1
|
Tintinger GR, Theron AJ, Steel HC, Cholo MC, Nel JG, Feldman C, Anderson R. Submission for Special Issue: The Role of Platelet Activation in the Pathophysiology of HIV, Tuberculosis, and Pneumococcal Disease. Bedaquiline Suppresses ADP-Mediated Activation of Human Platelets In Vitro via Interference With Phosphatidylinositol 3-Kinase. Front Immunol 2021; 11:621148. [PMID: 33717055 PMCID: PMC7952968 DOI: 10.3389/fimmu.2020.621148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 12/23/2020] [Indexed: 11/13/2022] Open
Abstract
Although bedaquiline has advanced the treatment of multidrug-resistant tuberculosis (TB), concerns remain about the cardiotoxic potential of this agent, albeit by unexplored mechanisms. Accordingly, we have investigated augmentation of the reactivity of human platelets in vitro as a potential mechanism of bedaquiline-mediated cardiotoxicity. Platelet-rich plasma (PRP) or isolated cells prepared from the blood of healthy, adult humans were treated with bedaquiline (0.625–10 µg/ml), followed by activation with adenosine 5’-diphosphate (ADP), thrombin or the thromboxane A2 receptor agonist (U46619). Expression of platelet CD62P (P-selectin), platelet aggregation, Ca2+ fluxes and phosphorylation of Akt1 were measured using flow cytometry, spectrophotometry, fluorescence spectrometry, and by ELISA procedures, respectively. Exposure to bedaquiline caused dose-related inhibition of ADP-activated, but not thrombin- or U46619-activated, expression of CD62P by platelets, achieving statistical significance at a threshold concentration of 5 µg/ml and was paralleled by inhibition of aggregation and Ca2+ mobilization. These ADP-selective inhibitory effects of bedaquiline on platelet activation were mimicked by wortmannin, an inhibitor of phosphatidylinositol 3-kinase (PI3-K), implicating PI3-K as being a common target of both agents, a contention that was confirmed by the observed inhibitory effects of bedaquiline on the phosphorylation of Akt1 following activation of platelets with ADP. These apparent inhibitory effects of bedaquiline on the activity of PI3-K may result from the secondary cationic amphiphilic properties of this agent. If operative in vivo, these anti-platelet effects of bedaquiline may contribute to ameliorating the risk of TB-associated cardiovascular disease, but this remains to be explored in the clinical setting.
Collapse
Affiliation(s)
- Gregory R Tintinger
- Department of Internal Medicine, Steve Biko Academic Hospital and Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Annette J Theron
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Helen C Steel
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Moloko C Cholo
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Jan G Nel
- Department of Haematology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.,Tshwane Academic Division, National Health Laboratory Service of South Africa, Pretoria, South Africa
| | - Charles Feldman
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Ronald Anderson
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
2
|
Hamel-Côté G, Lapointe F, Véronneau S, Mayhue M, Rola-Pleszczynski M, Stankova J. Regulation of platelet-activating factor-mediated interleukin-6 promoter activation by the 48 kDa but not the 45 kDa isoform of protein tyrosine phosphatase non-receptor type 2. Cell Biosci 2019; 9:51. [PMID: 31289638 PMCID: PMC6593612 DOI: 10.1186/s13578-019-0316-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/20/2019] [Indexed: 12/20/2022] Open
Abstract
Background An underlying state of inflammation is thought to be an important cause of cardiovascular disease. Among cells involved in the early steps of atherosclerosis, monocyte-derived dendritic cells (Mo-DCs) respond to inflammatory stimuli, including platelet-activating factor (PAF), by the induction of various cytokines, such as interleukin 6 (IL-6). PAF is a potent phospholipid mediator involved in both the onset and progression of atherosclerosis. It mediates its effects by binding to its cognate G-protein coupled receptor, PAFR. Activation of PAFR-induced signaling pathways is tightly coordinated to ensure specific cell responses. Results Here, we report that PAF stimulated the phosphatase activity of both the 45 and 48 kDa isoforms of the protein tyrosine phosphatase non-receptor type 2 (PTPN2). However, we found that only the 48 kDa PTPN2 isoform has a role in PAFR-induced signal transduction, leading to activation of the IL-6 promoter. In luciferase reporter assays, expression of the 48 kDa, but not the 45 kDa, PTPN2 isoform increased human IL-6 (hIL-6) promoter activity by 40% after PAF stimulation of HEK-293 cells, stably transfected with PAFR (HEK-PAFR). Our results suggest that the differential localization of the PTPN2 isoforms and the differences in PAF-induced phosphatase activation may contribute to the divergent modulation of PAF-induced IL-6 promoter activation. The involvement of PTPN2 in PAF-induced IL-6 expression was confirmed in immature Mo-DCs (iMo-DCs), using siRNAs targeting the two isoforms of PTPN2, where siRNAs against the 48 kDa PTPN2 significantly inhibited PAF-stimulated IL-6 mRNA expression. Pharmacological inhibition of several signaling pathways suggested a role for PTPN2 in early signaling events. Results obtained by Western blot confirmed that PTPN2 increased the activation of the PI3K/Akt pathway via the modulation of protein kinase D (PKD) activity. WT PKD expression counteracted the effect of PTPN2 on PAF-induced IL-6 promoter transactivation and phosphorylation of Akt. Using siRNAs targeting the individual isoforms of PTPN2, we confirmed that these pathways were also active in iMo-DCs. Conclusion Taken together, our data suggest that PTPN2, in an isoform-specific manner, could be involved in the positive regulation of PI3K/Akt activation, via the modulation of PKD activity, allowing for the maximal induction of PAF-stimulated IL-6 mRNA expression.
Collapse
Affiliation(s)
- Geneviève Hamel-Côté
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC Canada
| | - Fanny Lapointe
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC Canada
| | - Steeve Véronneau
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC Canada
| | - Marian Mayhue
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC Canada
| | - Marek Rola-Pleszczynski
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC Canada
| | - Jana Stankova
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC Canada
| |
Collapse
|
3
|
Hamel-Côté G, Lapointe F, Gendron D, Rola-Pleszczynski M, Stankova J. Regulation of platelet-activating factor-induced interleukin-8 expression by protein tyrosine phosphatase 1B. Cell Commun Signal 2019; 17:21. [PMID: 30832675 PMCID: PMC6399872 DOI: 10.1186/s12964-019-0334-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 02/22/2019] [Indexed: 12/21/2022] Open
Abstract
Background Platelet-activating factor (PAF) is a potent lipid mediator whose involvement in the onset and progression of atherosclerosis is mediated by, among others, the modulation of cytokine expression patterns. The presence of multiple potential protein-tyrosine phosphatase (PTP) 1B substrates in PAF receptor signaling pathways brought us to investigate its involvement in PAF-induced cytokine expression in monocyte-derived dendritic cells (Mo-DCs) and to study the pathways involved in this modulation. Methods We used in-vitro-matured human dendritic cells and the HEK-293 cell line in our studies. PTP1B inhibition was though siRNAs and a selective inhibitor. Cytokine expression was studied with RT-PCR, luciferase assays and ELISA. Phosphorylation status of kinases and transcription factors was studied with western blotting. Results Here, we report that PTP1B was involved in the modulation of cytokine expression in PAF-stimulated Mo-DCs. A study of the down-regulation of PAF-induced IL-8 expression, by PTP1B, showed modulation of PAF-induced transactivation of the IL-8 promoter which was dependent on the presence of the C/EBPß -binding site. Results also suggested that PTP1B decreased PAF-induced IL-8 production by a glycogen synthase kinase (GSK)-3-dependent pathway via activation of the Src family kinases (SFK). These kinases activated an unidentified pathway at early stimulation times and the PI3K/Akt signaling pathway in a later phase. This change in GSK-3 activity decreased the C/EBPß phosphorylation levels of the threonine 235, a residue whose phosphorylation is known to increase C/EBPß transactivation potential, and consequently modified IL-8 expression. Conclusion The negative regulation of GSK-3 activity by PTP1B and the consequent decrease in phosphorylation of the C/EBPß transactivation domain could be an important negative feedback loop by which cells control their cytokine production after PAF stimulation. Electronic supplementary material The online version of this article (10.1186/s12964-019-0334-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Geneviève Hamel-Côté
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, J1H 4N5, Canada
| | - Fanny Lapointe
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, J1H 4N5, Canada
| | - Daniel Gendron
- Agriculture and Agri-Food Canada, Dairy and Swine Research and Development Center, 2000 College Street, Sherbrooke, QC, Canada
| | - Marek Rola-Pleszczynski
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, J1H 4N5, Canada
| | - Jana Stankova
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, J1H 4N5, Canada.
| |
Collapse
|
4
|
Guidetti GF, Canobbio I, Torti M. PI3K/Akt in platelet integrin signaling and implications in thrombosis. Adv Biol Regul 2015; 59:36-52. [PMID: 26159296 DOI: 10.1016/j.jbior.2015.06.001] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 06/04/2015] [Accepted: 06/04/2015] [Indexed: 01/09/2023]
Abstract
Blood platelets are anucleated circulating cells that play a critical role in hemostasis and are also implicated in arterial thrombosis, a major cause of death worldwide. The biological function of platelets strongly relies in their reactiveness to a variety of extracellular agonists that regulate their adhesion to extracellular matrix at the site of vascular injury and their ability to form rapidly growing cell aggregates. Among the membrane receptors expressed on the cell surface, integrins are crucial for both platelet activation, adhesion and aggregation. Integrin affinity for specific ligands is regulated by intracellular signaling pathways activated in stimulated platelets, and, once engaged, integrins themselves generate and propagate signals inside the cells to reinforce and consolidate platelet response and thrombus formation. Phosphatidylinositol 3-Kinases (PI3Ks) have emerged as crucial players in platelet activation, and they are directly implicated in the regulation of integrin function. This review will discuss the contribution of PI3Ks in platelet integrin signaling, focusing on the role of specific members of class I PI3Ks and their downstream effector Akt on both integrin inside-out and outside-in signaling. The contribution of the PI3K/Akt pathways stimulated by integrin engagement and platelet activation in thrombus formation and stabilization will also be discussed in order to highlight the possibility to target these enzymes in effective anti-thrombotic therapeutic strategies.
Collapse
Affiliation(s)
- Gianni F Guidetti
- Department of Biology and Biotechnology, Laboratories of Biochemistry, University of Pavia, Pavia, Italy
| | - Ilaria Canobbio
- Department of Biology and Biotechnology, Laboratories of Biochemistry, University of Pavia, Pavia, Italy
| | - Mauro Torti
- Department of Biology and Biotechnology, Laboratories of Biochemistry, University of Pavia, Pavia, Italy.
| |
Collapse
|
5
|
Jackson SP, Schoenwaelder SM. PI 3-Kinase p110β regulation of platelet integrin α(IIb)β3. Curr Top Microbiol Immunol 2010; 346:203-24. [PMID: 20517720 DOI: 10.1007/82_2010_61] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hemopoietic cells express relatively high levels of the type I phosphoinositide (PI) 3-kinase isoforms, with p110δ and γ exhibiting specialized signaling functions in neutrophils, monocytes, mast cells, and lymphocytes. In platelets, p110β appears to be the dominant PI 3-kinase isoform regulating platelet activation, irrespective of the nature of the primary platelet activating stimulus. Based on findings with isoform-selective p110β pharmacological inhibitors and more recently with p110β-deficient platelets, p110β appears to primarily signal downstream of G(i)- and tyrosine kinase-coupled receptors. Functionally, inhibition of p110β kinase function leads to a marked defect in integrin α(IIb)β₃ adhesion and reduced platelet thrombus formation in vivo. This defect in platelet adhesive function is not associated with increased bleeding, suggesting that therapeutic targeting of p110β may represent a safe approach to reduce thrombotic complications in patients with cardiovascular disease.
Collapse
Affiliation(s)
- Shaun P Jackson
- Australian Centre for Blood Diseases, Alfred Medical Research and Education Precinct (AMREP), Monash University, Melbourne, VIC, 3004, Australia.
| | | |
Collapse
|
6
|
Brooks AC, Menzies-Gow NJ, Wheeler-Jones CPD, Bailey SR, Elliott J, Cunningham FM. Regulation of platelet activating factor-induced equine platelet activation by intracellular kinases. J Vet Pharmacol Ther 2009; 32:189-96. [PMID: 19290950 DOI: 10.1111/j.1365-2885.2008.01020.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Lipopolysaccharide (LPS) can activate equine platelets directly or indirectly, via leukocyte-derived platelet activating factor (PAF). Thromboxane (Tx) production by LPS-stimulated equine platelets requires p38 MAPK and this kinase has been suggested as a therapeutic target in endotoxaemia. The present study has utilised selective inhibitors to investigate the role of p38 MAPK and two other kinases, phosphatidylinositol-3 kinase (PI3K) and protein kinase C (PKC), in regulating PAF-induced Tx production, aggregation and 5-HT release in equine platelets, and the modification of these responses by LPS. LPS enhanced PAF-induced 5-HT release, an effect that was reduced by the p38 MAPK inhibitor, SB203580 (60 +/- 8% reduction; n = 6). SB203580 did not affect responses to PAF alone; whereas inhibition of PKC reduced PAF-induced 5-HT release, Tx production and aggregation (maximal inhibition by the PKCdelta inhibitor, rottlerin: 69 +/- 13%, 63 +/- 14% and 97 +/- 1%, respectively; n = 6). Wortmannin and LY249002, which inhibit PI3K, also caused significant inhibition of PAF-induced aggregation (maximal inhibition 78 +/- 3% and 88 +/- 2%, respectively; n = 6). These data suggest that inhibition of platelet p38 MAPK may be of benefit in equine endotoxaemia by counteracting some of the effects of LPS. However, detrimental effects of platelet activation mediated by PAF and not enhanced by LPS are unlikely to be markedly affected.
Collapse
Affiliation(s)
- A C Brooks
- Department of Veterinary Basic Sciences, Royal Veterinary College, Hertfordshire, UK.
| | | | | | | | | | | |
Collapse
|
7
|
Vilimek D, Duronio V. Cytokine-stimulated phosphorylation of GSK-3 is primarily dependent upon PKCs, not PKB. Biochem Cell Biol 2006; 84:20-9. [PMID: 16462886 DOI: 10.1139/o05-154] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The regulation of glycogen synthase kinase-3 (GSK-3) by phosphorylation at inhibitory sites has been well documented. In many, but not all, cases, the phosphatidylinositol 3-kinase pathway, and particularly the downstream kinase protein kinase B (PKB)/akt, have been shown to be responsible for GSK-3 phosphorylation. Given that no studies have ever reported cytokine-mediated phosphorylation of GSK-3, we investigated the phosphorylation of this kinase in several hemopoietic cell types in response to either interleukin (IL)-3, IL-4 or granulocyte-macrophage colony stimulating factor (GM-CSF). Each of the cytokines was able to stimulate phosphorylation of the isoforms GSK-3alpha and GSK-3beta. However, only in the case of IL-4 stimulation was there any dependence on PKB for this phosphorylation. We were clearly able to show that PKB was capable of phosphorylating GSK-3 in these cells, but studies using inhibitors of the protein kinase C (PKC) family of kinases have shown that these enzymes are more likely to play a key role in GSK-3 phosphorylation. Cytokine-mediated generation of diacylglycerol was demonstrated, supporting the possible activation of PKC family members. Thus, cytokine-dependent GSK-3 phosphorylation in hemopoietic cells proceeds primarily through PKB independent pathways.
Collapse
Affiliation(s)
- Dino Vilimek
- Department of Medicine, University of British Columbia, Jack Bell Research Centre, Vancouver, Canada
| | | |
Collapse
|
8
|
Calcerrada MC, Latorre E, Mora-Gil MV, Catalán RE, Miguel BG, Martínez AM. Selective translocation of protein kinase c isozymes by PAF in rabbit platelets. Prostaglandins Other Lipid Mediat 2005; 75:35-46. [PMID: 15789614 DOI: 10.1016/j.prostaglandins.2004.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The action of platelet activating factor (PAF) on subcellular distribution and activity of protein kinase C (PKC) isoforms in rabbit platelets was analyzed. The results showed an increase of PKC alpha in membrane fraction, concomitantly with a decrease in cytosolic fraction after 5 min PAF treatment, indicating that a translocation of PKC alpha occurred. In addition, PKC zeta was redistributed in a "reverse" form, from the membrane to cytosolic fraction after PAF treatment. PAF induced an increase of PKC alpha activity, whereas a decrease rather than increase in PKC zeta was observed by using immunoprecipitation assays. In addition, some results indicated that PI3 kinase activation was not involved in PAF-induced PKC zeta translocation as occur in several cells and with other agonists. These actions were time- and concentration-dependent, and were inhibited by the treatment with a PAF antagonist. No translocation was observed when the platelets were incubated with lysoPAF, a PAF related compound. The redistribution of PKC isoforms take place through the activation of high specificity PAF binding sites. The pretreatment of the rabbit platelets with staurosporine, a putative inhibitor of PKC, completely blocked the PAF-evoked aggregation without affecting to PAF-evoked shape change and serotonin release. All together, these data could suggest that the specific translocation of PKC isoforms play an important role in the activation of rabbit platelets.
Collapse
Affiliation(s)
- M C Calcerrada
- Departamento de Bioquímica y Biología Molecular I, Facultad de Química, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
9
|
Gómez-Muñoz A, Kong JY, Parhar K, Wang SW, Gangoiti P, González M, Eivemark S, Salh B, Duronio V, Steinbrecher UP. Ceramide-1-phosphate promotes cell survival through activation of the phosphatidylinositol 3-kinase/protein kinase B pathway. FEBS Lett 2005; 579:3744-50. [PMID: 15978590 DOI: 10.1016/j.febslet.2005.05.067] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Revised: 05/13/2005] [Accepted: 05/31/2005] [Indexed: 01/29/2023]
Abstract
In this report, we show for the first time that ceramide-1-phosphate (C1P) stimulates the phosphatidylinositol 3-kinase (PI3-K)/protein kinase B (PKB) pathway, which is a major mechanism whereby growth factors promote cell survival. Also, C1P induced IkappaB phosphorylation, and enhanced the DNA binding activity of the transcription factor NF-kappaB. Apoptotic macrophages showed a marked reduction of Bcl-X(L) levels, and this was prevented by C1P. These findings suggest that C1P blocks apoptosis, at least in part, by stimulating the PI3-K/PKB/NF-kappaB pathway and maintaining the production of antiapoptotic Bcl-X(L). Based on these and our previous observations, we propose a working model for C1P in which inhibition of acid sphingomyelinase and the subsequent decrease in ceramide levels would allow cell signaling through stimulation of the PI3-K/PKB pathway to promote cell survival.
Collapse
Affiliation(s)
- Antonio Gómez-Muñoz
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of the Basque Country, P.O. Box 644, 48080 Bilbao, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Suenaga A, Ueki H. Effect of orthovanadate on platelet aggregation induced by platelet-activating factor. Biol Pharm Bull 2005; 27:1859-63. [PMID: 15516737 DOI: 10.1248/bpb.27.1859] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Orthovanadate (vanadate) inhibited the platelet aggregation induced by platelet-activating factor (PAF) in a dose-dependent manner. Propranolol, a nonspecific beta-adrenergic receptor antagonist, and H-8, a selective inhibitor of cAMP-dependent protein kinase (PKA), suppressed the inhibition of the PAF-induced platelet aggregation by vanadate. Vanadate increased the cAMP content in platelets accompanied by the activation of PKA. The beta-adrenergic receptors of platelets have been reported to be abundant in the beta(2) isoform, coupled to adenylyl cyclases (R. Kerry and M. C. Scrutton, Br. J. Pharmacol., 79, 681-691 (1983)). When the washed platelets were preincubated with vanadate, salbutamol, a selective beta(2)-adrenergic receptor agonist, or 8-Br-cAMP, the latter two mimicked the vanadate-induced anti-platelet aggregation and prolongation of clotting time of plasma, suggesting involvement of the increased intracellular cAMP content in both actions of vanadate. Butoxamine, a selective beta(2)-adrenergic receptor antagonist, suppressed both actions of vanadate. The vanadate-induced increase in cAMP content was inhibited in part by butoxamine or genistein. These results suggest that vanadate inhibits the PAF-induced platelet aggregation by the stimulation of a cAMP/PKA-dependent process via the beta(2)-adrenergic receptor and receptor tyrosine kinases, and that the anti-platelet aggregation is involved in part in mechanisms of the anticoagulant action of vanadate.
Collapse
Affiliation(s)
- Aya Suenaga
- Department of Biochemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Hiroshima, Japan
| | | |
Collapse
|
11
|
Mardla V, Kobzar G, Samel N. Potentiation of antiaggregating effect of prostaglandins by alpha-tocopherol and quercetin. Platelets 2005; 15:319-24. [PMID: 15370103 DOI: 10.1080/09537100410001710263] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Prostaglandin (PG) I2 (prostacyclin), PGE1 and their analogues are effective inhibitors of platelet aggregation. However, a clinical use of these compounds for the treatment of cardiovascular diseases is restricted due to unwanted side effects. Alpha-tocopherol and quercetin are weak antiplatelet agents. At the same time, they have mild if any side effects when consumed medicinally. The aim of this work was to study the possibility to decrease the effective antiplatelet concentrations of PGs combining them with alpha-tocopherol or quercetin. Platelet-rich plasma (PRP) was prepared from human blood. The inhibition of adenosine diphosphate-induced platelet aggregation was caused by PGs in the presence and absence of alpha-tocopherol or quercetin and corresponding concentration-effect curves were obtained. At a subthreshold concentration 200 and 2 microM, respectively, both alpha-tocopherol and quercetin essentially increased the antiplatelet effects of PGI2, PGE1 and iloprost. Especially effective was the combination of alpha-tocopherol with low concentrations of iloprost. Thus, combination of PGs with alpha-tocopherol or quercetin allows the use of prostaglandins at lower concentrations to inhibit platelet aggregation.
Collapse
Affiliation(s)
- Vilja Mardla
- Department of Chemistry, Tallinn University of Technology, Estonia
| | | | | |
Collapse
|
12
|
London FS. The protein kinase C inhibitor RO318220 potentiates thrombin-stimulated platelet-supported prothrombinase activity. Blood 2003; 102:2472-81. [PMID: 12805057 DOI: 10.1182/blood-2003-03-0734] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Prothrombinase activity was tested on thrombin- and SFLLRN-activated platelets treated with RO318220, a potent inhibitor of protein kinase C. RO318220 completely inhibited platelet dense and alpha-granule secretion at a concentration of 20 microM but had no effect on prothrombinase activity in the presence of excess factor Va (20 nM). This indicates that protein kinase C activity and agonist-initiated secretion are not necessary for the development of a procoagulant surface. Treatment with 75 to 150 microM RO318220 potentiated platelet-supported thrombin generation up to 280% of control platelets with no change in Kd appFXa. Treated with increasing concentrations of RO318220, an increasing proportion of thrombin-stimulated platelets bound annexin V with decreasing binding sites per platelet. A lower mean forward scatter (FSC-H) of platelets treated with RO318220 suggested platelet vesiculation as a result of RO318220 treatment; however, 100 microM calpeptin pretreatment eliminated the decrease in FSC-H without affecting either the increase in platelets positive for annexin V binding, the decrease in binding sites per platelet, or the 3-fold increase in prothrombinase activity. Thus, RO318220 appears to increase prothrombinase activity by increasing platelet responsiveness to thrombin rather than by inducing platelet vesiculation. This suggests that RO318220 inhibits a signaling molecule within a negative regulatory pathway that governs platelet procoagulant surface changes.
Collapse
Affiliation(s)
- Fredda S London
- Sol Sherry Thrombosis Research Center, Department of Biochemistry, Temple University School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
13
|
Pitchford SC, Yano H, Lever R, Riffo-Vasquez Y, Ciferri S, Rose MJ, Giannini S, Momi S, Spina D, O'connor B, Gresele P, Page CP. Platelets are essential for leukocyte recruitment in allergic inflammation. J Allergy Clin Immunol 2003; 112:109-18. [PMID: 12847487 DOI: 10.1067/mai.2003.1514] [Citation(s) in RCA: 163] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND The role of platelets in inflammation is recognized but poorly characterized, and little is known of their interaction with leukocytes. However, platelet-leukocyte interactions have been demonstrated in cardiovascular disease, culminating in enhanced leukocyte recruitment. OBJECTIVES This study was undertaken to assess the possibility and potential role of similar phenomena occurring in asthmatic patients, a murine model of allergic inflammation, and in vitro adhesion studies. METHODS Asthmatic patients had blood taken at various time points to document the degree of leukocyte activation and the presence of platelet-leukocyte aggregates through FACS analysis before and after allergen exposure. Similar studies were carried out in mice exposed to allergen after previous sensitization, with some groups being selectively depleted of platelets through both an immunologic (antiplatelet antiserum) and nonimmunologic (busulfan) method. Additionally, lavage fluid and airway tissue were analyzed to assess the degree of pulmonary leukocyte recruitment. The importance of platelets on leukocyte adhesion to the endothelium was then assessed with in vitro incubation of radiolabeled leukocytes in the presence of activated platelets on cultured human vascular endothelial cells. RESULTS We have observed circulating platelet-leukocyte aggregates in the blood of allergic asthmatic patients during the allergen-induced late asthmatic response and in sensitized mice after allergen exposure. In platelet-depleted mice infiltration of leukocytes into airways after allergen challenge was significantly reduced and could be restored by means of infusion of platelets from allergic animals, indicating an essential role for platelets in leukocyte recruitment. CD11b expression on leukocytes involved in aggregates with platelets, although not on free leukocytes, was upregulated. Furthermore, the presence of autologous platelets augmented the adhesion of human polymorphonuclear leukocytes to cultured vascular endothelial cells, an effect that was found to be endothelial cell dependent and to involve platelet activation. CONCLUSION These results suggest that platelet participation in cell recruitment occurs at the level of the circulation and might involve the priming of leukocytes for subsequent adhesion and transmigration into tissues.
Collapse
Affiliation(s)
- Simon C Pitchford
- Sackler Institute of Pulmonary Pharmacology, GKT School of Biomedical Sciences, King's College London, London
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Song S, Mody M, Freedman J, Ellis J, Lazarus AH. von Willebrand factor (VWF)-dependent human platelet activation: porcine VWF utilizes different transmembrane signaling pathways than does thrombin to activate platelets, but both require protein phosphatase function. J Thromb Haemost 2003; 1:337-46. [PMID: 12871509 DOI: 10.1046/j.1538-7836.2003.00050.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The interaction between von Willebrand factor (VWF) and glycoprotein (GP) Ib results in platelet agglutination and activation of many signaling intermediates. To determine if VWF-dependent platelet activation requires the participation of pivotal transmembrane signaling pathways, we analyzed VWF-dependent platelet activation profiles following inhibition of several transmembrane signaling intermediates. This was accomplished using porcine VWF, which has been shown to interact with human GPIb independently of shear stress or ristocetin. Platelet alpha (CD62) and lysozomal granule release (CD63), microparticle formation, and platelet agglutination/aggregation were evaluated. The ability of signaling inhibitors to prevent VWF-dependent platelet activation was compared to their ability to inhibit thrombin-dependent activation. The results demonstrate that VWF-dependent platelet activation can occur independently of the activities of protein kinase C (PKC), wortmannin-sensitive phosphatidylinositide 3-kinase, and phospholipase C, as well as independently of elevations in the concentration of intracellular calcium. In sharp contrast, these transmembrane signaling intermediates are required for thrombin-dependent platelet activation. In addition, thrombin-dependent but not VWF-dependent platelet activation was associated with elevations in the concentration of intracellular calcium under the conditions used. The family of signaling intermediates which appeared to be pivotal for both thrombin- and VWF-dependent platelet activation were the protein tyrosine phosphatases and the serine/threonine phosphatases. It is concluded that thrombin-dependent platelet activation relies on the activation of several transmembrane signaling pathways, whereas VWF-dependent platelet activation is dependent upon the activity of protein phosphatases. Inhibition of these phosphatases in vivo may provide a novel therapeutic approach for treating VWF-dependent platelet disorders such as thrombotic thrombocytopenic purpura or arterial thrombosis.
Collapse
Affiliation(s)
- S Song
- Transfusion Medicine Research, St. Michael's Hospital, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
15
|
Cho MJ, Pestina TI, Steward SA, Lowell CA, Jackson CW, Gartner TK. Role of the Src family kinase Lyn in TxA2 production, adenosine diphosphate secretion, Akt phosphorylation, and irreversible aggregation in platelets stimulated with gamma-thrombin. Blood 2002; 99:2442-7. [PMID: 11895777 DOI: 10.1182/blood.v99.7.2442] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Members of the Src family of kinases are abundant in platelets. Although their localization is known, their role(s) in platelet function are not well understood. Lyn is a Src-family kinase that participates in signal transduction pathways elicited by collagen-related peptide; it has also been implicated through biochemical studies in the regulation of von Willebrand factor signaling. Here, we provide evidence that Lyn plays a role in gamma-thrombin activation of platelets. Unlike the wild-type platelets, platelets from Lyn-deficient mice do not undergo irreversible aggregation, produce thromboxane A2, or secrete adenosine diphosphate in response to submaximal gamma-thrombin concentrations that cause secretion-dependent irreversible aggregation. Phosphorylation of Akt, a downstream effector of phosphatidylinositol 3-kinase, also requires a higher concentration of gamma-thrombin in Lyn-deficient platelets than in wild-type platelets. These findings demonstrate that Lyn signaling is required for thrombin induction of secretion-dependent platelet aggregation. Specifically, Lyn is required under these conditions to enable thrombin-induced TxA2 production and adenosine diphosphate secretion, necessary steps in secretion-dependent platelet aggregation.
Collapse
Affiliation(s)
- Moon J Cho
- Department of Microbiology and Molecular Cell Sciences, University of Memphis, Memphis, TN 38152, USA
| | | | | | | | | | | |
Collapse
|
16
|
Yap CL, Anderson KE, Hughan SC, Dopheide SM, Salem HH, Jackson SP. Essential role for phosphoinositide 3-kinase in shear-dependent signaling between platelet glycoprotein Ib/V/IX and integrin alpha(IIb)beta(3). Blood 2002; 99:151-8. [PMID: 11756165 DOI: 10.1182/blood.v99.1.151] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Platelet adhesion and aggregation at sites of vascular injury are critically dependent on the interaction between von Willebrand factor (VWF) and 2 major platelet adhesion receptors, glycoprotein (GP) Ib/V/IX and integrin alpha(IIb)beta(3). GP Ib/V/IX binding to VWF mediates platelet tethering and translocation, whereas activation of integrin alpha(IIb)beta(3) promotes cell arrest. To date, the signaling pathways used by the VWF-GP Ib/V/IX interaction to promote activation of integrin alpha(IIb)beta(3), particularly under shear, have remained poorly defined. In this study, the potential involvement of type 1 phosphoinositide (PI) 3-kinases in this process was investigated. Results show that platelet adhesion and spreading on immobilized VWF results in a specific increase in the PI 3-kinase lipid product, PtdIns(3,4)P(2). Under static conditions, inhibiting PI 3-kinase with LY294002 or wortmannin did not prevent platelet adhesion, integrin alpha(IIb)beta(3) activation, or platelet spreading although it significantly delayed the onset of these events. In contrast, PI 3-kinase inhibition under shear dramatically reduced both platelet adhesion and spreading. Real-time analysis of intracellular calcium demonstrated that under static conditions inhibiting PI 3-kinase delayed the onset of intracellular fluxes in adherent platelets, but did not affect the final magnitude of the calcium response. However, under shear, inhibiting PI 3-kinase dramatically reduced intracellular calcium mobilization and integrin alpha(IIb)beta(3) activation, resulting in impaired thrombus growth. The studies demonstrate a shear-dependent role for PI 3-kinase in promoting platelet adhesion on immobilized VWF. Under static conditions, platelets appear to mobilize intracellular calcium through both PI 3-kinase-dependent and -independent mechanisms, whereas under shear PI 3-kinase is indispensable for VWF-induced calcium release.
Collapse
Affiliation(s)
- Cindy L Yap
- Australian Centre for Blood Diseases, Department of Medicine, Monash Medical School, Box Hill Hospital, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
17
|
Berdyshev EV, Schmid PC, Krebsbach RJ, Schmid HH. Activation of PAF receptors results in enhanced synthesis of 2-arachidonoylglycerol (2-AG) in immune cells. FASEB J 2001; 15:2171-8. [PMID: 11641243 DOI: 10.1096/fj.01-0181com] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The endocannabinoid signaling system is believed to play a down-regulatory role in the control of cell functions. However, little is known about the factors activating endocannabinoid synthesis and which of two known endocannabinoids, 2-arachidonoylglycerol (2-AG) or N-arachidonoylethanolamine (20:4n-6 NAE, anandamide), is of physiological importance. We approached these questions by studying a possible link between cell activation with 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine (platelet-activating factor, PAF) and the generation of 2-AG and anandamide in human platelets and mouse P388D1 macrophages. Human platelets responded to stimulation with the production of various 1- and 2-monoacylglycerols, including 2-AG, whereas stimulation of P388D1 macrophages induced the rapid and selective generation of 2-AG, which was immediately released into the medium. The effect of PAF was receptor mediated, as PAF receptor antagonist BN52021 blocked the effect. The treatment did not change the content of anandamide in either macrophages or platelet-rich plasma. The inhibitors of PI- and PC-specific phospholipases C (U73122 and D609) as well as PI3-kinase inhibitor (wortmannin) attenuated PAF-induced 2-AG production in macrophages. These data suggest a direct role for the endocannabinoid system in controlling immune cell activation status and indicate that 2-AG rather than anandamide is the endocannabinoid rapidly produced in response to proinflammatory stimulation of immune cells.
Collapse
Affiliation(s)
- E V Berdyshev
- The Hormel Institute, University of Minnesota, Austin, Minnesota 55912, USA.
| | | | | | | |
Collapse
|
18
|
Koziak K, Kaczmarek E, Park SY, Fu Y, Avraham S, Avraham H. RAFTK/Pyk2 involvement in platelet activation is mediated by phosphoinositide 3-kinase. Br J Haematol 2001; 114:134-40. [PMID: 11472358 DOI: 10.1046/j.1365-2141.2001.02894.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Platelet activation by different agonists initiates a signalling cascade involving the phosphorylation of several protein kinases, which control key regulatory events. Previously, we demonstrated that the related adhesion focal tyrosine kinase (RAFTK, Pyk2) was involved in an early phase of platelet activation, independent of integrin and glycoprotein IIb-IIIa activation. In this study, we demonstrate that RAFTK is co-immunoprecipitated with phosphoinositide 3-kinase (PI3K) upon platelet activation, and that thrombin, ADP and collagen induced the phosphorylation of both PI3K and RAFTK. A low dose of thrombin (0.015 U/ml) induced RAFTK phosphorylation and platelet aggregation in a PI3K activity-dependent manner, whereas a high dose of thrombin (0.1 U/ml) induced these events in a PI3K activity-independent manner. ADP and collagen also induced RAFTK phosphorylation and platelet aggregation in a PI3K activity-dependent manner, similar to that of the low-dose thrombin. Furthermore, protein tyrosine phosphatase activity was associated with RAFTK in response to platelet activation, and was found to be that of protein tyrosine phosphatase-2 (SHP-2). The association of SHP-2 with RAFTK was PI3K-dependent and was increased upon RAFTK phosphorylation. Taken together, our results strongly suggest that the involvement of RAFTK in platelet activation is mediated via the PI3K pathway.
Collapse
Affiliation(s)
- K Koziak
- Division of Experimental Medicine Beth Israel Deaconess Medical Center, Harvard Institutes of Medicine, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
19
|
Hedin HL, Nilsson L, Fowler CJ. Effects of staurosporine, U-73122, wortmannin, 4-hydroxynonenal and sodium azide upon the release of secreted beta-amyloid precursor protein from human platelets in response to thrombin stimulation. Mol Cell Biochem 2001; 219:145-52. [PMID: 11354246 DOI: 10.1023/a:1010863415115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In the present study, the release of secreted beta-amyloid precursor protein (AbetaPPs) in response to thrombin stimulation in platelets has been investigated. Incubation of platelets with thrombin produced a concentration-dependent release of AbetaPPs with a concomitant reduction in the AbetaPP remaining in the lysates. The response to thrombin was not affected by pretreatment for 15 min with the phospholipase C inhibitor U-73122, with the protein kinase C inhibitor staurosporine, or with hydrogen peroxide (which at the concentrations used affects the phosphoinositide signalling system in human platelets). In contrast, pretreatment with wortmannin and sodium azide reduced the responses to thrombin. These data would suggest that thrombin may cause the release of AbetaPPs from human platelets via an activation of a phospholipase C-independent pathway. Thrombin-stimulated AbetaPPs release was also reduced by 4-hydroxynonenal. This finding, if it is a phenomenon also found for CNS cells, could be of relevance to the pathogenesis of Alzheimer's disease, given that an accumulation of 4-hydroxynonenal is found in this disease.
Collapse
Affiliation(s)
- H L Hedin
- Department of Pharmacology and Clinical Neuroscience, Umeå University, Sweden
| | | | | |
Collapse
|
20
|
Sayed MR, Sheid MP, Stevens CM, Duronio V. Thrombin-stimulated phosphatidylinositol 3-kinase activity in platelets is associated with activation of PYK2 tyrosine kinase: activation of both enzymes is aggregation independent. J Cell Physiol 2000; 183:314-20. [PMID: 10797305 DOI: 10.1002/(sici)1097-4652(200006)183:3<314::aid-jcp3>3.0.co;2-j] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In this study, we investigated the activation of a new member of the focal adhesion kinase family of tyrosine kinases, the proline-rich tyrosine kinase, or PYK2, in platelets. We show that PYK2 is tyrosine phosphorylated and its activity is increased during early stages of platelet aggregation. This activation coincided with increased association of phosphatidylinositol (PI) 3-kinase and PYK2, as determined by both anti-PI 3-kinase and anti-PYK2 immunoprecipitates. However, under basal conditions, some association of PYK2 and PI 3-kinase was consistently observed, even though little or no tyrosine phosphorylated PYK2 could be detected. In addition, both increased PI 3-kinase activity and increased PYK2 activity could be detected in immunoprecipitates following thrombin stimulation. All of these events were unaffected by blocking platelet aggregation with arginine-glycine-aspartate-serine (RGDS) peptide, which interferes with binding of the platelet integrin alpha(IIb)beta(3) to fibrinogen. Neither was the activation of the PYK2 kinase activity affected by blocking PI 3-kinase activity. These results support a model in which PYK2 is associated with PI 3-kinase in unstimulated platelets and following activation of platelets, there is an increase in tyrosine phosphorylation of PYK2, increased PYK2 activity, and increased association of PYK2 with PI 3-kinase, which may contribute to the increase in PI 3-kinase activity. All of these were found to be early events independent of subsequent platelet aggregation.
Collapse
Affiliation(s)
- M R Sayed
- Department of Medicine, University of British Columbia and Vancouver Hospital and Health Sciences Centre, Jack Bell Research Centre, Vancouver, British Columbia, Canada
| | | | | | | |
Collapse
|