1
|
Leistikow KR, May DS, Suh WS, Vargas Asensio G, Schaenzer AJ, Currie CR, Hristova KR. Bacillus subtilis-derived peptides disrupt quorum sensing and biofilm assembly in multidrug-resistant Staphylococcus aureus. mSystems 2024; 9:e0071224. [PMID: 38990088 PMCID: PMC11334493 DOI: 10.1128/msystems.00712-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 06/15/2024] [Indexed: 07/12/2024] Open
Abstract
Multidrug-resistant Staphylococcus aureus is one of the most clinically important pathogens in the world, with infections leading to high rates of morbidity and mortality in both humans and animals. The ability of S. aureus to form biofilms protects cells from antibiotics and promotes the transfer of antibiotic resistance genes; therefore, new strategies aimed at inhibiting biofilm growth are urgently needed. Probiotic species, including Bacillus subtilis, are gaining interest as potential therapies against S. aureus for their ability to reduce S. aureus colonization and virulence. Here, we search for strains and microbially derived compounds with strong antibiofilm activity against multidrug-resistant S. aureus by isolating and screening Bacillus strains from a variety of agricultural environments. From a total of 1,123 environmental isolates, we identify a single strain B. subtilis 6D1, with a potent ability to inhibit biofilm growth, disassemble mature biofilm, and improve antibiotic sensitivity of S. aureus biofilms through an Agr quorum sensing interference mechanism. Biochemical and molecular networking analysis of an active organic fraction revealed multiple surfactin isoforms, and an uncharacterized peptide was driving this antibiofilm activity. Compared with commercial high-performance liquid chromatography grade surfactin obtained from B. subtilis, we show these B. subtilis 6D1 peptides are significantly better at inhibiting biofilm formation in all four S. aureus Agr backgrounds and preventing S. aureus-induced cytotoxicity when applied to HT29 human intestinal cells. Our study illustrates the potential of exploring microbial strain diversity to discover novel antibiofilm agents that may help combat multidrug-resistant S. aureus infections and enhance antibiotic efficacy in clinical and veterinary settings. IMPORTANCE The formation of biofilms by multidrug-resistant bacterial pathogens, such as Staphylococcus aureus, increases these microorganisms' virulence and decreases the efficacy of common antibiotic regimens. Probiotics possess a variety of strain-specific strategies to reduce biofilm formation in competing organisms; however, the mechanisms and compounds responsible for these phenomena often go uncharacterized. In this study, we identified a mixture of small probiotic-derived peptides capable of Agr quorum sensing interference as one of the mechanisms driving antibiofilm activity against S. aureus. This collection of peptides also improved antibiotic killing and protected human gut epithelial cells from S. aureus-induced toxicity by stimulating an adaptive cytokine response. We conclude that purposeful strain screening and selection efforts can be used to identify unique probiotic strains that possess specially desired mechanisms of action. This information can be used to further improve our understanding of the ways in which probiotic and probiotic-derived compounds can be applied to prevent bacterial infections or improve bacterial sensitivity to antibiotics in clinical and agricultural settings.
Collapse
Affiliation(s)
- Kyle R. Leistikow
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, USA
| | - Daniel S. May
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Chemistry, Washington College, Chestertown, Maryland, USA
| | - Won Se Suh
- Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | | | - Adam J. Schaenzer
- Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Cameron R. Currie
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
2
|
Lee W, Ha J, Choi J, Jung Y, Kim E, An ES, Kim SH, Shin H, Ryu S, Kim SH, Kim HY. Genetic and virulence characteristics of hybrid Shiga toxin-producing and atypical enteropathogenic Escherichia coli strains isolated in South Korea. Front Microbiol 2024; 15:1398262. [PMID: 38812694 PMCID: PMC11133561 DOI: 10.3389/fmicb.2024.1398262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 04/29/2024] [Indexed: 05/31/2024] Open
Abstract
Introduction The predominant hybrid pathogenic E. coli, enterohemorrhagic E. coli (EHEC), combines characteristics of Shiga toxin-producing E. coli (STEC) and enteropathogenic E. coli (EPEC), contributing to global outbreaks with severe symptoms including fatal consequences. Since EHEC infection was designated as a notifiable disease in 2000 in South Korea, around 2000 cases have been reported, averaging approximately 90 cases annually. Aim In this work, genome-based characteristic analysis and cell-based assay of hybrid STEC/aEPEC strains isolated from livestock feces, animal source foods, and water in South Korea was performed. Methods To identify the virulence and antimicrobial resistance genes, determining the phylogenetic position of hybrid STEC/aEPEC strains isolated in South Korea, a combination of real-time PCR and whole-genome sequencing (WGS) was used. Additionally, to assess the virulence of the hybrid strains and compare them with genomic characterization, we performed a cell cytotoxicity and invasion assays. Results The hybrid STEC/aEPEC strains harbored stx and eae genes, encoding Shiga toxins and E. coli attachment/effacement related protein of STEC and EPEC, respectively. Furthermore, all hybrid strains harbored plasmid-carried enterohemolysin(ehxCABD), a key virulence factor in prevalent pathogenic E. coli infections, such as diarrheal disease and hemolytic-uremic syndrome (HUS). Genome-wide phylogenetic analysis revealed a close association between all hybrid strains and specific EPEC strains, suggesting the potential acquisition of Stx phages during STEC/aEPEC hybrid formation. Some hybrid strains showed cytotoxic activity against HeLa cells and invasive properties against epithelial cells. Notably, all STEC/aEPEC hybrids with sequence type (ST) 1,034 (n = 11) exhibited higher invasiveness than those with E2348/69. This highlights the importance of investigating potential correlations between STs and virulence characteristics of E. coli hybrid strains. Conclusion Through genome-based characterization, we confirmed that the hybrid STEC/aEPEC strains are likely EPEC strains that have acquired STEC virulence genes via phage. Furthermore, our results emphasize the potential increased danger to humans posed by hybrid STEC/aEPEC strains isolated in South Korea, containing both stx and eaeA, compared to STEC or EPEC alone.
Collapse
Affiliation(s)
- Woojung Lee
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju, Republic of Korea
- Institute of Life Sciences & Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin, Republic of Korea
| | - Jina Ha
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju, Republic of Korea
| | - Jaehyun Choi
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju, Republic of Korea
| | - Yewon Jung
- Department of Food and Animal Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Eiseul Kim
- Institute of Life Sciences & Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin, Republic of Korea
| | - Eun Sook An
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju, Republic of Korea
| | - Seung Hwan Kim
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju, Republic of Korea
| | - Hakdong Shin
- Department of Biotechnology, and Carbohydrate Bioproduct Research Center, Sejong University, Seoul, Republic of Korea
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
| | - Soon Han Kim
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju, Republic of Korea
| | - Hae-Yeong Kim
- Institute of Life Sciences & Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin, Republic of Korea
| |
Collapse
|
3
|
Waimin J, Gopalakrishnan S, Heredia-Rivera U, Kerr NA, Nejati S, Gallina NLF, Bhunia AK, Rahimi R. Low-Cost Nonreversible Electronic-Free Wireless pH Sensor for Spoilage Detection in Packaged Meat Products. ACS APPLIED MATERIALS & INTERFACES 2022; 14:45752-45764. [PMID: 36173396 DOI: 10.1021/acsami.2c09265] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Contamination of meat with pathogenic microorganisms can cause severe illnesses and food waste, which has significant negative impacts on both general health and the economy. In many cases, the expiration date is not a good indicator of meat freshness as there is a high risk of contamination during handling throughout the supply chain. Many biomarkers, including color, odor, pH, temperature, and volatile compounds, are used to determine spoilage. Among these, pH presents a simple and effective biomarker directly linked to the overgrowth of bacteria and degradation of the meat tissue. Low-cost methods for wireless pH monitoring are crucial in detecting spoilage on a large commercial scale. Existing technologies are often limited to short-range detection, with the use of batteries and different electronic components that increases both the manufacturing complexity and cost of the final device. To address these shortcomings, we have developed a cost-effective wireless pH sensor, which uses passive resonant frequency (RF) sensing, combined with a pH-responsive polymer that can be placed within packaged meat products and provide a remote assessment of the risk of microbial spoilage throughout the supply chain. The sensor tag consists of a sensing resonator coated with a pH-sensitive material and a passivated reference resonator operating in a differential frequency configuration. Upon exposure to elevated pH levels >6.8, the coating on the sensing resonator dissolves, which in turn results in a distinct change in the resonant frequency with respect to the reference resonator. Systematic theoretical and experimental results at different pH levels demonstrated that a 20% shift in resonant frequency demarcates the point for spoilage detection. As a proof of concept, the performance of the sensor in remotely detecting the risk of food spoilage was validated in packaged poultry over 10 days. The sensor fabrication process takes advantage of recent developments in the scalable manufacturing of flexible, low-cost devices, including selective laser etching of metalized plastic films and doctor-blade coating of stimuli-responsive polymer films. Furthermore, the biocompatibility of all the materials used in the sensor was confirmed with human intestinal cells (HCT-8 cells).
Collapse
Affiliation(s)
- Jose Waimin
- School of Material Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Sarath Gopalakrishnan
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ulisses Heredia-Rivera
- School of Material Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Nicholas A Kerr
- School of Material Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Sina Nejati
- School of Material Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Nicholas L F Gallina
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, Indiana 47907, United States
| | - Arun K Bhunia
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Institute of Inflammation Immunology and Infectious Disease, Purdue University, West Lafayette, Indiana 47907, United States
| | - Rahim Rahimi
- School of Material Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
4
|
Characterization of enterohemorrhagic Escherichia coli from diarrhoeic patients with particular reference to production of Shiga-like toxin. Microb Pathog 2022; 166:105538. [DOI: 10.1016/j.micpath.2022.105538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 11/20/2022]
|
5
|
Sun Q, Wu S, Yin R, Bai X, Bhunia AK, Liu C, Zheng Y, Wang F, Blatchley ER. Effects of fulvic acid size on microcystin-LR photodegradation and detoxification in the chlorine/UV process. WATER RESEARCH 2021; 193:116893. [PMID: 33582494 DOI: 10.1016/j.watres.2021.116893] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/29/2021] [Accepted: 01/31/2021] [Indexed: 06/12/2023]
Abstract
Microcystin-LR (MC-LR), a polypeptide toxin generated by cyanobacteria, threatens the safety of drinking water supplies. In this study, fulvic acid (FA) was separated into two molecular weight (MW) ranges to evaluate the effects of FA size on MC-LR degradation in the chlorine/UV process. The rates of MC-LR degradation were significantly reduced in FA-containing water (3.7 × 10-3 s-1 for small MW FA; 4.3 × 10-3 s-1 for large MW FA) as compared with FA free water (4.9 × 10-3 s-1). The contributions of ClO• to MC-LR degradation were dramatically lower in small MW FA water (0.4%) than large MW FA (13.9%) and FA free water (17.4%), suggesting inhibition by lignin-like substances in FA in the transformation of Cl• to ClO• and scavenging ClO•. Monochlorination and hydroxylation occurred in the first step of the MC-LR degradation process. The accumulation of intermediate products in the chlorine/UV process indicated that small MW FA inhibited further degradation of MC-LR. Small MW FA, rather than MC-LR degradation, was the dominant factor in minimizing MC-LR cytotoxicity toward a human intestinal epithelial cell line.
Collapse
Affiliation(s)
- Qiyuan Sun
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, Fujian, 350007, China; Lyles School of Civil Engineering, Purdue University, West Lafayette, IN, 47907, United States; Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou, Fujian, 350007, China
| | - Shanbin Wu
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Ran Yin
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Xingjian Bai
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, 47907, United States
| | - Arun K Bhunia
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, 47907, United States
| | - Changqing Liu
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, Fujian, 350007, China; Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou, Fujian, 350007, China
| | - Yuyi Zheng
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, Fujian, 350007, China; Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou, Fujian, 350007, China
| | - Feifeng Wang
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, Fujian, 350007, China; Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou, Fujian, 350007, China.
| | - Ernest R Blatchley
- Lyles School of Civil Engineering, Purdue University, West Lafayette, IN, 47907, United States; Division of Environmental & Ecological Engineering, Purdue University, West Lafayette, IN, 47907, United States.
| |
Collapse
|
6
|
Tavares RDS, Tacão M, Figueiredo AS, Duarte AS, Esposito F, Lincopan N, Manaia CM, Henriques I. Genotypic and phenotypic traits of bla CTX-M-carrying Escherichia coli strains from an UV-C-treated wastewater effluent. WATER RESEARCH 2020; 184:116079. [PMID: 32717492 DOI: 10.1016/j.watres.2020.116079] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
Wastewater treatment plants (WWTPs) are relevant sources of antibiotic resistance into aquatic environments. Disinfection of WWTPs' effluents (e.g. by UV-C irradiation) may attenuate this problem, though some clinically relevant bacteria have been shown to survive disinfection. In this study we characterized 25 CTX-M-producing Escherichia coli strains isolated from a WWTP's UV-C-irradiated effluent, aiming to identify putative human health hazards associated with such effluents. Molecular typing indicated that the strains belong to the phylogroups A, B2 and C and clustered into 9 multilocus sequence types (STs), namely B2:ST131 (n = 7), A:ST58 (n = 1), A:ST155 (n = 4), C:ST410 (n = 2), A:ST453 (n = 2), A:ST617 (n = 2), A:ST744 (n = 1), A:ST1284 (n = 3) and a putative novel ST (n = 3). PCR-screening identified 9 of the 20 antibiotic resistance genes investigated [i.e. sul1, sul2, sul3, tet(A), tet(B), blaOXA-1-like, aacA4, aacA4-cr and qnrS1]. The more prevalent were sul1, sul2 (n = 15 isolates) and tet(A) (n = 14 isolates). Plasmid restriction analysis indicated diverse plasmid content among strains (14 distinct profiles) and mating assays yielded cefotaxime-resistant transconjugants for 8 strains. Two of the transconjugants displayed a multi-drug resistance (MDR) phenotype. All strains were classified as cytotoxic to Vero cells (9 significantly more cytotoxic than the positive control) and 10 of 21 strains were invasive towards this cell line (including all B2:ST131 strains). The 10 strains tested against G. mellonella larvae exhibited a virulent behaviour. Twenty-four and 7 of the 25 strains produced siderophores and haemolysins, respectively. Approximately 66% of the strains formed biofilms. Genome analysis of 6 selected strains identified several virulence genes encoding toxins, siderophores, and colonizing, adhesion and invasion factors. Freshwater microcosms assays showed that after 28 days of incubation 3 out of 6 strains were still detected by cultivation and 4 strains by qPCR. Resistance phenotypes of these strains remained unaltered. Overall, we confirmed WWTP's UV-C-treated outflow as a source of MDR and/or virulent E. coli strains, some probably capable of persisting in freshwater, and that carry conjugative antibiotic resistance plasmids. Hence, disinfected wastewater may still represent a risk for human health. More detailed evaluation of strains isolated from wastewater effluents is urgent, to design treatments that can mitigate the release of such bacteria.
Collapse
Affiliation(s)
- Rafael D S Tavares
- Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus Universitário Santiago, 3810-193, Aveiro, Portugal; Department of Biology, University of Aveiro, Campus Universitário Santiago, 3810-193, Aveiro, Portugal
| | - Marta Tacão
- Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus Universitário Santiago, 3810-193, Aveiro, Portugal; Department of Biology, University of Aveiro, Campus Universitário Santiago, 3810-193, Aveiro, Portugal.
| | - Ana S Figueiredo
- Department of Biology, University of Aveiro, Campus Universitário Santiago, 3810-193, Aveiro, Portugal
| | - Ana S Duarte
- Universidade Católica Portuguesa, Faculdade de Medicina Dentária, Centro de Investigação Interdisciplinar Em Saúde (CIIS), Estrada da Circunvalação, 3504-505, Viseu, Portugal
| | - Fernanda Esposito
- Department of Clinical Analysis, Faculty of Pharmacy, University of São Paulo, São Paulo, Brazil
| | - Nilton Lincopan
- Department of Clinical Analysis, Faculty of Pharmacy, University of São Paulo, São Paulo, Brazil; Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Célia M Manaia
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Isabel Henriques
- Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus Universitário Santiago, 3810-193, Aveiro, Portugal; University of Coimbra, Department of Life Sciences, Faculty of Sciences and Technology, Calçada Martins de Freitas, 3000-456, Coimbra, Portugal
| |
Collapse
|
7
|
Díaz JM, Dozois CM, Avelar-González FJ, Hernández-Cuellar E, Pokharel P, de Santiago AS, Guerrero-Barrera AL. The Vacuolating Autotransporter Toxin (Vat) of Escherichia coli Causes Cell Cytoskeleton Changes and Produces Non-lysosomal Vacuole Formation in Bladder Epithelial Cells. Front Cell Infect Microbiol 2020; 10:299. [PMID: 32670893 PMCID: PMC7332727 DOI: 10.3389/fcimb.2020.00299] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 05/19/2020] [Indexed: 12/13/2022] Open
Abstract
Urinary tract infections (UTIs) affect more than 150 million people, with a cost of over 3.5 billion dollars, each year. Escherichia coli is associated with 70–80% of UTIs. Uropathogenic E. coli (UPEC) has virulence factors including adhesins, siderophores, and toxins that damage host cells. Vacuolating autotransporter toxin (Vat) is a member of serine protease autotransporter proteins of Enterobacteriaceae (SPATEs) present in some uropathogenic E. coli (UPEC) strains. Vat has been identified in 20–36% of UPEC and is present in almost 68% of urosepsis isolates. However, the mechanism of action of Vat on host cells is not well-known. Thus, in this study the effect of Vat in a urothelium model of bladder cells was investigated. Several toxin concentrations were tested for different time periods, resulting in 15–47% of cellular damage as measured by the LDH assay. Vat induced vacuole formation on the urothelium model in a time-dependent manner. Vat treatment showed loss of the intercellular contacts on the bladder cell monolayer, observed by Scanning Electron Microscopy. This was also shown using antibodies against ZO-1 and occludin by immunofluorescence. Additionally, changes in permeability of the epithelial monolayer was demonstrated with a fluorescence-based permeability assay. Cellular damage was also evaluated by the identification of cytoskeletal changes produced by Vat. Thus, after Vat treatment, cells presented F-actin distribution changes and loss of stress fibers in comparison with control cells. Vat also modified tubulin, but it was not found to affect Arp3 distribution. In order to find the nature of the vacuoles generated by Vat, the Lysotracker deep red fluorescent dye for the detection of acidic organelles was used. Cells treated with Vat showed generation of some vacuoles without acidic content. An ex vivo experiment with mouse bladder exposed to Vat demonstrated loss of integrity of the urothelium. In conclusion, Vat induced cellular damage, vacuole formation, and urothelial barrier dysregulation of bladder epithelial cells. Further studies are needed to elucidate the role of these vacuoles induced by Vat and their relationship with the pathogenesis of urinary tract infection.
Collapse
Affiliation(s)
- Juan Manuel Díaz
- Departamento de Morfología, Universidad Autónoma de Aguascalientes (UAA), Aguascalientes, Mexico
| | - Charles M Dozois
- Institut National de Recherche Scientifique (INRS)-Centre Armand-Fappier Santé Biotechnologie, Laval, QC, Canada
| | | | | | - Pravil Pokharel
- Institut National de Recherche Scientifique (INRS)-Centre Armand-Fappier Santé Biotechnologie, Laval, QC, Canada
| | | | | |
Collapse
|
8
|
To CZ, Bhunia AK. Three Dimensional Vero Cell-Platform for Rapid and Sensitive Screening of Shiga-Toxin Producing Escherichia coli. Front Microbiol 2019; 10:949. [PMID: 31134009 PMCID: PMC6514307 DOI: 10.3389/fmicb.2019.00949] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 04/15/2019] [Indexed: 01/27/2023] Open
Abstract
Shiga-toxin producing Escherichia coli (STEC) is a serious public health concern. Current Vero cell assay, although sensitive, is lengthy and requires 48-72 h to assess STEC presence in a sample. In this study, we investigated if Vero cells in a three-dimensional (3D) platform would provide improved sensitivity for rapid screening of STEC. Vero cells (epithelial kidney cell line) were grown as a monolayer (2D) or in a collagen-matrix (3D) and exposed to Shiga-toxin (Stx) preparation or STEC cells that were pre-exposed to antibiotics (mitomycin C, ciprofloxacin, or polymyxin B) for toxin induction. Lactate dehydrogenase (LDH) release from Vero cells was used as a biomarker for cytotoxicity. Modified tryptic soy broth (mTSB) as enrichment broth containing mitomycin C (2 μg/ml) or ciprofloxacin (100 ng/ml) significantly induced Stx production, which was further confirmed by the dot-immunoblot assay. The 3D Vero platform detected STEC after 6 h post-infection with cytotoxicity values ranging from 33 to 79%, which is considerably faster than the traditional 2D platform, when tested with STEC. The cytotoxicity for non-Stx producing bacteria, Salmonella, Listeria, Citrobacter, Serratia, and Hafnia was found to be below the cytotoxicity cutoff value of 15%. The detection limit for the 3D Vero cell assay was estimated to be 107 CFU/ml for bacteria and about 32 ng/ml for Stx in 6 h. STEC-inoculated ground beef samples (n = 27) resulted in 38-46% cytotoxicity, and the bacterial isolates (n = 42) from ground beef samples were further confirmed to be stx1 and stx2 positive in a multiplex PCR yielding a very low false-positive result. This 3D cell-based screening assay relies on mammalian cell pathogen interaction that can complement other molecular techniques for the detection of cell-free Stx or STEC cells from food samples for early detection and prevention.
Collapse
Affiliation(s)
- Celina Z. To
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, United States
| | - Arun K. Bhunia
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, United States
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, United States
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
9
|
Singh AK, Bai X, Amalaradjou MAR, Bhunia AK. Antilisterial and Antibiofilm Activities of Pediocin and LAP Functionalized Gold Nanoparticles. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2018. [DOI: 10.3389/fsufs.2018.00074] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
10
|
He B, Chen P, Xie Y, Li S, Zhang X, Yang R, Wang G, Shen Z, Wang H. 20(R)-Ginsenoside Rg3 protects SH-SY5Y cells against apoptosis induced by oxygen and glucose deprivation/reperfusion. Bioorg Med Chem Lett 2017; 27:3867-3871. [DOI: 10.1016/j.bmcl.2017.06.045] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/05/2017] [Accepted: 06/19/2017] [Indexed: 11/28/2022]
|
11
|
Characterization of antimicrobial activity against Listeria and cytotoxicity of native melittin and its mutant variants. Colloids Surf B Biointerfaces 2016; 143:194-205. [PMID: 27011349 DOI: 10.1016/j.colsurfb.2016.03.037] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 03/10/2016] [Accepted: 03/13/2016] [Indexed: 01/30/2023]
Abstract
Antimicrobial peptides (AMPs) are relatively short peptides that have the ability to penetrate the cell membrane, form pores leading to cell death. This study compares both antimicrobial activity and cytotoxicity of native melittin and its two mutants, namely, melittin I17K (GIGAVLKVLTTGLPALKSWIKRKRQQ) with a higher charge and lower hydrophobicity and mutant G1I (IIGAVLKVLTTGLPALISWIKRKRQQ) of higher hydrophobicity. The antimicrobial activity against different strains of Listeria was investigated by bioassay, viability studies, fluorescence and transmission electron microscopy. Cytotoxicity was examined by lactate dehydrogenase (LDH) assay on mammalian Caco-2 cells. The minimum inhibitory concentration of native, mutant I17K, mutant G1I against Listeria monocytogenes F4244 was 0.315±0.008, 0.814±0.006 and 0.494±0.037μg/ml respectively, whereas the minimum bactericidal concentration values were 3.263±0.0034, 7.412±0.017 and 5.366±0.019μg/ml respectively. Lag time for inactivation of L. monocytogenes F4244 was observed at concentrations below 0.20 and 0.78μg/ml for native and mutant melittin I17K respectively. The antimicrobial activity against L. monocytogenes F4244 was in the order native>G1I>I17K. Native melittin was cytotoxic to mammalian Caco-2 cells above concentration of 2μg/ml, whereas the two mutants exhibited negligible cytotoxicity up to a concentration of 8μg/ml. Pore formation in cell wall/membrane was observed by transmission electron microscopy. Molecular dynamics (MD) simulation of native and its mutants indicated that (i) surface native melittin and G1I exhibited higher tendency to penetrate a mimic of bacterial cell membrane and (ii) transmembrane native and I17K formed water channel in mimics of bacterial and mammalian cell membranes.
Collapse
|
12
|
Dutra V, Silva AC, Cabrita P, Peres C, Malcata X, Brito L. Lactobacillus plantarum LB95 impairs the virulence potential of Gram-positive and Gram-negative food-borne pathogens in HT-29 and Vero cell cultures. J Med Microbiol 2016; 65:28-35. [DOI: 10.1099/jmm.0.000196] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Virna Dutra
- LEAF (Linking Landscape, Environment, Agriculture and Food)/DRAT (Departamento dos Recursos Naturais, Ambiente e Território), Instituto Superior de Agronomia, University of Lisbon, 1349-017 Lisbon, Portugal
| | - Ana Carla Silva
- LEAF (Linking Landscape, Environment, Agriculture and Food)/DRAT (Departamento dos Recursos Naturais, Ambiente e Território), Instituto Superior de Agronomia, University of Lisbon, 1349-017 Lisbon, Portugal
| | - Paula Cabrita
- LEAF (Linking Landscape, Environment, Agriculture and Food)/DRAT (Departamento dos Recursos Naturais, Ambiente e Território), Instituto Superior de Agronomia, University of Lisbon, 1349-017 Lisbon, Portugal
- Instituto Nacional de Investigação Agrária e Veterinária, IP, Av. República, Quinta do Marquês, Nova Oeiras, 2784-505 Oeiras, Portugal
| | - Cidália Peres
- Instituto Nacional de Investigação Agrária e Veterinária, IP, Av. República, Quinta do Marquês, Nova Oeiras, 2784-505 Oeiras, Portugal
| | - Xavier Malcata
- LEPABE (Laboratory for Process Engineering, Environment, Biotechnology and Energy), Rua Dr Roberto Frias, 4200-264 Porto, Portugal
- Department of Chemical Engineering, University of Porto, Rua Dr Roberto Frias, 4200-264 Porto, Portugal
| | - Luisa Brito
- LEAF (Linking Landscape, Environment, Agriculture and Food)/DRAT (Departamento dos Recursos Naturais, Ambiente e Território), Instituto Superior de Agronomia, University of Lisbon, 1349-017 Lisbon, Portugal
| |
Collapse
|
13
|
Prager R, Lang C, Aurass P, Fruth A, Tietze E, Flieger A. Two novel EHEC/EAEC hybrid strains isolated from human infections. PLoS One 2014; 9:e95379. [PMID: 24752200 PMCID: PMC3994036 DOI: 10.1371/journal.pone.0095379] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 03/26/2014] [Indexed: 12/14/2022] Open
Abstract
The so far highest number of life-threatening hemolytic uremic syndrome was associated with a food-borne outbreak in 2011 in Germany which was caused by an enterohemorrhagic Escherichia coli (EHEC) of the rare serotype O104:H4. Most importantly, the outbreak strain harbored genes characteristic of both EHEC and enteroaggregative E. coli (EAEC). Such strains have been described seldom but due to the combination of virulence genes show a high pathogenicity potential. To evaluate the importance of EHEC/EAEC hybrid strains in human disease, we analyzed the EHEC strain collection of the German National Reference Centre for Salmonella and other Bacterial Enteric Pathogens (NRC). After exclusion of O104:H4 EHEC/EAEC strains, out of about 2400 EHEC strains sent to NRC between 2008 and 2012, two strains exhibited both EHEC and EAEC marker genes, specifically were stx2 and aatA positive. Like the 2011 outbreak strain, one of the novel EHEC/EAEC harbored the Shiga toxin gene type stx2a. The strain was isolated from a patient with bloody diarrhea in 2010, was serotyped as O59:H−, belonged to MLST ST1136, and exhibited genes for type IV aggregative adherence fimbriae (AAF). The second strain was isolated from a patient with diarrhea in 2012, harbored stx2b, was typed as Orough:H−, and belonged to MLST ST26. Although the strain conferred the aggregative adherence phenotype, no known AAF genes corresponding to fimbrial types I to V were detected. In summary, EHEC/EAEC hybrid strains are currently rarely isolated from human disease cases in Germany and two novel EHEC/EAEC of rare serovars/MLST sequence types were characterized.
Collapse
Affiliation(s)
- Rita Prager
- Divison of Enteropathogenic Bacteria and Legionella, National Reference Centre for Salmonella and other Bacterial Enteric Pathogens, Robert Koch-Institut, Wernigerode, Germany
| | - Christina Lang
- Divison of Enteropathogenic Bacteria and Legionella, National Reference Centre for Salmonella and other Bacterial Enteric Pathogens, Robert Koch-Institut, Wernigerode, Germany
| | - Philipp Aurass
- Divison of Enteropathogenic Bacteria and Legionella, National Reference Centre for Salmonella and other Bacterial Enteric Pathogens, Robert Koch-Institut, Wernigerode, Germany
| | - Angelika Fruth
- Divison of Enteropathogenic Bacteria and Legionella, National Reference Centre for Salmonella and other Bacterial Enteric Pathogens, Robert Koch-Institut, Wernigerode, Germany
| | - Erhard Tietze
- Divison of Enteropathogenic Bacteria and Legionella, National Reference Centre for Salmonella and other Bacterial Enteric Pathogens, Robert Koch-Institut, Wernigerode, Germany
| | - Antje Flieger
- Divison of Enteropathogenic Bacteria and Legionella, National Reference Centre for Salmonella and other Bacterial Enteric Pathogens, Robert Koch-Institut, Wernigerode, Germany
- * E-mail:
| |
Collapse
|
14
|
Lascowski KMS, Guth BEC, Martins FH, Rocha SPD, Irino K, Pelayo JS. Shiga toxin-producing Escherichia coli in drinking water supplies of north Paraná State, Brazil. J Appl Microbiol 2013; 114:1230-9. [PMID: 23279284 DOI: 10.1111/jam.12113] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 12/07/2012] [Accepted: 12/18/2012] [Indexed: 11/28/2022]
Abstract
AIM To determine the occurrence and characteristics of Shiga toxin-producing Escherichia coli (STEC) in drinking water supplies treated and untreated. METHODS AND RESULTS Drinking water samples (n = 1850) were collected from 41 municipalities in the north of Paraná State between February 2005 and January 2006. Escherichia coli isolates (n = 300) were recovered from water and investigated for the presence of virulence markers related to STEC by PCR. STEC isolates recovered were then characterized for both phenotypic and genotypic traits. A total of 12 isolates (11 from untreated water and one from treated water) were positive for stx, including five positive for both stx1 and stx2, two positive for stx1 and five positive for stx2. None of the STEC isolates contained eae, but other virulence genes were observed such as ehxA (100%), saa (100%), lpfAO113 (75%), iha (42%), subAB (25%) and cdtV (8%). Multidrug resistance was identified in 25% of the STEC isolates. The 12 STEC isolates belonged to seven distinct serotypes and pulsed-field gel electrophoresis typing revealed the presence of two clusters and two clones in this region. CONCLUSION Drinking water, especially from untreated water supplies, can be source of STEC strains potentially pathogenic for humans. SIGNIFICANCE AND IMPACT OF THE STUDY The investigation of the drinking water supplies for pathogenic E. coli, as STEC, may be useful to prevent waterborne outbreaks.
Collapse
Affiliation(s)
- K M S Lascowski
- Department of Microbiology, Immunology and Parasitology - Escola Paulista de Medicina, Federal University of São Paulo, São Paulo, SP, Brazil
| | | | | | | | | | | |
Collapse
|
15
|
Staples M, Jennison AV, Graham RM, Smith HV. Evaluation of the Meridian Premier EHEC assay as an indicator of Shiga toxin presence in direct faecal specimens. Diagn Microbiol Infect Dis 2012; 73:322-5. [DOI: 10.1016/j.diagmicrobio.2012.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 05/02/2012] [Accepted: 05/07/2012] [Indexed: 10/28/2022]
|
16
|
Bai L, Xia S, Lan R, Liu L, Ye C, Wang Y, Jin D, Cui Z, Jing H, Xiong Y, Bai X, Sun H, Zhang J, Wang L, Xu J. Isolation and characterization of cytotoxic, aggregative Citrobacter freundii. PLoS One 2012; 7:e33054. [PMID: 22470435 PMCID: PMC3310003 DOI: 10.1371/journal.pone.0033054] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 02/09/2012] [Indexed: 11/24/2022] Open
Abstract
Citrobacter freundii is an infrequent but established cause of diarrhea in humans. However, little is known of its genetic diversity and potential for virulence. We analyzed 26 isolates, including 12 from human diarrheal patients, 2 from human fecal samples of unknown diarrheal status, and 12 from animals, insects, and other sources. Pulsed field gel electrophoresis using XbaI allowed us to divide the 26 isolates into 20 pulse types, while multi-locus sequence typing using 7 housekeeping genes allowed us to divide the 26 isolates into 6 sequence types (STs) with the majority belonging to 4 STs. We analyzed adhesion and cytotoxicity to HEp-2 cells in these 26 strains. All were found to adhere to HEp-2 cells. One strain, CF74, which had been isolated from a goat, showed the strongest aggregative adhesion pattern. Lactate dehydrogenase (LDH) released from HEp-2 cells was evaluated as a measure of cytotoxicity, averaging 7.46%. Strain CF74 induced the highest level of LDH, 24.3%, and caused >50% cell rounding, detachment, and death. We named strain CF74 “cytotoxic and aggregative C. freundii.” Genome sequencing of CF74 revealed that it had acquired 7 genomic islands, including 2 fimbriae islands and a type VI secretion system island, all of which are potential virulence factors. Our results show that aggregative adherence and cytotoxicity play an important role in the pathogenesis of C. freundii.
Collapse
Affiliation(s)
- Li Bai
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- National Institute of Nutrition and Food Safety, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shengli Xia
- Henan Center for Disease Control and Prevention, Zhengzhou, Henan Province, China
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Liyun Liu
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Changyun Ye
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yiting Wang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Dong Jin
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhigang Cui
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Huaiqi Jing
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yanwen Xiong
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xuemei Bai
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hui Sun
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jin Zhang
- Henan Center for Disease Control and Prevention, Zhengzhou, Henan Province, China
| | - Lei Wang
- TEDA School of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Jianguo Xu
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- * E-mail:
| |
Collapse
|
17
|
Matter LB, Barbieri NL, Nordhoff M, Ewers C, Horn F. Avian pathogenic Escherichia coli MT78 invades chicken fibroblasts. Vet Microbiol 2011; 148:51-9. [DOI: 10.1016/j.vetmic.2010.08.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 08/06/2010] [Accepted: 08/16/2010] [Indexed: 10/19/2022]
|
18
|
Xicohtencatl-Cortes J, Saldaña Z, Deng W, Castañeda E, Freer E, Tarr PI, Finlay BB, Puente JL, Girón JA. Bacterial macroscopic rope-like fibers with cytopathic and adhesive properties. J Biol Chem 2010; 285:32336-42. [PMID: 20688909 DOI: 10.1074/jbc.m110.162248] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We present a body of ultrastructural, biochemical, and genetic evidence that demonstrates the oligomerization of virulence-associated autotransporter proteins EspC or EspP produced by deadly human pathogens enterohemorrhagic and enteropathogenic Escherichia coli into novel macroscopic rope-like structures (>1 cm long). The rope-like structures showed high aggregation and insolubility, stability to anionic detergents and high temperature, and binding to Congo Red and thioflavin T dyes. These are properties also exhibited by human amyloidogenic proteins. These macroscopic ropes were not observed in cultures of nonpathogenic Escherichia coli or isogenic espP or espC deletion mutants of enterohemorrhagic or enteropathogenic Escherichia coli but were produced by an Escherichia coli K-12 strain carrying a plasmid expressing espP. Purified recombinant EspP monomers were able to self-assemble into macroscopic ropes upon incubation, suggesting that no other protein was required for assembly. The ropes bound to and showed cytopathic effects on cultured epithelial cells, served as a substratum for bacterial adherence and biofilm formation, and protected bacteria from antimicrobial compounds. We hypothesize that these ropes play a biologically significant role in the survival and pathogenic scheme of these organisms.
Collapse
Affiliation(s)
- Juan Xicohtencatl-Cortes
- Laboratorio de Bacteriología Intestinal, Hospital Infantil de México Federico Gómez, Dr. Márquez 162, Col. Doctores, Delegación Cuauhtémoc, México D.F. 06720, México
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Lee JH, Hur J, Stein BD. Occurrence and characteristics of enterohemorrhagic Escherichia coli O26 and O111 in calves associated with diarrhea. Vet J 2007; 176:205-9. [PMID: 17400008 DOI: 10.1016/j.tvjl.2007.02.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Revised: 01/05/2007] [Accepted: 02/06/2007] [Indexed: 10/23/2022]
Abstract
The aims of this study were: (1) to examine whether or not enterohemorrhagic Escherichia coli O26 and O111 (EHEC O26 and O111) are involved in neonatal calf diarrhea; (2) to determine the specific age periods at which the calves are vulnerable to these organisms, and (3) to reveal the biochemical, genetic and cytotoxic characteristics of the isolates. The study investigated the occurrence of EHEC O26 and O111 in calves associated with or without diarrhea. A total of 442 diarrheic and non-diarrheic young calves from 115 different farms were examined. Of the 257 calves with diarrhea, 37 (14.4%) and 32 (12.5%) tested positive for EHEC O26 and EHEC O111, respectively. Of the 185 non-diarrheic calves, 14 (7.6%) and 11 (5.9%) tested positive for EHEC O26 and EHEC O111, respectively. EHEC O26 and O111 were recovered from 14/69 (20%) and 11/69 (16%) diarrheic calves <2-weeks-old, respectively, and no EHEC O26 and O111 were detected in the non-diarrheic claves of this age group, suggesting that EHEC O26 and O111 are possible causes of the disease in infected neonatal calves. However, there were similar rates of occurrence in the diarrheic and non-diarrheic calves in the older animals (particularly, aged >10 weeks). PCR analysis showed that the isolates carried various virulence genes such as Ehly, eae, stx1 and stx2, which highlight the potential importance of these attributes for the infection, colonization and the possible pathogenesis of calf diarrhea. Cytotoxicity analysis revealed that many of the EHEC isolates showed high cytotoxicity to Vero cells, re-emphasizing the potential for cattle being a direct source of EHEC infections in humans.
Collapse
Affiliation(s)
- John Hwa Lee
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Jeonju, 561-756, Republic of Korea.
| | | | | |
Collapse
|
20
|
Vidovic S, Korber DR. Prevalence of Escherichia coli O157 in Saskatchewan cattle: characterization of isolates by using random amplified polymorphic DNA PCR, antibiotic resistance profiles, and pathogenicity determinants. Appl Environ Microbiol 2006; 72:4347-55. [PMID: 16751550 PMCID: PMC1489585 DOI: 10.1128/aem.02791-05] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The prevalence of Escherichia coli O157 associated with feedlot cattle in Saskatchewan was determined in a 10-month longitudinal study (3 feedlots) and a point prevalence study (20 feedlots). The prevalence of E. coli O157 at the three different sites in the horizontal study varied from 2.5 to 45%. The point prevalence of E. coli O157 among Saskatchewan cattle from 20 different feedlots ranged from 0% to a high of 57%. A statistically significant (P = 0.003) positive correlation was determined to exist between the density of cattle and the E. coli O157 prevalence rate. A significant correlation (P = 0.006) was also found between the E. coli O157 percent prevalence and the number of cattle housed/capacity ratio. All 194 E. coli O157 isolates obtained were highly virulent, and random amplified polymorphic DNA PCR analysis revealed that the isolates grouped into 39 different E. coli O157 subtypes, most of which were indigenous to specific feedlots. Two of the most predominant subtypes were detected in 11 different feedlots and formed distinct clusters in two geographic regions in the province. Antimicrobial susceptibility testing of the E. coli O157 isolates revealed that 10 were multidrug resistant and that 73 and 5 were resistant to sulfisoxazole and tetracycline, respectively.
Collapse
Affiliation(s)
- Sinisa Vidovic
- Applied Microbiology and Food Science, 51 Campus Drive, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A8, Canada
| | | |
Collapse
|
21
|
Maldonado Y, Fiser JC, Nakatsu CH, Bhunia AK. Cytotoxicity potential and genotypic characterization of Escherichia coli isolates from environmental and food sources. Appl Environ Microbiol 2005; 71:1890-8. [PMID: 15812017 PMCID: PMC1082550 DOI: 10.1128/aem.71.4.1890-1898.2005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2004] [Accepted: 11/11/2004] [Indexed: 01/05/2023] Open
Abstract
The presence of Escherichia coli isolates in the environment is a potential source of contamination of food and water supplies. Moreover, these isolates may harbor virulence genes that can be a source of new forms of pathogenic strains. Here, using multiplex PCR, we examined the presence of virulence gene markers (stx1, stx2, eaeA, hlyA) in 1,698 environmental isolates of E. coli and 81 isolates from food and clinical sources. The PCR analysis showed that approximately 5% (79 of 1,698) of the total environmental isolates and 96% (79 of 81) of the food and clinical isolates were positive for at least one of the genes. Of the food and clinical isolates, 84% (68 of 81 isolates) were positive for all four genes. Of the subset of environmental isolates chosen for further analysis, 16% (13 of 79 isolates) were positive for stx2 and 84% (66 of 79 isolates) were positive for eaeA; 16 of the latter strains were also positive for hlyA. The pathogenic potentials of 174 isolates (81 isolates from food and clinical sources and 93 isolates from environmental sources) were tested by using a cytotoxicity assay based on lactate dehydrogenase release from Vero cells. In general, 97% (79 of 81) of the food and clinical isolates and 41% (39 of 93) of the environmental isolates exhibited positive cytotoxicity. High cytotoxicity values correlated to the presence of stx genes. The majority of hly-positive but stx-negative environmental isolates also exhibited a certain degree of cytotoxicity. Isolates were also tested for sorbitol utilization and were genotyped by ribotyping and by repetitive extragenic palindromic PCR (REP-PCR) as potential means of quickly identifying virulent strains from the environment, but none of these methods could be used to distinguish cytotoxic environmental isolates. Only 31% of the isolates were negative for sorbitol fermentation, and none of the isolates had common ribotypes or REP-PCR fingerprints. This study suggests that overall higher cytotoxicity values correlated with the production of stx genes, and the majority of hly-positive but stx-negative environmental isolates also exhibited a certain degree of cytotoxicity. This study demonstrated that there is widespread distribution of potentially virulent E. coli strains in the environment that may be a cause of concern for human health.
Collapse
Affiliation(s)
- Yadilka Maldonado
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, 745 Agricultural Mall Dr., West Lafayette, IN 47907-2009, USA
| | | | | | | |
Collapse
|
22
|
Jo MY, Kim JH, Lim JH, Kang MY, Koh HB, Park YH, Yoon DY, Chae JS, Eo SK, Lee JH. Prevalence and characteristics of Escherichia coli O157 from major food animals in Korea. Int J Food Microbiol 2004; 95:41-9. [PMID: 15240073 DOI: 10.1016/j.ijfoodmicro.2004.01.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2003] [Revised: 12/22/2003] [Accepted: 01/05/2004] [Indexed: 10/26/2022]
Abstract
Escherichia coli O157:H7/NM (E. coli O157) is now recognized as an important cause of diarrhea, hemorrhagic colitis and hemolytic-uremic syndrome worldwide. There have been several cases of human E. coli O157 infection in Korea since it was first isolated from a patient with hemolytic-uremic syndrome in 1998. Meat, other foods, and recreational and drinking water contaminated with animal feces are probably the major sources of the E. coli O157 infection. In this study, we investigated the prevalence of E. coli O157 in fecal and meat samples of cattle, pigs and chicken in Korea from April 2000 to July 2002. Eighty-six (3.03%) of 2843 samples were positive for E. coli O157. Most of the E. coli O157 strains were isolated from fecal samples of beef and dairy cattle from May to October of each year. Of 86 E. coli O157 isolates, 73 were serotype O157:H7 and 13 were serotype O157:NM. Polymerase chain reaction (PCR) analysis of E. coli O157 virulence markers revealed that all O157:H7/NM isolates were positive for EhlyA, eaeA and rfb(O157), and 77 isolates were positive for stx1 and/or stx2. Cytotoxicity analysis revealed that many of the E. coli O157 isolates showed high cytotoxicity on Vero cells. Our data suggest that the majority of Korean E. coli O157 isolates from food animals can cause serious diseases in humans.
Collapse
Affiliation(s)
- Mi-Yeong Jo
- College of Veterinary Medicine, Chonnam National University, Kwangju 500-757, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Davis KC, Nakatsu CH, Turco R, Weagant SD, Bhunia AK. Analysis of environmental Escherichia coli isolates for virulence genes using the TaqMan PCR system. J Appl Microbiol 2003; 95:612-20. [PMID: 12911710 DOI: 10.1046/j.1365-2672.2003.02023.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS To assess the presence of virulence genes in environmental and foodborne Escherichia coli isolates using the TaqMan PCR system. METHODS AND RESULTS Three TaqMan pathogen detection kits called O157:H7, StxI and StxII were used to investigate the presence of virulence genes in Escherichia coli isolates. All 54 foodborne E. coli O157:H7 isolates showed expected results using these kits. Ninety (15%) of 604 environmental isolates gave positive amplification with an O157:H7-specific kit. TaqMan PCR amplification products from these 90 isolates were analysed by agarose gel electrophoresis, and 90% (81 of 90) of the environmental samples contained the expected PCR product. Sixty-six of these 90 were chosen for serotyping tests and only 35% (23 of 66) showed agglutination with both anti-O157 and anti-H7 antibodies. Further ribotyping of 16 sero-positive isolates in an automated Riboprinter did not identify these to be O157:H7. Multiplex PCR with primers for eaeA, stxI and stxII genes was used to confirm the TaqMan results in 10 selected environmental isolates. CONCLUSIONS All three TaqMan pathogen detection kits were useful for virulence gene analysis of prescreened foodborne O157:H7 isolates, while the O157:H7-specific kit may not be suitable for virulence gene analysis of environmental E. coli isolates, because of high false positive identification. SIGNIFICANCE AND IMPACT OF THE STUDY The ability to rapidly identify the presence of pathogenic E. coli in food or environmental samples is essential to avert outbreaks. These results are of importance to microbiologists seeking to use TaqMan PCR to rapidly identify pathogenic E. coli in environmental samples. Furthermore, serotyping may not be a reliable method for identification of O157:H7 strains.
Collapse
Affiliation(s)
- K C Davis
- Department of Food Science, Molecular Food Microbiology Laboratory, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | |
Collapse
|
24
|
Hahm BK, Maldonado Y, Schreiber E, Bhunia AK, Nakatsu CH. Subtyping of foodborne and environmental isolates of Escherichia coli by multiplex-PCR, rep-PCR, PFGE, ribotyping and AFLP. J Microbiol Methods 2003; 53:387-99. [PMID: 12689716 DOI: 10.1016/s0167-7012(02)00259-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A total of 54 isolates were characterized by multiplex-PCR for toxin genes and genotyped using several DNA fingerprinting methods: using repetitive extragenic palindromes (REP) and Box primers (rep-PCR), amplified fragment length polymorphism (AFLP), pulsed-field gel electrophoresis (PFGE) and ribotyping. The known-pathogenic strains tested were from food and clinical samples (34 strains) and included serovars O157:H7, O111:H8, O111:H11, O91:H21 and O55:H7. Two type cultures, Escherichia coli K12 (ATCC 29425) and DUP-101 (ATCC 51739), were included as known non-pathogenic strains and an additional 17 previously unclassified isolates from animal fecal samples. Comparisons of genomic DNA fingerprint patterns using unweighted pair group method with arithmetic averages (UPGMA) cluster analysis of Jaccard similarity indices indicated that all methods tested showed a greater similarity between the E. coli O157:H7 strains than to other isolates. On the basis of these studies, we propose that AFLP, REP-PCR, Box-PCR and ribotyping techniques can all be used for discriminating O157:H7 isolates and are preferred for large-scale screening because of the speed and ease of the methods. The PFGE method is the best to discriminate between subtypes of O157:H7 associated with specific outbreak investigations; however, it is more time consuming and unnecessary if subtyping is not required. There are differences between the dendrograms generated from each method and the relationship between the other strains analyzed. However, the fingerprint profiles of the O157:H7 isolates were virtually identical using REP-PCR and Box-PCR enabling easy distinction of the group. Thus, these typing methods have the potential to aid investigators in identifying the source of an outbreak to prevent or control further spread of E. coli O157:H7.
Collapse
Affiliation(s)
- Byoung-Kwon Hahm
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | |
Collapse
|