single DCV release events exhibited rapid fusion-pore openings and closures, the kinetics of which were highly dependent upon Ca(2+) levels. These ;kiss-and-run' events were associated with limited cargo secretion. Thus, the slow evoked release of neuropeptides could be attributed to very prolonged latencies from stimulation to fusion and transient fusion-pore openings that might limit cargo secretion.
Collapse
Affiliation(s)
- Xiaofeng Xia
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| | | | | |
Collapse
|
49
|
Docking and fusion of synaptic vesicles in cell-free model system of exocytosis. Neurochem Int 2008; 53:401-7. [DOI: 10.1016/j.neuint.2008.09.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Revised: 08/01/2008] [Accepted: 09/18/2008] [Indexed: 10/21/2022]
|
50
|
Ch'ng Q, Sieburth D, Kaplan JM. Profiling synaptic proteins identifies regulators of insulin secretion and lifespan. PLoS Genet 2008; 4:e1000283. [PMID: 19043554 PMCID: PMC2582949 DOI: 10.1371/journal.pgen.1000283] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Accepted: 10/28/2008] [Indexed: 12/25/2022] Open
Abstract
Cells are organized into distinct compartments to perform specific tasks with spatial precision. In neurons, presynaptic specializations are biochemically complex subcellular structures dedicated to neurotransmitter secretion. Activity-dependent changes in the abundance of presynaptic proteins are thought to endow synapses with different functional states; however, relatively little is known about the rules that govern changes in the composition of presynaptic terminals. We describe a genetic strategy to systematically analyze protein localization at Caenorhabditis elegans presynaptic specializations. Nine presynaptic proteins were GFP-tagged, allowing visualization of multiple presynaptic structures. Changes in the distribution and abundance of these proteins were quantified in 25 mutants that alter different aspects of neurotransmission. Global analysis of these data identified novel relationships between particular presynaptic components and provides a new method to compare gene functions by identifying shared protein localization phenotypes. Using this strategy, we identified several genes that regulate secretion of insulin-like growth factors (IGFs) and influence lifespan in a manner dependent on insulin/IGF signaling. Cells are divided into multiple subcellular compartments that perform diverse functions. In neurons, synapses mediate transmission of information between cells and they comprise hundreds of proteins dedicated for this purpose. Changes in the protein composition of synapses are thought to produce changes in synaptic transmission, such as those that occur during development, learning, and memory. Here, we describe a systematic genetic strategy for analyzing the protein composition of synapses. Using this strategy, we identified sets of genes that alter synapses in similar ways, and identified novel regulatory relationships between particular synaptic proteins. One set of genes regulated secretion of insulin-like hormones from neurons and had corresponding effects on lifespan, which is controlled by insulin signaling. These results illustrate how changes in synaptic composition can be utilized as a probe to explain changes in physiology. Our approach can be expanded to include a larger set of synaptic proteins or to analyze other subcellular compartments.
Collapse
Affiliation(s)
- QueeLim Ch'ng
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- * E-mail: (QC); (JMK)
| | - Derek Sieburth
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Joshua M. Kaplan
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- * E-mail: (QC); (JMK)
| |
Collapse
|