1
|
Lori M, Kundel D, Mäder P, Singh A, Patel D, Sisodia BS, Riar A, Krause HM. Organic farming systems improve soil quality and shape microbial communities across a cotton-based crop rotation in an Indian Vertisol. FEMS Microbiol Ecol 2024; 100:fiae127. [PMID: 39289000 PMCID: PMC11503945 DOI: 10.1093/femsec/fiae127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 09/19/2024] Open
Abstract
The adverse effects of intensified cropland practices on soil quality and biodiversity become especially evident in India, where nearly 60% of land is dedicated to cultivation and almost 30% of soil is already degraded. Intensive agricultural practice significantly contributes to soil degradation, highlighting the crucial need for effective countermeasures to support sustainable development goals. A long-term experiment, established in the semi-arid Nimar Valley (India) in 2007, monitors the effect of organic and conventional management on the plant-soil system in a Vertisol. The focus of our study was to assess how organic and conventional farming systems affect biological and chemical soil quality indicators. Additionally, we followed the community structure of the soil microbiome throughout the vegetation phase under soya or cotton cultivation in the year 2019. We found that organic farming enhanced soil organic carbon and nitrogen content, increased microbial abundance and activity, and fostered distinct microbial communities associated with traits in nutrient mineralization. In contrast, conventional farming enhanced the abundance of bacteria involved in ammonium oxidation suggesting high nitrification and subsequent nitrogen losses with regular mineral fertilization. Our findings underscore the value of adopting organic farming approaches in semi-arid subtropical regions to rectify soil quality and minimize nitrogen losses.
Collapse
Affiliation(s)
- Martina Lori
- Department of Soil Sciences, Research Institute of Organic Agriculture (FiBL), Ackerstrasse 113, 5070 Frick, Switzerland
| | - Dominika Kundel
- Department of Soil Sciences, Research Institute of Organic Agriculture (FiBL), Ackerstrasse 113, 5070 Frick, Switzerland
| | - Paul Mäder
- Department of Soil Sciences, Research Institute of Organic Agriculture (FiBL), Ackerstrasse 113, 5070 Frick, Switzerland
| | - Akanksha Singh
- Department of International Cooperation, Research Institute of Organic Agriculture (FiBL), Ackerstrasse 113, 5070 Frick, Switzerland
| | | | | | - Amritbir Riar
- Department of International Cooperation, Research Institute of Organic Agriculture (FiBL), Ackerstrasse 113, 5070 Frick, Switzerland
| | - Hans-Martin Krause
- Department of Soil Sciences, Research Institute of Organic Agriculture (FiBL), Ackerstrasse 113, 5070 Frick, Switzerland
| |
Collapse
|
2
|
Tang H, Wen L, Cheng K, Li C, Shi L, Li W, Guo Y, Xiao X. Effects of Short-Term Tillage on Rhizosphere Soil Nitrogen Mineralization and Microbial Community Composition in Double-Cropping Rice Field. J Microbiol Biotechnol 2024; 34:1464-1474. [PMID: 38973400 PMCID: PMC11294655 DOI: 10.4014/jmb.2401.01032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/09/2024] [Accepted: 05/08/2024] [Indexed: 07/09/2024]
Abstract
Soil extracellular enzyme plays a vital role in changing soil nitrogen (N) mineralization of rice field. However, the effects of soil extracellular enzyme activities (EEA) and microbial community composition response to N mineralization of rice field under short-term tillage treatment needed to be further explored. In this study, we investigated the impact of short-term (8-year) tillage practices on rhizosphere soil N transformation rate, soil enzyme activities, soil microbial community structure, and the N mineralization function gene abundances in double-cropping rice field in southern China. The experiment consisted of four tillage treatments: rotary tillage with crop straw input (RT), conventional tillage with crop straw input (CT), no-tillage with crop straw retention (NT), and rotary tillage with all crop straw removed as a control (RTO). The results indicated that the rhizosphere soil N transformation rate in paddy field under the NT and RTO treatments was significantly decreased compared to RT and CT treatments. In comparison to the NT and RTO treatments, soil protease, urease, β-glucosaminidase, and arginase activities were significantly improved by the CT treatment, as were abundances of soil sub, npr, and chiA with CT and RT treatments. Moreover, the overall diversity of soil bacterial communities in NT and RTO treatments was significantly lower than that in RT and CT treatments. Soil chitinolytic and bacterial ureolytic communities were also obviously changed under a combination of tillage and crop straw input practices.
Collapse
Affiliation(s)
- Haiming Tang
- Hunan Soil and Fertilizer Institute, Changsha 410125, P.R. China
| | - Li Wen
- Hunan Soil and Fertilizer Institute, Changsha 410125, P.R. China
| | - Kaikai Cheng
- Hunan Soil and Fertilizer Institute, Changsha 410125, P.R. China
| | - Chao Li
- Hunan Soil and Fertilizer Institute, Changsha 410125, P.R. China
| | - Lihong Shi
- Hunan Soil and Fertilizer Institute, Changsha 410125, P.R. China
| | - Weiyan Li
- Hunan Soil and Fertilizer Institute, Changsha 410125, P.R. China
| | - Yong Guo
- Hunan Soil and Fertilizer Institute, Changsha 410125, P.R. China
| | - Xiaoping Xiao
- Hunan Soil and Fertilizer Institute, Changsha 410125, P.R. China
| |
Collapse
|
3
|
Huang Y, Chen Y, Huang H, Shah GM, Lin J, Yan M, Guo C, Xiao X. Hyperthermophilic pretreatment composting can reduce ammonia emissions by controlling proteolytic bacterial community and the physicochemical properties. BIORESOUR BIOPROCESS 2023; 10:37. [PMID: 38647615 PMCID: PMC10992325 DOI: 10.1186/s40643-023-00659-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/19/2023] [Indexed: 04/25/2024] Open
Abstract
Proteolysis is the rate-limiting step in the mineralization of organic nitrogen into ammonium (NH4+) and thereby the ammonia (NH3) released during the composting. However, the dynamics of bacterial proteolytic communities related to NH3 emissions during the composting systems are mostly unknown. This study aimed to examine and compare the effects of hyperthermophilic pretreatment composting (HPC) and traditional composting (TC) methods on (i) the difference of NH3 loss and nitrogenous compounds; (ii) the dynamics of the proteolytic bacterial community involved in the proteolysis and (iii) the correlation between the proteolytic bacterial community, biophysiochemical characteristics and NH3 loss. Results revealed that the HPC decreased NH3 loss by 42% as compared to TC during 60-day composting period. This was accompanied with an inhibitory effect on protease activity in the HPC where the relative abundances of the proteolytic bacteria (Bacillus megaterium and Staphylococcus cohnii) were reduced significantly as compared to TC. Partial least-squares path modeling suggested that various physicochemical properties such as higher temperature as well as lower C/N ratio during composting played a dominant role in affecting the abundance of proteolytic bacteria, which may have been an important factor contributing to the lower NH3 loss in HPC. All these findings lead us to conclude that the HPC can significantly reduce NH3 loss by inhibiting the proteolytic bacteria and protease activity responsible for NH3 release.
Collapse
Affiliation(s)
- Ying Huang
- Nanjing Institute of Agricultural Sciences in Jiangsu Hilly Area, No. 6 Xianyin South Road, Qixia District, Nanjing, 210046, Jiangsu Province, China
| | - Yuehong Chen
- Nanjing Institute of Agricultural Sciences in Jiangsu Hilly Area, No. 6 Xianyin South Road, Qixia District, Nanjing, 210046, Jiangsu Province, China.
| | - Hongying Huang
- Institute of Agricultural Resources and Environment Jiangsu Academy of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, No. 50 Zhongling Street, Xuanwu District, Nanjing, 210014, Jiangsu Province, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210014, Jiangsu Province, China
| | - Ghulam Mustafa Shah
- Department of Environmental Sciences, COMSATS University Islamabad Vehari Campus, Vehari, 61100, Pakistan
| | - Jiujun Lin
- Nanjing Institute of Agricultural Sciences in Jiangsu Hilly Area, No. 6 Xianyin South Road, Qixia District, Nanjing, 210046, Jiangsu Province, China
| | - Meiling Yan
- Nanjing Institute of Agricultural Sciences in Jiangsu Hilly Area, No. 6 Xianyin South Road, Qixia District, Nanjing, 210046, Jiangsu Province, China
| | - Chengbao Guo
- Nanjing Institute of Agricultural Sciences in Jiangsu Hilly Area, No. 6 Xianyin South Road, Qixia District, Nanjing, 210046, Jiangsu Province, China
| | - Xu Xiao
- Nanjing Institute of Agricultural Sciences in Jiangsu Hilly Area, No. 6 Xianyin South Road, Qixia District, Nanjing, 210046, Jiangsu Province, China
| |
Collapse
|
4
|
Lori M, Armengot L, Schneider M, Schneidewind U, Bodenhausen N, Mäder P, Krause HM. Organic management enhances soil quality and drives microbial community diversity in cocoa production systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155223. [PMID: 35429564 DOI: 10.1016/j.scitotenv.2022.155223] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 03/15/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Maintaining soil quality for agricultural production is a critical challenge, especially in the tropics. Due to the focus on environmental performance and the provision of soil ecosystem services, organic farming and agroforestry systems are proposed as alternative options to conventional monoculture farming. Soil processes underlying ecosystem services are strongly mediated by microbes; thus, increased understanding of the soil microbiome is crucial for the development of sustainable agricultural practices. Therefore, we measured and related soil quality indicators to bacterial and fungal community structures in five cocoa production systems, managed either organically or conventionally for 12 years, with varying crop diversity, from monoculture to agroforestry. In addition, a successional agroforestry system was included, which uses exclusively on-site pruning residues as soil inputs. Organic management increased soil organic carbon, nitrogen and labile carbon contents compared to conventional. Soil basal respiration and nitrogen mineralisation rates were highest in the successional agroforestry system. Across the field sites, fungal richness exceeded bacterial richness and fungal community composition was distinct between organic and conventional management, as well as between agroforestry and monoculture. Bacterial community composition differed mainly between organic and conventional management. Indicator species associated with organic management were taxonomically more diverse compared to taxa associated with conventionally managed systems. In conclusion, our results highlight the importance of organic management for maintaining soil quality in agroforestry systems for cocoa production.
Collapse
Affiliation(s)
- Martina Lori
- Department of Soil Sciences, Research Institute of Organic Agriculture (FiBL), 5070 Frick, Switzerland
| | - Laura Armengot
- Department of International Cooperation, Research Institute of Organic Agriculture (FiBL), 5070 Frick, Switzerland
| | - Monika Schneider
- Department of International Cooperation, Research Institute of Organic Agriculture (FiBL), 5070 Frick, Switzerland
| | - Ulf Schneidewind
- Georg-August University, Department of Physical Geography, 37077 Göttingen, Germany
| | - Natacha Bodenhausen
- Department of Soil Sciences, Research Institute of Organic Agriculture (FiBL), 5070 Frick, Switzerland
| | - Paul Mäder
- Department of Soil Sciences, Research Institute of Organic Agriculture (FiBL), 5070 Frick, Switzerland
| | - Hans-Martin Krause
- Department of Soil Sciences, Research Institute of Organic Agriculture (FiBL), 5070 Frick, Switzerland.
| |
Collapse
|
5
|
Gong X, Zhang Z, Wang H. Effects of Gleditsia sinensis pod powder, coconut shell biochar and rice husk biochar as additives on bacterial communities and compost quality during vermicomposting of pig manure and wheat straw. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 295:113136. [PMID: 34214797 DOI: 10.1016/j.jenvman.2021.113136] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/06/2021] [Accepted: 06/19/2021] [Indexed: 06/13/2023]
Abstract
This study investigated the effectiveness of Gleditsia sinensis pod powder (GSPP), coconut shell biochar (CSB), rice husk biochar (RHB) and their mixtures on vermicomposting of pig manure and wheat straw using Eisenia fetida. The results indicated that the addition of GSPP or/and CSB and RHB could greatly enhance the relative abundance of Bacteroidetes, Actinobacteria, and Firmicutes, as well as the activities of celluloses, protease, and alkaline phosphatase. However, the earthworm biomass was increased in the GSPP and/or CSB addition treatments but decreased in RHB addition treatments compared with the control. Compared with the control, addition of 4%GSPP+8%CSB significantly (P < 0.05) accelerated the degradation of organic matter and increased the concentration of nutrients (total N, P, K), NO3--N in final vermicompost. Germination and growth of tomato seedings were also higher (P < 0.05) in vermicompost produced with the addition of 4%GSPP+8%CSB than in control. Consequently, 4%GSPP+8%CSB addition was suggested as an efficient method to improve the vermicomposting of pig manure and wheat straw.
Collapse
Affiliation(s)
- Xiaoqiang Gong
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Zuotao Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Hui Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
6
|
Drought Effects on Nitrogen Provisioning in Different Agricultural Systems: Insights Gained and Lessons Learned from a Field Experiment. NITROGEN 2021. [DOI: 10.3390/nitrogen2010001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Most nitrogen (N) in organic fertilizers must be mineralized to become available to plants, a process in which microorganisms play crucial roles. Droughts may impact microorganisms associated with the N cycle, negatively affecting N mineralization and plant N supply. The effects of drought on N-related processes may further be shaped by the farming system. We buried 15N-enriched plant material and reduced precipitation in conventionally and organically (biodynamically) managed wheat fields. On two sampling dates, we evaluated the soil water content, plant parameters and the plants’ 15N isotope signature. We intended to study the microbial communities associated with the N cycle to link potential treatment effects on plant N provisioning with characteristics of the underlying microbial community. However, floods impaired the experiment after the first sampling date, and the molecular work on the microbial communities was not performed. Focusing on the pre-flooding sampling date, our data suggested that processes associated with N transformation are sensitive to drought, but the role of the farming system needs further investigation. Since the underlying research question, the set-up and the lessons learned from this study may guide future experiments, we presented improvements to the set-up and provided ideas for additional analyses, hoping to promote research on this topic.
Collapse
|
7
|
Kalam S, Basu A, Ahmad I, Sayyed RZ, El-Enshasy HA, Dailin DJ, Suriani NL. Recent Understanding of Soil Acidobacteria and Their Ecological Significance: A Critical Review. Front Microbiol 2020; 11:580024. [PMID: 33193209 PMCID: PMC7661733 DOI: 10.3389/fmicb.2020.580024] [Citation(s) in RCA: 231] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 10/08/2020] [Indexed: 11/13/2022] Open
Abstract
Acidobacteria represents an underrepresented soil bacterial phylum whose members are pervasive and copiously distributed across nearly all ecosystems. Acidobacterial sequences are abundant in soils and represent a significant fraction of soil microbial community. Being recalcitrant and difficult-to-cultivate under laboratory conditions, holistic, polyphasic approaches are required to study these refractive bacteria extensively. Acidobacteria possesses an inventory of genes involved in diverse metabolic pathways, as evidenced by their pan-genomic profiles. Because of their preponderance and ubiquity in the soil, speculations have been made regarding their dynamic roles in vital ecological processes viz., regulation of biogeochemical cycles, decomposition of biopolymers, exopolysaccharide secretion, and plant growth promotion. These bacteria are expected to have genes that might help in survival and competitive colonization in the rhizosphere, leading to the establishment of beneficial relationships with plants. Exploration of these genetic attributes and more in-depth insights into the belowground mechanics and dynamics would lead to a better understanding of the functions and ecological significance of this enigmatic phylum in the soil-plant environment. This review is an effort to provide a recent update into the diversity of genes in Acidobacteria useful for characterization, understanding ecological roles, and future biotechnological perspectives.
Collapse
Affiliation(s)
- Sadaf Kalam
- Department of Biochemistry, St. Ann's College for Women, Hyderabad, India
| | - Anirban Basu
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Iqbal Ahmad
- Department of Agricultural Microbiology, Aligarh Muslim University, Aligarh, India
| | - R Z Sayyed
- Department of Microbiology, PSGVP Mandal's, Arts, Science and Commerce College, Shahada, India
| | - Hesham Ali El-Enshasy
- Institute of Bioproduct Development, Universiti Teknologi Malaysia (UTM), Skudai, Malaysia.,School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Skudai, Malaysia.,City of Scientific Research and Technological Applications, New Borg El-Arab, Egypt
| | - Daniel Joe Dailin
- Institute of Bioproduct Development, Universiti Teknologi Malaysia (UTM), Skudai, Malaysia.,School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Skudai, Malaysia
| | - Ni Luh Suriani
- Biology Department, Faculty of Mathematics and Natural Science, Udayana University, Bali, Indonesia
| |
Collapse
|
8
|
Lori M, Piton G, Symanczik S, Legay N, Brussaard L, Jaenicke S, Nascimento E, Reis F, Sousa JP, Mäder P, Gattinger A, Clément JC, Foulquier A. Compared to conventional, ecological intensive management promotes beneficial proteolytic soil microbial communities for agro-ecosystem functioning under climate change-induced rain regimes. Sci Rep 2020; 10:7296. [PMID: 32350402 PMCID: PMC7190635 DOI: 10.1038/s41598-020-64279-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 04/13/2020] [Indexed: 02/06/2023] Open
Abstract
Projected climate change and rainfall variability will affect soil microbial communities, biogeochemical cycling and agriculture. Nitrogen (N) is the most limiting nutrient in agroecosystems and its cycling and availability is highly dependent on microbial driven processes. In agroecosystems, hydrolysis of organic nitrogen (N) is an important step in controlling soil N availability. We analyzed the effect of management (ecological intensive vs. conventional intensive) on N-cycling processes and involved microbial communities under climate change-induced rain regimes. Terrestrial model ecosystems originating from agroecosystems across Europe were subjected to four different rain regimes for 263 days. Using structural equation modelling we identified direct impacts of rain regimes on N-cycling processes, whereas N-related microbial communities were more resistant. In addition to rain regimes, management indirectly affected N-cycling processes via modifications of N-related microbial community composition. Ecological intensive management promoted a beneficial N-related microbial community composition involved in N-cycling processes under climate change-induced rain regimes. Exploratory analyses identified phosphorus-associated litter properties as possible drivers for the observed management effects on N-related microbial community composition. This work provides novel insights into mechanisms controlling agro-ecosystem functioning under climate change.
Collapse
Affiliation(s)
- Martina Lori
- Department of Soil Sciences, Research Institute of Organic Agriculture (FiBL), Ackerstrasse 113, 5070, Frick, Switzerland
- Organic Farming with focus on Sustainable Soil Use, Karl-Glöckner-Str. 21 C, Justus-Liebig University Giessen, 35394, Giessen, Germany
| | - Gabin Piton
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000, Grenoble, France.
| | - Sarah Symanczik
- Department of Soil Sciences, Research Institute of Organic Agriculture (FiBL), Ackerstrasse 113, 5070, Frick, Switzerland
| | - Nicolas Legay
- École de la Nature et du Paysage, INSA Centre Val de Loire, 41000 Blois - CNRS, CITERES, UMR 7324, 37200, Tours, France
| | - Lijbert Brussaard
- Soil Biology Group, Wageningen University & Research, P.O. Box 47, 6700 AA, Wageningen, The Netherlands
| | - Sebastian Jaenicke
- Bioinformatics and Systems Biology, Heinrich-Buff-Ring 58, Justus-Liebig-University Giessen, 35392, Giessen, Germany
| | - Eduardo Nascimento
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, 3000-456, Coimbra, Portugal
| | - Filipa Reis
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, 3000-456, Coimbra, Portugal
| | - José Paulo Sousa
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, 3000-456, Coimbra, Portugal
| | - Paul Mäder
- Department of Soil Sciences, Research Institute of Organic Agriculture (FiBL), Ackerstrasse 113, 5070, Frick, Switzerland
| | - Andreas Gattinger
- Department of Soil Sciences, Research Institute of Organic Agriculture (FiBL), Ackerstrasse 113, 5070, Frick, Switzerland
- Organic Farming with focus on Sustainable Soil Use, Karl-Glöckner-Str. 21 C, Justus-Liebig University Giessen, 35394, Giessen, Germany
| | - Jean-Christophe Clément
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000, Grenoble, France
- Univ. Savoie Mont Blanc, INRAE, CARRTEL, 74200, Thonon-Les-Bains, France
| | - Arnaud Foulquier
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000, Grenoble, France
| |
Collapse
|
9
|
Zhang X, Li X, Zhao X, Chen X, Zhou B, Weng L, Li Y. Bioelectric field accelerates the conversion of carbon and nitrogen in soil bioelectrochemical systems. JOURNAL OF HAZARDOUS MATERIALS 2020; 388:121790. [PMID: 31818651 DOI: 10.1016/j.jhazmat.2019.121790] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/19/2019] [Accepted: 11/28/2019] [Indexed: 06/10/2023]
Abstract
Soil bioelectrochemical systems (BESs) utilize indigenous microorganisms to generate biocurrent/electric fields that stimulate the degradation of organic pollutants, exhibiting great potential in the removal of petroleum hydrocarbons from soils. In this study, a horizontal bioelectric field was constructed to investigate the conversion of carbon and nitrogen in a soil BES. After 182 days, the degradation rates of total petroleum hydrocarbons, alkanes, and aromatics were promoted by 52 %, 38% and 136%, respectively. Meanwhile, the bioelectric field accelerated NH4+-N production near the cathode, whereas NH4+-N consumption near the anode indicated that the bioelectric field promoted the cathode-dominated ammoniation process and the anode-dominated denitrification process. Additionally, a distinctive microbial community was formed under the bioelectric field, and the improved degradation on the cathode and the anode relied on special functional bacteria (typically, cathode, Alcanivorax; anode, Marinobacter). The dramatic enrichment in anodic denitrifying bacteria, including Pontibacillus, Sediminimonas, Georgenia, etc., explained the enhanced denitrification process under the bioelectric field. This study simultaneously clarified the carbon and nitrogen conversion processes and corresponding bacterial community occurring under the bioelectric field for the first time, helping to form regulation strategies in the practical application of soil BESs and providing a new perspective for removing petroleum hydrocarbons from soils.
Collapse
Affiliation(s)
- Xiaolin Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Xiaojing Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China.
| | - Xiaodong Zhao
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Xiaodong Chen
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Bin Zhou
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Liping Weng
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Yongtao Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
10
|
Thermostable endoglucanase gene derived by amplification from the genomic DNA of a cellulose-enriched mixed culture from mudspring water of Mt. Makiling, Laguna, Philippines. World J Microbiol Biotechnol 2020; 36:51. [PMID: 32157408 DOI: 10.1007/s11274-020-02825-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 02/29/2020] [Indexed: 10/24/2022]
Abstract
Culture-independent molecular-based approaches can be used to identify genes of interest from environmental sources that have desirable properties such as thermo activity. For this study, a putative thermo stable endoglucanase gene was identified from a mixed culture resulting from the inoculation of Brock-CMcellulose (1%) broth with mudspring water from Mt. Makiling, Laguna, Philippines that had been incubated at 90 °C. Genomic DNA was extracted from the cellulose-enriched mixed culture and endo1949 forward and reverse primers were used to amplify the endoglucanase gene, which was cloned into pCR-script plasmid vector. Blastn alignment of the sequenced insert revealed 99.69% similarity to the glycosyl hydrolase, sso1354 (CelA1; Q97YG7) from Saccharolobus solfataricus. The endoglucanase gene (GenBank accession number MK984682) was determined to be 1,021 nucleotide bases in length, corresponding to 333 amino acids with a molecular mass of ~ 37 kDa. The endoglucanase gene was inserted into a pET21 vector and transformed in E. coli BL21 for expression. Partially purified recombinant Mt. Makiling endoglucanase (MM-Engl) showed a specific activity of 187.61 U/mg and demonstrated heat stability up to 80 °C. The thermo-acid stable endoglucanase can be used in a supplementary hydrolysis step to further hydrolyze the lignocellulosic materials that were previously treated under high temperature-dilute acid conditions, thereby enhancing the release of more glucose sugars for bioethanol production.
Collapse
|
11
|
Chen M, Huang Y, Wang C, Gao H. The conversion of organic nitrogen by functional bacteria determines the end-result of ammonia in compost. BIORESOURCE TECHNOLOGY 2020; 299:122599. [PMID: 31865156 DOI: 10.1016/j.biortech.2019.122599] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 06/10/2023]
Abstract
The conversion of organic nitrogen determines the quality of composting and its environmental impact, but its underlying microbial mechanism is unclear. Hence, in static composting reactors with forced ventilation, vegetable waste, straw and pig manure were used as raw materials to simulate the composting for 33 days with or without adding 9% biochar. In composting, amino acid and amino sugar nitrogen were most easily converted to ammonium and hydrolysable unknown nitrogen was synthesized from ammonium. The aprA and chiA-related bacteria converted amino acid nitrogen to ammonium, and ammonium to hydrolysable unknown nitrogen, while amoA and HAO-related bacteria converted amine and amino sugar nitrogen to ammonium. Additionally, soluble microbial byproduct-like materials (62.4%) significantly affect organic nitrogen transformation, and could reduce ammonia emission by increasing ammoxidation rates. Thus, whether or not adsorbent substances are added, microorganisms affect the production of ammonia by controlling the conversion of organic nitrogen.
Collapse
Affiliation(s)
- Mengli Chen
- Key Laboratory of Plant Nutrition and The Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, 712100 Shaanxi, China; School of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Chongqing University, Chongqing 400045, China
| | - Yimei Huang
- Key Laboratory of Plant Nutrition and The Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, 712100 Shaanxi, China.
| | - Cong Wang
- Key Laboratory of Plant Nutrition and The Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, 712100 Shaanxi, China
| | - Han Gao
- Key Laboratory of Plant Nutrition and The Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, 712100 Shaanxi, China
| |
Collapse
|
12
|
Short-Term Nitrogen Fertilization Affects Microbial Community Composition and Nitrogen Mineralization Functions in an Agricultural Soil. Appl Environ Microbiol 2020; 86:AEM.02278-19. [PMID: 31836579 DOI: 10.1128/aem.02278-19] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 12/11/2019] [Indexed: 01/07/2023] Open
Abstract
Soil extracellular enzymes play a significant role in the N mineralization process. However, few studies have documented the linkage between enzyme activity and the microbial community that performs the function. This study examined the effects of inorganic and organic N fertilization on soil microbial communities and their N mineralization functions over 4 years. Soils were collected from silage corn field plots with four contrasting N treatments: control (no additional N), ammonium sulfate (AS; 100 and 200 kg of N ha-1), and compost (200 kg of N ha-1). Illumina amplicon sequencing was used to comprehensively assess the overall bacterial community (16S rRNA genes), bacterial ureolytic community (ureC), and bacterial chitinolytic community (chiA). Selected genes involved in N mineralization were also examined using quantitative real-time PCR and metagenomics. Enzymes (and marker genes) included protease (npr and sub), chitinase (chiA), urease (ureC), and arginase (rocF). Compost significantly increased diversity of overall bacterial communities even after one application, while ammonium fertilizers had no influence on the overall bacterial communities over four seasons. Bacterial ureolytic and chitinolytic communities were significantly changed by N fertilization. Compost treatment strongly elevated soil enzyme activities after 4 years of repeated application. Functional gene abundances were not significantly affected by N treatments, and they were not correlated with corresponding enzyme activities. N mineralization genes were recovered from soil metagenomes based on a gene-targeted assembly. Understanding how the structure and function of soil microbial communities involved with N mineralization change in response to fertilization practices may indicate suitable agricultural management practices that improve ecosystem services while reducing negative environmental consequences.IMPORTANCE Agricultural N management practices influence the enzymatic activities involved in N mineralization. However, specific enzyme activities do not identify the microbial species directly involved in the measured process, leaving the link between the composition of the microbial community and the production of key enzymes poorly understood. In this study, the application of high-throughput sequencing, real-time PCR, and metagenomics shed light on how the abundance and diversity of microorganisms involved in N mineralization respond to N management. We suggest that N fertilization has significantly changed bacterial ureolytic and chitinolytic communities.
Collapse
|
13
|
Mao H, Zhang H, Fu Q, Zhong M, Li R, Zhai B, Wang Z, Zhou L. Effects of four additives in pig manure composting on greenhouse gas emission reduction and bacterial community change. BIORESOURCE TECHNOLOGY 2019; 292:121896. [PMID: 31404757 DOI: 10.1016/j.biortech.2019.121896] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 06/10/2023]
Abstract
Four different additives of Medical stone (MS), Zeolite (ZL), Bamboo biochar (BC), and Wood vinegar (WV) were investigated in pig manure composting. The four additives reduced the peak CH4 emission from 54% to 74%, while reduced N2O loss from 36% to 69%, compared with control (CK). WV and ZL showed better ability in N2O loss reduction, yet MS with the efficient inhibition both on CH4 and NH3 emissions. The bacterial community analysis indicated that bacterial diversity in the maturity phase was higher than that in the thermophilic phase, especially with treatments of ZL, BC and WV. The selected factors of pH, temperature, TOC and DOC could influence the thermophilic phase, while EC and TKN related closely with maturity phase in pig manure composting.
Collapse
Affiliation(s)
- Hui Mao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Haoyue Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qian Fu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Minzheng Zhong
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Bingnian Zhai
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Zhaohui Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Lina Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
14
|
Teider Junior PI, Ribeiro Júnior JC, Ossugui EH, Tamanini R, Ribeiro J, Santos GA, Alfieri AA, Beloti V. Pseudomonas spp. and other psychrotrophic microorganisms in inspected and non-inspected Brazilian Minas Frescal cheese: proteolytic, lipolytic and AprX production potential. PESQUISA VETERINÁRIA BRASILEIRA 2019. [DOI: 10.1590/1678-5150-pvb-6037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
ABSTRACT: The most consumed cheese in Brazil, Minas Frescal cheese (MFC) is highly susceptible to microbial contamination and clandestine production and commercialization can pose a risk to consumer health. The storage of this fresh product under refrigeration, although more appropriate, may favor the growth of spoilage psychrotrophic bacteria. The objective of this study was to quantify and compare Pseudomonas spp. and other psychrotrophic bacteria in inspected and non-inspected MFC samples, evaluate their lipolytic and proteolytic activities and their metalloprotease production potentials. Twenty MFC samples were evaluated: 10 inspected and 10 non-inspected. Counts of psychrotrophic bacteria and Pseudomonas spp., evaluation of the proteolytic and lipolytic potential of the isolates, and identification of potential producers of alkaline metalloprotease (AprX) were assessed. The mean total psychrotrophic counts were 1.07 (±2.18) × 109CFU/g in the inspected samples and 4.5 (±5.86) × 108CFU/g in the non-inspected, with no significant difference (p=0.37). The average score of Pseudomonas spp. was 6.86 (±18.6) × 105 and 2.08 (±3.65) × 106 CFU/g for the inspected and non-inspected MFC samples, respectively, with no significant difference (p=0.1). Pseudomonas spp. represented 0.06% and 0.004% of psychrotrophic bacteria found in inspected and non-inspected MFC samples, respectively. Collectively, 694 psychrotrophic strains and 47Pseudomonas spp. were isolated, of which 59.9% and 68.1% were simultaneously proteolytic and lipolytic, respectively. Of the 470 psychrotrophs isolated from inspected and 224 from non-inspected cheese samples, 5.74% and 2.23% contained aprX, respectively, while 100 and 86.96% of the Pseudomonas spp. isolates in inspected and non-inspected cheese samples contained the gene. The production potential of AprX did not, however, determine the proteolytic activity on plates of these isolates under the conditions evaluated in this study. Of total, 65.63% of the psychrotrophs that contained aprX gene were confirmed as Pseudomonas spp., using genus-specific PCR. Phylogenetic analysis of the 16S rRNA gene of the other psychrotrophs that were potential producers of AprX identified them as Serratia spp. (n=7), Raoultella ornithinolytica (n=1), and Acinetobacter schindleri (n=1) in the inspected samples and Psychrobacter sanguinis (n=1) and Leuconostoc mesenteroides (n=1) in the non-inspected samples. The production conditions of Brazilian MFC of these samples, while meeting the legal determinations, are not sufficient to control Pseudomonas and other spoilage-related psychrotrophs. Thus, stricter hygienic measures are required during the formal production of this type of cheese.
Collapse
|
15
|
Zhang C, Bijl E, Svensson B, Hettinga K. The Extracellular Protease AprX fromPseudomonasand its Spoilage Potential for UHT Milk: A Review. Compr Rev Food Sci Food Saf 2019; 18:834-852. [DOI: 10.1111/1541-4337.12452] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 03/06/2019] [Accepted: 03/10/2019] [Indexed: 01/10/2023]
Affiliation(s)
- Chunyue Zhang
- Dairy Science and Technology, Food Quality and Design GroupWageningen Univ. and Research P.O. Box 17 6700 AA Wageningen the Netherlands
| | - Etske Bijl
- Dairy Science and Technology, Food Quality and Design GroupWageningen Univ. and Research P.O. Box 17 6700 AA Wageningen the Netherlands
| | - Birgitta Svensson
- Tetra Pak Processing Systems ABRuben Rausings gata 221 86 Lund Sweden
| | - Kasper Hettinga
- Dairy Science and Technology, Food Quality and Design GroupWageningen Univ. and Research P.O. Box 17 6700 AA Wageningen the Netherlands
| |
Collapse
|
16
|
Zhang M, Wang J, Bai SH, Teng Y, Xu Z. Evaluating the effects of phytoremediation with biochar additions on soil nitrogen mineralization enzymes and fungi. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:23106-23116. [PMID: 29860689 DOI: 10.1007/s11356-018-2425-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 05/28/2018] [Indexed: 06/08/2023]
Abstract
Phytoremediation with biochar addition might alleviate pollutant toxicity to soil microorganism. It is uncertain to what extent biochar addition rate could affect activities of enzymes related to soil nitrogen (N) mineralization and alter fungal community under the phytoremediation. This study aimed to reveal the effects of Medicago sativa L. (alfalfa) phytoremediation, alone or with biochar additions, on soil protease and chitinase and fungal community and link the responses of microbial parameters with biochar addition rates. The alfalfa phytoremediation enhanced soil protease activities, and relative to the phytoremediation alone, biochar additions had inconsistent impacts on the corresponding functional gene abundances. Compared with the blank control, alfalfa phytoremediation, alone or with biochar additions, increased fungal biomass and community richness estimators. Moreover, relative to the phytoremediation alone, the relative abundances of phylum Zygomycota were also increased by biochar additions. The whole soil fungal community was not significantly changed by the alfalfa phytoremediation alone, but was indeed changed by alfalfa phytoremediation with 3.0% (w/w) or 6.0% biochar addition. This study suggested that alfalfa phytoremediation could enhance N mineralization enzyme activities and that biochar addition rates affected the responses of fungal community to the alfalfa phytoremediation.
Collapse
Affiliation(s)
- Manyun Zhang
- Environmental Futures Research Institute, School of Natural Sciences, Griffith University, Brisbane, Queensland, 4111, Australia.
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Jun Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- Chongqing Research Academy of Environmental Sciences, Chongqing, 401147, China
| | - Shahla Hosseini Bai
- Environmental Futures Research Institute, School of Natural Sciences, Griffith University, Brisbane, Queensland, 4111, Australia
- GeneCology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland, 4558, Australia
| | - Ying Teng
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Zhihong Xu
- Environmental Futures Research Institute, School of Natural Sciences, Griffith University, Brisbane, Queensland, 4111, Australia.
| |
Collapse
|
17
|
Ribeiro Júnior JC, Teider Junior PI, Oliveira AL, Rios EA, Tamanini R, Beloti V. Proteolytic and lipolytic potential of Pseudomonas spp. from goat and bovine raw milk. PESQUISA VETERINÁRIA BRASILEIRA 2018. [DOI: 10.1590/1678-5150-pvb-5645] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ABSTRACT: Pseudomonas, the main genus of gram-negative microorganisms isolated from milk, is psychrotrophic, biofilm-forming, and thermo-resistant deteriorating enzyme producers. The aim of this study was to quantify Pseudomonas spp. in goat’s and cow’s milk produced in the Paraná state, Brazil, to evaluate the deteriorating activity of the isolates at mesophilic and psychrotrophic conditions and to identify, at the species level, the isolates with alkaline metalloprotease (aprX gene) production potential. Microbiological, biochemical and molecular methods were used for isolating, confirming and identifying of isolates. The mean counts were 1.6 (±6.3)x104 and 0.89(±3)x102 CFU/mL for goat and bovine milk samples, respectively, immediately after milking. Of the Pseudomonas colonies isolated from goat milk (n=60), 91.7% showed proteolytic potential when incubated at 35°C/48 h and 80% at 7°C/10 days, and lipolytic potential was observed in 95% of the isolates incubated in mesophilic and 78.3% at refrigeration conditions. From the isolates of bovine milk (n=20), 35% showed proteolytic activity only when incubated at 35°C/48 h, and lipolytic potential was observed in 25% of the isolates incubated at 7°C/10d and 35°C/48h. It was observed that 83.3% and 25% of the isolates genetically confirmed as Pseudomonas spp. of goat and bovine milk showed the potential for alkaline metalloprotease production, with the species P. azotoformans, P. koreensis, P. gessardii, P. monteilii and P. lurida being the most frequent in goat milk and P. aeruginosa the only species identified in cow milk.
Collapse
|
18
|
Eichorst SA, Trojan D, Roux S, Herbold C, Rattei T, Woebken D. Genomic insights into the Acidobacteria reveal strategies for their success in terrestrial environments. Environ Microbiol 2018; 20:1041-1063. [PMID: 29327410 PMCID: PMC5900883 DOI: 10.1111/1462-2920.14043] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 12/16/2017] [Accepted: 01/08/2018] [Indexed: 12/11/2022]
Abstract
Members of the phylum Acidobacteria are abundant and ubiquitous across soils. We performed a large-scale comparative genome analysis spanning subdivisions 1, 3, 4, 6, 8 and 23 (n = 24) with the goal to identify features to help explain their prevalence in soils and understand their ecophysiology. Our analysis revealed that bacteriophage integration events along with transposable and mobile elements influenced the structure and plasticity of these genomes. Low- and high-affinity respiratory oxygen reductases were detected in multiple genomes, suggesting the capacity for growing across different oxygen gradients. Among many genomes, the capacity to use a diverse collection of carbohydrates, as well as inorganic and organic nitrogen sources (such as via extracellular peptidases), was detected - both advantageous traits in environments with fluctuating nutrient environments. We also identified multiple soil acidobacteria with the potential to scavenge atmospheric concentrations of H2 , now encompassing mesophilic soil strains within the subdivision 1 and 3, in addition to a previously identified thermophilic strain in subdivision 4. This large-scale acidobacteria genome analysis reveal traits that provide genomic, physiological and metabolic versatility, presumably allowing flexibility and versatility in the challenging and fluctuating soil environment.
Collapse
Affiliation(s)
- Stephanie A. Eichorst
- Division of Microbial Ecology, Department of Microbiology and Ecosystem ScienceResearch Network “Chemistry Meets Biology”, University of ViennaViennaAustria
| | - Daniela Trojan
- Division of Microbial Ecology, Department of Microbiology and Ecosystem ScienceResearch Network “Chemistry Meets Biology”, University of ViennaViennaAustria
| | - Simon Roux
- Department of EnergyJoint Genome InstituteWalnut CreekCAUSA
| | - Craig Herbold
- Division of Microbial Ecology, Department of Microbiology and Ecosystem ScienceResearch Network “Chemistry Meets Biology”, University of ViennaViennaAustria
| | - Thomas Rattei
- Division of Computational Systems Biology, Department of Microbiology and Ecosystem ScienceResearch Network “Chemistry Meets Biology”, University of ViennaViennaAustria
| | - Dagmar Woebken
- Division of Microbial Ecology, Department of Microbiology and Ecosystem ScienceResearch Network “Chemistry Meets Biology”, University of ViennaViennaAustria
| |
Collapse
|
19
|
Ribeiro Júnior JC, de Oliveira AM, Silva FDG, Tamanini R, de Oliveira ALM, Beloti V. The main spoilage-related psychrotrophic bacteria in refrigerated raw milk. J Dairy Sci 2017; 101:75-83. [PMID: 29102138 DOI: 10.3168/jds.2017-13069] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 08/21/2017] [Indexed: 12/18/2022]
Abstract
Refrigerated raw milk may contain psychrotrophic microorganisms that produce thermoresistant exoproteases and lipases, which may compromise the quality of processed fluid milk and dairy products during storage. The aim of this work was to quantify and identify the deteriorating psychrotrophic microbiota in Brazilian refrigerated raw milk using genetic diversity analysis. The mean psychrotrophic count was 1.1 × 104 cfu/mL. Of the total isolates, 47.8 and 29.8% showed deteriorating activity at 35°C within 48 h and 7°C within 10 d, respectively. Among the proteolytic species, more isolated by this study were Lactococcus lactis (27.3%), Enterobacter kobei (14.8%), Serratia ureilytica (8%), Aerococcus urinaeequi (6.8%), and Bacillus licheniformis (6.8%). Observed among lipolytics were E. kobei (17.7%), L. lactis (15.6%), A. urinaeequi (12.5%), and Acinetobacter lwoffii (9.4%). The isolates S. ureilytica, E. kobei, Pseudomonas spp., and Yersinia enterocolitica potentially produced alkaline metalloprotease (aprX). Despite the low counts, a considerable portion of the psychrotrophic microbiota presented spoilage potential, which reaffirms the need for rigor in the control of contamination and the importance of rapid processing as factors that maintain the quality of milk and dairy products.
Collapse
Affiliation(s)
| | - A M de Oliveira
- Animal Products Inspection Laboratory, Paraná, 86.057-970, Brazil
| | - F de G Silva
- Animal Products Inspection Laboratory, Paraná, 86.057-970, Brazil
| | - R Tamanini
- Animal Products Inspection Laboratory, Paraná, 86.057-970, Brazil
| | - A L M de Oliveira
- Biochemistry and Biotechnology Department, State University of Londrina, Paraná, 86.057-970, Brazil
| | - V Beloti
- Animal Products Inspection Laboratory, Paraná, 86.057-970, Brazil
| |
Collapse
|
20
|
Quantitative response relationships between net nitrogen transformation rates and nitrogen functional genes during artificial vegetation restoration following agricultural abandonment. Sci Rep 2017; 7:7752. [PMID: 28798309 PMCID: PMC5552692 DOI: 10.1038/s41598-017-08016-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 07/03/2017] [Indexed: 11/09/2022] Open
Abstract
A comprehensive understanding of how microbial associated with nitrogen (N) cycling respond to artificial vegetation restoration is still lacking, particularly in arid to semi-arid degraded ecosystems. We compared soil net N mineralization rates and the abundance of bacteria, archaea, and eleven N microbial genes on the northern Loess Plateau of China during the process of artificial vegetation restoration. The quantitative relationships between net N mineralization rates and N microbial genes were determined. We observed a significant difference of net transformation rates of NH4+-N (Ra), NO3--N (Rd), and total mineralization (Rm), which rapidly decreased in 10-year soils and steadily increased in the 10-30-year soils. Different N functional microbial groups responded to artificial vegetation restoration distinctly and differentially, especially for denitrifying bacteria. Stepwise regression analysis suggested that Ra was collectively controlled by AOA-amoA and Archaea; Rd was jointly governed by narG, napA, nxrA, and bacreria; and Rm was jointly controlled by napA, narG, nirK, nirS, norB, nosZ, and nxrA.
Collapse
|
21
|
Zhang M, Wang W, Wang J, Teng Y, Xu Z. Dynamics of biochemical properties associated with soil nitrogen mineralization following nitrification inhibitor and fungicide applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:11340-11348. [PMID: 28303541 DOI: 10.1007/s11356-017-8762-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 03/07/2017] [Indexed: 06/06/2023]
Abstract
Agrochemical applications may have side effects on soil biochemical properties related to soil nitrogen (N) mineralization and thus affect N cycling. The present study aimed to evaluate the effects of nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) and fungicide iprodione on soil neutral protease (NPR), alkaline protease (APR), chitinase (CHI), and their functional genes (nprA, aprA, and chiA) related to soil N mineralization. The following four treatments were included: blank control (CK), single DMPP application (DAA), weekly iprodione applications (IPR), and the combined applications of DMPP and iprodione (DI). Compared with the CK treatment, DMPP application significantly inhibited the CHI activity in the first 14 days of incubation, and iprodione applications, particularly when applied alone, decreased the NPR, APR, and CHI activities. Relative to the IPR treatment, extra DMPP application had the potential to alleviate the inhibitory effects of iprodione on the activities of these enzymes. DMPP application significantly increased aprA gene abundances after 14 days of incubation. However, repeated iprodione applications, alone or with the DMPP, decreased nprA and chiA gene abundances. Relative to the CK treatment, DMPP application generated negligible effects on the positive/negative correlations between soil enzyme activities and the corresponding functional gene abundances. However, the positive correlation between the CHI activity and chiA gene abundance was changed to negative correlation by repeated iprodione applications, alone or together with the DMPP. Our results demonstrated that agrochemical applications, particularly repeated fungicide applications, can have inadvertent effects on enzyme activities and functional gene abundances associated with soil N mineralization.
Collapse
Affiliation(s)
- Manyun Zhang
- Environmental Futures Research Institute, School of Natural Sciences, Griffith University, Brisbane, QLD, 4111, Australia.
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Weijin Wang
- Environmental Futures Research Institute, School of Natural Sciences, Griffith University, Brisbane, QLD, 4111, Australia
- Department of Science, Information Technology and Innovation, Dutton Park, QLD, 4102, Australia
| | - Jun Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- Chongqing Research Academy of Environmental Sciences, Chongqing, 401147, China
| | - Ying Teng
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Zhihong Xu
- Environmental Futures Research Institute, School of Natural Sciences, Griffith University, Brisbane, QLD, 4111, Australia.
| |
Collapse
|
22
|
Abstract
Refrigerated storage of raw milk is a prerequisite in dairy industry. However, temperature abused conditions in the farming and processing environments can significantly affect the microbiological quality of raw milk. Thus, the present study investigated the effect of different refrigeration conditions such as 2, 4, 6, 8, 10 and 12 °C on microbiological quality of raw milk from three different dairy farms with significantly different initial microbial counts. The bacterial counts (BC), protease activity (PA), proteolysis (PL) and microbial diversity in raw milk were determined during storage. The effect of combined heating (75 ± 0·5 °C for 15 s) and refrigeration on controlling those contaminating microorganisms was also investigated. Results of the present study indicated that all of the samples showed increasing BC, PA and PL as a function of temperature, time and initial BC with a significant increase in those criteria ≥6 °C. Similar trends in BC, PA and PL were observed during the extended storage of raw milk at 4 °C. Both PA and PL showed strong correlation with the psychrotrophic proteolytic count (PPrBC: at ≥4 °C) and thermoduric psychrotrophic count (TDPC: at ≥8 °C) compared to total plate count (TPC) and psychrotrophic bacterial count (PBC), that are often used as the industry standard. Significant increases in PA and PL were observed when PPrBC and TDPC reached 5 × 104cfu/ml and 1 × 104cfu/ml, and were defined as storage life for quality (SLQ), and storage life for safety (SLS) aspects, respectively. The storage conditions also significantly affected the microbial diversity, wherePseudomonas fluorescensandBacillus cereuswere found to be the most predominant isolates. However, deep cooling (2 °C) and combination of heating and refrigeration (≤4 °C) significantly extended theSLQandSLsof raw milk.
Collapse
|
23
|
Zhang M, Xu Z, Teng Y, Christie P, Wang J, Ren W, Luo Y, Li Z. Non-target effects of repeated chlorothalonil application on soil nitrogen cycling: The key functional gene study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 543:636-643. [PMID: 26613517 DOI: 10.1016/j.scitotenv.2015.11.053] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 11/10/2015] [Accepted: 11/10/2015] [Indexed: 05/20/2023]
Abstract
The widespread and increasing application of chlorothalonil (CTN) raises concerns about its non-target impacts, but little information is available on the effect of CTN on the key functional genes related to soil nitrogen (N) cycling, especially in the case of repeated applications. In the present study, a microcosm incubation was conducted to determine CTN residues and the impacts on the abundances of key functional genes related to N cycling after repeated CTN applications. The results demonstrated that repeated CTN applications at the recommended application rate and five times the recommended rate led to the accumulation of CTN residue in soil at concentrations of 5.59 and 78.79 mg kg(-1), respectively, by the end of incubation. Real time PCR (RT-PCR) revealed that repeated CTN applications had negative effects on the chiA and aprA gene abundances. There were significantly negative correlations between CTN residues and abundances of AOA and AOB genes. In addition, the abundances of key functional genes involved in soil denitrification were declined by repeated CTN applications with the sole exception of the nosZ gene. This study suggests that repeated CTN applications could lead to the accumulation of CTN residue and generate somewhat inconsistent and erratic effects on the abundances of key functional genes related to soil N cycling.
Collapse
Affiliation(s)
- Manyun Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of the Chinese Academy of Sciences, Beijing 100049, China; Environmental Futures Research Institute, School of Natural Sciences, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
| | - Zhihong Xu
- Environmental Futures Research Institute, School of Natural Sciences, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
| | - Ying Teng
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Peter Christie
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Jun Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Chongqing Research Academy of Environmental Sciences, Chongqing 401147, China
| | - Wenjie Ren
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yongming Luo
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zhengao Li
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
24
|
Liang H, Ye D, Li P, Su T, Wu J, Luo L. Evolution of bacterial consortia in an integrated tannery wastewater treatment process. RSC Adv 2016. [DOI: 10.1039/c6ra19603a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
PCR-DGGE and Illumina HiSeq revealed the composition of bacterial communities in tannery sewage treatment and their linkages with the physicochemical characteristics of wastewater.
Collapse
Affiliation(s)
- Hebin Liang
- School of Bioscience and Bioengineering
- South China University of Technology
- Guangzhou
- China
| | - Dongdong Ye
- School of Bioscience and Bioengineering
- South China University of Technology
- Guangzhou
- China
| | - Pan Li
- School of Bioscience and Bioengineering
- South China University of Technology
- Guangzhou
- China
| | - Tingting Su
- School of Bioscience and Bioengineering
- South China University of Technology
- Guangzhou
- China
| | - Jiegen Wu
- School of Bioscience and Bioengineering
- South China University of Technology
- Guangzhou
- China
| | - Lixin Luo
- School of Bioscience and Bioengineering
- South China University of Technology
- Guangzhou
- China
| |
Collapse
|
25
|
Scatamburlo TM, Yamazi AK, Cavicchioli VQ, Pieri FA, Nero LA. Spoilage potential of Pseudomonas species isolated from goat milk. J Dairy Sci 2014; 98:759-64. [PMID: 25497792 DOI: 10.3168/jds.2014-8747] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 11/02/2014] [Indexed: 11/19/2022]
Abstract
Pseudomonas spp. are usually associated with spoilage microflora of dairy products due to their proteolytic potential. This is of particular concern for protein-based products, such as goat milk cheeses and fermented milks. Therefore, the goal of the present study was to characterize the proteolytic activity of Pseudomonas spp. isolated from goat milk. Goat milk samples (n=61) were obtained directly from bulk tanks on dairy goat farms (n=12), and subjected to a modified International Organization for Standardization (ISO) protocol to determine the number and proteolytic activity of Pseudomonas spp. Isolates (n=82) were obtained, identified by PCR, and subjected to pulsed-field gel electrophoresis with XbaI macro-restriction. Then, the isolates were subjected to PCR to detect the alkaline protease gene (apr), and phenotypic tests were performed to check proteolytic activity at 7°C, 25°C, and 35°C. Mean Pseudomonas spp. counts ranged from 2.9 to 4.8 log cfu/mL, and proteolytic Pseudomonas spp. counts ranged from 1.9 to 4.6 log cfu/mL. All isolates were confirmed to be Pseudomonas spp., and 41 were identified as Pseudomonas fluorescens, which clustered into 5 groups sharing approximately 82% similarity. Thirty-six isolates (46.9%) were positive for the apr gene; and 57 (69.5%) isolates presented proteolytic activity at 7°C, 82 (100%) at 25°C, and 64 (78%) at 35°C. The isolates were distributed ubiquitously in the goat farms, and no relationship among isolates was observed when the goat farms, presence of apr, pulsotypes, and proteolytic activity were taken into account. We demonstrated proteolytic activity of Pseudomonas spp. present in goat milk by phenotypic and genotypic tests and indicated their spoilage potential at distinct temperatures. Based on these findings and the ubiquity of Pseudomonas spp. in goat farm environments, proper monitoring and control of Pseudomonas spp. during production are critical.
Collapse
Affiliation(s)
- T M Scatamburlo
- Universidade Federal de Viçosa, Departamento de Veterinária, Campus UFV, 36570 900, Viçosa, MG, Brazil
| | - A K Yamazi
- Universidade Federal de Viçosa, Departamento de Veterinária, Campus UFV, 36570 900, Viçosa, MG, Brazil
| | - V Q Cavicchioli
- Universidade Federal de Viçosa, Departamento de Veterinária, Campus UFV, 36570 900, Viçosa, MG, Brazil
| | - F A Pieri
- Universidade Federal de Viçosa, Departamento de Veterinária, Campus UFV, 36570 900, Viçosa, MG, Brazil; Universidade Federal de Juiz de Fora, Departamento de Ciências Básicas da Saúde, Campus Governador Valadares, 35020 220, Governador Valadares, MG, Brazil
| | - L A Nero
- Universidade Federal de Viçosa, Departamento de Veterinária, Campus UFV, 36570 900, Viçosa, MG, Brazil.
| |
Collapse
|
26
|
Gschwendtner S, Tejedor J, Bimueller C, Dannenmann M, Knabner IK, Schloter M. Climate change induces shifts in abundance and activity pattern of bacteria and archaea catalyzing major transformation steps in nitrogen turnover in a soil from a mid-European beech forest. PLoS One 2014; 9:e114278. [PMID: 25462589 PMCID: PMC4252137 DOI: 10.1371/journal.pone.0114278] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 11/08/2014] [Indexed: 11/20/2022] Open
Abstract
Ongoing climate change will lead to more extreme weather events, including severe drought periods and intense drying rewetting cycles. This will directly influence microbial nitrogen (N) turnover rates in soil by changing the water content and the oxygen partial pressure. Therefore, a space for time climate change experiment was conducted by transferring intact beech seedling-soil mesocosms from a northwest (NW) exposed site, representing today's climatic conditions, to a southwest (SW) exposed site, providing a model climate for future conditions with naturally occurring increased soil temperature (+0.8°C in average). In addition, severe drought and intense rainfall was simulated by a rainout shelter at SW and manual rewetting after 39 days drought, respectively. Soil samples were taken in June, at the end of the drought period (August), 24 and 72 hours after rewetting (August) and after a regeneration period of four weeks (September). To follow dynamics of bacterial and archaeal communities involved in N turnover, abundance and activity of nitrifiers, denitrifiers, N2-fixing microbes and N-mineralizers was analyzed based on marker genes and the related transcripts by qPCR from DNA and RNA directly extracted from soil. Abundance of the transcripts was reduced under climate change with most pronounced effects for denitrification. Our results revealed that already a transfer from NW to SW without further treatment resulted in decreased cnor and nosZ transcripts, encoding for nitric oxide reductase and nitrous oxide reductase, respectively, while nirK transcripts, encoding for nitrite reductase, remained unaffected. Severe drought additionally led to reduced nirK and cnor transcripts at SW. After rewetting, nirK transcripts increased rapidly at both sites, while cnor and nosZ transcripts increased only at NW. Our data indicate that the climate change influences activity pattern of microbial communities involved in denitrification processes to a different extend, which may impact emission rates of the greenhouse gas N2O.
Collapse
Affiliation(s)
- Silvia Gschwendtner
- Research Unit Environmental Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Javier Tejedor
- Institute of Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Karlsruhe Institute of Technology (KIT), Kreuzeckbahnstrasse 19, 82467, Garmisch-Partenkirchen, Germany
| | - Carolin Bimueller
- Lehrstuhl für Bodenkunde, Department of Ecology and Ecosystem Management, Center of Life and Food Sciences Weihenstephan, Technische Universität München, D-85350, Freising-Weihenstephan, Germany
| | - Michael Dannenmann
- Institute of Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Karlsruhe Institute of Technology (KIT), Kreuzeckbahnstrasse 19, 82467, Garmisch-Partenkirchen, Germany
| | - Ingrid Kögel Knabner
- Lehrstuhl für Bodenkunde, Department of Ecology and Ecosystem Management, Center of Life and Food Sciences Weihenstephan, Technische Universität München, D-85350, Freising-Weihenstephan, Germany
| | - Michael Schloter
- Research Unit Environmental Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
- * E-mail:
| |
Collapse
|
27
|
Decimo M, Morandi S, Silvetti T, Brasca M. Characterization of Gram-Negative Psychrotrophic Bacteria isolated from Italian Bulk Tank Milk. J Food Sci 2014; 79:M2081-90. [DOI: 10.1111/1750-3841.12645] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 07/24/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Marilù Decimo
- Inst. of Sciences of Food Production; Italian Natl. Research Council; Via Celoria 2 20133 Milan Italy
| | - Stefano Morandi
- Inst. of Sciences of Food Production; Italian Natl. Research Council; Via Celoria 2 20133 Milan Italy
| | - Tiziana Silvetti
- Inst. of Sciences of Food Production; Italian Natl. Research Council; Via Celoria 2 20133 Milan Italy
| | - Milena Brasca
- Inst. of Sciences of Food Production; Italian Natl. Research Council; Via Celoria 2 20133 Milan Italy
| |
Collapse
|
28
|
Tsuboi S, Yamamura S, Imai A, Satou T, Iwasaki K. Linking temporal changes in bacterial community structures with the detection and phylogenetic analysis of neutral metalloprotease genes in the sediments of a hypereutrophic lake. Microbes Environ 2014; 29:314-21. [PMID: 25130992 PMCID: PMC4159043 DOI: 10.1264/jsme2.me14064] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We investigated spatial and temporal variations in bacterial community structures as well as the presence of three functional proteolytic enzyme genes in the sediments of a hypereutrophic freshwater lake in order to acquire an insight into dynamic links between bacterial community structures and proteolytic functions. Bacterial communities determined from 16S rRNA gene clone libraries markedly changed bimonthly, rather than vertically in the sediment cores. The phylum Firmicutes dominated in the 4–6 cm deep sediment layer sample after August in 2007, and this correlated with increases in interstitial ammonium concentrations (p < 0.01). The Firmicutes clones were mostly composed of the genus Bacillus. npr genes encoding neutral metalloprotease, an extracellular protease gene, were detected after the phylum Firmicutes became dominant. The deduced Npr protein sequences from the retrieved npr genes also showed that most of the Npr sequences used in this study were closely related to those of the genus Bacillus, with similarities ranging from 61% to 100%. Synchronous temporal occurrences of the 16S rRNA gene and Npr sequences, both from the genus Bacillus, were positively associated with increases in interstitial ammonium concentrations, which may imply that proteolysis by Npr from the genus Bacillus may contribute to the marked increases observed in ammonium concentrations in the sediments. Our results suggest that sedimentary bacteria may play an important role in the biogeochemical nitrogen cycle of freshwater lakes.
Collapse
Affiliation(s)
- Shun Tsuboi
- National Institute for Environmental Studies (NIES)
| | | | | | | | | |
Collapse
|
29
|
Blais Lecours P, Marsolais D, Cormier Y, Berberi M, Haché C, Bourdages R, Duchaine C. Increased prevalence of Methanosphaera stadtmanae in inflammatory bowel diseases. PLoS One 2014; 9:e87734. [PMID: 24498365 PMCID: PMC3912014 DOI: 10.1371/journal.pone.0087734] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 12/28/2013] [Indexed: 12/12/2022] Open
Abstract
Background The gut microbiota is associated with the modulation of mucosal immunity and the etiology of inflammatory bowel diseases (IBD). Previous studies focused on the impact of bacterial species on IBD but seldom suspected archaea, which can be a major constituent of intestinal microbiota, to be implicated in the diseases. Recent evidence supports that two main archaeal species found in the digestive system of humans, Methanobrevibacter smithii (MBS) and Methanosphaera stadtmanae (MSS) can have differential immunogenic properties in lungs of mice; with MSS but not MBS being a strong inducer of the inflammatory response. We thus aimed at documenting the immunogenic potential of MBS and MSS in humans and to explore their association with IBD. Methods To validate the immunogenicity of MBS and MSS in humans, peripheral blood mononuclear cells from healthy subjects were stimulated with these two microorganisms and the production of inflammatory cytokine TNF was measured by ELISA. To verify MBS and MSS prevalence in IBD, stool samples from 29 healthy control subjects and 29 patients suffering from IBD were collected for DNA extraction. Plasma was also collected from these subjects to measure antigen-specific IgGs by ELISA. Quantitative PCR was used for bacteria, methanogens, MBS and MSS quantification. Results Mononuclear cells stimulated with MSS produced higher concentrations of TNF (39.5 ng/ml) compared to MBS stimulation (9.1 ng/ml). Bacterial concentrations and frequency of MBS-containing stools were similar in both groups. However, the number of stool samples positive for the inflammatory archaea MSS was higher in patients than in controls (47% vs 20%). Importantly, only IBD patients developed a significant anti-MSS IgG response. Conclusion The prevalence of MSS is increased in IBD patients and is associated with an antigen-specific IgG response.
Collapse
Affiliation(s)
- Pascale Blais Lecours
- Centre de recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Québec, Canada
| | - David Marsolais
- Centre de recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Québec, Canada
- Département de médecine, Faculté de médecine, Université Laval, Québec, QC, Canada
| | - Yvon Cormier
- Centre de recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Québec, Canada
- Département de médecine, Faculté de médecine, Université Laval, Québec, QC, Canada
| | | | | | | | - Caroline Duchaine
- Centre de recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Québec, Canada
- Département de biochimie, de microbiologie et de bioinformatique, Faculté des sciences et de génie, Université Laval, Québec, Québec, Canada
- * E-mail:
| |
Collapse
|
30
|
Veillette M, Knibbs LD, Pelletier A, Charlebois R, Blais Lecours P, He C, Morawska L, Duchaine C. Microbial contents of vacuum cleaner bag dust and emitted bioaerosols and their implications for human exposure indoors. Appl Environ Microbiol 2013; 79:6331-6. [PMID: 23934489 PMCID: PMC3811220 DOI: 10.1128/aem.01583-13] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 08/02/2013] [Indexed: 11/20/2022] Open
Abstract
Vacuum cleaners can release large concentrations of particles, both in their exhaust air and from resuspension of settled dust. However, the size, variability, and microbial diversity of these emissions are unknown, despite evidence to suggest they may contribute to allergic responses and infection transmission indoors. This study aimed to evaluate bioaerosol emission from various vacuum cleaners. We sampled the air in an experimental flow tunnel where vacuum cleaners were run, and their airborne emissions were sampled with closed-face cassettes. Dust samples were also collected from the dust bag. Total bacteria, total archaea, Penicillium/Aspergillus, and total Clostridium cluster 1 were quantified with specific quantitative PCR protocols, and emission rates were calculated. Clostridium botulinum and antibiotic resistance genes were detected in each sample using endpoint PCR. Bacterial diversity was also analyzed using denaturing gradient gel electrophoresis (DGGE), image analysis, and band sequencing. We demonstrated that emission of bacteria and molds (Penicillium/Aspergillus) can reach values as high as 1E5 cell equivalents/min and that those emissions are not related to each other. The bag dust bacterial and mold content was also consistent across the vacuums we assessed, reaching up to 1E7 bacterial or mold cell equivalents/g. Antibiotic resistance genes were detected in several samples. No archaea or C. botulinum was detected in any air samples. Diversity analyses showed that most bacteria are from human sources, in keeping with other recent results. These results highlight the potential capability of vacuum cleaners to disseminate appreciable quantities of molds and human-associated bacteria indoors and their role as a source of exposure to bioaerosols.
Collapse
Affiliation(s)
- Marc Veillette
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC, Canada
| | - Luke D. Knibbs
- School of Population Health, The University of Queensland, Herston, QLD, Australia
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Ariane Pelletier
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC, Canada
| | - Remi Charlebois
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC, Canada
| | - Pascale Blais Lecours
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC, Canada
| | - Congrong He
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Lidia Morawska
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Caroline Duchaine
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC, Canada
- Département de Biochimie, de Microbiologie et de Bioinformatique, Faculté des Sciences et de Génie, Université Laval, Québec, QC, Canada
| |
Collapse
|
31
|
Montanhini M, Colombo M, Nero L, Bersot L. Short communication: Presence of neutral metallopeptidase (npr) gene and proteolytic activity of Bacillus cereus isolated from dairy products. J Dairy Sci 2013; 96:5641-3. [DOI: 10.3168/jds.2013-6886] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 06/02/2013] [Indexed: 11/19/2022]
|
32
|
|
33
|
Wang W, Xie L, Luo G, Zhou Q, Lu Q. Optimization of biohydrogen and methane recovery within a cassava ethanol wastewater/waste integrated management system. BIORESOURCE TECHNOLOGY 2012; 120:165-172. [PMID: 22789828 DOI: 10.1016/j.biortech.2012.06.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2012] [Revised: 06/15/2012] [Accepted: 06/15/2012] [Indexed: 06/01/2023]
Abstract
Thermophilic co-fermentation of cassava stillage (CS) and cassava excess sludge (CES) were investigated for hydrogen and methane production. The highest hydrogen yield (37.1 ml/g-total-VS added) was obtained at VS(CS)/VS(CES) of 7:1, 17% higher than that with CS digestion alone. The CES recycle enhanced the substrate utilization and improved the buffer capacity. Further increase the CES fraction led to changed VFA distribution and more hydrogen consumption. FISH analysis revealed that both hydrogen producing bacteria and hydrogen consuming bacteria were enriched after CES recycled, and the acetobacteria percentage increased to 12.4% at VS(CS)/VS(CES) of 6:2. Relatively high efficient and stable hydrogen production was observed at VS(CS)/VS(CES) of 5:3 without pH adjusted and any pretreatment. The highest total energy yield, the highest COD and VS degradation were obtained at VS(CS)/VS(CES) of 7:1. GFC analysis indicated that the hydrolysis behavior was significantly improved by CES recycle at both hydrogen and methane production phase.
Collapse
Affiliation(s)
- Wen Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | | | | | | | | |
Collapse
|
34
|
Brankatschk R, Fischer T, Veste M, Zeyer J. Succession of N cycling processes in biological soil crusts on a Central European inland dune. FEMS Microbiol Ecol 2012; 83:149-60. [DOI: 10.1111/j.1574-6941.2012.01459.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 07/18/2012] [Accepted: 07/19/2012] [Indexed: 11/27/2022] Open
Affiliation(s)
- Robert Brankatschk
- Environmental Microbiology; Institute of Biogeochemistry and Pollutant Dynamics; ETH Zurich; Zurich; Switzerland
| | - Thomas Fischer
- Central Analytical Laboratory; Faculty of Environmental Sciences and Process Engineering; Brandenburg University of Technology at Cottbus; Cottbus; Germany
| | - Maik Veste
- Centre for Energy Technology Brandenburg; Cottbus; Germany
| | - Josef Zeyer
- Environmental Microbiology; Institute of Biogeochemistry and Pollutant Dynamics; ETH Zurich; Zurich; Switzerland
| |
Collapse
|
35
|
Characterization of bioaerosols from dairy barns: reconstructing the puzzle of occupational respiratory diseases by using molecular approaches. Appl Environ Microbiol 2012; 78:3242-8. [PMID: 22367078 DOI: 10.1128/aem.07661-11] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To understand the etiology of exposure-related diseases and to establish standards for reducing the risks associated with working in contaminated environments, the exact nature of the bioaerosol components must be defined. Molecular biology tools were used to evaluate airborne bacterial and, for the first time, archaeal content of dairy barns. Three air samplers were tested in each of the 13 barns sampled. Up to 10(6) archaeal and 10(8) bacterial 16S rRNA genes per m(3) of air were detected. Archaeal methanogens, mainly Methanobrevibacter species, were represented. Saccharopolyspora rectivirgula, the causative agent of farmer's lung, was quantified to up to 10(7) 16S rRNA genes per m(3) of air. In addition, a wide variety of bacterial agents were present in our air samples within the high airborne bioaerosol concentration range. Despite recommendations regarding hay preservation and baling conditions, farmers still develop an S. rectivirgula-specific humoral immune response, suggesting intense and continuous exposure. Our results demonstrate the complexity of bioaerosol components in dairy barns which could play a role in occupational respiratory diseases.
Collapse
|
36
|
Nicolaisen MH, Worm J, Jørgensen NO, Middelboe M, Nybroe O. Proteinase production inPseudomonas fluorescensON2 is affected by carbon sources and allows surface-attached but not planktonic cells to utilize protein for growth in lake water. FEMS Microbiol Ecol 2012; 80:168-78. [DOI: 10.1111/j.1574-6941.2011.01285.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 11/30/2011] [Accepted: 12/15/2011] [Indexed: 11/30/2022] Open
Affiliation(s)
- Mette H. Nicolaisen
- Genetics and Microbiology Section; Department of Agriculture and Ecology; University of Copenhagen; Frederiksberg; Denmark
| | - Jakob Worm
- Genetics and Microbiology Section; Department of Agriculture and Ecology; University of Copenhagen; Frederiksberg; Denmark
| | - Niels O.G. Jørgensen
- Genetics and Microbiology Section; Department of Agriculture and Ecology; University of Copenhagen; Frederiksberg; Denmark
| | - Mathias Middelboe
- Marine Biological Section; Department of Biology; University of Copenhagen; Helsingør; Denmark
| | - Ole Nybroe
- Genetics and Microbiology Section; Department of Agriculture and Ecology; University of Copenhagen; Frederiksberg; Denmark
| |
Collapse
|
37
|
Abundances and potential activities of nitrogen cycling microbial communities along a chronosequence of a glacier forefield. ISME JOURNAL 2010; 5:1025-37. [PMID: 21124490 DOI: 10.1038/ismej.2010.184] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Glacier forefields are ideal ecosystems to study the development of nutrient cycles as well as single turnover processes during soil development. In this study, we examined the ecology of the microbial nitrogen (N) cycle in bulk soil samples from a chronosequence of the Damma glacier, Switzerland. Major processes of the N cycle were reconstructed on the genetic as well as the potential enzyme activity level at sites of the chronosequence that have been ice-free for 10, 50, 70, 120 and 2000 years. In our study, we focused on N fixation, mineralization (chitinolysis and proteolysis), nitrification and denitrification. Our results suggest that mineralization, mainly the decomposition of deposited organic material, was the main driver for N turnover in initial soils, that is, ice-free for 10 years. Transient soils being ice-free for 50 and 70 years were characterized by a high abundance of N fixing microorganisms. In developed soils, ice-free for 120 and 2000 years, significant rates of nitrification and denitrification were measured. Surprisingly, copy numbers of the respective functional genes encoding the corresponding enzymes were already high in the initial phase of soil development. This clearly indicates that the genetic potential is not the driver for certain functional traits in the initial phase of soil formation but rather a well-balanced expression of the respective genes coding for selected functions.
Collapse
|
38
|
Töwe S, Albert A, Kleineidam K, Brankatschk R, Dümig A, Welzl G, Munch JC, Zeyer J, Schloter M. Abundance of microbes involved in nitrogen transformation in the rhizosphere of Leucanthemopsis alpina (L.) Heywood grown in soils from different sites of the Damma glacier forefield. MICROBIAL ECOLOGY 2010; 60:762-70. [PMID: 20549199 DOI: 10.1007/s00248-010-9695-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Accepted: 05/31/2010] [Indexed: 05/10/2023]
Abstract
Glacier forefields are an ideal playground to investigate the role of development stages of soils on the formation of plant-microbe interactions as within the last decades, many alpine glaciers retreated, whereby releasing and exposing parent material for soil development. Especially the status of macronutrients like nitrogen differs between soils of different development stages in these environments and may influence plant growth significantly. Thus, in this study, we reconstructed major parts of the nitrogen cycle in the rhizosphere soil/root system of Leucanthemopsis alpina (L.) HEYWOOD: as well as the corresponding bulk soil by quantifying functional genes of nitrogen fixation (nifH), nitrogen mineralisation (chiA, aprA), nitrification (amoA AOB, amoA AOA) and denitrification (nirS, nirK and nosZ) in a 10-year and a 120-year ice-free soil of the Damma glacier forefield. We linked the results to the ammonium and nitrate concentrations of the soils as well as to the nitrogen and carbon status of the plants. The experiment was performed in a greenhouse simulating the climatic conditions of the glacier forefield. Samples were taken after 7 and 13 weeks of plant growth. Highest nifH gene abundance in connection with lowest nitrogen content of L. alpina was observed in the 10-year soil after 7 weeks of plant growth, demonstrating the important role of associative nitrogen fixation for plant development in this soil. In contrast, in the 120-year soil copy numbers of genes involved in denitrification, mainly nosZ were increased after 13 weeks of plant growth, indicating an overall increased microbial activity status as well as higher concentrations of nitrate in this soil.
Collapse
Affiliation(s)
- Stefanie Töwe
- Soil Ecology, Technische Universität München, Neuherberg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Zhao Y, Chen Y, Zhang D, Zhu X. Waste activated sludge fermentation for hydrogen production enhanced by anaerobic process improvement and acetobacteria inhibition: the role of fermentation pH. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2010; 44:3317-3323. [PMID: 20377173 DOI: 10.1021/es902958c] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
In this study an efficient strategy, i.e., controlling the fermentation pH at constant pH 10, for significantly increasing hydrogen yield from waste activated sludge (WAS) via the improvement of anaerobic process (sludge solubilization, hydrolysis, and acidification) and inhibition of hydrogen consumption by acetobacteria was reported. Without addition of pure hydrogen producer and nutrient source, the effect of different constant pH in the range of pH 4-11 on hydrogen production from WAS was compared with that of different initial pH. The maximal hydrogen yield was observed respectively at constant pH 10 and initial pH 10, but the former was 47.8% higher than the latter (26.9 versus 18.2 mL per gram volatile suspended solids) and much greater than that reported in literature. Then, the mechanisms for constant pH 10 resulting in remarkably higher hydrogen production than initial pH 10 were investigated. It was observed that constant pH 10 fermentation showed much higher solubilization of sludge main particulate organic matters, hydrolysis of solubilized organic materials and acidification of hydrolyzed products, which were of benefit to the hydrogen production. Also, there was more acetic but less propionic acid in the constant pH 10 test, which was in correspondence with the theory of fermentation type affecting hydrogen production. Moreover, in the reactor of initial pH 10 the produced hydrogen was readily converted to acetic acid, but no obvious hydrogen consumption was observed in constant pH 10 reactor. Further investigation of microorganisms with enzymes analysis and fluorescence in situ hybridization (FISH) indicated that the activity and growth of acetobacteria in the reactor of constant pH 10 was much lower than those in initial pH 10 reactor.
Collapse
Affiliation(s)
- Yuxiao Zhao
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | | | | | | |
Collapse
|
40
|
Fuka MM, Engel M, Hagn A, Munch JC, Sommer M, Schloter M. Changes of diversity pattern of proteolytic bacteria over time and space in an agricultural soil. MICROBIAL ECOLOGY 2009; 57:391-401. [PMID: 18648871 DOI: 10.1007/s00248-008-9416-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Accepted: 06/04/2008] [Indexed: 05/26/2023]
Abstract
The genetic heterogeneity of neutral metalloprotease (npr) gene fragments from soil proteolytic bacteria was investigated at a cultivated field site with four different soil types and at three different depths in April, July, and October. Terminal restriction fragment length polymorphism (T-RFLP) analyses of polymerase chain reaction-amplified npr gene fragments were applied to study the dynamic of the npr gene pool with regard to environmental conditions. The aim of this study was to relate differences in npr community structure and richness to the vertical, site, and seasonal variations naturally occurring at the field site under investigation. T-RFLP analysis revealed a noticeable seasonal variability in the community structure of npr-containing bacteria. The data suggest that the composition of the npr proteolytic bacterial population in July differed from those at the other dates. Additionally, the diversity of npr genes decreased with increasing soil depth revealing the highest values in upper layers. The reasons behind the observed patterns in the community structure might be mainly seasonal and vertical variation of the quantity and heterogeneity of available substrates as well as spatial isolation caused by a varying water amount and the connectivity of soil particles among the soil profile. Sequencing and phylogenetical analysis of 120 npr clones from the top soils collected in July revealed that most of the clones exhibit only poor homology to npr genes of isolates previously obtained from various environments, indicating the presence of until now uncharacterized npr coding proteolytic bacteria at the study site.
Collapse
Affiliation(s)
- M Mrkonjic Fuka
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Soil Ecology, Neuherberg, Germany
| | | | | | | | | | | |
Collapse
|
41
|
Martín M, Gibello A, Lobo C, Nande M, Garbi C, Fajardo C, Barra-Caracciolo A, Grenni P, Martínez-Iñigo MJ. Application of fluorescence in situ hybridization technique to detect simazine-degrading bacteria in soil samples. CHEMOSPHERE 2008; 71:703-710. [PMID: 18082866 DOI: 10.1016/j.chemosphere.2007.10.071] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Revised: 10/19/2007] [Accepted: 10/26/2007] [Indexed: 05/25/2023]
Abstract
We propose a new approach to evaluate the natural attenuation capacity of soil by using fluorescence in situ hybridization (FISH). A specific oligonucleotide probe AtzB1 was designed based on the sequence data of the atzB gene involved in the hydrolytic deamination of s-triazines; this gene, located in a multiple copy plasmid was detected by the optimized FISH protocol. Two agricultural soils (Lodi and Henares) with a history of simazine treatments, and two natural soils (Soto and Monza), without previous exposure to simazine, were studied. AtzB1 probe-target cells were found only in the agricultural soils and, in a greater percentage, in the Lodi soil, compared to the Henares one. Moreover, the greatest percentage of AtzB1 probe-target cells in Lodi was accompanied by a greater mineralization rate, compared to the Henares soil. The FISH method used in this study was suitable for the detection of simazine-degrading bacteria and could be a useful indicator of the potential of soil bioremediation.
Collapse
Affiliation(s)
- Margarita Martín
- Complutense University, Avenida Puerta de Hierro s/n, 28040 Madrid, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Jørgensen C, Leser TD. Estimating amplification efficiency improves multiplex real-time PCR quantification of Bacillus licheniformis and Bacillus subtilis spores in animal feed. J Microbiol Methods 2006; 68:588-95. [PMID: 17184861 DOI: 10.1016/j.mimet.2006.11.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2006] [Revised: 11/08/2006] [Accepted: 11/08/2006] [Indexed: 11/30/2022]
Abstract
A multiplex real-time PCR assay was developed for absolute quantification in animal feed of Bacillus subtilis CH201 and Bacillus licheniformis CH200 spores, which constitute the viable component of the microbial growth promoter, BioPlus 2B. Spores were lysed using a bead-beating protocol. DNA was extracted and purified from the lysates with the Qiagen DNeasy Plant Kit. Two standard curves for absolute quantification were made and tested. Standard curve-1 was made from feed samples spiked with BioPlus 2B, while standard curve-2 was made from serially diluted DNA extracted from BioPlus 2B powder. Feed samples supplemented with BioPlus 2B were quantified using both standard curves. The detection limit of the assay was 10(4) CFU g(-1) of feed. The amplification efficiency (Eff) of each PCR was determined using the LinRegPCR software and Eff differences between individual samples and standards were corrected for. When compared to plate counts, standard curve-1 slightly under-estimated the number of spores (mean=-2.47% of plate counts). A spore density-dependent Eff was found, and Eff for standard curve-1 could not be determined. Standard curve-2 over-estimated spore numbers when not corrected for individual Eff (mean=+5.46% of plate counts). Standard curve-2 Eff was independent (Eff(mean)=1.96) of spore density. The assay quantified the numbers of spores in feed samples very similar to plate counts (mean=+0.47% of plate counts), when standard curve-2 was used and individual Eff was accounted for.
Collapse
Affiliation(s)
- Christel Jørgensen
- Chr. Hansen A/S, Corporate Research, Department of Health Functionality, 10-12 Boege Alle, DK-2970 Hoersholm, Denmark
| | | |
Collapse
|
43
|
Martins ML, de Araújo EF, Mantovani HC, Moraes CA, Vanetti MCD. Detection of the apr gene in proteolytic psychrotrophic bacteria isolated from refrigerated raw milk. Int J Food Microbiol 2005; 102:203-11. [PMID: 15992619 DOI: 10.1016/j.ijfoodmicro.2004.12.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2004] [Revised: 08/31/2004] [Accepted: 12/18/2004] [Indexed: 11/16/2022]
Abstract
Bacteria of the genus Pseudomonas have been associated with the spoilage of raw milk and dairy products due to the production of thermostable proteolytic enzymes. The apr gene encodes for alkaline metalloprotease in Pseudomonas and other related bacteria. Its presence in psychrotrophic proteolytic bacteria isolated from raw milk collected from cooling tanks was verified. A polymerase chain reaction (PCR) technique was used with degenerate primers. Total DNA from 112 isolates was pooled in different groups and then used as template for the amplification reactions. Controls consisted of DNA extracted from 26 cultures. An expected DNA fragment of 194 bp was detected in groups that contained bacteria identified as Pseudomonas. The PCR product was observed only when DNA from control cultures of Pseudomonas aeruginosa, Pseudomonas fluorescens, Serratia marcescens and Aeromonas hydrophila were used. A detection limit assay indicated that the apr gene could be directly amplified from pasteurized milk inoculated with 10(8) CFU/ml of P. fluorescens. With this method it was possible to detect proteolytic bacteria at 10(5) CFU/ml in reconstituted skim milk powder if cells were recovered for DNA extraction before amplification.
Collapse
Affiliation(s)
- Maurilio L Martins
- Department of Microbiology, Federal University of Viçosa, Viçosa, MG, 36570.000, Brazil
| | | | | | | | | |
Collapse
|
44
|
Jacobsen J, Lydolph M, Lange L. Culture independent PCR: an alternative enzyme discovery strategy. J Microbiol Methods 2005; 60:63-71. [PMID: 15567226 DOI: 10.1016/j.mimet.2004.08.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2004] [Revised: 08/03/2004] [Accepted: 08/24/2004] [Indexed: 11/18/2022]
Abstract
Degenerate primers were designed for use in a culture-independent PCR screening of DNA from composite fungal communities, inhabiting residues of corn stovers and leaves. According to similarity searches and alignments amplified clone sequences affiliated with glycosyl hydrolase family 7 and glycosyl hydrolase family 45 though significant sequence divergence was observed. Glycosyl hydrolases from families 7 and 45 play a crucial role in biomass conversion to fuel ethanol. Research in this renewable energy source has two objectives: (i) To contribute to development of a renewable alternative to world's limited crude fossil oil reserves and (ii) to reduce air pollution. Amplification with 18S rDNA-specific primers revealed species within the ascomycetous orders Sordariales and Hypocreales as well as basidiomycetous order Agaricales to be present in these communities. Our study documents the value of culture-independent PCR in microbial diversity studies and could add to development of a new enzyme screening technology.
Collapse
Affiliation(s)
- Jonas Jacobsen
- Microbial Discovery, Novozymes A/S, Smørmosevej 25 1B1, DK-2880, Denmark
| | | | | |
Collapse
|
45
|
Sharma S, Aneja MK, Mayer J, Schloter M, Munch JC. RNA fingerprinting of microbial community in the rhizosphere soil of grain legumes. FEMS Microbiol Lett 2004; 240:181-6. [PMID: 15565752 DOI: 10.1016/j.femsle.2004.09.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Microbial structural and expression profiles of the rhizospheres of three legumes, faba beans, peas and white lupin, were compared by RNA-arbitrarily primed PCR technique. Two different primers, M13 reverse and 10-mer primers, were used in the amplification and products resolved on non-denaturing polyacrylamide gel. With both DNA and RNA profiles Lupinus and Pisum rhizospheres were more similar to each other than to Vicia rhizosphere. The RAP-PCR products were also dot blotted and probed for bacterial peptidase transcripts. Plant-dependent rhizosphere effect was evident by the marked absence of transcripts for bacterial neutral metallopeptidase in Lupinus rhizosphere. The results of dot blot were further confirmed by RT-PCR for the expression of bacterial neutral metallopeptidase in the three rhizospheres.
Collapse
Affiliation(s)
- S Sharma
- GSF-National Research Center for Environment and Health, Institute of Soil Ecology, Neuherberg, Germany.
| | | | | | | | | |
Collapse
|
46
|
Bach HJ, Tomanova J, Schloter M, Munch JC. Enumeration of total bacteria and bacteria with genes for proteolytic activity in pure cultures and in environmental samples by quantitative PCR mediated amplification. J Microbiol Methods 2002; 49:235-45. [PMID: 11869788 DOI: 10.1016/s0167-7012(01)00370-0] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Real-time quantitative PCR assays were developed for the absolute quantification of different groups of bacteria in pure cultures and in environmental samples. 16S rRNA genes were used as markers for eubacteria, and genes for extracellular peptidases were used as markers for potentially proteolytic bacteria. For the designed 16S rDNA TaqMan assay, specificity of the designed primer-probe combination for eubacteria, a high amplification efficiency over a wide range of starting copy numbers and a high reproducibility is demonstrated. Cell concentrations of Bacillus cereus, B. subtilis and Pseudomonas fluorescens in liquid culture were monitored by TaqMan-PCR using the 16S rDNA target sequence of Escherichia coli as external standard for quantification. Results agree with plate counts and microscopic counts of DAPI stained cells. The significance of 16S rRNA operon multiplicity to the quantification of bacteria is discussed.Furthermore, three sets of primer pair together with probe previously designed for targeting different classes of bacterial extracellular peptidases were tested for their suitability for TaqMan-PCR based quantification of proteolytic bacteria. Since high degeneracy of the probes did not allow accurate quantification, SybrGreen was used instead of molecular probes to visualize and quantify PCR products during PCR. The correlation between fluorescence and starting copy number was of the same high quality as for the 16S rDNA TaqMan assay for all the three peptidase gene classes. The detected amount of genes for neutral metallopeptidase of B. cereus, for subtilisin of B. subtilis and for alkaline metallopeptidase of P. fluorescens corresponded exactly to the numbers of bacteria investigated by the 16S rDNA targeting assay. The developed assays were applied for the quantification of bacteria in soil samples.
Collapse
Affiliation(s)
- H-J Bach
- Institute for Soil Ecology, GSF-National Research Center for Environment and Health, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany.
| | | | | | | |
Collapse
|