1
|
Abstract
Protein kinase C (PKC) is a family of phospholipid-dependent serine/threonine kinases, which can be further classified into three PKC isozymes subfamilies: conventional or classic, novel or nonclassic, and atypical. PKC isozymes are known to be involved in cell proliferation, survival, invasion, migration, apoptosis, angiogenesis, and drug resistance. Because of their key roles in cell signaling, PKC isozymes also have the potential to be promising therapeutic targets for several diseases, such as cardiovascular diseases, immune and inflammatory diseases, neurological diseases, metabolic disorders, and multiple types of cancer. This review primarily focuses on the activation, mechanism, and function of PKC isozymes during cancer development and progression.
Collapse
|
2
|
Barbosa C, Romão L. Translation of the human erythropoietin transcript is regulated by an upstream open reading frame in response to hypoxia. RNA (NEW YORK, N.Y.) 2014; 20:594-608. [PMID: 24647661 PMCID: PMC3988562 DOI: 10.1261/rna.040915.113] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 01/10/2014] [Indexed: 05/22/2023]
Abstract
Erythropoietin (EPO) is a key mediator hormone for hypoxic induction of erythropoiesis that also plays important nonhematopoietic functions. It has been shown that EPO gene expression regulation occurs at different levels, including transcription and mRNA stabilization. In this report, we show that expression of EPO is also regulated at the translational level by an upstream open reading frame (uORF) of 14 codons. As judged by comparisons of protein and mRNA levels, the uORF acts as a cis-acting element that represses translation of the main EPO ORF in unstressed HEK293, HepG2, and HeLa cells. However, in response to hypoxia, this repression is significantly released, specifically in HeLa cells, through a mechanism that involves processive scanning of ribosomes from the 5' end of the EPO transcript and enhanced ribosome bypass of the uORF. In addition, we demonstrate that in HeLa cells, hypoxia induces the phosphorylation of eukaryotic translation initiation factor 2α (eIF2α) concomitantly with a significant increase of EPO protein synthesis. These findings provide a framework for understanding that production of high levels of EPO induced by hypoxia also involves regulation at the translational level.
Collapse
|
3
|
Age-dependent decrease in chaperone activity impairs MANF expression, leading to Purkinje cell degeneration in inducible SCA17 mice. Neuron 2014; 81:349-65. [PMID: 24462098 DOI: 10.1016/j.neuron.2013.12.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2013] [Indexed: 12/14/2022]
Abstract
Although protein-misfolding-mediated neurodegenerative diseases have been linked to aging, how aging contributes to selective neurodegeneration remains unclear. We established spinocerebellar ataxia 17 (SCA17) knockin mice that inducibly express one copy of mutant TATA box binding protein (TBP) at different ages by tamoxifen-mediated Cre recombination. We find that more mutant TBP accumulates in older mouse and that this accumulation correlates with age-related decreases in Hsc70 and chaperone activity. Consistently, older SCA17 mice experienced earlier neurological symptom onset and more severe Purkinje cell degeneration. Mutant TBP shows decreased association with XBP1s, resulting in the reduced transcription of mesencephalic astrocyte-derived neurotrophic factor (MANF), which is enriched in Purkinje cells. Expression of Hsc70 improves the TBP-XBP1s interaction and MANF transcription, and overexpression of MANF ameliorates mutant TBP-mediated Purkinje cell degeneration via protein kinase C (PKC)-dependent signaling. These findings suggest that the age-related decline in chaperone activity affects polyglutamine protein function that is important for the viability of specific types of neurons.
Collapse
|
4
|
Di Baldassarre A, Di Rico M, Di Noia A, Bonfini T, Iacone A, Marchisio M, Miscia S, Alfani E, Migliaccio AR, Stamatoyannopoulos G, Migliaccio G. Protein kinase Calpha is differentially activated during neonatal and adult erythropoiesis and favors expression of a reporter gene under the control of the (A)gamma globin-promoter in cellular models of hemoglobin switching. J Cell Biochem 2007; 101:411-24. [PMID: 17212360 DOI: 10.1002/jcb.21189] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
PKCalpha was found to be expressed (mRNA and protein) throughout the in vitro maturation of primary human erythroblasts but its activity (phosphorylation levels and nuclear localization) was consistently higher in cells derived from human neonatal rather than adult blood. Since the gamma/gamma + beta globin expression ratio represented the major difference between neonatal and adult erythroblasts (58 +/- 12 vs. 7 +/- 3, respectively), we tested the hypothesis that PKCalpha might affect gamma-globin expression by measuring the levels of (A)gamma- or beta-promoter-driven reporter activity in erythroid cells stably (GM979) or transiently (K562, primary adult and neonatal erythroblasts) transfected with a dual microLCRbetaprRluc(A)gammaprFluc reporter in the presence of transient expression of either the constitutively active (sPKCalpha) or catalytically inactive (iPKCalpha) PKCalpha. As further control, GM979 cells were incubated with the PKC inhibitor rottlerin (30 microM). In all the cells analyzed, sPKCalpha significantly increased (by two- to sixfold) the levels of luciferase activity driven by the (A)gamma-promoter and the (A)gamma-F/((A)gamma-F + 2beta-R) expression ratio. In GM979 cells, rottlerin inhibited (by 50%) the (A)gamma-driven luciferase activity and the (A)gamma-F/((A)gamma-F + 2beta-R) expression ratio. These results suggest that different PKC isoforms may exert ontogenetic-specific functions in erythropoiesis and that modulation of PKCalpha might affect the activity of (A)gamma-promoter-driven reporters.
Collapse
|
5
|
Osada-Oka M, Takahashi M, Akiba S, Sato T. Involvement of Ca2+-independent phospholipase A2 in the translocation of hypoxia-inducible factor-1α to the nucleus under hypoxic conditions. Eur J Pharmacol 2006; 549:58-62. [PMID: 16979159 DOI: 10.1016/j.ejphar.2006.08.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2006] [Revised: 08/12/2006] [Accepted: 08/18/2006] [Indexed: 01/01/2023]
Abstract
We investigated the role of Ca2+-independent phospholipase A2 (iPLA2) as well as cytosolic phospholipase A2 (cPLA2) in hypoxia-inducible factor-1 (HIF-1)-dependent gene expression. An inhibitor of both iPLA2 and cPLA2, methyl arachidonyl fluorophosphonate (MAFP), prevented hypoxia-induced erythropoietin mRNA expression without affecting HIF-1alpha accumulation in Hep3B cells. The DNA-binding of HIF-1alpha was suppressed by MAFP as confirmed by luciferase reporter gene assays with the hypoxia response element. Translocation of HIF-1alpha to the nucleus assessed by its presence in the nuclear extracts of cells exposed to hypoxia, was diminished by MAFP. However, hypoxia-dependent gene expression was not affected in mesangial cells obtained from cPLA2alpha null mice. Furthermore, a specific iPLA2 inhibitor, bromoenol lactone, suppressed erythropoietin mRNA expression and HIF-1alpha translocation to the nucleus under hypoxic conditions. Thus, iPLA2, but not cPLA2alpha, may play an important role in regulating the transport of HIF-1alpha to the nucleus.
Collapse
MESH Headings
- Active Transport, Cell Nucleus/drug effects
- Animals
- Arachidonic Acids/pharmacology
- Calcium/metabolism
- Cell Hypoxia/physiology
- Cell Line, Tumor
- Cell Nucleus/drug effects
- Cell Nucleus/metabolism
- Cells, Cultured
- Cytosol/enzymology
- Dose-Response Relationship, Drug
- Erythropoietin/genetics
- Erythropoietin/metabolism
- Gene Expression/genetics
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Immunoblotting
- Luciferases/genetics
- Luciferases/metabolism
- Mesangial Cells/cytology
- Mesangial Cells/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Organophosphonates/pharmacology
- Phospholipases A/genetics
- Phospholipases A/metabolism
- Phospholipases A2
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Vascular Endothelial Growth Factor A/genetics
- Vascular Endothelial Growth Factor A/metabolism
Collapse
Affiliation(s)
- Mayuko Osada-Oka
- Department of Pathological Biochemistry, Kyoto Pharmaceutical University, Kyoto, Japan
| | | | | | | |
Collapse
|
6
|
Suliman HB, Ali M, Piantadosi CA. Superoxide dismutase-3 promotes full expression of the EPO response to hypoxia. Blood 2004; 104:43-50. [PMID: 15016652 DOI: 10.1182/blood-2003-07-2240] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractExtracellular superoxide dismutase (SOD3) is the primary extracellular enzymatic scavenger of superoxide (\batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(^{{\cdot}}\mathrm{O}_{2}^{-}\) \end{document}). SOD3's expression is highest in the kidney, but its distribution and biologic functions there are unknown. To investigate the function of renal SOD3, we colocalized it with erythropoietin (EPO) to proximal tubules using in situ hybridization and immunohistochemistry. We then exposed wild-type (Wt) and SOD3 knock-out (KO) mice to hypoxia and found a late hematocrit response in the KO strain. EPO mRNA expression was attenuated in KO mice during the first 6 hours of hypoxia preceded at 2 hours by less accumulation of nuclear hypoxia-inducible transcription factor 1 α (HIF-1α) protein. Meanwhile KO mice exposed to hypoxia showed increases in renal mRNA for superoxide-producing nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX4) and early significant increases in glutathione disulfide (GSSG)/glutathione (GSH), a marker of oxidative stress, compared with Wt mice. Plasma nitrite/nitrate and renal 3-nitrotyrosine (3-NTyr), indicating peroxynitrite formation, increased later in hypoxia, and renal endothelial nitric oxide synthase protein induction was similar in both strains. These data show that hypoxic activation of HIF-1α and its target gene EPO in mouse kidney is regulated closely by the oxidant/antioxidant equilibrium involving SOD3, thus identifying renal SOD3 as a regulatory element in the body's innate adaptation to hypoxia.
Collapse
Affiliation(s)
- Hagir B Suliman
- Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
7
|
Lahn M, Paterson BM, Sundell K, Ma D. The role of protein kinase C-alpha (PKC-alpha) in malignancies of the gastrointestinal tract. Eur J Cancer 2004; 40:10-20. [PMID: 14687784 DOI: 10.1016/j.ejca.2003.08.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Drugs specifically designed to block cellular signalling proteins are currently evaluated as a new way to treat gastrointestinal tumours. One such "new targeted agent" is aprinocarsen, an antisense oligonucleotide that specifically blocks the mRNA of protein kinase C-alpha (PKC-alpha). Blocking PKC-alpha, an important cellular signalling molecule associated with tumour growth, is anticipated to result in tumour cell arrest and achieve clinical benefits. However, it is not known which patients may benefit most from a specific inhibition of PKC-alpha. Past experience with other novel targeted agents suggests that expression of the target molecule is an important factor for the success of such a specific therapy. Therefore, reviewing the specific role of PKC-alpha in various gastrointestinal tumours may contribute to focus the clinical development of selective or specific PKC-alpha inhibitors, such as aprinocarsen, on those patients with a distinctive PKC-alpha expression pattern.
Collapse
Affiliation(s)
- M Lahn
- Divison of Oncology Product Development, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA.
| | | | | | | |
Collapse
|
8
|
Figueroa YG, Chan AK, Ibrahim R, Tang Y, Burow ME, Alam J, Scandurro AB, Beckman BS. NF-kappaB plays a key role in hypoxia-inducible factor-1-regulated erythropoietin gene expression. Exp Hematol 2002; 30:1419-27. [PMID: 12482504 DOI: 10.1016/s0301-472x(02)00934-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVE The aim of this study was to further define the signal transduction pathways leading to hypoxia-inducible factor-1 (HIF-1) erythropoietin (EPO) gene expression. MATERIALS AND METHODS Human hepatocellular carcinoma cells (Hep3B) were exposed to hypoxia (1% oxygen) and examined for mRNA expression, as well as gene transactivation with RT-PCR and luciferase reporter gene assays, respectively. RESULTS Treatment with LY294002 (a selective pharmacological inhibitor of phosphatidylinositol 3-kinase) significantly inhibited EPO protein and mRNA expression in Hep3B cells exposed to hypoxia for 24 hours, while treatment with PD098059 or SB203580 (selective pharmacological inhibitors of the MEK and p38 mitogen-activated protein kinase pathways, respectively) had no significant effects. The activity of AKT, a downstream target of PI3K, was increased by hypoxia and was also inhibited by LY294002. Genetic inhibition of AKT resulted in significant inhibition of NF-kappaB and HIF-1-mediated transactivation, as well as EPO gene expression, in response to hypoxia. Overexpression of constitutively active AKT resulted in increased NF-kappaB and HIF-1 transactivation. The selective inhibitor of NF-kappaB, pyrrolidine dithiocarbamate (PDTC), significantly blocked HIF-1 protein expression. Inhibition of NF-kappaB with a superrepressor dominant negative IkappaBalpha genetic construct also significantly blocked NF-kappaB and HIF-1 transactivation, as well as EPO gene expression. CONCLUSION We propose a key role for NF-kappaB in EPO gene regulation in response to hypoxia.
Collapse
Affiliation(s)
- Yanira G Figueroa
- Department of Pharmacology, Cancer Center, Tulane Health Sciences Center, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Mukundan H, Resta TC, Kanagy NL. 17Beta-estradiol decreases hypoxic induction of erythropoietin gene expression. Am J Physiol Regul Integr Comp Physiol 2002; 283:R496-504. [PMID: 12121863 DOI: 10.1152/ajpregu.00573.2001] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Exposure to chronic hypoxia induces erythropoietin (EPO) production to facilitate oxygen delivery to hypoxic tissues. Previous studies from our laboratory found that ovariectomy (OVX) exacerbates the polycythemic response to hypoxia and treatment with 17beta-estradiol (E2-beta) inhibits this effect. We hypothesized that E2-beta decreases EPO gene expression during hypoxia. Because E2-beta can induce nitric oxide (NO) production and NO can attenuate EPO synthesis, we further hypothesized that E2-beta inhibition of EPO gene expression is mediated by NO. These hypotheses were tested in OVX catheterized rats treated with E2-beta (20 microg/day) or vehicle for 14 days and exposed to 8 or 12 h of hypoxia (12% O(2)) or normoxia. We found that E2-beta treatment significantly decreased EPO synthesis and gene expression during hypoxia. E2-beta treatment did not induce endothelial NO synthase (eNOS) expression in the kidney but potentiated hypoxia-induced increases in plasma nitrates. We conclude that E2-beta decreases hypoxic induction of EPO. However, this effect does not appear to be related to changes in renal eNOS expression.
Collapse
Affiliation(s)
- Harshini Mukundan
- Vascular Physiology Group, Department of Cell Biology and Physiology, Health Sciences Center, University of New Mexico, Albuquerque, New Mexico 87131-5218, USA.
| | | | | |
Collapse
|
10
|
Zhu Y, Sun Y, Mao XO, Jin KL, Greenberg DA. Expression of poly(C)-binding proteins is differentially regulated by hypoxia and ischemia in cortical neurons. Neuroscience 2002; 110:191-8. [PMID: 11958862 DOI: 10.1016/s0306-4522(01)00522-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Hypoxia and ischemia regulate the expression of several important genes at the level of transcription and of mRNA stability. Two isoforms of a 40-kDa poly(C)-binding protein, previously identified as RNA-binding proteins, bind to a hypoxia-inducible protein-binding site in the 3'-untranslated region of erythropoietin and tyrosine hydroxylase mRNAs and regulate mRNA stability. To determine if poly(C)-binding proteins show changes in expression -- which might regulate mRNA stability -- in hypoxic or ischemic neuronal cells, we examined poly(C)-binding protein 1 and poly(C)-binding protein 2 expression in hypoxic cortical neuron cultures and in rat cerebral cortex after focal ischemia. Reverse transcription-polymerase chain reaction and western blotting showed hypoxic up-regulation of poly(C)-binding protein 1, and down-regulation of poly(C)-binding protein 2, mRNA and protein expression. Hypoxia-inducible expression of poly(C)-binding protein 1 was mediated by p38 mitogen-activated protein kinase, while hypoxia-reducible expression of poly(C)-binding protein 2 was mediated by protein kinase C. Immunostaining showed that poly(C)-binding protein 1, but not poly(C)-binding protein 2, expression was increased in the ischemic boundary zone (penumbra) of the frontal cortex after 90 min of ischemia, and persisted for at least 72 h after reperfusion. These results demonstrate that poly(C)-binding protein 1 and poly(C)-binding protein 2 in cortical neurons are differentially affected by hypoxic/ischemic insults, suggesting that there are functional differences between poly(C)-binding protein isoforms. Since we observed no poly(C)-binding protein expression in astroglia, alternative mRNA stability mechanisms may exist in these cells.
Collapse
Affiliation(s)
- Y Zhu
- Buck Institute for Age Research, 8001 Redwood Boulevard, Novato, CA 94945-0638, USA
| | | | | | | | | |
Collapse
|
11
|
Schrenk K, Kapfhammer JP, Metzger F. Altered dendritic development of cerebellar Purkinje cells in slice cultures from protein kinase Cgamma-deficient mice. Neuroscience 2002; 110:675-89. [PMID: 11934475 DOI: 10.1016/s0306-4522(01)00559-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein kinase C (PKC) is a key molecule for the expression of long-term depression at the parallel fiber-Purkinje cell synapse in the cerebellum, a well known model for synaptic plasticity. We have recently shown that activity of PKC also profoundly affects the dendritic morphology of Purkinje cells in rat cerebellar slice cultures suggesting that synaptic efficacy and dendritic development may be controlled by similar intracellular signalling pathways. Here we have analyzed the role of the gamma-isoform of protein kinase C (PKCgamma), which is strongly and specifically expressed in Purkinje cells, during dendritic development. After pharmacological treatment with PKC modulators, phosphorylation of PKCgamma at serine 660 was altered in cerebellar slices suggesting that a change of PKCgamma activity by these treatments was taking place within the Purkinje cells. In PKCgamma-deficient mice, Purkinje cell dendritic trees were enlarged and had an increased number of branching points compared to wild-type mice indicating a role for the PKCgamma isoform as a negative regulator of dendritic growth and branching. Furthermore, the branching-stimulating effects of the PKC inhibitors 2-[1-(3-dimethylaminopropyl)indol-3-yl]-3-(indol-3-yl)maleimide and Gö6976 found in wild-type cultures were abolished in the absence of PKCgamma. In contrast, the strong inhibitory effect on dendritic growth by the PKC activator phorbol-12-myristate-13-acetate (PMA) did not require the presence of the PKCgamma isoform since it was still present in the cultures of PKCgamma-deficient mice. Our results clearly demonstrate an involvement of PKCgamma in Purkinje cell dendritic differentiation in cerebellar slice cultures.
Collapse
Affiliation(s)
- K Schrenk
- AG Neuronale Plastizität, Anatomisches Institut I, Universität Freiburg, Germany
| | | | | |
Collapse
|
12
|
Matsuyama M, Yamazaki O, Horii K, Higaki I, Kawai S, Mikami S, Higashino M, Oka H, Nakai T, Inoue T. Erythrocytosis caused by an erythropoietin-producing hepatocellular carcinoma. J Surg Oncol 2000; 75:197-202. [PMID: 11088052 DOI: 10.1002/1096-9098(200011)75:3<197::aid-jso8>3.0.co;2-i] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A case of erythrocytosis caused by a hepatocellular carcinoma (HCC) that produced erythropoietin (Epo) is described. A 64-year-old man, with a huge HCC tumor in the right lobe of the liver, showed a high concentration of hemoglobin and increased levels of serum Epo, alpha-fetoprotein (AFP), and protein induced by vitamin K absence II (PIVKA-II). Right lobectomy of the liver was performed. Histological findings of the specimen showed a moderately differentiated HCC. The existence of Epo was confirmed immunohistochemically only in the tumor tissue and not in the normal liver tissue. Erythrocytosis disappeared and the serum levels of Epo, AFP, and PIVKA-II returned to the normal range after the operation. Within 2 months after the operation, recurrent tumors appeared in the remnant liver, and the patient died 13 months after the operation.
Collapse
Affiliation(s)
- M Matsuyama
- Department of Surgery, Osaka City General Hospital, Osaka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|