1
|
Xu Y, Qiu Y, Zhang Y, Li X. A cAMP phosphodiesterase is essential for sclerotia formation and virulence in Sclerotinia sclerotiorum. FRONTIERS IN PLANT SCIENCE 2023; 14:1175552. [PMID: 37324679 PMCID: PMC10264682 DOI: 10.3389/fpls.2023.1175552] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/12/2023] [Indexed: 06/17/2023]
Abstract
Sclerotinia sclerotiorum is a plant pathogenic fungus that causes white mold or stem rot diseases. It affects mostly dicotyledonous crops, resulting in significant economic losses worldwide. Sclerotia formation is a special feature of S. sclerotiorum, allowing its survival in soil for extended periods and facilitates the spread of the pathogen. However, the detailed molecular mechanisms of how sclerotia are formed and how virulence is achieved in S. sclerotiorum are not fully understood. Here, we report the identification of a mutant that cannot form sclerotia using a forward genetics approach. Next-generation sequencing of the mutant's whole genome revealed candidate genes. Through knockout experiments, the causal gene was found to encode a cAMP phosphodiesterase (SsPDE2). From mutant phenotypic examinations, we found that SsPDE2 plays essential roles not only in sclerotia formation, but also in the regulation of oxalic acid accumulation, infection cushion functionality and virulence. Downregulation of SsSMK1 transcripts in Sspde2 mutants revealed that these morphological defects are likely caused by cAMP-dependent inhibition of MAPK signaling. Moreover, when we introduced HIGS construct targeting SsPDE2 in Nicotiana benthamiana, largely compromised virulence was observed against S. sclerotiorum. Taken together, SsPDE2 is indispensable for key biological processes of S. sclerotiorum and can potentially serve as a HIGS target to control stem rot in the field.
Collapse
Affiliation(s)
- Yan Xu
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Yilan Qiu
- Department of Life Science, Hunan Normal University, Changsha, China
| | - Yuelin Zhang
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
2
|
Kim BH, Pereverzev A, Zhu S, Tong AOM, Dixon SJ, Chidiac P. Extracellular nucleotides enhance agonist potency at the parathyroid hormone 1 receptor. Cell Signal 2018; 46:103-112. [PMID: 29501726 DOI: 10.1016/j.cellsig.2018.02.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 02/26/2018] [Accepted: 02/28/2018] [Indexed: 12/27/2022]
Abstract
Parathyroid hormone (PTH) activates the PTH/PTH-related peptide receptor (PTH1R) on osteoblasts and other target cells. Mechanical stimulation of cells, including osteoblasts, causes release of nucleotides such as ATP into the extracellular fluid. In addition to its role as an energy source, ATP serves as an agonist at P2 receptors and an allosteric regulator of many proteins. We investigated the effects of concentrations of extracellular ATP, comparable to those that activate low affinity P2X7 receptors, on PTH1R signaling. Cyclic AMP levels were monitored in real-time using a bioluminescence reporter and β-arrestin recruitment to PTH1R was followed using a complementation-based luminescence assay. ATP markedly enhanced cyclic AMP and β-arrestin signaling as well as downstream activation of CREB. CMP - a nucleotide that lacks a high energy bond and does not activate P2 receptors - mimicked this effect of ATP. Moreover, potentiation was not inhibited by P2 receptor antagonists, including a specific blocker of P2X7. Thus, nucleotide-induced potentiation of signaling pathways was independent of P2 receptor signaling. ATP and CMP reduced the concentration of PTH (1-34) required to produce a half-maximal cyclic AMP or β-arrestin response, with no evident change in maximal receptor activity. Increased potency was similarly apparent with PTH1R agonists PTH (1-14) and PTH-related peptide (1-34). These observations suggest that extracellular nucleotides increase agonist affinity, efficacy or both, and are consistent with modulation of signaling at the level of the receptor or a closely associated protein. Taken together, our findings establish that ATP enhances PTH1R signaling through a heretofore unrecognized allosteric mechanism.
Collapse
Affiliation(s)
- Brandon H Kim
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Canada; Bone and Joint Institute, The University of Western Ontario, London, Canada
| | - Alexey Pereverzev
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Canada
| | - Shuying Zhu
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Canada
| | - Abby Oi Man Tong
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Canada
| | - S Jeffrey Dixon
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Canada; Bone and Joint Institute, The University of Western Ontario, London, Canada; Dentistry, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Canada
| | - Peter Chidiac
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Canada; Bone and Joint Institute, The University of Western Ontario, London, Canada; Department of Biology, Faculty of Science, The University of Western Ontario, London, Canada.
| |
Collapse
|
3
|
Yulia A, Singh N, Lei K, Sooranna SR, Johnson MR. Cyclic AMP Effectors Regulate Myometrial Oxytocin Receptor Expression. Endocrinology 2016; 157:4411-4422. [PMID: 27673556 DOI: 10.1210/en.2016-1514] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The factors that initiate human labor are poorly understood. We have tested the hypothesis that a decline in cAMP/protein kinase A (PKA) function leads to the onset of labor. Initially, we identified myometrial cAMP/PKA-responsive genes (six up-regulated and five down-regulated genes) and assessed their expression in myometrial samples taken from different stages of pregnancy and labor. We found that the oxytocin receptor (OTR) was one of the cAMP-repressed genes, and, given the importance of OTR in the labor process, we studied the mechanisms involved in greater detail using small interfering RNA, chemical agonists, and antagonists of the cAMP effectors. We found that cAMP-repressed genes, including OTR, increased with the onset of labor. Our in vitro studies showed that cAMP acting via PKA reduced OTR expression but that in the absence of PKA, cAMP acts via exchange protein activated by cAMP (EPAC) to increase OTR expression. In early labor myometrial samples, PKA levels and activity declined and Epac1 levels increased, perhaps accounting for the increase in myometrial OTR mRNA and protein levels at this time. In vitro exposure of myometrial cells to stretch and IL-1β increased OTR levels and reduced basal and forskolin-stimulated cAMP and PKA activity, as judged by phospho-cAMP response element-binding protein levels, but neither stretch nor IL-1β had any effect on PKA or EPAC1 levels. In summary, there is a reduction in the activity of the cAMP/PKA pathway with the onset of human labor potentially playing a critical role in regulating OTR expression and the transition from myometrial quiescence to activation.
Collapse
Affiliation(s)
- Angela Yulia
- Chelsea and Westminster Hospital (A.Y., N.S., K.L., S.R.S., M.R.J.), London SW10 9NH, United Kingdom; and Institute of Reproductive and Developmental Biology (A.Y., N.S., K.L., S.R.S., M.R.J.), London W12 0NN, United Kingdom
| | - Natasha Singh
- Chelsea and Westminster Hospital (A.Y., N.S., K.L., S.R.S., M.R.J.), London SW10 9NH, United Kingdom; and Institute of Reproductive and Developmental Biology (A.Y., N.S., K.L., S.R.S., M.R.J.), London W12 0NN, United Kingdom
| | - Kaiyu Lei
- Chelsea and Westminster Hospital (A.Y., N.S., K.L., S.R.S., M.R.J.), London SW10 9NH, United Kingdom; and Institute of Reproductive and Developmental Biology (A.Y., N.S., K.L., S.R.S., M.R.J.), London W12 0NN, United Kingdom
| | - Suren R Sooranna
- Chelsea and Westminster Hospital (A.Y., N.S., K.L., S.R.S., M.R.J.), London SW10 9NH, United Kingdom; and Institute of Reproductive and Developmental Biology (A.Y., N.S., K.L., S.R.S., M.R.J.), London W12 0NN, United Kingdom
| | - Mark R Johnson
- Chelsea and Westminster Hospital (A.Y., N.S., K.L., S.R.S., M.R.J.), London SW10 9NH, United Kingdom; and Institute of Reproductive and Developmental Biology (A.Y., N.S., K.L., S.R.S., M.R.J.), London W12 0NN, United Kingdom
| |
Collapse
|
4
|
Weninger S, Van Craenenbroeck K, Cameron RT, Vandeput F, Movsesian MA, Baillie GS, Lefebvre RA. Phosphodiesterase 4 interacts with the 5-HT4(b) receptor to regulate cAMP signaling. Cell Signal 2014; 26:2573-82. [PMID: 25101859 DOI: 10.1016/j.cellsig.2014.07.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 06/28/2014] [Accepted: 07/28/2014] [Indexed: 12/14/2022]
Abstract
Phosphodiesterase (PDE) 3 and PDE4, which degrade cyclic adenosine monophosphate (cAMP), are important regulators of 5-hydroxytryptamine (5-HT) 4 receptor signaling in cardiac tissue. Therefore, we investigated whether they interact with the 5-HT4(b) receptor, and whether A-kinase anchoring proteins (AKAPs), scaffolding proteins that bind to the regulatory subunit of protein kinase A (PKA) and contribute to the spacial-temporal control of cAMP signaling, are involved in the regulation of 5-HT4(b) receptor signaling. By measuring PKA activity in the absence and presence of PDE3 and PDE4 inhibitiors, we found that constitutive signaling of the overexpressed HA-tagged 5-HT4(b) receptor in HEK293 cells is regulated predominantly by PDE4, with a secondary role for PDE3 that is unmasked in the presence of PDE4 inhibition. Overexpressed PDE4D3 and PDE3A1, and to a smaller extent PDE4D5 co-immunoprecipitate constitutively with the 5-HT4(b) receptor. PDE activity measurements in immunoprecipitates of the 5-HT4(b) receptor confirm the association of PDE4D3 with the receptor and provide evidence that the activity of this PDE may be increased upon receptor stimulation with 5-HT. A possible involvement of AKAPs in 5-HT4(b) receptor signaling was uncovered in experiments using the St-Ht31 inhibitor peptide, which disrupts the interaction of AKAPs with PKA. However, St-Ht31 did not influence 5-HT4(b) receptor-stimulated PKA activity, and endogenous AKAP79 and gravin were not found in immunoprecipitates of the 5-HT4(b) receptor. In conclusion, we found that both PDE3A1 and PDE4D3 are integrated into complexes that contain the 5-HT4(b) receptor and may thereby regulate 5-HT4(b) receptor-mediated signaling.
Collapse
Affiliation(s)
- S Weninger
- Heymans Institute of Pharmacology, Ghent University, De Pintelaan 185, Ghent 9000, Belgium
| | - K Van Craenenbroeck
- Laboratory for Eukaryotic Gene Expression and Signal Transduction, Ghent University, Proeftuinstraat 86, Ghent 9000, Belgium
| | - R T Cameron
- Institute of Cardiovascular and Medical Science, University of Glasgow, Office 534, Wolfson-Link Building, Glasgow G12 8QQ, UK
| | - F Vandeput
- Cardiovascular Medicine Division, VA Salt Lake City Health Care System and University of Utah School of Medicine, Salt Lake City, UT 84148, USA
| | - M A Movsesian
- Cardiovascular Medicine Division, VA Salt Lake City Health Care System and University of Utah School of Medicine, Salt Lake City, UT 84148, USA
| | - G S Baillie
- Institute of Cardiovascular and Medical Science, University of Glasgow, Office 534, Wolfson-Link Building, Glasgow G12 8QQ, UK
| | - R A Lefebvre
- Heymans Institute of Pharmacology, Ghent University, De Pintelaan 185, Ghent 9000, Belgium.
| |
Collapse
|
5
|
Mahavadi S, Nalli AD, Kumar DP, Hu W, Kuemmerle JF, Grider JR, Murthy KS. Cytokine-induced iNOS and ERK1/2 inhibit adenylyl cyclase type 5/6 activity and stimulate phosphodiesterase 4D5 activity in intestinal longitudinal smooth muscle. Am J Physiol Cell Physiol 2014; 307:C402-11. [PMID: 24944202 PMCID: PMC4137135 DOI: 10.1152/ajpcell.00123.2014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 06/17/2014] [Indexed: 01/26/2023]
Abstract
This study identified a distinctive pattern of expression and activity of adenylyl cyclase (AC) and phosphodiesterase (PDE) isoforms in mouse colonic longitudinal smooth muscle cells and determined the changes in their expression and/or activity in response to proinflammatory cytokines (IL-1β and TNF-α) in vitro and 2,4,6 trinitrobenzene sulphonic acid (TNBS)-induced colonic inflammation in vivo. AC5/6 and PDE4D5, expressed in circular muscle cells, were also expressed in longitudinal smooth muscle. cAMP formation was tightly regulated via feedback phosphorylation of AC5/6 and PDE4D5 by PKA. Inhibition of PKA activity by myristoylated PKI blocked phosphorylation of AC5/6 and PDE4D5 and enhanced cAMP formation. TNBS treatment in vivo and IL-1β and TNF-α in vitro induced inducible nitric oxide synthase (iNOS) expression, stimulated ERK1/2 activity, caused iNOS-mediated S-nitrosylation and inhibition of AC5/6, and induced phosphorylation of PDE4D5 and stimulated its activity. The resultant decrease in AC5/6 activity and increase in PDE4D5 activity decreased cAMP formation and smooth muscle relaxation. S-nitrosylation and inhibition of AC5/6 activity were reversed by the iNOS inhibitor 1400W, whereas phosphorylation and activation of PDE4D5 were reversed by the phosphatidylinositol 3-kinase inhibitor LY294002 and the ERK1/2 inhibitor PD98059. The effects of IL-1β or TNF-α on forskolin-stimulated cAMP formation and smooth muscle relaxation reflected inhibition of AC5/6 activity and activation of PDE4D5 and were partly reversed by 1400W or PD98059 and completely reversed by a combination of the two inhibitors. The changes in the cAMP/PKA signaling and smooth muscle relaxation contribute to colonic dysmotility during inflammation.
Collapse
Affiliation(s)
- Sunila Mahavadi
- Department of Physiology and Biophysics, Virginia Commonwealth University Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia; and
| | - Ancy D Nalli
- Department of Physiology and Biophysics, Virginia Commonwealth University Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia; and
| | - Divya P Kumar
- Department of Physiology and Biophysics, Virginia Commonwealth University Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia; and
| | - Wenhui Hu
- Department of Neuroscience, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - John F Kuemmerle
- Department of Physiology and Biophysics, Virginia Commonwealth University Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia; and
| | - John R Grider
- Department of Physiology and Biophysics, Virginia Commonwealth University Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia; and
| | - Karnam S Murthy
- Department of Physiology and Biophysics, Virginia Commonwealth University Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia; and
| |
Collapse
|
6
|
Azeloglu EU, Hardy SV, Eungdamrong NJ, Chen Y, Jayaraman G, Chuang PY, Fang W, Xiong H, Neves SR, Jain MR, Li H, Ma’ayan A, Gordon RE, He JC, Iyengar R. Interconnected network motifs control podocyte morphology and kidney function. Sci Signal 2014; 7:ra12. [PMID: 24497609 PMCID: PMC4220789 DOI: 10.1126/scisignal.2004621] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Podocytes are kidney cells with specialized morphology that is required for glomerular filtration. Diseases, such as diabetes, or drug exposure that causes disruption of the podocyte foot process morphology results in kidney pathophysiology. Proteomic analysis of glomeruli isolated from rats with puromycin-induced kidney disease and control rats indicated that protein kinase A (PKA), which is activated by adenosine 3',5'-monophosphate (cAMP), is a key regulator of podocyte morphology and function. In podocytes, cAMP signaling activates cAMP response element-binding protein (CREB) to enhance expression of the gene encoding a differentiation marker, synaptopodin, a protein that associates with actin and promotes its bundling. We constructed and experimentally verified a β-adrenergic receptor-driven network with multiple feedback and feedforward motifs that controls CREB activity. To determine how the motifs interacted to regulate gene expression, we mapped multicompartment dynamical models, including information about protein subcellular localization, onto the network topology using Petri net formalisms. These computational analyses indicated that the juxtaposition of multiple feedback and feedforward motifs enabled the prolonged CREB activation necessary for synaptopodin expression and actin bundling. Drug-induced modulation of these motifs in diseased rats led to recovery of normal morphology and physiological function in vivo. Thus, analysis of regulatory motifs using network dynamics can provide insights into pathophysiology that enable predictions for drug intervention strategies to treat kidney disease.
Collapse
Affiliation(s)
- Evren U. Azeloglu
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Simon V. Hardy
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Narat John Eungdamrong
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Yibang Chen
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Gomathi Jayaraman
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Peter Y. Chuang
- Division of Nephrology, Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Wei Fang
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Huabao Xiong
- Immunobiology Center, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Susana R. Neves
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029, USA
- Systems Biology Center New York, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Mohit R. Jain
- Department of Biochemistry and Molecular Biology, Center for Advanced Proteomics Research, University of Medicine and Dentistry of New Jersey–New Jersey Medical School Cancer Center, Newark, NJ 07103, USA
| | - Hong Li
- Department of Biochemistry and Molecular Biology, Center for Advanced Proteomics Research, University of Medicine and Dentistry of New Jersey–New Jersey Medical School Cancer Center, Newark, NJ 07103, USA
| | - Avi Ma’ayan
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Ronald E. Gordon
- Department of Pathology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - John Cijiang He
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029, USA
- Division of Nephrology, Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Ravi Iyengar
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029, USA
- Systems Biology Center New York, Mount Sinai School of Medicine, New York, NY 10029, USA
| |
Collapse
|
7
|
Michalski JM, Golden G, Ikari J, Rennard SI. PDE4: a novel target in the treatment of chronic obstructive pulmonary disease. Clin Pharmacol Ther 2011; 91:134-42. [PMID: 22130119 DOI: 10.1038/clpt.2011.266] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Phosphodiesterases (PDEs) are important modulators of inflammation and wound healing. In this capacity, specific targeting of PDEs for the treatment of many diseases, including chronic obstructive pulmonary disease (COPD), has been investigated. Currently, treatment of COPD is suboptimal. PDE4 modulates the inflammatory response of the lung, and inhibition of PDE4 may be a novel, COPD-specific approach toward more effective treatment strategies. This review describes the state of PDE4-inhibitor therapy for use in COPD treatment.
Collapse
Affiliation(s)
- J M Michalski
- Section of Pulmonary, Critical Care, Sleep and Allergy, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA.
| | | | | | | |
Collapse
|
8
|
Peter D, Jin SLC, Conti M, Hatzelmann A, Zitt C. Differential expression and function of phosphodiesterase 4 (PDE4) subtypes in human primary CD4+ T cells: predominant role of PDE4D. THE JOURNAL OF IMMUNOLOGY 2007; 178:4820-31. [PMID: 17404263 DOI: 10.4049/jimmunol.178.8.4820] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Type 4 phosphodiesterases (PDE4) are critical regulators in TCR signaling by attenuating the negative constraint of cAMP. In this study, we show that anti-CD3/CD28 stimulation of human primary CD4(+) T cells increases the expression of the PDE4 subtypes PDE4A, PDE4B, and PDE4D in a specific and time-dependent manner. PDE4A and PDE4D mRNAs as well as enzyme activities were up-regulated within 5 days, PDE4B showed a transient up-regulation with highest levels after 24 h. The induction was shown to be independent of different stimulation conditions and was similar in naive and memory T cell subpopulations. To elucidate the functional impact of individual PDE4 subtypes on T cell function, we used PDE4 subtype-specific short-interfering RNAs (siRNAs). Knockdown of either PDE4B or PDE4D inhibited IL-2 release 24 h after stimulation (time point of maximal IL-2 concentrations) to an extent similar to that observed with the panPDE4 inhibitor RP73401 (piclamilast). Substantial amounts of IFN-gamma or IL-5 were measured only at later time points. siRNA targeting PDE4D showed a predominant inhibitory effect on these cytokines measured after 72 h. However, the inhibition of all cytokines was most effective when PDE4 siRNAs were applied in combination. Although the effect of PDE4 inhibition on T cell proliferation is small, the PDE4D-targeting siRNA alone was as effective as the panPDE4 inhibitor, whereas PDE4A or PDE4B siRNAs had hardly an effect. In summary, individual PDE4 subtypes have overall nonredundant, but complementary, time-dependent roles in propagating various T cell functions and PDE4D is the form likely playing a predominant role.
Collapse
Affiliation(s)
- Daniel Peter
- Department of Biochemistry, Altana Pharma, Konstanz, Germany
| | | | | | | | | |
Collapse
|
9
|
Bender AT, Beavo JA. Cyclic Nucleotide Phosphodiesterases: Molecular Regulation to Clinical Use. Pharmacol Rev 2006; 58:488-520. [PMID: 16968949 DOI: 10.1124/pr.58.3.5] [Citation(s) in RCA: 1333] [Impact Index Per Article: 74.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) are enzymes that regulate the cellular levels of the second messengers, cAMP and cGMP, by controlling their rates of degradation. There are 11 different PDE families, with each family typically having several different isoforms and splice variants. These unique PDEs differ in their three-dimensional structure, kinetic properties, modes of regulation, intracellular localization, cellular expression, and inhibitor sensitivities. Current data suggest that individual isozymes modulate distinct regulatory pathways in the cell. These properties therefore offer the opportunity for selectively targeting specific PDEs for treatment of specific disease states. The feasibility of these enzymes as drug targets is exemplified by the commercial and clinical successes of the erectile dysfunction drugs, sildenafil (Viagra), tadalafil (Cialis), and vardenafil (Levitra). PDE inhibitors are also currently available or in development for treatment of a variety of other pathological conditions. In this review the basic biochemical properties, cellular regulation, expression patterns, and physiological functions of the different PDE isoforms will be discussed. How these properties relate to the current and future development of PDE inhibitors as pharmacological agents is especially considered. PDEs hold great promise as drug targets and recent research advances make this an exciting time for the field of PDE research.
Collapse
Affiliation(s)
- Andrew T Bender
- Department of Pharmacology, University of Washington Medical School, Health Sciences Building, Box 357280, Seattle, WA 98195-7280, USA
| | | |
Collapse
|
10
|
Hernández M, Barahona MV, Recio P, Benedito S, Martínez AC, Rivera L, García-Sacristán A, Prieto D, Orensanz LM. Neuronal and smooth muscle receptors involved in the PACAP- and VIP-induced relaxations of the pig urinary bladder neck. Br J Pharmacol 2006; 149:100-9. [PMID: 16847435 PMCID: PMC1629402 DOI: 10.1038/sj.bjp.0706832] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND AND PURPOSE As pituitary adenylate cyclase-activating polypeptide 38 (PACAP 38)- and vasoactive intestinal peptide (VIP) are widely distributed in the urinary tract, the current study investigated the receptors and mechanisms involved in relaxations induced by these peptides in the pig bladder neck. EXPERIMENTAL APPROACH Urothelium-denuded strips were suspended in organ baths for isometric force recordings and the relaxations to VIP and PACAP analogues were investigated. KEY RESULTS VIP, PACAP 38, PACAP 27 and [Ala(11,22,28)]-VIP produced similar relaxations. Inhibition of neuronal voltage-gated Ca(2+) channels reduced relaxations to PACAP 38 and increased those induced by VIP. Blockade of capsaicin-sensitive primary afferents (CSPA), nitric oxide (NO)-synthase or guanylate cyclase reduced the PACAP 38 relaxations but failed to modify the VIP responses. Inhibition of VIP/PACAP receptors and of voltage-gated K(+) channels reduced PACAP 38 and VIP relaxations, which were not modified by the K(+) channel blockers iberiotoxin, charybdotoxin, apamin or glibenclamide. The phosphodiesterase 4 inhibitor rolipram and the adenylate cyclase activator forskolin produced potent relaxations. Blockade of protein kinase A (PKA) reduced PACAP 38- and VIP-induced relaxations. CONCLUSIONS AND IMPLICATIONS PACAP 38 and VIP relax the pig urinary bladder neck through muscle VPAC(2) receptors linked to the cAMP-PKA pathway and involve activation of voltage-gated K(+) channels. Facilitatory PAC(1) receptors located at CSPA and coupled to NO release, and inhibitory VPAC receptors at motor endings are also involved in the relaxations to PACAP 38 and VIP, respectively. VIP/PACAP receptor antagonists could be useful in the therapy of urinary incontinence produced by intrinsic sphincter deficiency.
Collapse
Affiliation(s)
- M Hernández
- Departamento de Fisiología, Fisiología Animal, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Stimulus-secretion coupling is an essential process in secretory cells in which regulated exocytosis occurs, including neuronal, neuroendocrine, endocrine, and exocrine cells. While an increase in intracellular Ca(2+) concentration ([Ca(2+)](i)) is the principal signal, other intracellular signals also are important in regulated exocytosis. In particular, the cAMP signaling system is well known to regulate and modulate exocytosis in a variety of secretory cells. Until recently, it was generally thought that the effects of cAMP in regulated exocytosis are mediated by activation of cAMP-dependent protein kinase (PKA), a major cAMP target, followed by phosphorylation of the relevant proteins. Although the involvement of PKA-independent mechanisms has been suggested in cAMP-regulated exocytosis by pharmacological approaches, the molecular mechanisms are unknown. Newly discovered cAMP-GEF/Epac, which belongs to the cAMP-binding protein family, exhibits guanine nucleotide exchange factor activities and exerts diverse effects on cellular functions including hormone/transmitter secretion, cell adhesion, and intracellular Ca(2+) mobilization. cAMP-GEF/Epac mediates the PKA-independent effects on cAMP-regulated exocytosis. Thus cAMP regulates and modulates exocytosis by coordinating both PKA-dependent and PKA-independent mechanisms. Localization of cAMP within intracellular compartments (cAMP compartmentation or compartmentalization) may be a key mechanism underlying the distinct effects of cAMP in different domains of the cell.
Collapse
Affiliation(s)
- Susumu Seino
- Division of Cellular and Molecular Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan.
| | | |
Collapse
|
12
|
Abstract
During the evolution of mammals, the endometrium has developed for one reason only: to implant an embryo in the uterus. In higher primates, should an oocyte fail to be fertilized, then the endometrial layer is sloughed off during menses and the menstrual cycle starts again with a new round of endometrial differentiation. This stromal differentiation process is called decidualization and is accompanied in vivo by sustained high levels of intracellular cAMP. The present study was conducted to determine whether manipulation of cAMP-phosphodiesterase (PDE) activities in cultured human endometrial stromal cells could positively influence the decidualization process. The combination of relaxin treatment with inhibition of PDE4 by the specific inhibitor rolipram induced a strong increase in relaxin-mediated cAMP production, both acutely, after 20 min, and after long-term treatment for 3 days, to promote a sustained intracellular cAMP concentration. Moreover, there was a dramatic synergistic effect on the decidualization phenotype, characterized both morphologically and by increased production of prolactin and insulin-like growth factor binding protein-1 gene transcripts. The observations that expression of PDE4D transcripts were selectively increased by cAMP and that inhibition of protein kinase A by H89 to potentially block negative feedback regulation enhanced the relaxin/rolipram-mediated cAMP accumulation lead to a complex picture of cAMP regulation in these cells. There appears to be a coordinated contribution by relaxin and PDE4 at different levels to promote a sustained increased cAMP concentration during decidualization, and thus to provide an adequate maternal interface for the implanting blastocyst.
Collapse
Affiliation(s)
- Olaf Bartscha
- Institute for Hormone and Fertility Research, University of Hamburg, D-20251 Hamburg, Germany.
| | | |
Collapse
|
13
|
Abstract
The levels of the cGMP in smooth muscle of the gut reflect continued synthesis by soluble guanylate cyclase (GC) and breakdown by phosphodiesterase 5 (PDE5). Soluble GC is a haem-containing, heterodimeric protein consisting alpha- and beta-subunits: each subunit has N-terminal regulatory domain and a C-terminal catalytic domain. The haem moiety acts as an intracellular receptor for nitric oxide (NO) and determines the ability of NO to activate the enzyme and generate cGMP. In the present study the mechanism by which protein kinases regulate soluble GC in gastric smooth muscle was examined. Sodium nitroprusside (SNP) acting as a NO donor stimulated soluble GC activity and increased cGMP levels. SNP induced soluble GC phosphorylation in a concentration-dependent fashion. SNP-induced soluble GC phosphorylation was abolished by the selective cGMP-dependent protein kinase (PKG) inhibitors, Rp-cGMPS and KT-5823. In contrast, SNP-stimulated soluble GC activity and cGMP levels were significantly enhanced by Rp-cGMPS and KT-5823. Phosphorylation and inhibition of soluble GC were PKG specific, as selective activator of cAMP-dependent protein kinase, Sp-5, 6-DCl-cBiMPS had no effect on SNP-induced soluble GC phosphorylation and activity. The ability of PKG to stimulate soluble GC phosphorylation was demonstrated in vitro by back phosphorylation technique. Addition of purified phosphatase 1 inhibited soluble GC phosphorylation in vitro, and inhibition was reversed by a high concentration (10 microM) of okadaic acid. In gastric smooth muscle cells, inhibition of phosphatase activity by okadaic acid increased soluble GC phosphorylation in a concentration-dependent fashion. The increase in soluble GC phosphorylation inhibited SNP-stimulated soluble GC activity and cGMP formation. The results implied the feedback inhibition of soluble GC activity by PKG-dependent phosphorylation impeded further formation of cGMP.
Collapse
Affiliation(s)
- Karnam S Murthy
- Departments of Physiology and Medicine, Medical College of Virginia, Virginia Commonwealth University Richmond, Richmond, VA 23298-0711, USA.
| |
Collapse
|
14
|
Hernández M, Barahona MV, Recio P, Rivera L, Benedito S, Martínez AC, García-Sacristán A, Orensanz LM, Prieto D. Heterogeneity of neuronal and smooth muscle receptors involved in the VIP- and PACAP-induced relaxations of the pig intravesical ureter. Br J Pharmacol 2003; 141:123-31. [PMID: 14662737 PMCID: PMC1574168 DOI: 10.1038/sj.bjp.0705582] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1. The mechanisms and receptors involved in the vasoactive intestinal peptide (VIP)- and pituitary adenylate cyclase-activating polypeptide (PACAP)-induced relaxations of the pig intravesical ureter were investigated. 2. VIP, PACAP 38 and PACAP 27 concentration-dependently relaxed U46619-contracted ureteral strips with a similar potency. [Ala(11,22,28)]-VIP, a VPAC(1) agonist, showed inconsistent relaxations. 3. The neuronal voltage-gated Ca(2+) channel inhibitor, omega-conotoxin GVIA (omega-CgTX, 1 microm), reduced the VIP relaxations. Urothelium removal or blockade of capsaicin-sensitive primary afferents, nitric oxide (NO) synthase and guanylate cyclase with capsaicin (10 microm), N(G)-nitro-l-arginine (l-NOARG, 100 microm) and 1H-[1,2,4]-oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, 5 microm), respectively, did not change the VIP relaxations. However, the PACAP 38 relaxations were reduced by omega-CgTX, capsaicin, l-NOARG and ODQ. 4. The VIP and VIP/PACAP receptor antagonists, [Lys(1), Pro(2,5), Arg(3,4), Tyr(6)]-VIP (1 microm) and PACAP (6-38) (0.4 microm), inhibited VIP and VIP and PACAP 38, respectively, relaxations. 5. The nonselective and large-conductance Ca(2)-activated K(+) channel blockers, tetraethylammonium (3 mm) and charybdotoxin (0.1 microm), respectively, and neuropeptide Y (0.1 microm) did not modify the VIP relaxations. The small-conductance Ca(2)-activated K(+) channel blocker apamin (1 microm) did not change the PACAP 27 relaxations. 6. The cAMP-dependent protein kinase A (PKA) blocker, 8-(4-chlorophenylthio)adenosine-3',5'-cyclic monophosphorothioate (Rp-8-CPT-cAMPS, 100 microm), reduced VIP relaxations. The phosphodiesterase 4 inhibitor rolipram and the adenylate cyclase activator forskolin relaxed ureteral preparations. The rolipram relaxations were reduced by Rp-8-CPT-cAMPS. Forskolin (30 nm) evoked a potentiation of VIP relaxations. 7. These results suggest that VIP and PACAP relax the pig ureter through smooth muscle receptors, probably of the VPAC(2) subtype, linked to a cAMP-PKA pathway. Neuronal VPAC receptors localized at motor nerves and PAC(1) receptors placed at sensory nerves and coupled to NO release, seem also to be involved in the VIP and PACAP 38 relaxations.
Collapse
MESH Headings
- 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/pharmacology
- Animals
- Apamin/pharmacology
- Capsaicin/pharmacology
- Charybdotoxin/administration & dosage
- Colforsin/pharmacology
- Cyclic AMP/analogs & derivatives
- Cyclic AMP/pharmacology
- Dose-Response Relationship, Drug
- Drug Synergism
- Female
- Guanylate Cyclase/pharmacology
- Male
- Muscle, Smooth/drug effects
- Muscle, Smooth/physiology
- NG-Nitroarginine Methyl Ester/pharmacology
- Neurons, Afferent/drug effects
- Neurons, Afferent/physiology
- Neuropeptide Y/physiology
- Neuropeptides/antagonists & inhibitors
- Neuropeptides/pharmacology
- Nitric Oxide Synthase/pharmacology
- Oxadiazoles/pharmacology
- Peptide Fragments/antagonists & inhibitors
- Peptide Fragments/pharmacology
- Pituitary Adenylate Cyclase-Activating Polypeptide
- Potassium Channels, Calcium-Activated/physiology
- Quinoxalines/pharmacology
- Receptors, Calcitonin Gene-Related Peptide
- Receptors, Peptide/antagonists & inhibitors
- Receptors, Peptide/drug effects
- Receptors, Vasoactive Intestinal Peptide/physiology
- Rolipram/antagonists & inhibitors
- Rolipram/pharmacology
- Sensory Receptor Cells/physiology
- Swine
- Tetraethylammonium/administration & dosage
- Ureter/cytology
- Ureter/drug effects
- Ureter/injuries
- Vasoactive Intestinal Peptide/antagonists & inhibitors
- Vasoactive Intestinal Peptide/pharmacology
- omega-Conotoxin GVIA/pharmacology
Collapse
Affiliation(s)
- Medardo Hernández
- Departamento de Fisiología, Facultad de Farmacia, UCM, 28040-Madrid, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Conti M, Richter W, Mehats C, Livera G, Park JY, Jin C. Cyclic AMP-specific PDE4 phosphodiesterases as critical components of cyclic AMP signaling. J Biol Chem 2003; 278:5493-6. [PMID: 12493749 DOI: 10.1074/jbc.r200029200] [Citation(s) in RCA: 381] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Marco Conti
- Division of Reproductive Biology, Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, California 94305, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Houslay MD, Adams DR. PDE4 cAMP phosphodiesterases: modular enzymes that orchestrate signalling cross-talk, desensitization and compartmentalization. Biochem J 2003; 370:1-18. [PMID: 12444918 PMCID: PMC1223165 DOI: 10.1042/bj20021698] [Citation(s) in RCA: 587] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2002] [Revised: 11/13/2002] [Accepted: 11/22/2002] [Indexed: 11/17/2022]
Abstract
cAMP is a second messenger that controls many key cellular functions. The only way to inactivate cAMP is to degrade it through the action of cAMP phosphodiesterases (PDEs). PDEs are thus poised to play a key regulatory role. PDE4 cAMP-specific phosphodiesterases appear to have specific functions with selective inhibitors serving as potent anti-inflammatory agents. The recent elucidation of the structure of the PDE4 catalytic unit allows for molecular insight into the mode of catalysis as well as substrate and inhibitor selectivity. The four PDE4 genes encode over 16 isoforms, each of which is characterized by a unique N-terminal region. PDE4 isoforms play a pivotal role in controlling functionally and spatially distinct pools of cAMP by virtue of their unique intracellular targeting. Targeting occurs by association with proteins, such as arrestins, SRC family tyrosyl kinases, A-kinase anchoring proteins ('AKAPs') and receptor for activated C kinase 1 ('RACK1'), and, in the case of isoform PDE4A1, by a specific interaction (TAPAS-1) with phosphatidic acid. PDE4 isoforms are 'designed' to be regulated by extracellular-signal-related protein kinase (ERK), which binds to anchor sites on the PDE4 catalytic domain that it phosphorylates. The upstream conserved region 1 (UCR1) and 2 (UCR2) modules that abut the PDE4 catalytic unit confer regulatory functions by orchestrating the functional outcome of phosphorylation by cAMP-dependent protein kinase ('PKA') and ERK. PDE4 enzymes stand at a crossroads that allows them to integrate various signalling pathways with that of cAMP in spatially distinct compartments.
Collapse
Affiliation(s)
- Miles D Houslay
- Molecular Pharmacology Group, Division of Biochemistry and Molecular Biology, Davidson Building, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, UK.
| | | |
Collapse
|
17
|
Doh H, Shin CY, Son M, Ko JI, Yoo M, Kim SH, Kim WB. Mechanism of erectogenic effect of the selective phosphodiesterase type 5 inhibitor, DA-8159. Arch Pharm Res 2002; 25:873-8. [PMID: 12510841 DOI: 10.1007/bf02977007] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
DA-8159, a new Phosphodiesterase (PDE) 5 inhibitor, has exhibited potent erectogenic potential in a penile erection test in rats and anesthetized dogs. In this study, we investigated the mechanism of its erectogenic activity by measuring the activity of DA-8159 against a various PDE isozymes and assessing cGMP and cAMP formation in a rabbit corpus cavernosum in vitro. DA-8159 inhibited the PDE 5 activity in rabbit and human platelets, which the IC50 was 5.84 +/- 1.70 nM and 8.25 +/- 2.90 nM, respectively. The IC50 of DA-8159 on PDE 1, PDE 2, PDE 3 and PDE 6 were 870+/- 57.4 nM, 101 +/- 15 microM, 52.0 +/- 3.53 microM and 53.3 +/- 2.47 nM, respectively. This suggests that DA-8159 is a potent, highly selective, competitive inhibitor of PDE 5-catalyzed cGMP hydrolysis. The rates of cGMP hydrolysis catalyzed by human platelets-derived PDE 5 as a function of the cGMP concentration (5-100 nM) and two-fixed DA-8159 concentration (11.3 and 18.8 nM) were investigated in order to characterize the mode of PDE 5 inhibition by DA-8159. DA-8159 increased the apparent Km value for cGMP hydrolysis but had no effect on the apparent Vmax, indicating a competitive mode of inhibition. DA-8159 increased the cGMP concentrations in the rabbit corpus cavernosum dose dependently. In the presence of sodium nitroprusside (SNP), DA-8159 significantly stimulated the accumulation of cGMP when compared to the control level. This indicated that the enhancement of a penile erection by DA-8159 involved the relaxation of the cavernosal smooth muscle by NO-stimulated cGMP accumulation. In conclusion, DA-8159 is a selective inhibitor of PDE 5-catalyzed cGMP hydrolysis and the enhancement of a penile erection by DA-8159 is mediated by the relaxation of the cavernosal smooth muscle by the NO-stimulated cGMP accumulation.
Collapse
Affiliation(s)
- Hyounmie Doh
- Research Laboratories, Dong-A Pharm. Co. Ltd. 47-5, Sanggal, Kiheung, Yongin, Kyunggi 449-900, Korea
| | | | | | | | | | | | | |
Collapse
|
18
|
Murthy KS, Zhou H, Makhlouf GM. PKA-dependent activation of PDE3A and PDE4 and inhibition of adenylyl cyclase V/VI in smooth muscle. Am J Physiol Cell Physiol 2002; 282:C508-17. [PMID: 11832336 DOI: 10.1152/ajpcell.00373.2001] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Regulation of adenylyl cyclase type V/VI and cAMP-specific, cGMP-inhibited phosphodiesterase (PDE) 3 and cAMP-specific PDE4 by cAMP-dependent protein kinase (PKA) and cGMP-dependent protein kinase (PKG) was examined in gastric smooth muscle cells. Expression of PDE3A but not PDE3B was demonstrated by RT-PCR and Western blot. Basal PDE3 and PDE4 activities were present in a ratio of 2:1. Forskolin, isoproterenol, and the PKA activator 5,6-dichloro-1-beta-D-ribofuranosyl benzimidazole 3',5'-cyclic monophosphate, SP-isomer, stimulated PDE3A phosphorylation and both PDE3A and PDE4 activities. Phosphorylation of PDE3A and activation of PDE3A and PDE4 were blocked by the PKA inhibitors [protein kinase inhibitor (PKI) and H-89] but not by the PKG inhibitor (KT-5823). Sodium nitroprusside inhibited PDE3 activity and augmented forskolin- and isoproterenol-stimulated cAMP levels; PDE3 inhibition was reversed by blockade of cGMP synthesis. Forskolin stimulated adenylyl cyclase phosphorylation and activity; PKI blocked phosphorylation and enhanced activity. Stimulation of cAMP and inhibition of inositol 1,4,5-trisphosphate-induced Ca(2+) release and muscle contraction by isoproterenol were augmented additively by PDE3 and PDE4 inhibitors. The results indicate that PKA regulates cAMP levels in smooth muscle via stimulatory phosphorylation of PDE3A and PDE4 and inhibitory phosphorylation of adenylyl cyclase type V/VI. Concurrent generation of cGMP inhibits PDE3 activity and augments cAMP levels.
Collapse
Affiliation(s)
- Karnam S Murthy
- Departments of Physiology and Medicine, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA 23298, USA.
| | | | | |
Collapse
|
19
|
Laliberté F, Liu S, Gorseth E, Bobechko B, Bartlett A, Lario P, Gresser MJ, Huang Z. In vitro PKA phosphorylation-mediated human PDE4A4 activation. FEBS Lett 2002; 512:205-8. [PMID: 11852080 DOI: 10.1016/s0014-5793(02)02259-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The PDE4 catalytic machinery comprises, in part, two divalent cations in a binuclear motif. Here we report that PDE4A4 expressed in Sf9 cells exhibits a biphasic Mg(2+) dose-response (EC(50) of 0.15 and >10 mM) in catalyzing cAMP hydrolysis. In vitro phosphorylation of PDE4A4 by the PKA-catalytic subunit increases the enzyme's sensitivity to Mg(2+), leading to 4-fold increased cAMP hydrolysis without affecting its K(m). The phosphorylation also increases the potencies of (R)- and (S)-rolipram without affecting CDP-840 and SB-207499. The results support that modulating the cofactor binding affinity of PDE4 represents a mechanism for regulating its activity.
Collapse
Affiliation(s)
- France Laliberté
- Department of Biochemistry and Molecular Biology, Merck Frosst Centre for Therapeutical Research, P.O. Box 1005, Pointe Claire, H9R4P8, Dorval, QC, Canada
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Murthy KS. Activation of phosphodiesterase 5 and inhibition of guanylate cyclase by cGMP-dependent protein kinase in smooth muscle. Biochem J 2001; 360:199-208. [PMID: 11696008 PMCID: PMC1222218 DOI: 10.1042/0264-6021:3600199] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The regulation of cGMP-specific phosphodiesterase (PDE) 5 and soluble guanylate cyclase (GC) by cGMP- and cAMP-dependent protein kinases (PKG and PKA respectively) was examined in gastric smooth muscle. The NO donor, sodium nitroprusside (SNP), stimulated PDE5 phosphorylation and activity, which was blocked by the selective PKG inhibitor, KT5823, resulting in an elevation of cGMP levels. Activation of PKA either directly by Sp-5,6-dichloro-1-beta-d-ribofuranosyl benzimidazole 3',5'-cyclic monophosphothioate, or via isoproterenol- and forskolin-dependent increase in cAMP, also caused an increase in PDE5 phosphorylation and activity, but only in the presence of cGMP; consistent with the dependence of PDE5 phosphorylation and activity on cGMP binding to allosteric sites in the regulatory domain of PDE5. The selective PKA inhibitors, myristoylated protein kinase inhibitor and H-89, blocked the increase in PDE5 phosphorylation and activity induced by PKA. SNP also stimulated soluble GC phosphorylation and activity. KT5823 abolished phosphorylation and augmented soluble GC activity, implying feedback inhibition of soluble GC by PKG-dependent phosphorylation. Phosphorylation by PKG was direct and could be induced in vitro. Activation of PKA had no effect on soluble GC. Thus cGMP levels are regulated by PKG- and PKA-dependent activation of PDE5 and PKG-specific inhibition of soluble GC.
Collapse
Affiliation(s)
- K S Murthy
- Department of Physiology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA 23298-0711, USA.
| |
Collapse
|
21
|
Oki N, Takahashi SI, Hidaka H, Conti M. Short term feedback regulation of cAMP in FRTL-5 thyroid cells. Role of PDE4D3 phosphodiesterase activation. J Biol Chem 2000; 275:10831-7. [PMID: 10753877 DOI: 10.1074/jbc.275.15.10831] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Together with a transient accumulation of intracellular cAMP, thyrotropin (TSH) stimulation of the FRTL-5 thyroid cell induces phosphorylation and activation of a cAMP-specific phosphodiesterase (PDE4D3). Here we have investigated the impact of PDE4D3 activation on hormone responsiveness. Stimulation of FRTL-5 cells with TSH caused an increase in PDE activity within 3 min, with a maximal stimulation reached after 5 min. Preincubation with the protein kinase A (PKA) inhibitor H89 or (R(p))-cAMPS, but not with the inactive isomer H85, blocked this activation. Preincubation with PKA inhibitors also blocked the shift in mobility of the PDE4D3 protein. Under these conditions, H89, but not H85, potentiated the cAMP accumulation induced by TSH. Incubation of FRTL-5 cells with the PKA activator 8-(4-chlorophenylthio)adenosine-cAMP caused an increase in PDE activity and a decrease in the endogenous cAMP, confirming the presence of a PKA-PDE feedback loop. MA-10 Leydig tumor cells stably transfected with either a wild type PDE4D3 or a PDE4D3 with mutations in the PKA phosphorylation sites showed an increase in PDE activity when compared with control cells. Human choriogonadotropin or Bt(2)cAMP treatment induced a stimulation of PDE activity in cells transfected with wild type PDE4D3, whereas the activation was absent in mutant- and control-transfected cells. The increase in cAMP accumulation elicited by human choriogonadotropin was reduced in cells transfected with the wild type PDE4D3, but not in cells transfected with the mutant PDE. Rolipram, a specific inhibitor of PDE4, restored the cAMP accumulation in the PDE4D3-transfected cells. These data provide evidence that a rapid activation of PDE4D3 is one of the mechanisms determining the intensity of the cAMP signal.
Collapse
Affiliation(s)
- N Oki
- Division of Reproductive Biology, Department of Gynecology, Stanford University School of Medicine, Stanford, California 94305-5317, USA
| | | | | | | |
Collapse
|
22
|
Lim J, Pahlke G, Conti M. Activation of the cAMP-specific phosphodiesterase PDE4D3 by phosphorylation. Identification and function of an inhibitory domain. J Biol Chem 1999; 274:19677-85. [PMID: 10391907 DOI: 10.1074/jbc.274.28.19677] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Splicing variants of type 4 phosphodiesterases (PDE4) are regulated by phosphorylation. In these proteins, a conserved region is located between the amino-terminal domain, which is the target for phosphorylation, and the catalytic domain. Previous studies have indicated that nested deletions encompassing this region cause an increase in catalytic activity, suggesting this domain exerts an inhibitory constraint on catalysis. Here, we have further investigated the presence and function of this domain. A time-dependent increase in hydrolytic activity was observed when PDE4D3 from FRTL-5 cells was incubated with the endoproteinase Lys-C. The activation was abolished by protease inhibitors and was absent when a phosphorylated enzyme was used. Western blot analysis with PDE4D-specific antibodies indicated the Lys-C treatment separates the catalytic domain of PDE4D3 from the inhibitory domain. Incubation with antibodies recognizing an epitope within this domain caused a 3- to 4-fold increase in activity of native or recombinant PDE4D3. Again, PDE activation by these antibodies had properties similar to, and not additive with, the activation by protein kinase A phosphorylation. An interaction between the inhibitory domain and both regulatory and catalytic domains of PDE4D3 was detected by the yeast two-hybrid system. Mutations of Ser54 to Ala in the regulatory domain decreased or abolished this interaction, whereas mutations of Ser54 to the negatively charged Asp strengthened it. These data strongly support the hypothesis that an inhibitory domain is present in PDE4D and that phosphorylation of the regulatory domain causes activation of the enzyme by modulating the interaction between inhibitory and catalytic domains.
Collapse
Affiliation(s)
- J Lim
- Division of Reproductive Biology, Department of Gynecology and Obstetrics, Stanford University School of Medicine, Stanford California 94305-5317, USA
| | | | | |
Collapse
|
23
|
Baroja ML, Cieslinski LB, Torphy TJ, Wange RL, Madrenas J. Specific CD3ε Association of a Phosphodiesterase 4B Isoform Determines Its Selective Tyrosine Phosphorylation After CD3 Ligation. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.4.2016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
cAMP-specific phosphodiesterases (PDE) comprise an extensive family of enzymes that control intracellular levels of cAMP and thus regulate T cell responses. It is not known how the function of these enzymes is altered by TCR engagement. We have examined this issue by studying one of the PDE isozymes (PDE4B). PDE4B RNA and protein were detected in resting PBLs, and the levels of PDE4B protein increased with cell cycling. In peripheral blood T cells, two previously reported PDE4B isoforms could be detected: one was 75–80 kDa (PDE4B1) and the other was 65–67 kDa (PDE4B2). These two isoforms differed in their N-terminal sequence, with the presence of four potential myristylation sites in the PDE4B2 that are absent in PDE4B1. Consequently, only PDE4B2 was found in association with the CD3ε chain of the TCR. In addition, although both isoforms were phosphorylated in tyrosines in pervanadate-stimulated T cells, only the TCR-associated PDE4B2 was tyrosine-phosphorylated following CD3 ligation. The kinetics of phosphorylation of TCR-associated PDE4B2 correlated with changes in cAMP levels, suggesting that tyrosine phosphorylation of the TCR-associated PDE4B isoform upon engagement of this receptor may be an important regulatory step in PDE4B function. Our results reveal that selectivity of PDE4B activation can be achieved by differential receptor association and phosphorylation of the alternatively spliced forms of this PDE.
Collapse
Affiliation(s)
- Miren L. Baroja
- *Transplantation and Immunobiology Group, John P. Robarts Research Institute, and
| | - Lenora B. Cieslinski
- ‡Division of Pharmacological Sciences, SmithKline Beecham Pharmaceuticals, King of Prussia, PA 19406; and
| | - Theodore J. Torphy
- ‡Division of Pharmacological Sciences, SmithKline Beecham Pharmaceuticals, King of Prussia, PA 19406; and
| | - Ronald L. Wange
- §Gerontology Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | - Joaquín Madrenas
- *Transplantation and Immunobiology Group, John P. Robarts Research Institute, and
- †Departments of Microbiology and Immunology, and Medicine, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
24
|
Abstract
Cyclic adenosine monophosphate (cAMP) is a ubiquitous second messenger produced in cells in response to hormones and nutrients. The production of cAMP is dependent upon the actions of many different proteins that affect its synthesis and degradation. An important function of cAMP is to activate the phosphorylating enzyme, protein kinase A. The key roles of cAMP and protein kinase A in the phosphorylation and regulation of enzyme substrates involved in intermediary metabolism are well known. A newly discovered role for protein kinase A is in the phosphorylation and activation of transcription factors that are critical for the control of the transcription of genes in response to elevated levels of cAMP.
Collapse
Affiliation(s)
- P B Daniel
- Laboratory of Molecular Endocrinology, Massachusetts General Hospital, Boston 02114, USA
| | | | | |
Collapse
|