1
|
Salem HHA, Mohammed SH, Eltaly RI, Elqady EM, El-Said E, Metwaly KH. Effectiveness and biochemical impact of ozone gas and silica nanoparticles on Culex pipiens (Diptera: Culicidae). Sci Rep 2024; 14:19182. [PMID: 39160160 PMCID: PMC11333762 DOI: 10.1038/s41598-024-67068-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 07/08/2024] [Indexed: 08/21/2024] Open
Abstract
Culex pipiens (Diptera: Culicidae) is a vector of many serious human diseases, and its control by the heavy use of chemical insecticides has led to the evolution of insecticide resistance and high environmental risks. Many safe alternatives, such as ozone gas (O3) and silica nanoparticles (silica NPs) can reduce these risks. Therefore, O3 and silica NPs were applied to 3rd larval instars of Cx. pipiens at different concentrations (100, 200, and 400 ppm) for different exposure times (1, 2, 3, and 5 min for O3 and 24, 48, and 72 h for silica NPs). The activity of some vital antioxidant enzymes as well as scanning electron microscopy of the body surface were also investigated. A positive correlation was observed between larval mortality % and the tested concentrations of O3 and silica NPs. O3 was more effective than silica NPs, it resulted in 92% mortality at 400 ppm for a short exposure time (5 min). O3-exposed larvae exhibited a significant increase in glutathione peroxidase, glutathione S-transferase, and catalase activities as well as the total antioxidant capacity. Scanning electron microscopy showing disruptive effects on the body surface morphology of ozone and silica NPs treated larvae. These results provide evidence that O3 and silica NPs have the potential for use as alternative vector control tools against Cx. pipiens.
Collapse
Affiliation(s)
- Hend H A Salem
- Zoology and Entomology Department, Faculty of Science, Al-Azhar University (Girls Branch), Cairo, Egypt.
| | - Shaimaa H Mohammed
- Zoology and Entomology Department, Faculty of Science, Al-Azhar University (Girls Branch), Cairo, Egypt
| | - Randa I Eltaly
- Zoology and Entomology Department, Faculty of Science, Al-Azhar University (Girls Branch), Cairo, Egypt
| | - Enayat M Elqady
- Zoology and Entomology Department, Faculty of Science, Al-Azhar University (Girls Branch), Cairo, Egypt
| | - Eman El-Said
- Zoology and Entomology Department, Faculty of Science, Al-Azhar University (Girls Branch), Cairo, Egypt
| | - Khaled H Metwaly
- Center of Plasma Technology, Al-Azhar University, Cairo, 11884, Egypt
| |
Collapse
|
2
|
Feckler A, Baudy-Groh P, Friedrichs L, Gonçalves S, Lüderwald S, Risse-Buhl U, Bundschuh M. Diatoms Reduce Decomposition of and Fungal Abundance on Less Recalcitrant Leaf Litter via Negative Priming. MICROBIAL ECOLOGY 2023; 86:2674-2686. [PMID: 37505287 PMCID: PMC10640500 DOI: 10.1007/s00248-023-02268-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/11/2023] [Indexed: 07/29/2023]
Abstract
Heterotrophic microbial decomposers colonize submerged leaf litter in close spatial proximity to periphytic algae that exude labile organic carbon during photosynthesis. These exudates are conjectured to affect microbial decomposers' abundance, resulting in a stimulated (positive priming) or reduced (negative priming) leaf litter decomposition. Yet, the occurrence, direction, and intensity of priming associated with leaf material of differing recalcitrance remains poorly tested. To assess priming, we submerged leaf litter of differing recalcitrance (Alnus glutinosa [alder; less recalcitrant] and Fagus sylvatica [beech; more recalcitrant]) in microcosms and quantified bacterial, fungal, and diatom abundance as well as leaf litter decomposition over 30 days in absence and presence of light. Diatoms did not affect beech decomposition but reduced alder decomposition by 20% and alder-associated fungal abundance by 40% in the treatments including all microbial groups and light, thus showing negative priming. These results suggest that alder-associated heterotrophs acquired energy from diatom exudates rather than from leaf litter. Moreover, it is suggested that these heterotrophs have channeled energy to alternative (reproductive) pathways that may modify energy and nutrient availability for the remaining food web and result in carbon pools protected from decomposition in light-exposed stream sections.
Collapse
Affiliation(s)
- Alexander Feckler
- iES Landau, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Fortstraße 7, 76829, Landau, Germany.
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Box 7050, 75007, Uppsala, Sweden.
- Eußerthal Ecosystem Research Station, RPTU Kaiserslautern-Landau, Birkenthalstraße 13, 76857, Eußerthal, Germany.
| | - Patrick Baudy-Groh
- iES Landau, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Fortstraße 7, 76829, Landau, Germany
| | - Lisa Friedrichs
- iES Landau, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Fortstraße 7, 76829, Landau, Germany
| | - Sara Gonçalves
- iES Landau, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Fortstraße 7, 76829, Landau, Germany
| | - Simon Lüderwald
- iES Landau, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Fortstraße 7, 76829, Landau, Germany
| | - Ute Risse-Buhl
- iES Landau, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Fortstraße 7, 76829, Landau, Germany
- Department of River Ecology, Helmholtz Centre for Environmental Research - UFZ, Brückstraße 3a, 39114, Magdeburg, Germany
| | - Mirco Bundschuh
- iES Landau, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Fortstraße 7, 76829, Landau, Germany
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Box 7050, 75007, Uppsala, Sweden
| |
Collapse
|
3
|
Kırpat Konak BM, Bakar ME, Ahan RE, Özyürek EU, Dökmeci S, Şafak Şeker UÖ. A living material platform for the biomineralization of biosilica. Mater Today Bio 2022; 17:100461. [PMID: 36278145 PMCID: PMC9583595 DOI: 10.1016/j.mtbio.2022.100461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/30/2022] [Accepted: 10/08/2022] [Indexed: 11/09/2022] Open
Abstract
Nature has a vast array of biomineralization mechanisms. The commonly shared mechanism by many living organisms to form hardened tissues is the nucleation of mineral structures via proteins. Living materials, thanks to synthetic biology, are providing many opportunities to program cells for many functionalities. Here we have demonstrated a living material system for biosilicification. Silaffins are utilized to synthesize silicified cell walls by one of the most abundant organism groups called diatoms. The R5 peptide motif of the silaffins is known for its ability to precipitate silica in ambient conditions. Therefore, various studies have been conducted to implement the silicification activity of R5 in different application areas, such as regenerative medicine and tissue engineering. However, laborious protein purification steps are required prior to silica nanoparticle production in recombinant approaches. In this study, we aimed to engineer an alternative bacterial platform to achieve silicification using released and bacteria-intact forms of R5-attached fluorescent proteins (FP). Hence, we displayed R5-FP hybrids on the cell surface of E. coli via antigen 43 (Ag43) autotransporter system and managed to demonstrate heat-controllable release from the surface. We also showed that the bacteria cells displaying R5-FP can be used in silicification reactions. Lastly, considering the stimulating effect of silica on osteogenic differentiation, we treated human dental pulp stem cells (hDPSCs) with the silica aggregates formed via R5-FP hybrids. Earlier calcium crystal deposition around the hDPSCs was observed. We envision that our platform can serve as a faster and more economical alternative for biosilicification applications, including endodontics.
Collapse
Affiliation(s)
- Büşra Merve Kırpat Konak
- UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
| | - Mehmet Emin Bakar
- UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
| | - Recep Erdem Ahan
- UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
| | - Emel Uzunoğlu Özyürek
- Department of Endodontics, Dental Faculty, Hacettepe University, Ankara, 06100, Turkey
| | - Serap Dökmeci
- Department of Medical Biology, Medical Faculty, Hacettepe University, Ankara, 06100, Turkey
| | - Urartu Özgür Şafak Şeker
- UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey,Corresponding author.
| |
Collapse
|
4
|
Roychoudhury P, Bose R, Dąbek P, Witkowski A. Photonic Nano-/Microstructured Diatom Based Biosilica in Metal Modification and Removal-A Review. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6597. [PMID: 36233939 PMCID: PMC9572592 DOI: 10.3390/ma15196597] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/11/2022] [Accepted: 09/19/2022] [Indexed: 05/30/2023]
Abstract
The siliceous exoskeletal shells of diatoms, commonly known as frustules, have drawn attention because of their photoluminescence property and high volume to surface area. Photonic biosilica can also enhance the plasmonic sensitivity of nanoparticles. Because of this, researchers have studied the effectiveness of various metal particles after combining with biosilica. Additionally, naturally occurring diatom-based biosilica has excellent adsorption and absorption capabilities, which have already been exploited for wastewater treatment. Moreover, the nanoporous, ultra-hydrophilic frustules can easily accumulate more molecules on their surfaces. As a consequence, it becomes easier to conjugate noble metals with silica, making them more stable and effective. The main focus of this review is to agglomerate the utility of biocompatible diatom frustules, which is a no-cost natural resource of biosilica, in metal modification and removal.
Collapse
Affiliation(s)
- Piya Roychoudhury
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16a, 70-383 Szczecin, Poland
| | - Rahul Bose
- Department of Botany, University of Calcutta, Ballygunge Circular Road 35, Kolkata 700019, India
| | - Przemysław Dąbek
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16a, 70-383 Szczecin, Poland
| | - Andrzej Witkowski
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16a, 70-383 Szczecin, Poland
| |
Collapse
|
5
|
Metabolically Doping of 3D Diatomaceous Biosilica with Titanium. MATERIALS 2022; 15:ma15155210. [PMID: 35955145 PMCID: PMC9369532 DOI: 10.3390/ma15155210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/22/2022] [Accepted: 07/24/2022] [Indexed: 11/16/2022]
Abstract
Diatoms represent, in terms of species number, one of the largest groups of microalgae that have the ability to synthesize phenomenal mineral composites characterized by complex hierarchical structures. Their shells, called frustules, create intricately ornamented structures, reminiscent of the most sophisticated, natural mosaics. Ordinated pore systems perforate siliceous walls of the frustules with diameters ranging from nano to micro-scale, forming openwork three-dimensional silica structures. The use of these features is one of the main challenges in developing new technological solutions. In this study we assess the ability of selected diatom species (Pseudostaurosira trainorii) for metabolic insertion of soluble titanium from the culture medium into the structure of amorphous silica cell walls by its cultivation in laboratory conditions. The study is aimed at obtaining new and strengthening the already existing optical properties of diatomaceous biosilica. The physicochemical properties of the obtained materials have been studied using a series of instrumental methods.
Collapse
|
6
|
Envisaging marine diatom Thalassiosira weissflogii as a "SMART" drug delivery system for insoluble drugs. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.102983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Reid A, Buchanan F, Julius M, Walsh PJ. A review on diatom biosilicification and their adaptive ability to uptake other metals into their frustules for potential application in bone repair. J Mater Chem B 2021; 9:6728-6737. [PMID: 34346480 DOI: 10.1039/d1tb00322d] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Diatoms are unicellular eukaryotic algae that have a distinctive siliceous cell wall (frustule) with unique architectures. The nanotopography of the frustule is perfectly replicated between generations, offering a source of highly intricate and identical silica microparticles. In recent years, the ability to alter their cell wall chemistry both in terms of functionalisation with organic moieties or by incorporation of the metal ions in their frustules has increased interest in their utility for catalysis technologies, and semiconductor and biomedical applications. Herein we review the fundamental biological mechanisms in which diatoms produce their frustule and their ability to substitute different metal ions in their frustule fabrication process. The review focuses on the potential of diatom frustules as a naturally derived biomaterial in bone tissue engineering applications and how their cell walls, comprising biogenic silica, could either partially or fully incorporate other bone therapeutic metal ions, e.g., titanium or calcium, into their frustule. The use of diatom frustules in bone repair also potentially offers a 'greener', more environmentally friendly, biomaterial as they can naturally synthesise oxides of silicon and other metals into their frustules under ambient conditions at a relatively neutral pH. This process would negate the use of harsh organic chemicals and high-temperature processing conditions, often used in the fabrication of silica based biomaterials, e.g., bioactive glass.
Collapse
Affiliation(s)
- A Reid
- School of Chemistry & Chemical Engineering, Queen's University, Belfast, UK.
| | | | | | | |
Collapse
|
8
|
Taghizadeh SM, Morowvat MH, Negahdaripour M, Ebrahiminezhad A, Ghasemi Y. Biosynthesis of Metals and Metal Oxide Nanoparticles Through Microalgal Nanobiotechnology: Quality Control Aspects. BIONANOSCIENCE 2020. [DOI: 10.1007/s12668-020-00805-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
9
|
Mitra S, Kumar R, Roy P, Basu S, Barik S, Goswami A. Naturally Occurring and Synthetic Mesoporous Nanosilica: Multimodal Applications in Frontier Areas of Science. INTERNATIONAL JOURNAL OF NANOSCIENCE 2019. [DOI: 10.1142/s0219581x18500278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mesoporous silica nanoparticles (MSNs) have gained attention worldwide due to their structural versatility for diverse applications in a number of frontier areas of sciences. The intrinsic chemical, textural and structural features of MSNs allow fabricating versatile multifunctional nanosystems. The present review provides an overview of the research progress in artificial and biological production of MSNs, their properties and various applications in cutting edge areas of sciences.
Collapse
Affiliation(s)
- Sutanuka Mitra
- Biological Sciences Division, Indian Statistical Institute, 203 B. T. Road, Kolkata 700 108, India
| | - Rajesh Kumar
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi 110 012, India
| | - Pradip Roy
- Biological Sciences Division, Indian Statistical Institute, 203 B. T. Road, Kolkata 700 108, India
| | - Satakshi Basu
- Biological Sciences Division, Indian Statistical Institute, 203 B. T. Road, Kolkata 700 108, India
| | - Samarendra Barik
- Biological Sciences Division, Indian Statistical Institute, 203 B. T. Road, Kolkata 700 108, India
| | - Arunava Goswami
- Biological Sciences Division, Indian Statistical Institute, 203 B. T. Road, Kolkata 700 108, India
| |
Collapse
|
10
|
Lomora M, Shumate D, Rahman AA, Pandit A. Therapeutic Applications of Phytoplankton, with an Emphasis on Diatoms and Coccolithophores. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800099] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Mihai Lomora
- SFI Centre For Research in Medical Devices (CÚRAM); National University of Ireland; Galway Ireland
| | - David Shumate
- SFI Centre For Research in Medical Devices (CÚRAM); National University of Ireland; Galway Ireland
- Georgia Institute of Technology; Atlanta GA 30332 USA
| | - Asrizal Abdul Rahman
- SFI Centre For Research in Medical Devices (CÚRAM); National University of Ireland; Galway Ireland
| | - Abhay Pandit
- SFI Centre For Research in Medical Devices (CÚRAM); National University of Ireland; Galway Ireland
| |
Collapse
|
11
|
Gutiérrez A, Guney MG, Fedder GK, Dávila LP. The role of hierarchical design and morphology in the mechanical response of diatom-inspired structures via simulation. Biomater Sci 2018; 6:146-153. [DOI: 10.1039/c7bm00649g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel path towards the design and fabrication of diatom-inspired hierarchical microstructures.
Collapse
Affiliation(s)
- Alejandro Gutiérrez
- Materials Science and Engineering
- School of Engineering
- University of California Merced
- Merced
- USA
| | - Metin G. Guney
- Electrical and Computer Engineering
- College of Engineering
- Carnegie Mellon University
- USA
| | - Gary K. Fedder
- Electrical and Computer Engineering
- College of Engineering
- Carnegie Mellon University
- USA
- The Robotics Institute
| | - Lilian P. Dávila
- Materials Science and Engineering
- School of Engineering
- University of California Merced
- Merced
- USA
| |
Collapse
|
12
|
Auty AR. Quantifying environmental and personal risks of nanotechnology for industry. Curr Opin Biotechnol 2017; 46:150-155. [PMID: 28399478 DOI: 10.1016/j.copbio.2017.03.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 03/14/2017] [Accepted: 03/16/2017] [Indexed: 11/27/2022]
Abstract
Regulators continue to pursue a comprehensive, generalisable, transparent, reliable, accurate and universally commended injury risk assessment methodology for nanomaterials. After a decade of intensive effort, it emerges that many of the prototype risk metrics are uninformative. This situation has given rise to practical, if non-validated, guidance in the form of control banding recommendations. While informative these are often logically deficient and take no account of risk context as captured in the concept of risk appetite. What emerges from an understanding of risk and from the usable data is the clear need for industry and insurers to agree a risk evaluation scheme based on threshold-for-concern and which motivates industry choices to achieve a below-threshold rating. The generalisable risk metrics for such an approach are listed in this paper.
Collapse
|
13
|
Leonardo S, Garibo D, Fernández-Tejedor M, O'Sullivan CK, Campàs M. Addressed immobilization of biofunctionalized diatoms on electrodes by gold electrodeposition. Biofabrication 2017; 9:015027. [DOI: 10.1088/1758-5090/aa6400] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- S Leonardo
- IRTA, Carretera de Poble Nou, km 5.5, E-43540 Sant Carles de la Ràpita, Spain
| | | | | | | | | |
Collapse
|
14
|
Rea I, Terracciano M, De Stefano L. Synthetic vs Natural: Diatoms Bioderived Porous Materials for the Next Generation of Healthcare Nanodevices. Adv Healthc Mater 2017; 6. [PMID: 28026914 DOI: 10.1002/adhm.201601125] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 11/04/2016] [Indexed: 12/13/2022]
Abstract
Nanostructured porous materials promise a next generation of innovative devices for healthcare and biomedical applications. The fabrication of such materials generally requires complex synthesis procedures, not always available in laboratories or sustainable in industries, and has adverse environmental impact. Nanosized porous materials can also be obtained from natural resources, which are an attractive alternative approach to man-made fabrication. Biogenic nanoporous silica from diatoms, and diatomaceous earths, constitutes largely available, low-cost reservoir of mesoporous nanodevices that can be engineered for theranostic applications, ranging from subcellular imaging to drug delivery. In this progress report, main experiences on nature-derived nanoparticles with healthcare and biomedical functionalities are reviewed and critically analyzed in search of a new collection of biocompatible porous nanomaterials.
Collapse
Affiliation(s)
- Ilaria Rea
- Via P. Castellino 111 Napoli 80131 Italy
| | | | | |
Collapse
|
15
|
Leonardo S, Prieto-Simón B, Campàs M. Past, present and future of diatoms in biosensing. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2015.11.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
16
|
Hörburger D, Haslinger J, Bickel H, Graf N, Schober A, Testori C, Weiser C, Sterz F, Haugk M. Where no guideline has gone before: retrospective analysis of resuscitation in the 24th century. Resuscitation 2015; 85:1790-4. [PMID: 25457378 DOI: 10.1016/j.resuscitation.2014.10.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 10/02/2014] [Indexed: 10/24/2022]
Abstract
AIM OF THE STUDY Evaluation of the treatment, epidemiology and outcome of cardiac arrest in the television franchise Star Trek. METHODS Retrospective cohort study of prospective events. Screening of all episodes of Star Trek: The Next Generation, Star Trek: Deep Space Nine and Star Trek: Voyager for cardiac arrest events. Documentation was performed according to the Utstein guidelines for cardiac arrest documentation. All adult, single person cardiac arrests were included. Patients were excluded if cardiac arrest occurred during mass casualties, if the victims were annihilated by energy weapons or were murdered and nobody besides the assassin could provide first aid. Epidemiological data, treatment and outcome of cardiac arrest victims in the 24th century were studied. RESULTS Ninety-six cardiac arrests were included. Twenty-three individuals were female (24%). Cardiac arrest was witnessed in 91 cases (95%), trauma was the leading cause (n = 38; 40%). Resuscitation was initiated in 17 cases (18%) and 12 patients (13%) had return of spontaneous circulation. Favorable neurological outcome and long-term survival was documented in nine patients (9%). Technically diagnosed cardiac arrest was associated with higher rates of favorable neurological outcome and long-term survival. Neurological outcome and survival did not depend on cardiac arrest location. CONCLUSION Cardiac arrest remains a critical event in the 24th century. We observed a change of etiology from cardiac toward traumatic origin. Quick access to medical help and new prognostic tools were established to treat cardiac arrest.
Collapse
|
17
|
Krishna Priya K, Ramesh M, Saravanan M, Ponpandian N. Ecological risk assessment of silicon dioxide nanoparticles in a freshwater fish Labeo rohita: Hematology, ionoregulation and gill Na(+)/K(+) ATPase activity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 120:295-302. [PMID: 26094035 DOI: 10.1016/j.ecoenv.2015.05.032] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 05/18/2015] [Accepted: 05/19/2015] [Indexed: 06/04/2023]
Abstract
The fate and effect of nanomaterials in the environment has raised concern about their environmental risk to aquatic organisms. Silica nanoparticles (SiO2-NPs) find its uses in various fields and are inevitably released into the environment. However, the ecotoxicological effects of SiO2-NPs on the freshwater fish remain poorly understood. The aim of this study was to evaluate the effect of different concentrations (1, 5 and 25mgL(-1)) of SiO2-NPs on certain hematological, ionoregulatory and enzymological profiles of a freshwater teleost fish Labeo rohita. Hematological parameters such as hemoglobin (Hb), hematocrit (Hct), red blood cells (RBC), white blood cells (WBC), mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH) and mean corpuscular hemoglobin concentration (MCHC) values were altered in SiO2-NPs treated groups. Likewise, plasma electrolytes such as plasma sodium (Na(+)), potassium (K(+)) and chloride (Cl(-)) levels and Na(+)/K(+) ATPase activity in gill of SiO2-NPs treated groups were altered in all concentrations throughout the study period (96h). The alterations of these parameters were found to be dependent on dose and exposure period. The results of the present study indicate that the alterations of these parameters may relate to physiological stress system to SiO2-NPs toxicity and also demonstrate that manufactured metal oxide NPs in aquatic environment may affect the health condition of the aquatic organisms.
Collapse
Affiliation(s)
- K Krishna Priya
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - M Ramesh
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - M Saravanan
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - N Ponpandian
- Department of Nanoscience and Technology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| |
Collapse
|
18
|
Gügi B, Le Costaouec T, Burel C, Lerouge P, Helbert W, Bardor M. Diatom-Specific Oligosaccharide and Polysaccharide Structures Help to Unravel Biosynthetic Capabilities in Diatoms. Mar Drugs 2015; 13:5993-6018. [PMID: 26393622 PMCID: PMC4584364 DOI: 10.3390/md13095993] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 09/10/2015] [Accepted: 09/11/2015] [Indexed: 12/12/2022] Open
Abstract
Diatoms are marine organisms that represent one of the most important sources of biomass in the ocean, accounting for about 40% of marine primary production, and in the biosphere, contributing up to 20% of global CO₂ fixation. There has been a recent surge in developing the use of diatoms as a source of bioactive compounds in the food and cosmetic industries. In addition, the potential of diatoms such as Phaeodactylum tricornutum as cell factories for the production of biopharmaceuticals is currently under evaluation. These biotechnological applications require a comprehensive understanding of the sugar biosynthesis pathways that operate in diatoms. Here, we review diatom glycan and polysaccharide structures, thus revealing their sugar biosynthesis capabilities.
Collapse
Affiliation(s)
- Bruno Gügi
- Laboratoire Glyco-MEV EA 4358, Université de Rouen, Normandie Université, Institut de Recherche et d'Innovation Biomédicale (IRIB), Végétale Agronomie Sol Innovation (VASI), Normandie Université, Faculté des Sciences et Techniques, 76821 Mont-Saint-Aignan, France.
| | - Tinaïg Le Costaouec
- CNRS, Centre de Recherches sur les Macromolécules Végétales (CERMAV), Université Grenoble Alpes, CERMAV, F-38000 Grenoble, France.
| | - Carole Burel
- Laboratoire Glyco-MEV EA 4358, Université de Rouen, Normandie Université, Institut de Recherche et d'Innovation Biomédicale (IRIB), Végétale Agronomie Sol Innovation (VASI), Normandie Université, Faculté des Sciences et Techniques, 76821 Mont-Saint-Aignan, France.
| | - Patrice Lerouge
- Laboratoire Glyco-MEV EA 4358, Université de Rouen, Normandie Université, Institut de Recherche et d'Innovation Biomédicale (IRIB), Végétale Agronomie Sol Innovation (VASI), Normandie Université, Faculté des Sciences et Techniques, 76821 Mont-Saint-Aignan, France.
| | - William Helbert
- CNRS, Centre de Recherches sur les Macromolécules Végétales (CERMAV), Université Grenoble Alpes, CERMAV, F-38000 Grenoble, France.
| | - Muriel Bardor
- Laboratoire Glyco-MEV EA 4358, Université de Rouen, Normandie Université, Institut de Recherche et d'Innovation Biomédicale (IRIB), Végétale Agronomie Sol Innovation (VASI), Normandie Université, Faculté des Sciences et Techniques, 76821 Mont-Saint-Aignan, France.
- Institut Universitaire de France (IUF), 75005 Paris, France.
| |
Collapse
|
19
|
Vinayak V, Manoylov KM, Gateau H, Blanckaert V, Hérault J, Pencréac'h G, Marchand J, Gordon R, Schoefs B. Diatom milking: a review and new approaches. Mar Drugs 2015; 13:2629-65. [PMID: 25939034 PMCID: PMC4446598 DOI: 10.3390/md13052629] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 04/15/2015] [Accepted: 04/17/2015] [Indexed: 11/16/2022] Open
Abstract
The rise of human populations and the growth of cities contribute to the depletion of natural resources, increase their cost, and create potential climatic changes. To overcome difficulties in supplying populations and reducing the resource cost, a search for alternative pharmaceutical, nanotechnology, and energy sources has begun. Among the alternative sources, microalgae are the most promising because they use carbon dioxide (CO2) to produce biomass and/or valuable compounds. Once produced, the biomass is ordinarily harvested and processed (downstream program). Drying, grinding, and extraction steps are destructive to the microalgal biomass that then needs to be renewed. The extraction and purification processes generate organic wastes and require substantial energy inputs. Altogether, it is urgent to develop alternative downstream processes. Among the possibilities, milking invokes the concept that the extraction should not kill the algal cells. Therefore, it does not require growing the algae anew. In this review, we discuss research on milking of diatoms. The main themes are (a) development of alternative methods to extract and harvest high added value compounds; (b) design of photobioreactors;
Collapse
Affiliation(s)
- Vandana Vinayak
- Department of Criminology & Forensic Science, School of Applied Sciences, Dr. H.S. Gour University (Central University), Sagar Madhya Pradesh, India.
| | - Kalina M Manoylov
- Department of Biological & Environmental Sciences, Georgia College and State University, Milledgeville, GA 31061, USA.
| | - Hélène Gateau
- MicroMar, Mer Molécules Santé, IUML-FR 3473 CNRS, University of Le Mans, Faculté des Sciences et Techniques, Avenue Olivier Messiaen, 72085 Le Mans cedex 9, France.
| | - Vincent Blanckaert
- MicroMar, Mer Molécules Santé, IUML-FR 3473 CNRS, University of Le Mans, IUT de Laval, Rue des Drs Calmette et Guerin, 53020 Laval Cedex 9, France.
| | - Josiane Hérault
- ChimiMar, Mer Molécules Santé, IUML-FR 3473 CNRS, University of Le Mans, IUT de Laval, Rue des Drs Calmette et Guerin, 53020 Laval Cedex 9, France.
| | - Gaëlle Pencréac'h
- ChimiMar, Mer Molécules Santé, IUML-FR 3473 CNRS, University of Le Mans, IUT de Laval, Rue des Drs Calmette et Guerin, 53020 Laval Cedex 9, France.
| | - Justine Marchand
- MicroMar, Mer Molécules Santé, IUML-FR 3473 CNRS, University of Le Mans, Faculté des Sciences et Techniques, Avenue Olivier Messiaen, 72085 Le Mans cedex 9, France.
| | - Richard Gordon
- Gulf Specimen Aquarium & Marine Laboratory, Panacea, FL 32346, USA.
- Mott Center for Human Growth and Development, Department of Obstetrics & Gynecology, Wayne State University, 275 E. Hancock, Detroit, MI 48201, USA.
| | - Benoît Schoefs
- MicroMar, Mer Molécules Santé, IUML-FR 3473 CNRS, University of Le Mans, Faculté des Sciences et Techniques, Avenue Olivier Messiaen, 72085 Le Mans cedex 9, France.
| |
Collapse
|
20
|
Kooistra WHCF, Pohl G. Diatom Frustule Morphology and its Biomimetic Applications in Architecture and Industrial Design. BIOLOGICALLY-INSPIRED SYSTEMS 2015. [DOI: 10.1007/978-94-017-9398-8_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
21
|
Viji S, Anbazhagi M, Ponpandian N, Mangalaraj D, Jeyanthi S, Santhanam P, Devi AS, Viswanathan C. Diatom-Based Label-Free Optical Biosensor for Biomolecules. Appl Biochem Biotechnol 2014; 174:1166-73. [DOI: 10.1007/s12010-014-1040-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 06/26/2014] [Indexed: 10/25/2022]
|
22
|
Evolving marine biomimetics for regenerative dentistry. Mar Drugs 2014; 12:2877-912. [PMID: 24828293 PMCID: PMC4052322 DOI: 10.3390/md12052877] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 04/14/2014] [Accepted: 04/16/2014] [Indexed: 12/16/2022] Open
Abstract
New products that help make human tissue and organ regeneration more effective are in high demand and include materials, structures and substrates that drive cell-to-tissue transformations, orchestrate anatomical assembly and tissue integration with biology. Marine organisms are exemplary bioresources that have extensive possibilities in supporting and facilitating development of human tissue substitutes. Such organisms represent a deep and diverse reserve of materials, substrates and structures that can facilitate tissue reconstruction within lab-based cultures. The reason is that they possess sophisticated structures, architectures and biomaterial designs that are still difficult to replicate using synthetic processes, so far. These products offer tantalizing pre-made options that are versatile, adaptable and have many functions for current tissue engineers seeking fresh solutions to the deficiencies in existing dental biomaterials, which lack the intrinsic elements of biofunctioning, structural and mechanical design to regenerate anatomically correct dental tissues both in the culture dish and in vivo.
Collapse
|
23
|
Mao L, Liu J, Zhu S, Zhang D, Chen Z, Chen C. Sonochemical fabrication of mesoporous TiO2 inside diatom frustules for photocatalyst. ULTRASONICS SONOCHEMISTRY 2014; 21:527-534. [PMID: 24075849 DOI: 10.1016/j.ultsonch.2013.09.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 08/30/2013] [Accepted: 09/02/2013] [Indexed: 06/02/2023]
Abstract
Mesoporous titanium dioxide (TiO2) has been assembled inside the macropores of diatom frustules by sonochemical condensation of titania precursor, and then thermal treated at an elevated temperature. The resulting hierarchical macro/mesoporous-structures of the TiO2 inside diatom were confirmed by characterizations of X-ray diffraction (XRD) and transmission electron microscopy (TEM). The amount of TiO2 inside the periodic macropores of diatom was controlled by varying the sonication time. It was found that the resultant composite with only 30 wt% TiO2 loading delivered a high photocatalytic performance, even better than that of pure P25. This is attributed to its hierarchical macro/mesoporous structure as it provides a large number of accessible active sites for efficient transportations of guest species to framework binding sites. Other macro/mesoporous structures with a nearly endless variety of functional chemistries and shapes are expected to be produced, leading to a range of novel applications in remediation, molecular transportation and environmental field by using this facile strategy.
Collapse
Affiliation(s)
- Lin Mao
- State Key Lab of Metal Matrix Composites, Shanghai Jiao Tong University, 200240 Shanghai, PR China
| | | | | | | | | | | |
Collapse
|
24
|
Cassaignon S, de Maleprade R, Nassif N, Livage J. From Living Light to Living Materials. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.matpr.2014.09.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
25
|
Barik TK, Kamaraju R, Gowswami A. Silica nanoparticle: a potential new insecticide for mosquito vector control. Parasitol Res 2012; 111:1075-83. [DOI: 10.1007/s00436-012-2934-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 04/17/2012] [Indexed: 11/29/2022]
|
26
|
Narayanan KB, Sakthivel N. Green synthesis of biogenic metal nanoparticles by terrestrial and aquatic phototrophic and heterotrophic eukaryotes and biocompatible agents. Adv Colloid Interface Sci 2011; 169:59-79. [PMID: 21981929 DOI: 10.1016/j.cis.2011.08.004] [Citation(s) in RCA: 233] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 08/28/2011] [Accepted: 08/28/2011] [Indexed: 11/30/2022]
Abstract
The size, shape and controlled dispersity of nanoparticles play a vital role in determining the physical, chemical, optical and electronic properties attributing its applications in environmental, biotechnological and biomedical fields. Various physical and chemical processes have been exploited in the synthesis of several inorganic metal nanoparticles by wet and dry approaches viz., ultraviolet irradiation, aerosol technologies, lithography, laser ablation, ultrasonic fields, and photochemical reduction techniques. However, these methodologies remain expensive and involve the use of hazardous chemicals. Therefore, there is a growing concern for the development of alternative environment friendly and sustainable methods. Increasing awareness towards green chemistry and biological processes has led to a necessity to develop simple, cost-effective and eco-friendly procedures. Phototrophic eukaryotes such as plants, algae, and diatoms and heterotrophic human cell lines and some biocompatible agents have been reported to synthesize greener nanoparticles like cobalt, copper, silver, gold, bimetallic alloys, silica, palladium, platinum, iridium, magnetite and quantum dots. Owing to the diversity and sustainability, the use of phototrophic and heterotrophic eukaryotes and biocompatible agents for the synthesis of nanomaterials is yet to be fully explored. This review describes the recent advancements in the green synthesis and applications of metal nanoparticles by plants, aquatic autotrophs, human cell lines, biocompatible agents and biomolecules.
Collapse
Affiliation(s)
- Kannan Badri Narayanan
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Kalapet, Puducherry 605014, India
| | | |
Collapse
|
27
|
Demadis KD, Mavredaki E, Somara M. Additive-Driven Dissolution Enhancement of Colloidal Silica. 1. Basic Principles and Relevance to Water Treatment. Ind Eng Chem Res 2011. [DOI: 10.1021/ie201703b] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Konstantinos D. Demadis
- Crystal Engineering, Growth and Design Laboratory, Department of Chemistry, University of Crete, Voutes Campus, Heraklion, Crete GR-71003, Greece
| | - Eleftheria Mavredaki
- Crystal Engineering, Growth and Design Laboratory, Department of Chemistry, University of Crete, Voutes Campus, Heraklion, Crete GR-71003, Greece
| | - Maria Somara
- Crystal Engineering, Growth and Design Laboratory, Department of Chemistry, University of Crete, Voutes Campus, Heraklion, Crete GR-71003, Greece
| |
Collapse
|
28
|
Ehlers KM, Koiller J. Could cell membranes produce acoustic streaming? Making the case for Synechococcus self-propulsion. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.mcm.2010.03.054] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
29
|
Ramanathan R, Campbell JL, Soni SK, Bhargava SK, Bansal V. Cationic amino acids specific biomimetic silicification in ionic liquid: a quest to understand the formation of 3-D structures in diatoms. PLoS One 2011; 6:e17707. [PMID: 21408611 PMCID: PMC3048297 DOI: 10.1371/journal.pone.0017707] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 02/08/2011] [Indexed: 11/18/2022] Open
Abstract
The intricate, hierarchical, highly reproducible, and exquisite biosilica structures formed by diatoms have generated great interest to understand biosilicification processes in nature. This curiosity is driven by the quest of researchers to understand nature's complexity, which might enable reproducing these elegant natural diatomaceous structures in our laboratories via biomimetics, which is currently beyond the capabilities of material scientists. To this end, significant understanding of the biomolecules involved in biosilicification has been gained, wherein cationic peptides and proteins are found to play a key role in the formation of these exquisite structures. Although biochemical factors responsible for silica formation in diatoms have been studied for decades, the challenge to mimic biosilica structures similar to those synthesized by diatoms in their natural habitats has not hitherto been successful. This has led to an increasingly interesting debate that physico-chemical environment surrounding diatoms might play an additional critical role towards the control of diatom morphologies. The current study demonstrates this proof of concept by using cationic amino acids as catalyst/template/scaffold towards attaining diatom-like silica morphologies under biomimetic conditions in ionic liquids.
Collapse
Affiliation(s)
- Rajesh Ramanathan
- School of Applied Sciences, RMIT University, Melbourne, Victoria, Australia
| | | | | | | | | |
Collapse
|
30
|
Abstract
Diatom inspired bio-hybrids offer new possibilities for the synthesis of nanostructured materials and the development of nanomedicine.
Collapse
Affiliation(s)
- Nadine Nassif
- Chimie de la matière condensée de Paris
- CNRS
- UPMC
- 75231 Paris Cedex 05
- France
| | - Jacques Livage
- Chimie de la matière condensée de Paris
- CNRS
- UPMC
- 75231 Paris Cedex 05
- France
| |
Collapse
|
31
|
Yang W, Lopez PJ, Rosengarten G. Diatoms: Self assembled silicananostructures, and templates for bio/chemical sensors and biomimetic membranes. Analyst 2011; 136:42-53. [DOI: 10.1039/c0an00602e] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
Bansal V, Ramanathan R, Bhargava SK. Fungus-mediated Biological Approaches Towards 'Green' Synthesis of Oxide Nanomaterials. Aust J Chem 2011. [DOI: 10.1071/ch10343] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A promising avenue of research in materials science is to follow the strategies used by nature to fabricate ornate hierarchical materials. For many ages, organisms have been engaged in on-the-job testing to craft structural and functional materials and have evolved extensively to possibly create the best-known materials. Some of the strategies used by nature may well have practical implications in the world of nanomaterials. Therefore, the efforts to exploit nature’s ingenious work in designing strategies for nanomaterials synthesis has led to biological routes for materials synthesis. This review outlines the biological synthesis of a range of oxide nanomaterials that has hitherto been achieved using fungal biosynthesis routes. A critical overview of the current status and future scope of this field that could potentially lead to the microorganism-mediated commercial, large-scale, environmentally benign, and economically-viable ‘green’ syntheses of oxide nanomaterials is also discussed.
Collapse
|
33
|
Losic D, Yu Y, Aw MS, Simovic S, Thierry B, Addai-Mensah J. Surface functionalisation of diatoms with dopamine modified iron-oxide nanoparticles: toward magnetically guided drug microcarriers with biologically derived morphologies. Chem Commun (Camb) 2010; 46:6323-5. [DOI: 10.1039/c0cc01305f] [Citation(s) in RCA: 162] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
Neethirajan S, Gordon R, Wang L. Potential of silica bodies (phytoliths) for nanotechnology. Trends Biotechnol 2009; 27:461-7. [PMID: 19577814 DOI: 10.1016/j.tibtech.2009.05.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2009] [Revised: 05/20/2009] [Accepted: 05/27/2009] [Indexed: 11/19/2022]
Abstract
Many plant systems accumulate silica in solid form, creating intracellular or extracellular silica bodies (phytoliths) that are essential for growth, mechanical strength, rigidity, predator and fungal defence, stiffness and cooling. Silica is an inorganic amorphous oxide formed by polymerization processes within plants. There has been much research to gain new insights into its biochemistry and to mimic biosilicification. We review the background on plant silica bodies, silica uptake mechanisms and applications, and suggest possible ways of producing plant silica bodies with new functions. Silica bodies offer complementary properties to diatoms for nanotechnology, including large-scale availability from crop wastes, lack of organic impurities (in some), microencapsulation and microcrystalline quartz with possibly unique optical properties.
Collapse
Affiliation(s)
- Suresh Neethirajan
- The Canadian Wheat Board Centre for Grain Storage Research, Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T5V6, Canada
| | | | | |
Collapse
|
35
|
Abstract
Marine diatoms rose to prominence about 100 million years ago and today generate most of the organic matter that serves as food for life in the sea. They exist in a dilute world where compounds essential for growth are recycled and shared, and they greatly influence global climate, atmospheric carbon dioxide concentration and marine ecosystem function. How these essential organisms will respond to the rapidly changing conditions in today's oceans is critical for the health of the environment and is being uncovered by studies of their genomes.
Collapse
Affiliation(s)
- E Virginia Armbrust
- School of Oceanography, University of Washington, Seattle, Washington 98195, USA.
| |
Collapse
|
36
|
Ramachandra TV, Mahapatra DM, B K, Gordon R. Milking Diatoms for Sustainable Energy: Biochemical Engineering versus Gasoline-Secreting Diatom Solar Panels. Ind Eng Chem Res 2009. [DOI: 10.1021/ie900044j] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- T. V. Ramachandra
- Energy & Wetlands Research Group, Centre for Ecological Sciences/Centre for Sustainable Technologies, Indian Institute of Science, Bangalore 560 012, India
| | - Durga Madhab Mahapatra
- Energy & Wetlands Research Group, Centre for Ecological Sciences/Centre for Sustainable Technologies, Indian Institute of Science, Bangalore 560 012, India
| | - Karthick B
- Energy & Wetlands Research Group, Centre for Ecological Sciences/Centre for Sustainable Technologies, Indian Institute of Science, Bangalore 560 012, India
| | - Richard Gordon
- Department of Radiology, University of Manitoba, Room GA216, HSC, 820 Sherbrook Street, Winnipeg MB R3A 1R9, Canada
| |
Collapse
|
37
|
Marine diatoms as optical biosensors. Biosens Bioelectron 2009; 24:1580-4. [DOI: 10.1016/j.bios.2008.08.016] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Accepted: 08/06/2008] [Indexed: 11/17/2022]
|
38
|
Bozarth A, Maier UG, Zauner S. Diatoms in biotechnology: modern tools and applications. Appl Microbiol Biotechnol 2009; 82:195-201. [DOI: 10.1007/s00253-008-1804-8] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Revised: 11/18/2008] [Accepted: 11/18/2008] [Indexed: 10/21/2022]
|
39
|
Gordon R, Losic D, Tiffany MA, Nagy SS, Sterrenburg FAS. The Glass Menagerie: diatoms for novel applications in nanotechnology. Trends Biotechnol 2009; 27:116-27. [PMID: 19167770 DOI: 10.1016/j.tibtech.2008.11.003] [Citation(s) in RCA: 309] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2008] [Revised: 11/11/2008] [Accepted: 11/14/2008] [Indexed: 11/24/2022]
Abstract
Diatoms are unicellular, eukaryotic, photosynthetic algae that are found in aquatic environments. Diatoms have enormous ecological importance on this planet and display a diversity of patterns and structures at the nano- to millimetre scale. Diatom nanotechnology, a new interdisciplinary area, has spawned collaborations in biology, biochemistry, biotechnology, physics, chemistry, material science and engineering. We survey diatom nanotechnology since 2005, emphasizing recent advances in diatom biomineralization, biophotonics, photoluminescence, microfluidics, compustat domestication, multiscale porosity, silica sequestering of proteins, detection of trace gases, controlled drug delivery and computer design. Diatoms might become the first organisms for which the gap in our knowledge of the relationship between genotype and phenotype is closed.
Collapse
Affiliation(s)
- Richard Gordon
- Department of Radiology, University of Manitoba, Winnipeg MB R3A 1R9, Canada
| | | | | | | | | |
Collapse
|
40
|
Kroth P. Molecular Biology and the Biotechnological Potential of Diatoms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 616:23-33. [DOI: 10.1007/978-0-387-75532-8_3] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
41
|
Affiliation(s)
- Nils Kröger
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400
- School of Materials Science & Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia 30332-0400; ,
| | - Nicole Poulsen
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400
| |
Collapse
|
42
|
Two-stage photobioreactor process for the metabolic insertion of nanostructured germanium into the silica microstructure of the diatom Pinnularia sp. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2008. [DOI: 10.1016/j.msec.2007.01.002] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
43
|
Kröger N. Prescribing diatom morphology: toward genetic engineering of biological nanomaterials. Curr Opin Chem Biol 2007; 11:662-9. [PMID: 17991447 DOI: 10.1016/j.cbpa.2007.10.009] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2007] [Accepted: 10/08/2007] [Indexed: 10/22/2022]
Abstract
The formation of inorganic materials with complex form is a widespread biological phenomenon (biomineralization). Among the most spectacular examples of biomineralization is the production by diatoms (a group of eukaryotic microalgae) of intricately nanopatterned to micropatterned cell walls made of silica (SiO2). Understanding the molecular mechanisms of diatom silica biomineralization is not only a fundamental biological problem, but also of great interest in materials engineering, as the biological self-assembly of three-dimensional (3D) inorganic nanomaterials has no man-made analog. Recently, insight into the molecular mechanism of diatom silica formation has been obtained by structural and functional analysis of biomolecules that are involved in this process. Furthermore, the rapid development of diatom molecular genetics has provided new tools for investigating the silica forming machinery of diatoms and for manipulating silica biogenesis. This has opened the door for the production, through genetic engineering, of unique 3D nanomaterials with designed structures and functionalities.
Collapse
Affiliation(s)
- Nils Kröger
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA.
| |
Collapse
|
44
|
Losic D, Short K, Mitchell JG, Lal R, Voelcker NH. AFM nanoindentations of diatom biosilica surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2007; 23:5014-21. [PMID: 17397194 DOI: 10.1021/la062666y] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Diatoms have intricately and uniquely nanopatterned silica exoskeletons (frustules) and are a common target of biomimetic investigations. A better understanding of the diatom frustule structure and function at the nanoscale could provide new insights for the biomimetic fabrication of nanostructured ceramic materials and lightweight, yet strong, scaffold architectures. Here, we have mapped the nanoscale mechanical properties of Coscinodiscus sp. diatoms using atomic force microscopy (AFM)-based nanoindentation. Mechanical properties were correlated with the frustule structures obtained from high-resolution AFM and scanning electron microscopy (SEM). Significant differences in the micromechanical properties for the different frustule layers were observed. A comparative study of other related inorganic material including porous silicon films and free-standing membranes as well as porous alumina was also undertaken.
Collapse
Affiliation(s)
- Dusan Losic
- School of Chemistry, Physics, and Earth Sciences, and School of Biological Sciences, Flinders University, Bedford Park 5042, Australia
| | | | | | | | | |
Collapse
|
45
|
Bauer CA, Robinson DB, Simmons BA. Silica particle formation in confined environments via bioinspired polyamine catalysis at near-neutral pH. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2007; 3:58-62. [PMID: 17294469 DOI: 10.1002/smll.200600352] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Affiliation(s)
- Christina A Bauer
- Nanoscale Science and Technology Department, Sandia National Laboratories, Livermore, CA 94551, USA
| | | | | |
Collapse
|
46
|
Abstract
Diatoms are unicellular photoautotrophic eukaryotes that play an important role in ecology by fixing large amounts of CO2 in the oceans. Because they evolved by secondary endocytobiosis-- a process of uptake of a eukaryotic alga into another eukaryotic cell--they have a rather unusual cell biology and genetic constitution. Because the preparation of organelles is rather difficult as a result of the cytosolic structures, genetic transformation and expression of preproteins fused to green fluorescent protein (GFP) became one of the major tools to analyze subcellular localization of proteins in diatoms. Meanwhile several groups successfully attempted to develop genetic transformation protocols for diatoms. These methods are based on "biolistic" DNA delivery via a particle gun and allow the introduction and expression of foreign genes in the algae. Here a protocol for the genetic transformation of the diatom Phaeodactylum tricornutum is described as well as the subsequent characterization of the transformants.
Collapse
Affiliation(s)
- Peter G Kroth
- Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
47
|
|
48
|
Losic D, Triani G, Evans PJ, Atanacio A, Mitchell JG, Voelcker NH. Controlled pore structure modification of diatoms by atomic layer deposition of TiO2. ACTA ACUST UNITED AC 2006. [DOI: 10.1039/b610188g] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
Losic D, Mitchell JG, Voelcker NH. Fabrication of gold nanostructures by templating from porous diatom frustules. NEW J CHEM 2006. [DOI: 10.1039/b600073h] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
Coradin T, Marchal A, Abdoul-Aribi N, Livage J. Gelatine thin films as biomimetic surfaces for silica particles formation. Colloids Surf B Biointerfaces 2005; 44:191-6. [PMID: 16076551 DOI: 10.1016/j.colsurfb.2005.07.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2005] [Revised: 07/01/2005] [Accepted: 07/05/2005] [Indexed: 10/25/2022]
Abstract
The formation of silica nanostructures by several living organisms, such as diatoms or sponges, involves specific macromolecules that control the growth and the organization of silica nanoparticles. In order to investigate if a single molecular system could perform both particle size control and morphological template, gelatine thin films of various concentration and strength were prepared as biomimetic models and their reactivity towards sodium silicate aqueous solutions was studied. Simultaneous formation of silica particles in the nanometric and micrometric size range was observed. The former corresponds to colloids grown at the surface of the gelatine films and the latter to particles induced by gelatine chain brushes formed at the film/water interface. These results are in good agreement with well-known principles of biomineralization and suggest that multi-molecular systems, rather than single components, are responsible for biogenic silica nanostructure formation.
Collapse
Affiliation(s)
- Thibaud Coradin
- Laboratoire de Chimie de la Matière Condensée, UMR-CNRS 7574, Université Pierre et Marie Curie, 4 Place Jussieu, 75252 Paris Cedex 05, France.
| | | | | | | |
Collapse
|