1
|
Chokshi K, Kavanagh K, Khan I, Slaveykova VI, Sieber S. Surface displayed MerR increases mercury accumulation by green microalga Chlamydomonas reinhardtii. ENVIRONMENT INTERNATIONAL 2024; 189:108813. [PMID: 38878502 DOI: 10.1016/j.envint.2024.108813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/22/2024] [Accepted: 06/10/2024] [Indexed: 06/19/2024]
Abstract
Mercury is a highly toxic trace metal that can accumulate in aquatic ecosystems and when resent at high concentrations can pose risks to both aquatic life and humans consuming contaminated fish. This research explores the use of the metalloregulatory protein MerR, known for its high affinity and selectivity toward mercury, in a novel application. Through a cell surface engineering approach, MerR was displayed on cells of green alga Chlamydomonas reinhardtii. A hydroxyproline-rich GP1 protein was used as an anchor to construct the engineered strains GP1-MerR that expresses the fluorescent protein mVenus. The surface engineered GP1-MerR strain led up to five folds higher Hg2+ accumulation compared to the WT strain at concentration range from 10-9 to 10-7 M Hg2+. The binding of Hg2+ via MerR was specific and did not get significantly affected by major freshwater water quality variables such as Ca2+ and dissolved organic matter. The presence of other trace metals (Zn2+, Cu2+, Ni2+, Pb2+, Cd2+) in a same concentration range even resulted in 30-40 % increase in the accumulated Hg. Further, the engineered cells also demonstrated the ability to accumulate Hg2+ from the water extracts of the Hg-contaminated sediment samples. These results demonstrate a novel approach utilizing the cell surface display system in C. reinhardtii for its potential application in bioremediation.
Collapse
Affiliation(s)
- Kaumeel Chokshi
- Department of Chemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Killian Kavanagh
- Department F.A. Forel for Environmental and Aquatic Sciences, Faculty of Sciences, University of Geneva, 1211 Geneva, Switzerland
| | - Imran Khan
- Department of Chemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Vera I Slaveykova
- Department F.A. Forel for Environmental and Aquatic Sciences, Faculty of Sciences, University of Geneva, 1211 Geneva, Switzerland
| | - Simon Sieber
- Department of Chemistry, University of Zurich, 8057 Zurich, Switzerland.
| |
Collapse
|
2
|
Molino JVD, Carpine R, Gademann K, Mayfield S, Sieber S. Development of a cell surface display system in Chlamydomonas reinhardtii. ALGAL RES 2022. [DOI: 10.1016/j.algal.2021.102570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
3
|
Abstract
In this study, we overcame the limitations of single-enzyme system catalysis by codisplaying Candida rugosa lipase 1 (CRL1) and Rhizopus oryzae lipase (ROL) on the cell surfaces of the whole-cell catalyst Pichia pastoris to produce biodiesel from tallow seed oil. We screened double antibiotic-resistant strains on tributyrin plates, performed second electroporation based on single-displayed ROL on GS115/KpRS recombinants and single-displayed CRL1 on GS115/ZCS recombinants and obtained an ROL/CRL1 codisplay on P. pastoris GS115 surfaces. The maximum activity of the codisplaying GS115/pRCS recombinant was 470.59 U/g dried cells, which was 3.9-fold and 1.3-fold higher than that of single-displayed ROL and CRL1, respectively. When self-immobilized lipases were used as whole-cell catalysts, the rate of methyl ester production from GS115/pRCS harboring ROL and CRL1 was 1.4-fold higher than that obtained with single-displayed ROL. Therefore, biodiesel catalysis by synergetic codisplayed enzymes is an alternative biodiesel production strategy.
Collapse
|
4
|
Reiter K, Pereira Aguilar P, Grammelhofer D, Joseph J, Steppert P, Jungbauer A. Separation of influenza virus-like particles from baculovirus by polymer-grafted anion exchanger. J Sep Sci 2020; 43:2270-2278. [PMID: 32187844 PMCID: PMC7318652 DOI: 10.1002/jssc.201901215] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 02/17/2020] [Accepted: 03/11/2020] [Indexed: 12/11/2022]
Abstract
The baculovirus expression vector system is a very powerful tool to produce virus‐like particles and gene‐therapy vectors, but the removal of coexpressed baculovirus has been a major barrier for wider industrial use. We used chimeric human immunodeficiency virus‐1 (HIV‐1) gag influenza‐hemagglutin virus‐like particles produced in Tnms42 insect cells using the baculovirus insect cell expression vector system as model virus‐like particles. A fast and simple purification method for these virus‐like particles with direct capture and purification within one chromatography step was developed. The insect cell culture supernatant was treated with endonuclease and filtered, before it was directly loaded onto a polymer‐grafted anion exchanger and eluted by a linear salt gradient. A 4.3 log clearance of baculovirus from virus‐like particles was achieved. The absence of the baculovirus capsid protein (vp39) in the product fraction was additionally shown by high performance liquid chromatography‐mass spectrometry. When considering a vaccination dose of 109 particles, 4200 doses can be purified per L pretreated supernatant, meeting the requirements for vaccines with <10 ng double‐stranded DNA per dose and 3.4 µg protein per dose in a single step. The process is simple with a very low number of handling steps and has the characteristics to become a platform for purification of these types of virus‐like particles.
Collapse
Affiliation(s)
- Katrin Reiter
- Austrian Centre of Industrial Biotechnology, Vienna, Austria
| | - Patricia Pereira Aguilar
- Austrian Centre of Industrial Biotechnology, Vienna, Austria.,Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | | | - Judith Joseph
- Austrian Centre of Industrial Biotechnology, Vienna, Austria
| | - Petra Steppert
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Alois Jungbauer
- Austrian Centre of Industrial Biotechnology, Vienna, Austria.,Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
5
|
Bozovičar K, Bratkovič T. Evolving a Peptide: Library Platforms and Diversification Strategies. Int J Mol Sci 2019; 21:E215. [PMID: 31892275 PMCID: PMC6981544 DOI: 10.3390/ijms21010215] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/22/2019] [Accepted: 12/25/2019] [Indexed: 12/22/2022] Open
Abstract
Peptides are widely used in pharmaceutical industry as active pharmaceutical ingredients, versatile tools in drug discovery, and for drug delivery. They find themselves at the crossroads of small molecules and proteins, possessing favorable tissue penetration and the capability to engage into specific and high-affinity interactions with endogenous receptors. One of the commonly employed approaches in peptide discovery and design is to screen combinatorial libraries, comprising a myriad of peptide variants of either chemical or biological origin. In this review, we focus mainly on recombinant peptide libraries, discussing different platforms for their display or expression, and various diversification strategies for library design. We take a look at well-established technologies as well as new developments and future directions.
Collapse
Affiliation(s)
| | - Tomaž Bratkovič
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, SI-1000 Ljubljana, Slovenia;
| |
Collapse
|
6
|
Mansouri M, Berger P. Baculovirus for gene delivery to mammalian cells: Past, present and future. Plasmid 2018; 98:1-7. [PMID: 29842913 DOI: 10.1016/j.plasmid.2018.05.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/25/2018] [Accepted: 05/25/2018] [Indexed: 12/11/2022]
Abstract
Baculovirus is an insect virus which has been used for more than thirty years for production of recombinant proteins in insect cells. However, baculovirus can also be harnessed for efficient gene delivery to mammalian cells if it is equipped with mammalian promoters. This technology is known as BacMam and has been used for gene delivery to immortalized cell lines, stem cells, and primary cells, as well as for gene delivery in animals. Baculovirus has unique features when compared to mammalian viruses. Besides the fact that it is replication-incompetent and does not integrate into the host genome, it has large capacity for foreign DNA. This capacity can for example be used to deliver multiple genes for reprogramming of stem cells, or for delivery of large homology constructs for genome editing. In this review, we provide a brief overview of baculovirus-based gene delivery and its recent applications in therapy and basic research. We also describe how baculovirus is manipulated for efficient transduction in mammalian cells and we highlight possible future improvements.
Collapse
Affiliation(s)
- Maysam Mansouri
- Paul Scherrer Institute, Biomolecular Research, Applied Molecular Biology, CH-5232 Villigen, Switzerland; ETH Zürich, Department of Biosystems Science and Engineering, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Philipp Berger
- Paul Scherrer Institute, Biomolecular Research, Applied Molecular Biology, CH-5232 Villigen, Switzerland.
| |
Collapse
|
7
|
Tavarone E, Molina GN, Amalfi S, Peralta A, Molinari P, Taboga O. The localization of a heterologous displayed antigen in the baculovirus-budded virion determines the type and strength of induced adaptive immune response. Appl Microbiol Biotechnol 2017; 101:4175-4184. [PMID: 28213733 DOI: 10.1007/s00253-017-8183-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 02/01/2017] [Accepted: 02/04/2017] [Indexed: 11/28/2022]
Abstract
In the search of strategies of presentation of heterologous antigens to elicit humoral or cellular immune responses that modulate and properly potentiate each type of response, researchers have been studying baculovirus (BV) as vaccine vectors with promising results. For some years, several research groups explored different antigen presentation approaches using the BV AcNPV by expressing polypeptides on the surface of budded virions or by de novo synthesis of heterologous antigens by transduction of mammalian cells. In the case of expression on the surface of budded virions, for example, researchers have expressed polypeptides in peplomers as GP64 glycoprotein fusions or distributed throughout the entire surface by fusions to portions of the G protein of vesicular stomatitis virus, VSV. Recently, our group developed the strategy of cross-presentation of antigens by fusions of GP64 to the capsid protein VP39 (capsid display) for the generation of cytotoxic responses. While the different strategies showed to be effective in raising immune responses, the individuality of each analysis makes difficult the comparison of the results. Here, by comparing the different strategies, we show that localization of the model antigen ovalbumin (OVA) strongly determined the quality and intensity of the adaptive response to the heterologous antigen. Furthermore, surface display favored humoral responses, whereas capsid display favored cytotoxic responses. Finally, capsid display showed a much more efficient strategy to activate CD8-mediated responses than transduction. The incorporation of adjuvants in baculovirus formulations dramatically diminished the immunostimulatory properties of baculovirus.
Collapse
Affiliation(s)
- Eugenia Tavarone
- Instituto de Biotecnología, Centro Nacional de Investigaciones Agropecuarias, INTA Castelar, Nicolás Repetto y De Los Reseros S/N° (B1686IGC), Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Guido Nicolás Molina
- Instituto de Biotecnología, Centro Nacional de Investigaciones Agropecuarias, INTA Castelar, Nicolás Repetto y De Los Reseros S/N° (B1686IGC), Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Sabrina Amalfi
- Instituto de Biotecnología, Centro Nacional de Investigaciones Agropecuarias, INTA Castelar, Nicolás Repetto y De Los Reseros S/N° (B1686IGC), Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Andrea Peralta
- Instituto de Biotecnología, Centro Nacional de Investigaciones Agropecuarias, INTA Castelar, Nicolás Repetto y De Los Reseros S/N° (B1686IGC), Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Paula Molinari
- Instituto de Biotecnología, Centro Nacional de Investigaciones Agropecuarias, INTA Castelar, Nicolás Repetto y De Los Reseros S/N° (B1686IGC), Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Oscar Taboga
- Instituto de Biotecnología, Centro Nacional de Investigaciones Agropecuarias, INTA Castelar, Nicolás Repetto y De Los Reseros S/N° (B1686IGC), Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
8
|
Raghavendra AT, Jalali SK, Ojha R, Shivalingaswamy TM, Bhatnagar R. Whole genome sequence and comparative genomic sequence analysis of Helicoverpa armigera nucleopolyhedrovirus (HearNPV-L1) isolated from India. Virusdisease 2017; 28:61-68. [PMID: 28466057 DOI: 10.1007/s13337-016-0352-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 11/24/2016] [Indexed: 11/25/2022] Open
Abstract
The whole genome of Helicoverpa armigera nucleopolyhedrovirus (HearNPV) from India, HearNPV-L1, was sequenced and analyzed, with a view to look for genes and/or nucleotide sequences that might be involved in the differences and virulence among other HearNPVs sequenced from other countries like SP1A (Spain), NNg1 (Kenya) and G4 (China). The entire nucleotide sequence of the HearNPV-L1 genome was 136,740 bp in length having GC content of 39.19% and contained 113 ORFs that could encode polypeptides with more than 50 amino acids (GenBank accession number KT013224). Two ORFs, viz., ORF 18 (300 bp) and ORF 19 (401 bp) identified were unique in HearNPV-L1 genome. Most of the HearNPV-L1 ORFs showed high similarity to NNg1, SP1A and G4 genomes. HearNPV-L1 genome contains 5 h (hr1-hr5), these regions were found 84-100% similar to hr region of NNg1, SP1A and G4 genomes. A total of four bro genes were observed in HearNPV-L1 genome, of which bro-a gene was 12 and 351 bp bigger than SP1A and G4 bro-a, respectively, while bro-b was 15 bp bigger SP1A and NNg1 bro-b, whereas 593 bp shorter than G4 bro-b, while bro-c was 12 bp shorter than NNg1, however bro-c was absent in G4 genome. HearNPV-L1 bro-d was 100% homologous to bro-d of SP1A, NNg1 and G4 genomes, respectively. The comparative analysis of HearNPV-L1 genome indicated that there are several other putative genes and nucleotide sequences that may be responsible for insecticidal activity in HearNPV-L1 isolate, however, further functional analysis of the hypothetical (putative) genes may help identifying the genes that are crucial for the virulence and insecticidal activity.
Collapse
Affiliation(s)
- Ashika T Raghavendra
- Division of Molecular Entomology, ICAR-National Bureau of AgriculturalInsect Resources, Post Bag No. 2491, H. A. Farm Post, Bellary Road, Hebbal, Bangalore, Karnataka 560024 India.,Department of Biotechnology, Centre of Post Graduate Studies, Jain University, Jayanagar, Bangalore, Karnataka 560011 India
| | - Sushil K Jalali
- Division of Molecular Entomology, ICAR-National Bureau of AgriculturalInsect Resources, Post Bag No. 2491, H. A. Farm Post, Bellary Road, Hebbal, Bangalore, Karnataka 560024 India
| | - Rakshit Ojha
- Division of Molecular Entomology, ICAR-National Bureau of AgriculturalInsect Resources, Post Bag No. 2491, H. A. Farm Post, Bellary Road, Hebbal, Bangalore, Karnataka 560024 India.,Department of Biotechnology, Centre of Post Graduate Studies, Jain University, Jayanagar, Bangalore, Karnataka 560011 India
| | - Timalapur M Shivalingaswamy
- Division of Molecular Entomology, ICAR-National Bureau of AgriculturalInsect Resources, Post Bag No. 2491, H. A. Farm Post, Bellary Road, Hebbal, Bangalore, Karnataka 560024 India
| | - Raj Bhatnagar
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067 India
| |
Collapse
|
9
|
Riikonen R, Matilainen H, Rajala N, Pentikainen O, Johnson M, Heino J, Oker-Blom C. Functional Display of an α2 Integrin-Specific Motif (RKK) on the Surface of Baculovirus Particles. Technol Cancer Res Treat 2016; 4:437-45. [PMID: 16029062 DOI: 10.1177/153303460500400411] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The use of baculovirus vectors shows promise as a tool for gene delivery into mammalian cells. These insect viruses have been shown to transduce a variety of mammalian cell lines, and gene transfer has also been demonstrated in vivo. In this study, we generated two recombinant baculovirus vectors displaying an integrin-specific motif, RKK, as a part of two different loops of the green fluorescent protein (GFP) fused with the major envelope protein gp64 of Autographa californica M nucleopolyhedrovirus. By enzyme linked immunosorbent assays, these viruses were shown to bind a peptide representing the receptor binding site of an α2 integrin, the α2I-domain. However, the interaction was not strong enough to overcome binding of wild type gp64 to the unknown cellular receptor(s) on the surface of α2 integrin-expressing cells (CHO-α2β1) or enhance the viral uptake. After treatment of these cells with phospholipase C, internalization of all viruses was blocked or decreased significantly. However, one of the RKK displaying viruses, AcGFP(K)gp64, was still able to internalize into CHO-α2β1 cells, although at a lower level as compared to non-treated cells. This may indicate the possible utilization of a PLC independent alternative route via, in this case, the α2β1 integrin.
Collapse
Affiliation(s)
- Reetta Riikonen
- University of Jyvaskyla, Dept. of Biological and Environmental Science, PO Box 35, FIN-40351 Jyvaskyla, Finland
| | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
For the purpose of this work, insect biotechnology, which is also known as yellow biotechnology, is the use of insects as well as insect-derived cells or molecules in medical (red biotechnology), agricultural (green biotechnology), and industrial (white) biotechnology. It is based on the application of biotechnological techniques on insects or their cells to develop products or services for human use. Such products are then applied in agriculture, medicine, and industrial biotechnology. Insect biotechnology has proven to be a useful resource in diverse industries, especially for the production of industrial enzymes including chitinases and cellulases, pharmaceuticals, microbial insecticides, insect genes, and many other substances. Insect cells (ICs), and particularly lepidopteran cells, constitute a competitive strategy to mammalian cells for the manufacturing of biotechnology products. Among the wide range of methods and expression hosts available for the production of biotech products, ICs are ideal for the production of complex proteins requiring extensive posttranslational modification. The progress so far made in insect biotechnology essentially derives from scientific breakthroughs in molecular biology, especially with the advances in techniques that allow genetic manipulation of organisms and cells. Insect biotechnology has grown tremendously in the last 30 years.
Collapse
Affiliation(s)
- Chandrasekar Raman
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas USA
| | - Marian R. Goldsmith
- Biological Sciences Department Center for Biotech. and Life Sciences, University of Rhode Island, Kingston, Rhode Island USA
| | - Tolulope A. Agunbiade
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut USA
| |
Collapse
|
11
|
Takada S, Ogawa T, Matsui K, Suzuki T, Katsuda T, Yamaji H. Baculovirus display of functional antibody Fab fragments. Cytotechnology 2015; 67:741-7. [PMID: 25906386 DOI: 10.1007/s10616-015-9876-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 04/02/2015] [Indexed: 10/23/2022] Open
Abstract
The generation of a recombinant baculovirus that displays antibody Fab fragments on the surface was investigated. A recombinant baculovirus was engineered so that the heavy chain (Hc; Fd fragment) of a mouse Fab fragment was expressed as a fusion to the N-terminus of baculovirus gp64, while the light chain of the Fab fragment was simultaneously expressed as a secretory protein. Following infection of Sf9 insect cells with the recombinant baculovirus, the culture supernatant was analyzed by enzyme-linked immunosorbent assay using antigen-coated microplates and either an anti-mouse IgG or an anti-gp64 antibody. A relatively strong signal was obtained in each case, showing antigen-binding activity in the culture supernatant. In western blot analysis of the culture supernatant using the anti-gp64 antibody, specific protein bands were detected at an electrophoretic mobility that coincided with the molecular weight of the Hc-gp64 fusion protein as well as that of gp64. Flow cytometry using a fluorescein isothiocyanate-conjugated antibody specific to mouse IgG successfully detected the Fab fragments on the surface of the Sf9 cells. These results suggest that immunologically functional antibody Fab fragments can be displayed on the surface of baculovirus particles, and that a fluorescence-activated cell sorter with a fluorescence-labeled antigen can isolate baculoviruses displaying specific Fab fragments. This successful baculovirus display of antibody Fab fragments may offer a novel approach for the efficient selection of specific antibodies.
Collapse
Affiliation(s)
- Shinya Takada
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | | | | | | | | | | |
Collapse
|
12
|
Analysis of recombinant, multivalent dengue virus containing envelope (E) proteins from serotypes-1, -3 and -4 and expressed in baculovirus. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.trivac.2013.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Lin SY, Chung YC, Hu YC. Update on baculovirus as an expression and/or delivery vehicle for vaccine antigens. Expert Rev Vaccines 2014; 13:1501-21. [DOI: 10.1586/14760584.2014.951637] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
14
|
Paul A, Hasan A, Rodes L, Sangaralingam M, Prakash S. Bioengineered baculoviruses as new class of therapeutics using micro and nanotechnologies: principles, prospects and challenges. Adv Drug Deliv Rev 2014; 71:115-30. [PMID: 24503281 DOI: 10.1016/j.addr.2014.01.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 01/08/2014] [Accepted: 01/13/2014] [Indexed: 12/15/2022]
Abstract
Designing a safe and efficient gene delivery system is required for success of gene therapy trials. Although a wide variety of viral, non-viral and polymeric nanoparticle based careers have been widely studied, the current gene delivery vehicles are limited by their suboptimal, non-specific therapeutic efficacy and acute immunological reactions, leading to unwanted side effects. Recently, there has been a growing interest in insect-cell-originated baculoviruses as gene delivery vehicles for diverse biomedical applications. Specifically, the emergence of diverse types of surface functionalized and bioengineered baculoviruses is posed to edge over currently available gene delivery vehicles. This is primarily because baculoviruses are comparatively non-pathogenic and non-toxic as they cannot replicate in mammalian cells and do not invoke any cytopathic effect. Moreover, emerging advanced studies in this direction have demonstrated that hybridizing the baculovirus surface with different kinds of bioactive therapeutic molecules, cell-specific targeting moieties, protective polymeric grafts and nanomaterials can significantly improve the preclinical efficacy of baculoviruses. This review presents a comprehensive overview of the recent advancements in the field of bioengineering and biotherapeutics to engineer baculovirus hybrids for tailored gene therapy, and articulates in detail the potential and challenges of these strategies for clinical realization. In addition, the article illustrates the rapid evolvement of microfluidic devices as a high throughput platform for optimizing baculovirus production and treatment conditions.
Collapse
Affiliation(s)
- Arghya Paul
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering and Artificial Cells and Organs Research Centre, Faculty of Medicine, McGill University, 3775 University Street, Montreal, Québec H3A 2B4, Canada; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Anwarul Hasan
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Laetitia Rodes
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering and Artificial Cells and Organs Research Centre, Faculty of Medicine, McGill University, 3775 University Street, Montreal, Québec H3A 2B4, Canada
| | - Mugundhine Sangaralingam
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering and Artificial Cells and Organs Research Centre, Faculty of Medicine, McGill University, 3775 University Street, Montreal, Québec H3A 2B4, Canada
| | - Satya Prakash
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering and Artificial Cells and Organs Research Centre, Faculty of Medicine, McGill University, 3775 University Street, Montreal, Québec H3A 2B4, Canada.
| |
Collapse
|
15
|
Wen L, Lin Y, Zheng ZH, Zhang ZL, Zhang LJ, Wang LY, Wang HZ, Pang DW. Labeling the nucleocapsid of enveloped baculovirus with quantum dots for single-virus tracking. Biomaterials 2014; 35:2295-301. [DOI: 10.1016/j.biomaterials.2013.11.069] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 11/22/2013] [Indexed: 11/26/2022]
|
16
|
Hu YC, Yao K, Wu TY. Baculovirus as an expression and/or delivery vehicle for vaccine antigens. Expert Rev Vaccines 2014; 7:363-71. [PMID: 18393606 DOI: 10.1586/14760584.7.3.363] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yu-Chen Hu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300 Taiwan.
| | | | | |
Collapse
|
17
|
Phage display antibodies for diagnostic applications. Biologicals 2013; 41:209-16. [DOI: 10.1016/j.biologicals.2013.04.001] [Citation(s) in RCA: 218] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 03/29/2013] [Accepted: 04/02/2013] [Indexed: 11/23/2022] Open
|
18
|
Buhrman JD, Slansky JE. Improving T cell responses to modified peptides in tumor vaccines. Immunol Res 2013; 55:34-47. [PMID: 22936035 DOI: 10.1007/s12026-012-8348-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Immune recognition and elimination of cancerous cells is the primary goal of cancer immunotherapy. However, obstacles including immune tolerance and tumor-induced immunosuppression often limit beneficial immune responses. Vaccination is one proposed intervention that may help to overcome these issues and is an active area of study in cancer immunotherapy. Immunizing with tumor antigenic peptides is a promising, straight-forward vaccine strategy hypothesized to boost preexisting antitumor immunity. However, tumor antigens are often weak T cell agonists, attributable to several mechanisms, including immune self-tolerance and poor immunogenicity of self-derived tumor peptides. One strategy for overcoming these mechanisms is vaccination with mimotopes, or peptide mimics of tumor antigens, which alter the antigen presentation and/or T cell activation to increase the expansion of tumor-specific T cells. Evaluation of mimotope vaccine strategies has revealed that even subtle alterations in peptide sequence can dramatically alter antigen presentation and T cell receptor recognition. Most of this research has been performed using T cell clones, which may not be accurate representations of the naturally occurring antitumor response. The relationship between clones generated after mimotope vaccination and the polyclonal T cell repertoire is unclear. Our work with mimotopes in a mouse model of colon carcinoma has revealed important insights into these issues. We propose that the identification of mimotopes based on stimulation of the naturally responding T cell repertoire will dramatically improve the efficacy of mimotope vaccination.
Collapse
Affiliation(s)
- Jonathan D Buhrman
- Integrated Department of Immunology, University of Colorado School of Medicine, National Jewish Health, Denver, CO 80206, USA
| | | |
Collapse
|
19
|
Birnbaum ME, Dong S, Garcia KC. Diversity-oriented approaches for interrogating T-cell receptor repertoire, ligand recognition, and function. Immunol Rev 2013; 250:82-101. [PMID: 23046124 DOI: 10.1111/imr.12006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Molecular diversity lies at the heart of adaptive immunity. T-cell receptors and peptide-major histocompatibility complex molecules utilize and rely upon an enormous degree of diversity at the levels of genetics, chemistry, and structure to engage one another and carry out their functions. This high level of diversity complicates the systematic study of important aspects of T-cell biology, but recent technical advances have allowed for the ability to study diversity in a comprehensive manner. In this review, we assess insights gained into T-cell receptor function and biology from our increasingly precise ability to assess the T-cell repertoire as a whole or to perturb individual receptors with engineered reagents. We conclude with a perspective on a new class of high-affinity, non-stimulatory peptide ligands we have recently discovered using diversity-oriented techniques that challenges notions for how we think about T-cell receptor signaling.
Collapse
Affiliation(s)
- Michael E Birnbaum
- Department of Molecular and Cellular Physiology, Program in Immunology, Stanford University School of Medicine, CA, USA
| | | | | |
Collapse
|
20
|
Xu X, Chen Y, Zhao Y, Liu X, Dong B, Jones IM, Chen H. Baculovirus superinfection: a probable restriction factor on the surface display of proteins for library screening. PLoS One 2013; 8:e54631. [PMID: 23365677 PMCID: PMC3554712 DOI: 10.1371/journal.pone.0054631] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 12/13/2012] [Indexed: 01/25/2023] Open
Abstract
In addition to the expression of recombinant proteins, baculoviruses have been developed as a platform for the display of complex eukaryotic proteins on the surface of virus particles or infected insect cells. Surface display has been used extensively for antigen presentation and targeted gene delivery but is also a candidate for the display of protein libraries for molecular screening. However, although baculovirus gene libraries can be efficiently expressed and displayed on the surface of insect cells, target gene selection is inefficient probably due to super-infection which gives rise to cells expressing more than one protein. In this report baculovirus superinfection of Sf9 cells has been investigated by the use of two recombinant multiple nucleopolyhedrovirus carrying green or red fluorescent proteins under the control of both early and late promoters (vAcBacGFP and vAcBacDsRed). The reporter gene expression was detected 8 hours after the infection of vAcBacGFP and cells in early and late phases of infection could be distinguished by the fluorescence intensity of the expressed protein. Simultaneous infection with vAcBacGFP and vAcBacDsRed viruses each at 0.5 MOI resulted in 80% of infected cells co-expressing the two fluorescent proteins at 48 hours post infection (hpi), and subsequent infection with the two viruses resulted in similar co-infection rate. Most Sf9 cells were re-infectable within the first several hours post infection, but the re-infection rate then decreased to a very low level by 16 hpi. Our data demonstrate that Sf9 cells were easily super-infectable during baculovirus infection, and super-infection could occur simultaneously at the time of the primary infection or subsequently during secondary infection by progeny viruses. The efficiency of super-infection may explain the difficulties of baculovirus display library screening but would benefit the production of complex proteins requiring co-expression of multiple polypeptides.
Collapse
Affiliation(s)
- Xiaodong Xu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Yuanrong Chen
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Yu Zhao
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Xiaofen Liu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Beitao Dong
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Ian M. Jones
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Hongying Chen
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, P. R. China
| |
Collapse
|
21
|
Chen CY, Lin SY, Cheng MC, Tsai CP, Hung CL, Lo KW, Hwang Y, Hu YC. Baculovirus vector as an avian influenza vaccine: hemagglutinin expression and presentation augment the vaccine immunogenicity. J Biotechnol 2013; 164:143-50. [PMID: 23313887 DOI: 10.1016/j.jbiotec.2012.12.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Revised: 12/17/2012] [Accepted: 12/21/2012] [Indexed: 12/11/2022]
Abstract
Baculovirus simultaneously displaying and expressing the avian influenza virus (AIV) hemagglutinin (HA) protein can induce potent anti-HA humoral and cellular immune responses. Based on the hypothesis that improving the antigen expression and presentation can further boost the AIV vaccine efficacies, we first constructed a baculoviral vector (Bac-HAW) with HA gene fused with the woodchuck hepatitis virus post-transcriptional regulatory element (WPRE) near its 3' end and expressed under the control of the hybrid CAG promoter. The WPRE fusion improved the HA expression and augmented the humoral and Th1 cellular immune responses after intramuscular administration into BALB/c mice. With Bac-HAW as the backbone, we next constructed Bac-HAMW which harbored the HA gene flanked with the signal sequence (MHCIss) and trafficking domain (MITD) of MHC class I molecule. In comparison with Bac-HAW, Bac-HAMW ameliorated the HA peptide presentation, significantly elevated the HA-specific humoral response (total IgG, IgG2a and hemagglutination inhibition titers) and favorably boosted the Th1 and IFN-γ(+)/CD8(+) T cell responses without extraneous adjuvants. These data collectively confirmed that enhancement of antigen expression and presentation by combining the WPRE and MHCIss/MITD fusion can potentiate the immunogenicity of the baculovirus-based vaccine, and implicates the potential of Bac-HAMW as an appealing AIV vaccine.
Collapse
Affiliation(s)
- Chi-Yuan Chen
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Kato T, Suzuki F, Park EY. Display of the human (pro)renin receptor on Bombyx mori nucleopolyhedrovirus (BmNPV) particles using Bm cells. J Biosci Bioeng 2012; 114:564-9. [PMID: 22762973 DOI: 10.1016/j.jbiosc.2012.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 06/07/2012] [Accepted: 06/08/2012] [Indexed: 01/20/2023]
Abstract
The human (pro)renin receptor (hPRR) was displayed on the surface of Bombyx mori nucleopolyhedrovirus (BmNPV) with and without fusion to glycoprotein 64 (GP64) of the BmNPV. hPRR1 is a native hPRR with an additional FLAG peptide sequence inserted between the signal peptide and prorenin-binding domain. hPRR2 has the prorenin-binding domain inserted between amino acid residues (81)Asp and (82)Pro of GP64. hPRR4 has the prorenin-binding domain inserted in (81)Asp and (320)Met of partially deleted GP64. Incorporation of hPRR was confirmed in recombinant BmNPV (rBmNPV) but not in cysteine protease-deleted rBmNPV. hPRR1 was observed in ER, but hPRR2 and hPRR4 were observed around the endoplasmic reticulum (ER) and in its periphery. rBmNPV-hPRR1 and -hPRR2, carrying hPRR1 and hPRR2 respectively, showed binding affinity to human renin, but rBmNPV-hPRR4 did not. The presence of hPRR4 of rBmNPV-hPRR4 was confirmed in western blotting under nonreducing conditions, suggesting that although hPRR4 was incorporated in rBmNPV-hPRR4, it behaved as a non-functional aggregate. This rBmNPV display system can also be used for analyzing a ligand-receptor interaction.
Collapse
Affiliation(s)
- Tatsuya Kato
- Laboratory of Biotechnology, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | | | | |
Collapse
|
23
|
Tsuji Y, Deo VK, Kato T, Park EY. Production of Rous sarcoma virus-like particles displaying human transmembrane protein in silkworm larvae and its application to ligand–receptor binding assay. J Biotechnol 2011; 155:185-92. [DOI: 10.1016/j.jbiotec.2011.07.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 06/08/2011] [Accepted: 07/09/2011] [Indexed: 12/22/2022]
|
24
|
Molinari P, Crespo MI, Gravisaco MJ, Taboga O, Morón G. Baculovirus capsid display potentiates OVA cytotoxic and innate immune responses. PLoS One 2011; 6:e24108. [PMID: 21918683 PMCID: PMC3168877 DOI: 10.1371/journal.pone.0024108] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Accepted: 08/04/2011] [Indexed: 01/08/2023] Open
Abstract
Baculoviruses (BV) are DNA viruses that are pathogenic for insects. Although BV infect a range of mammalian cell types, they do not replicate in these cells. Indeed, the potential effects of these insect viruses on the immune responses of mammals are only just beginning to be studied. We show in this paper that a recombinant Autographa californica multiple nuclear polyhedrosis virus carrying a fragment of ovalbumin (OVA) on the VP39 capsid protein (BV-OVA) has the capacity to act as an adjuvant and vector of antigens in mice, thereby promoting specific CD4 and cytotoxic T cell responses against OVA. BV also induced in vivo maturation of dendritic cells and the production of inflammatory cytokines, thus promoting innate and adaptive immune responses. The OVA-specific response induced by BV-OVA was strong enough to reject a challenge with OVA-expressing melanoma cells (MO5 cells) and effectively prolonged survival of MO5 bearing mice. All these findings, together with the absence of pre-existing immunity to BV in humans and the lack of viral gene expression in mammalian cells, make BV a candidate for vaccination.
Collapse
Affiliation(s)
- Paula Molinari
- Instituto de Biotecnología, Centro Nacional de Investigaciones Agropecuarias (CNIA), INTA Castelar, Buenos Aires, Argentina
| | - María I. Crespo
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María J. Gravisaco
- Instituto de Biotecnología, Centro Nacional de Investigaciones Agropecuarias (CNIA), INTA Castelar, Buenos Aires, Argentina
| | - Oscar Taboga
- Instituto de Biotecnología, Centro Nacional de Investigaciones Agropecuarias (CNIA), INTA Castelar, Buenos Aires, Argentina
| | - Gabriel Morón
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- * E-mail:
| |
Collapse
|
25
|
Zhou Y, Yi Y, Zhang Z, He J, Zhang Y. Cetyltriethylammonium bromide stimulating transcription of Bombyx mori nucleopolyhedrovirus gp64 gene promoter mediated by viral factors. Cytotechnology 2011; 41:37-44. [PMID: 19002960 DOI: 10.1023/a:1024231023015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To characterize the effects of cetyltriethylammonium bromide (CTAB) on the transcription of gp64 promoter from Bombyx mori nucleopolyhedrovirus (BmNPV), the plasmid pBmgp64Luc used in transient expression assay system was constructed by using the luciferase gene as a reporter under the control of BmNPV gp64 promoter. When the Bombyx mori cells (Bm-N) were transfected with the pBmgp64Luc, different treatments were undertaken. We found that the transient expression activity of luciferase could not be augmented directly by CTAB treatment alone, but could be enhanced more than 2 times by BmNPV treatment alone at a multiplicity of infection (MOI) of 0.5. Through co-treatment with 0.1 microg ml(-1) of CTAB and BmNPV at a MOI of 0.5, the enzymatic activity increased 5.21 times. We presumed that the stimulation of transcription of BmNPV gp64 promoter by CTAB was mediated by viral factors from BmNPV. In addition, the time curves of luciferase activity in cells transfected with pBmgp64Luc and transactivated by virus were observed.
Collapse
Affiliation(s)
- Yajing Zhou
- Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Silkworm Biotechnology, Zhenjiang, Jiangsu, 212018, China
| | | | | | | | | |
Collapse
|
26
|
Ogembo JG, Caoili BL, Shikata M, Chaeychomsri S, Kobayashi M, Ikeda M. Comparative genomic sequence analysis of novel Helicoverpa armigera nucleopolyhedrovirus (NPV) isolated from Kenya and three other previously sequenced Helicoverpa spp. NPVs. Virus Genes 2011; 39:261-72. [PMID: 19634008 DOI: 10.1007/s11262-009-0389-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Accepted: 07/08/2009] [Indexed: 11/30/2022]
Abstract
A newly cloned Helicoverpa armigera nucleopolyhedrovirus (HearNPV) from Kenya, HearNPV-NNg1, has a higher insecticidal activity than HearNPV-G4, which also exhibits lower insecticidal activity than HearNPV-C1. In the search for genes and/or nucleotide sequences that might be involved in the observed virulence differences among Helicoverpa spp. NPVs, the entire genome of NNg1 was sequenced and compared with previously sequenced genomes of G4, C1 and Helicoverpa zea single-nucleocapsid NPV (Hz). The NNg1 genome was 132,425 bp in length, with a total of 143 putative open reading frames (ORFs), and shared high levels of overall amino acid and nucleotide sequence identities with G4, C1 and Hz. Three NNg1 ORFs, ORF5, ORF100 and ORF124, which were shared with C1, were absent in G4 and Hz, while NNg1 and C1 were missing a homologue of G4/Hz ORF5. Another three ORFs, ORF60 (bro-b), ORF119 and ORF120, and one direct repeat sequence (dr) were unique to NNg1. Relative to the overall nucleotide sequence identity, lower sequence identities were observed between NNg1 hrs and the homologous hrs in the other three Helicoverpa spp. NPVs, despite containing the same number of hrs located at essentially the same positions on the genomes. Differences were also observed between NNg1 and each of the other three Helicoverpa spp. NPVs in the diversity of bro genes encoded on the genomes. These results indicate several putative genes and nucleotide sequences that may be responsible for the virulence differences observed among Helicoverpa spp., yet the specific genes and/or nucleotide sequences responsible have not been identified.
Collapse
Affiliation(s)
- Javier Gordon Ogembo
- Laboratory of Biodynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | | | | | | | | | | |
Collapse
|
27
|
Kato T, Suzuki F, Park EY. Purification of functional baculovirus particles from silkworm larval hemolymph and their use as nanoparticles for the detection of human prorenin receptor (PRR) binding. BMC Biotechnol 2011; 11:60. [PMID: 21635720 PMCID: PMC3118113 DOI: 10.1186/1472-6750-11-60] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Accepted: 06/02/2011] [Indexed: 12/12/2022] Open
Abstract
Background Baculovirus, which has a width of 40 nm and a length of 250-300 nm, can display functional peptides, receptors and antigens on its surface by their fusion with a baculovirus envelop protein, GP64. In addition, some transmembrane proteins can be displayed without GP64 fusion, using the native transmembrane domains of the baculovirus. We used this functionality to display human prorenin receptor fused with GFPuv (GFPuv-hPRR) on the surface of silkworm Bombyx mori nucleopolyhedrovirus (BmNPV) and then tested whether these baculovirus particles could be used to detect protein-protein interactions. Results BmNPV displaying GFPuv-hPRR (BmNPV-GFPuv-hPRR) was purified from hemolymph by using Sephacryl S-1000 column chromatography in the presence of 0.01% Triton X-100. Its recovery was 86% and the final baculovirus particles number was 4.98 × 108 pfu. Based on the results of enzyme-linked immunosorbent assay (ELISA), 3.1% of the total proteins in BmNPV-GFPuv-hPRR were GFPuv-hPRR. This value was similar to that calculated from the result of western blot by a densitometry (2.7%). To determine whether BmNPV-GFPuv-hPRR particles were bound to human prorenin, ELISA results were compared with those from ELISAs using protease negative BmNPV displaying β1,3-N-acetylglucosaminyltransferase 2 fused with the gene encoding GFPuv (GGT2) (BmNPV-CP--GGT2) particles, which do not display hPRR on their surfaces. Conclusion The display of on the surface of the BmNPV particles will be useful for the detection of protein-protein interactions and the screening of inhibitors and drugs in their roles as nanobioparticles.
Collapse
Affiliation(s)
- Tatsuya Kato
- Laboratory of Biotechnology, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | | | | |
Collapse
|
28
|
Chen CY, Lin CY, Chen GY, Hu YC. Baculovirus as a gene delivery vector: recent understandings of molecular alterations in transduced cells and latest applications. Biotechnol Adv 2011; 29:618-31. [PMID: 21550393 PMCID: PMC7126054 DOI: 10.1016/j.biotechadv.2011.04.004] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 04/15/2011] [Accepted: 04/15/2011] [Indexed: 12/13/2022]
Abstract
Baculovirus infects insects in nature and is non-pathogenic to humans, but can transduce a broad range of mammalian and avian cells. Thanks to the biosafety, large cloning capacity, low cytotoxicity and non-replication nature in the transduced cells as well as the ease of manipulation and production, baculovirus has gained explosive popularity as a gene delivery vector for a wide variety of applications. This article extensively reviews the recent understandings of the molecular mechanisms pertinent to baculovirus entry and cellular responses, and covers the latest advances in the vector improvements and applications, with special emphasis on antiviral therapy, cancer therapy, regenerative medicine and vaccine.
Collapse
Affiliation(s)
- Chi-Yuan Chen
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | | | | | | |
Collapse
|
29
|
|
30
|
Song L, Liu Y, Chen J. Inorganic binding peptide-mediated immobilization based on baculovirus surface display system. J Basic Microbiol 2010; 50:457-64. [PMID: 20806244 DOI: 10.1002/jobm.200900359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The biomolecule-mediated assembly of novel composites has been the subject of numerous investigations during the last years, providing new insights into material science and engineering. Via molecular biology technology, we were able to introduce the genetically engineered polypeptide for inorganics (GEPI) as a molecular binder into biomolecules such as phage viruses, to assemble hybrid functional nanoarchitectures. In the present work, we introduced a novel nanocomposite comprising the Autographa californica nuclear polyhedrosis virus (AcNPV) and nanoparticles bound to it. Our results show that a GEPI-encoding gene was successfully introduced by recombination into a eukaryotic expression bacmid and finally displayed outside of the AcNPV after transfection into Sf9 insect cells using the Bac-to-Bac baculovirus expression system. The recombinant baculovirus maintained both the viral infectivity and the specific binding activity of the GEPI. The construction of the gene in the recombinant plasmid was examined by polymerase chain reaction analysis and enzymatic digestion identification, and verified by gene sequencing. Surface display of the fused peptide was revealed by Western blot analysis in dissolution studies and determined by immuno- gold electron microscopy. Adherence of nanoparticles to the recombinant baculovirus was visualized by transmission electron microscopy analysis. Here, we demonstrated the possibilities of combining peptide-mediated immobilization with baculovirus surface display technology.
Collapse
Affiliation(s)
- Lei Song
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | | | | |
Collapse
|
31
|
Kitidee K, Nangola S, Gonzalez G, Boulanger P, Tayapiwatana C, Hong SS. Baculovirus display of single chain antibody (scFv) using a novel signal peptide. BMC Biotechnol 2010; 10:80. [PMID: 21092083 PMCID: PMC3002913 DOI: 10.1186/1472-6750-10-80] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Accepted: 11/19/2010] [Indexed: 11/13/2022] Open
Abstract
Background Cells permissive to virus can become refractory to viral replication upon intracellular expression of single chain fragment variable (scFv) antibodies directed towards viral structural or regulatory proteins, or virus-coded enzymes. For example, an intrabody derived from MH-SVM33, a monoclonal antibody against a conserved C-terminal epitope of the HIV-1 matrix protein (MAp17), was found to exert an inhibitory effect on HIV-1 replication. Results Two versions of MH-SVM33-derived scFv were constructed in recombinant baculoviruses (BVs) and expressed in BV-infected Sf9 cells, N-myristoylation-competent scFvG2/p17 and N-myristoylation-incompetent scFvE2/p17 protein, both carrying a C-terminal HA tag. ScFvG2/p17 expression resulted in an insoluble, membrane-associated protein, whereas scFvE2/p17 was recovered in both soluble and membrane-incorporated forms. When coexpressed with the HIV-1 Pr55Gag precursor, scFvG2/p17 and scFvE2/p17 did not show any detectable negative effect on virus-like particle (VLP) assembly and egress, and both failed to be encapsidated in VLP. However, soluble scFvE2/p17 isolated from Sf9 cell lysates was capable of binding to its specific antigen, in the form of a synthetic p17 peptide or as Gag polyprotein-embedded epitope. Significant amounts of scFvE2/p17 were released in the extracellular medium of BV-infected cells in high-molecular weight, pelletable form. This particulate form corresponded to BV particles displaying scFvE2/p17 molecules, inserted into the BV envelope via the scFv N-terminal region. The BV-displayed scFvE2/p17 molecules were found to be immunologically functional, as they reacted with the C-terminal epitope of MAp17. Fusion of the N-terminal 18 amino acid residues from the scFvE2/p17 sequence (N18E2) to another scFv recognizing CD147 (scFv-M6-1B9) conferred the property of BV-display to the resulting chimeric scFv-N18E2/M6. Conclusion Expression of scFvE2/p17 in insect cells using a BV vector resulted in baculoviral progeny displaying scFvE2/p17. The function required for BV envelope incorporation was carried by the N-terminal octadecapeptide of scFvE2/p17, which acted as a signal peptide for BV display. Fusion of this peptide to the N-terminus of scFv molecules of interest could be applied as a general method for BV-display of scFv in a GP64- and VSV-G-independent manner.
Collapse
Affiliation(s)
- Kuntida Kitidee
- University Lyon 1, INRA UMR-754, Retrovirus & Comparative Pathology, 50, avenue Tony Garnier, 69366 Lyon Cedex 07, France
| | | | | | | | | | | |
Collapse
|
32
|
Baculoviral capsid display of His-tagged ZnO inorganic binding peptide. Cytotechnology 2010; 62:133-41. [PMID: 20407822 DOI: 10.1007/s10616-010-9269-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Accepted: 03/30/2010] [Indexed: 10/19/2022] Open
Abstract
Virus-templated fabrication of compound structures can be made through incorporating the specifically inorganic-binding peptide into the viral scaffold, widely used is phage display system. Compared to prokaryotic phages, insect cell-based baculovirus has some strengths such as the adaptability to the proteins' posttranslational modification and non-replication in mammalian cells. As an attempt to explore the baculovirus-mediated bioconjugates, we show in this study that a genetically engineered baculovirus, with a hexahistidine (His(6)) tagged ZnO binding peptide fused to the N-terminus of the viral capsid protein vp39 of AcNPV, was constructed. It maintains both the viral infectivity and the fusion protein's activity. The presence of the fusion protein on the baculovirus particle was demonstrated by western blot analysis of purified budded virus. Its display on the virus capsid was revealed by virus fractionation analysis. The binding of nanosized ZnO powders to the virus capsid was visualized by transmission electron microscopy (TEM). This is the first report of the display of the inorganic-binding peptide on the capsid of eukaryotic baculovirus. Aimed at the nanomaterials' application in the biological field, this research could find useful in the biotracking of the baculovirus transduction process and the preparation of novel functional nanodevices.
Collapse
|
33
|
Mäkelä AR, Ernst W, Grabherr R, Oker-Blom C. Baculovirus-based display and gene delivery systems. Cold Spring Harb Protoc 2010; 2010:pdb.top72. [PMID: 20194476 DOI: 10.1101/pdb.top72] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The baculovirus expression vector system has been used extensively to produce numerous proteins originating from both prokaryotic and eukaryotic sources. In addition to easy cloning techniques and abundant viral propagation, the system's insect cell environment provides eukaryotic post-translational modification machinery. The recently established eukaryotic molecular biology tool, the baculovirus display vector system (BDVS), allows the combination of genotype with phenotype, enabling presentation of foreign peptides or even complex proteins on the baculoviral envelope or capsid. This strategy is important because it can be used to enhance viral binding and entry to mammalian cells as well as to produce antibodies against the displayed antigen. In addition, the technology should enable modifications of intracellular behavior, that is, trafficking of recombinant "nanoparticles," a highly relevant feature for studies of targeted gene or protein delivery. This article discusses the design and potential uses of insect-derived baculoviral display vectors.
Collapse
|
34
|
Surface display of IgG Fc on baculovirus vectors enhances binding to antigen-presenting cells and cell lines expressing Fc receptors. Arch Virol 2009; 154:1129-38. [PMID: 19557497 DOI: 10.1007/s00705-009-0423-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Accepted: 06/03/2009] [Indexed: 10/20/2022]
Abstract
Recombinant baculoviruses (recBV) were constructed with dual cassettes for constitutive expression of human IgG Fc following infection of insect cells and the structural proteins of hepatitis C virus (core, E1 and E2) following transduction of mammalian cells. The IgG Fc was expressed in insect cells as a fusion protein with the signal sequence and transmembrane region of either the native baculovirus envelope protein gp64 or the human transferrin receptor as a type I or type II integral membrane protein, respectively. The IgG Fc fusion proteins formed functional homodimers on the surface of recBV-infected insect cells and were incorporated into the envelope of recBV particles during egress from the infected cell. Both pseudotyped recBV bound specifically to recombinant soluble FcgammaRIIalpha receptor and to cell lines and antigen-presenting cells expressing Fc receptors (FcRs). These novel baculoviral vectors, which target cells of the immune system that express FcRs, have potential applications for vaccination or gene therapy.
Collapse
|
35
|
Localization of human (pro)renin receptor lacking the transmembrane domain on budded baculovirus of Autographa californica multiple nucleopolyhedrovirus. Appl Microbiol Biotechnol 2009; 82:431-7. [DOI: 10.1007/s00253-008-1776-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Revised: 10/27/2008] [Accepted: 10/29/2008] [Indexed: 10/21/2022]
|
36
|
Abstract
Baculovirus is a promising gene delivery vector but its widespread application is impeded as it only mediates transient transgene expression in mammalian cells. To prolong the expression, we developed a dual baculovirus system whereby one baculovirus expressed FLP recombinase while the other harbored an Frt-flanking cassette encompassing the transgene and oriP/EBNA1 derived from Epstein-Barr virus. After cotransduction of cells, the expressed FLP cleaved the Frt-flanking cassette off the baculovirus genome and catalyzed circular episome formation, then oriP/EBNA1 within the cassette enabled the self-replication of episomes. The excision/recombination efficiency was remarkably enhanced by sodium butyrate, reaching 75% in human embryonic kidney-293 (HEK293) cells, 85% in baby-hamster kidney (BHK) cells, 77% in primary chondrocytes, and 48% in mesenchymal stem cells (MSCs). The hybrid baculovirus substantially prolonged the transgene expression to approximately 48 days without selection and >63 days with selection, thanks to the maintenance of replicons and transgene transcription. In contrast to the replicating episomes, the baculovirus genome was rapidly degraded. Furthermore, an osteoinductive growth factor gene was efficiently delivered into MSCs using this system, which not only prolonged the growth factor expression but also potentiated the osteogenesis of MSCs. These data collectively implicate the potential of this hybrid baculovirus system in gene therapy applications necessitating sustained transgene expression.
Collapse
|
37
|
Meller Harel HY, Fontaine V, Chen H, Jones IM, Millner PA. Display of a maize cDNA library on baculovirus infected insect cells. BMC Biotechnol 2008; 8:64. [PMID: 18700036 PMCID: PMC2527309 DOI: 10.1186/1472-6750-8-64] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Accepted: 08/12/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Maize is a good model system for cereal crop genetics and development because of its rich genetic heritage and well-characterized morphology. The sequencing of its genome is well advanced, and new technologies for efficient proteomic analysis are needed. Baculovirus expression systems have been used for the last twenty years to express in insect cells a wide variety of eukaryotic proteins that require complex folding or extensive posttranslational modification. More recently, baculovirus display technologies based on the expression of foreign sequences on the surface of Autographa californica (AcMNPV) have been developed. We investigated the potential of a display methodology for a cDNA library of maize young seedlings. RESULTS We constructed a full-length cDNA library of young maize etiolated seedlings in the transfer vector pAcTMVSVG. The library contained a total of 2.5 x 10(5) independent clones. Expression of two known maize proteins, calreticulin and auxin binding protein (ABP1), was shown by western blot analysis of protein extracts from insect cells infected with the cDNA library. Display of the two proteins in infected insect cells was shown by selective biopanning using magnetic cell sorting and demonstrated proof of concept that the baculovirus maize cDNA display library could be used to identify and isolate proteins. CONCLUSION The maize cDNA library constructed in this study relies on the novel technology of baculovirus display and is unique in currently published cDNA libraries. Produced to demonstrate proof of principle, it opens the way for the development of a eukaryotic in vivo display tool which would be ideally suited for rapid screening of the maize proteome for binding partners, such as proteins involved in hormone regulation or defence.
Collapse
Affiliation(s)
| | - Veronique Fontaine
- UMR INRA/USTL 1281, Stress Abiotiques et Différenciation des Végétaux cultivés 2, Chaussée Brunehaut, Estrées-Mons BP 50136, 80203 Péronne cedex, France
| | - Hongying Chen
- School of Biological Sciences, University of Reading, Whiteknights, Reading, Berks, RG6 6AJ, UK
| | - Ian M Jones
- School of Biological Sciences, University of Reading, Whiteknights, Reading, Berks, RG6 6AJ, UK
| | - Paul A Millner
- Faculty of biological sciences, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
38
|
Abstract
This review focusses on the isolation of proteins from genomic or cDNA expression products libraries displayed on phage. The use of phage display is highlighted for the characterization of binding proteins with diverse biological functions. Phage display is compared with another strategy, the yeast two-hybrid method. The combination of both strategies is especially powerful to eliminate false positives and to get information on the biochemical functions of proteins.
Collapse
Affiliation(s)
- Jean-Luc Jestin
- URA CNRS 2128, Département de Biologie Structurale et Chimie, Institut Pasteur, 25 rue du Dr. Roux, 75724 Paris 15, France.
| |
Collapse
|
39
|
Display of heterologous proteins on gp64null baculovirus virions and enhanced budding mediated by a vesicular stomatitis virus G-stem construct. J Virol 2007; 82:1368-77. [PMID: 17989172 DOI: 10.1128/jvi.02007-07] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) GP64 envelope glycoprotein is essential for virus entry and plays an important role in virion budding. An AcMNPV construct that contains a deletion of the gp64 gene is unable to propagate infection from cell to cell, and this defect results from both a severe reduction in the production of budded virions and the absence of GP64 on virions. In the current study, we examined GP64 proteins containing N- and C-terminal truncations of the ectodomain and identified a minimal construct capable of targeting the truncated GP64 to budded virions. The minimal budding and targeting construct of GP64 contained 38 amino acids from the mature N terminus of the GP64 ectodomain and 52 amino acids from the C terminus of GP64. Because the vesicular stomatitis virus (VSV) G protein was previously found to rescue infectivity of a gp64null AcMNPV, we also examined a small C-terminal construct of the VSV G protein. We found that a construct containing 91 amino acids from the C terminus of VSV G (termed G-stem) was capable of rescuing AcMNPV gp64null virion budding to wild-type (wt) or nearly wt levels. We also examined the display of chimeric proteins on the gp64null AcMNPV virion. By generating viruses that expressed chimeric influenza virus hemagglutinin (HA) proteins containing the GP64 targeting domain and coinfecting those viruses with a virus expressing the G-stem construct, we demonstrated enhanced display of the HA protein on gp64null AcMNPV budded virions. The combined use of gp64null virions, VSV G-stem-enhanced budding, and GP64 domains for targeting heterologous proteins to virions should be valuable for biotechnological applications ranging from targeted transduction of mammalian cells to vaccine production.
Collapse
|
40
|
Fischlechner M, Reibetanz U, Zaulig M, Enderlein D, Romanova J, Leporatti S, Moya S, Donath E. Fusion of enveloped virus nanoparticles with polyelectrolyte-supported lipid membranes for the design of bio/nonbio interfaces. NANO LETTERS 2007; 7:3540-3546. [PMID: 17960947 DOI: 10.1021/nl0723580] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Fusion of lipid-enveloped viruses with endosomal membranes triggered by low pH in the endosome is a key step in the course of viral infection. This ubiquitous mechanism can be used to integrate functional nanoparticles of viral origin into composite materials consisting of a polyelectrolyte multilayer with an adsorbed lipid membrane in a natural and biomimetic way. Polyelectrolyte multilayers as the support for the lipid membrane are a versatile means to combine the biological functions of the viral surface with the multiplicity of polyelectrolyte borne functions into a novel bio/nonbio composite material.
Collapse
Affiliation(s)
- Martin Fischlechner
- Institute of Medical Physics and Biophysics, Leipzig University, Leipzig, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Shen HC, Lee HP, Lo WH, Yang DG, Hu YC. Baculovirus-mediated gene transfer is attenuated by sodium bicarbonate. J Gene Med 2007; 9:470-8. [PMID: 17431924 DOI: 10.1002/jgm.1037] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Baculovirus transduction of cultured mammalian cells is typically performed by incubating the cells with virus using culture medium (e.g. Dulbecco's modified Eagle's medium (DMEM)) as the surrounding solution. However, we previously uncovered that DMEM hinders the baculovirus-mediated gene transfer. METHODS In this study, we systematically explored the influences of promoter and medium constituents on the transduction efficiency by using different recombinant viruses and surrounding solutions for transduction, followed by flow cytometric analyses. Whether the key medium component impeded baculovirus binding to the cells and subsequent virus entry was investigated by immunofluorescence/confocal microscopy and quantitative real-time polymerase chain reaction (Q-PCR). RESULTS We demonstrated that the poorer transduction by using DMEM as the surrounding solution is independent of the promoter. Examination of the medium constituents group by group revealed that the balanced salt solution suppresses the baculovirus transduction. By omitting individual salt species in the balanced salt solution, we surprisingly uncovered that NaHCO(3), a common buffering agent, exerts the inhibitory effects in a concentration-dependent manner. Intriguingly, NaHCO(3) did not debilitate the baculovirus, nor did it inhibit virus binding to the cells. Instead, NaHCO(3) inhibited baculovirus transduction by reducing the intracellular virus number. CONCLUSIONS To our best knowledge, this is the first report unraveling the significance of NaHCO(3) in gene transfer. Our finding suggests that baculovirus-mediated gene transfer can be readily enhanced by omitting NaHCO(3) from the medium during the transduction period.
Collapse
Affiliation(s)
- Heng-Chun Shen
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | | | | | | | | |
Collapse
|
42
|
|
43
|
Abstract
From the viewpoint of a materials scientist, viruses can be regarded as organic nanoparticles. They are composed of a small number of different (bio)polymers: proteins and nucleic acids. Many viruses are enveloped in a lipid membrane and all viruses do not have a metabolism of their own, but rather use the metabolic machinery of a living cell for their replication. Their surface carries specific tools designed to cross the barriers of their host cells. The size and shape of viruses, and the number and nature of the functional groups on their surface, is precisely defined. As such, viruses are commonly used in materials science as scaffolds for covalently linked surface modifications. A particular quality of viruses is that they can be tailored by directed evolution by taking advantage of their inbuilt colocalization of geno- and phenotypes. The powerful techniques developed by life sciences are becoming the basis of engineering approaches towards nanomaterials, opening a wide range of applications far beyond biology and medicine.
Collapse
Affiliation(s)
- Martin Fischlechner
- Institute of Medical Physics and Biophysics, Leipzig University, Härtelstrasse 16-18, 04107 Leipzig, Germany
| | | |
Collapse
|
44
|
Fischlechner M, Donath E. Viren als Bauelemente für Materialien und Strukturen. Angew Chem Int Ed Engl 2007. [DOI: 10.1002/ange.200603445] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
45
|
Ge J, Huang Y, Hu X, Zhong J. A surface-modified baculovirus vector with improved gene delivery to B-lymphocytic cells. J Biotechnol 2007; 129:367-72. [PMID: 17374412 DOI: 10.1016/j.jbiotec.2007.01.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2006] [Revised: 12/04/2006] [Accepted: 01/09/2007] [Indexed: 11/29/2022]
Abstract
A short peptide motif from gp350/220 of Epstein-Barr virus, EDPGFFNVEI, which was known to bind to CD21, a surface protein on B-lymphocyte, was inserted into the baculovirus surface protein gp64. The recombinant virus carrying the hybrid gp64/gp350 gene, vAc-gp350EGFP, was obtained, and the expression of gp64/gp350 protein was confirmed with immunoblot using anti-gp350 antibody. When compared with a control virus with wild type gp64, vAc-gp350EGFP showed increased transduction efficiency in B cell lines Raji, HR1, B95-8, BJAB, and DG75, regardless of their being EBV-positive or EBV-negative. No such increase was seen in non-B cell lines HEK293 and HeLa. When Raji cells were transduced with increased amount of vAc-gp350EGFP, transduction became saturated when the multiplicity of infection was higher than 20pfu/cell. The transduction of Raji cells by vAc-gp350EGFP was dose-dependently inhibited by pre-treatment of cells with anti-CD21 antibody. These results showed that vAc-gp350EGFP entered B cells by interacting with CD21.
Collapse
Affiliation(s)
- Jing Ge
- Department Of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai 200433, People's Republic of China
| | | | | | | |
Collapse
|
46
|
Mattanovich D, Borth N. Applications of cell sorting in biotechnology. Microb Cell Fact 2006; 5:12. [PMID: 16551353 PMCID: PMC1435767 DOI: 10.1186/1475-2859-5-12] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Accepted: 03/21/2006] [Indexed: 01/28/2023] Open
Abstract
Due to its unique capability to analyze a large number of single cells for several parameters simultaneously, flow cytometry has changed our understanding of the behavior of cells in culture and of the population dynamics even of clonal populations. The potential of this method for biotechnological research, which is based on populations of living cells, was soon appreciated. Sorting applications, however, are still less frequent than one would expect with regard to their potential. This review highlights important contributions where flow cytometric cell sorting was used for physiological research, protein engineering, cell engineering, specifically emphasizing selection of overproducing cell lines. Finally conclusions are drawn concerning the impact of cell sorting on inverse metabolic engineering and systems biology.
Collapse
Affiliation(s)
- Diethard Mattanovich
- University of Natural Resources and Applied Life Sciences Vienna, Department of Biotechnology, Institute of Applied Microbiology, Muthgasse 18, A-1190 Vienna, Austria
- School of Bioengineering, University of Applied Sciences FH-Campus Vienna, Muthgasse 18, A-1190 Vienna, Austria
| | - Nicole Borth
- University of Natural Resources and Applied Life Sciences Vienna, Department of Biotechnology, Institute of Applied Microbiology, Muthgasse 18, A-1190 Vienna, Austria
| |
Collapse
|
47
|
Fischlechner M, Toellner L, Messner P, Grabherr R, Donath E. Virus-Engineered Colloidal Particles—A Surface Display System. Angew Chem Int Ed Engl 2006. [DOI: 10.1002/ange.200502620] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
48
|
Fischlechner M, Toellner L, Messner P, Grabherr R, Donath E. Virus-engineered colloidal particles--a surface display system. Angew Chem Int Ed Engl 2006; 45:784-9. [PMID: 16355425 PMCID: PMC4379499 DOI: 10.1002/anie.200502620] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Martin Fischlechner
- Institute of Medical Physics and Biophysics, Leipzig University, Härtelstrasse 16–18, 04107 Leipzig (Germany)
| | - Lars Toellner
- Institute of Medical Physics and Biophysics, Leipzig University, Härtelstrasse 16–18, 04107 Leipzig (Germany)
| | - Paul Messner
- Center for NanoBiotechnology, University of Natural Resources and Applied Life Sciences, 1180 Vienna (Austria)
| | - Reingard Grabherr
- Institute of Applied Microbiology, University of Natural Resources and Applied Life Sciences, 1190 Vienna (Austria)
| | - Edwin Donath
- Institute of Medical Physics and Biophysics, Leipzig University, Härtelstrasse 16–18, 04107 Leipzig (Germany)
| |
Collapse
|
49
|
Abstract
The baculovirus-insect cell expression system is an approved system for the production of viral antigens with vaccine potential for humans and animals and has been used for production of subunit vaccines against parasitic diseases as well. Many candidate subunit vaccines have been expressed in this system and immunization commonly led to protective immunity against pathogen challenge. The first vaccines produced in insect cells for animal use are now on the market. This chapter deals with the tailoring of the baculovirus-insect cell expression system for vaccine production in terms of expression levels, integrity and immunogenicity of recombinant proteins, and baculovirus genome stability. Various expression strategies are discussed including chimeric, virus-like particles, baculovirus display of foreign antigens on budded virions or in occlusion bodies, and specialized baculovirus vectors with mammalian promoters that express the antigen in the immunized individual. A historical overview shows the wide variety of viral (glyco)proteins that have successfully been expressed in this system for vaccine purposes. The potential of this expression system for antiparasite vaccines is illustrated. The combination of subunit vaccines and marker tests, both based on antigens expressed in insect cells, provides a powerful tool to combat disease and to monitor infectious agents.
Collapse
Affiliation(s)
- Monique M van Oers
- Laboratory of Virology, Wageningen University, Binnenhaven 11 6709 PD, Wageningen, The Netherlands
| |
Collapse
|
50
|
Matilainen H, Rinne J, Gilbert L, Marjomäki V, Reunanen H, Oker-Blom C. Baculovirus entry into human hepatoma cells. J Virol 2005; 79:15452-9. [PMID: 16306616 PMCID: PMC1316037 DOI: 10.1128/jvi.79.24.15452-15459.2005] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2005] [Accepted: 09/26/2005] [Indexed: 12/22/2022] Open
Abstract
Autographa californica multiple nucleopolyhedrovirus (AcMNPV), a prototype member of the Baculoviridae family, has gained increasing interest as a potential vector candidate for mammalian gene delivery applications. AcMNPV is known to enter both dividing and nondividing mammalian cell lines in vitro, but the mode and kinetics of entry as well as the intracellular transport of the virus in mammalian cells is poorly understood. The general objective of this study was to characterize the entry steps of AcMNPV- and green fluorescent protein-displaying recombinant baculoviruses in human hepatoma cells. The viruses were found to bind and transduce the cell line efficiently, and electron microscopy studies revealed that virions were located on the cell surface in pits with an electron-dense coating resembling clathrin. In addition, virus particles were found in larger noncoated plasma membrane invaginations and in intracellular vesicles resembling macropinosomes. In double-labeling experiments, virus particles were detected by confocal microscopy in early endosomes at 30 min and in late endosomes starting at 45 min posttransduction. Viruses were also seen in structures specific for early endosomal as well as late endosomal/lysosomal markers by nanogold preembedding immunoelectron microscopy. No indication of viral entry into recycling endosomes or the Golgi complex was observed by confocal microscopy. In conclusion, these results suggest that AcMNPV enters mammalian cells via clathrin-mediated endocytosis and possibly via macropinocytosis. Thus, the data presented here should enable future design of baculovirus vectors suitable for more specific and enhanced delivery of genetic material into mammalian cells.
Collapse
Affiliation(s)
- Heli Matilainen
- University of Jyväskylä, Nano Science Center, Department of Biological and Environmental Science, PO Box 35, FIN-40351 Jyväskylä, Finland
| | | | | | | | | | | |
Collapse
|