1
|
Le Stum M, Romero E, Molander GA. Photocatalyzed elaboration of antibody-based bioconjugates. Beilstein J Org Chem 2025; 21:616-629. [PMID: 40130177 PMCID: PMC11931643 DOI: 10.3762/bjoc.21.49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 03/05/2025] [Indexed: 03/26/2025] Open
Abstract
Antibody-drug conjugates (ADCs) represent a promising class of targeted therapeutics, combining the specificity of antibodies with the potency of cytotoxic drugs to enhance therapeutic efficacy while minimizing off-target effects. The development of new chemical methods for bioconjugation is essential to generate ADCs and to optimize their stability, efficacy, and safety. Traditional conjugation methods often face challenges related to site-selectivity and heterogeneous product mixtures, highlighting the need to develop new, innovative chemical strategies. Photoredox chemistry emerges as a powerful tool in this context, enabling precise, mild, and selective modifications of peptides and proteins. By harnessing light to drive chemical transformations, photoredox techniques can facilitate the synthesis of antibody bioconjugates. This perspective will discuss the drive to develop and empower photoredox methods applied to antibody functionalization.
Collapse
Affiliation(s)
- Marine Le Stum
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-Sur-Yvette, France
| | - Eugénie Romero
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-Sur-Yvette, France
| | - Gary A Molander
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-Sur-Yvette, France
| |
Collapse
|
2
|
Ives CM, Singh O, D'Andrea S, Fogarty CA, Harbison AM, Satheesan A, Tropea B, Fadda E. Restoring protein glycosylation with GlycoShape. Nat Methods 2024; 21:2117-2127. [PMID: 39402214 PMCID: PMC11541215 DOI: 10.1038/s41592-024-02464-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 09/12/2024] [Indexed: 11/08/2024]
Abstract
Despite ground-breaking innovations in experimental structural biology and protein structure prediction techniques, capturing the structure of the glycans that functionalize proteins remains a challenge. Here we introduce GlycoShape ( https://glycoshape.org ), an open-access glycan structure database and toolbox designed to restore glycoproteins to their native and functional form in seconds. The GlycoShape database counts over 500 unique glycans so far, covering the human glycome and augmented by elements from a wide range of organisms, obtained from 1 ms of cumulative sampling from molecular dynamics simulations. These structures can be linked to proteins with a robust algorithm named Re-Glyco, directly compatible with structural data in open-access repositories, such as the Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB) and AlphaFold Protein Structure Database, or own. The quality, performance and broad applicability of GlycoShape is demonstrated by its ability to predict N-glycosylation occupancy, scoring a 93% agreement with experiment, based on screening all proteins in the PDB with a corresponding glycoproteomics profile, for a total of 4,259 N-glycosylation sequons.
Collapse
Affiliation(s)
- Callum M Ives
- Department of Chemistry, Maynooth University, Maynooth, Ireland
| | - Ojas Singh
- Department of Chemistry, Maynooth University, Maynooth, Ireland
| | - Silvia D'Andrea
- Department of Chemistry, Maynooth University, Maynooth, Ireland
| | - Carl A Fogarty
- Department of Chemistry, Maynooth University, Maynooth, Ireland
| | | | | | | | - Elisa Fadda
- School of Biological Sciences, University of Southampton, Southampton, UK.
| |
Collapse
|
3
|
Ali MY, Bar-Peled L. Chemical proteomics to study metabolism, a reductionist approach applied at the systems level. Cell Chem Biol 2024; 31:446-451. [PMID: 38518745 DOI: 10.1016/j.chembiol.2024.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/02/2023] [Accepted: 02/28/2024] [Indexed: 03/24/2024]
Abstract
Cellular metabolism encompasses a complex array of interconnected biochemical pathways that are required for cellular homeostasis. When dysregulated, metabolism underlies multiple human pathologies. At the heart of metabolic networks are enzymes that have been historically studied through a reductionist lens, and more recently, using high throughput approaches including genomics and proteomics. Merging these two divergent viewpoints are chemical proteomic technologies, including activity-based protein profiling, which combines chemical probes specific to distinct enzyme families or amino acid residues with proteomic analysis. This enables the study of metabolism at the network level with the precision of powerful biochemical approaches. Herein, we provide a primer on how chemical proteomic technologies custom-built for studying metabolism have unearthed fundamental principles in metabolic control. In parallel, these technologies have leap-frogged drug discovery through identification of novel targets and drug specificity. Collectively, chemical proteomics technologies appear to do the impossible: uniting systematic analysis with a reductionist approach.
Collapse
Affiliation(s)
- Md Yousuf Ali
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Liron Bar-Peled
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
4
|
Bertozzi C. A Special Virtual Issue Celebrating the 2022 Nobel Prize in Chemistry for the Development of Click Chemistry and Bioorthogonal Chemistry. ACS CENTRAL SCIENCE 2023; 9:558-559. [PMID: 37122475 PMCID: PMC10141613 DOI: 10.1021/acscentsci.2c01430] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
|
5
|
Mitry MMA, Greco F, Osborn HMI. In Vivo Applications of Bioorthogonal Reactions: Chemistry and Targeting Mechanisms. Chemistry 2023; 29:e202203942. [PMID: 36656616 DOI: 10.1002/chem.202203942] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/20/2023]
Abstract
Bioorthogonal chemistry involves selective biocompatible reactions between functional groups that are not normally present in biology. It has been used to probe biomolecules in living systems, and has advanced biomedical strategies such as diagnostics and therapeutics. In this review, the challenges and opportunities encountered when translating in vitro bioorthogonal approaches to in vivo settings are presented, with a focus on methods to deliver the bioorthogonal reaction components. These methods include metabolic bioengineering, active targeting, passive targeting, and simultaneously used strategies. The suitability of bioorthogonal ligation reactions and bond cleavage reactions for in vivo applications is critically appraised, and practical considerations such as the optimum scheduling regimen in pretargeting approaches are discussed. Finally, we present our own perspectives for this area and identify what, in our view, are the key challenges that must be overcome to maximise the impact of these approaches.
Collapse
Affiliation(s)
- Madonna M A Mitry
- Reading School of Pharmacy, University of Reading Whiteknights, Reading, RG6 6AD, UK.,Department of Pharmaceutical Chemistry Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Francesca Greco
- Reading School of Pharmacy, University of Reading Whiteknights, Reading, RG6 6AD, UK
| | - Helen M I Osborn
- Reading School of Pharmacy, University of Reading Whiteknights, Reading, RG6 6AD, UK
| |
Collapse
|
6
|
Simpson JD, Ray A, Koehler M, Mohammed D, Alsteens D. Atomic force microscopy applied to interrogate nanoscale cellular chemistry and supramolecular bond dynamics for biomedical applications. Chem Commun (Camb) 2022; 58:5072-5087. [PMID: 35315846 DOI: 10.1039/d1cc07200e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Understanding biological interactions at a molecular level grants valuable information relevant to improving medical treatments and outcomes. Among the suite of technologies available, Atomic Force Microscopy (AFM) is unique in its ability to quantitatively probe forces and receptor-ligand interactions in real-time. The ability to assess the formation of supramolecular bonds and intermediates in real-time on surfaces and living cells generates important information relevant to understanding biological phenomena. Combining AFM with fluorescence-based techniques allows for an unprecedented level of insight not only concerning the formation and rupture of bonds, but understanding medically relevant interactions at a molecular level. As the ability of AFM to probe cells and more complex models improves, being able to assess binding kinetics, chemical topographies, and garner spectroscopic information will likely become key to developing further improvements in fields such as cancer, nanomaterials, and virology. The rapid response to the COVID-19 crisis, producing information regarding not just receptor affinities, but also strain-dependent efficacy of neutralizing nanobodies, demonstrates just how viable and integral to the pre-clinical development of information AFM techniques are in this era of medicine.
Collapse
Affiliation(s)
- Joshua D Simpson
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la-Neuve 1348, Belgium.
| | - Ankita Ray
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la-Neuve 1348, Belgium.
| | - Melanie Koehler
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la-Neuve 1348, Belgium.
| | - Danahe Mohammed
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la-Neuve 1348, Belgium.
| | - David Alsteens
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la-Neuve 1348, Belgium.
| |
Collapse
|
7
|
Haddleton D, Efstathiou S, Ma C, Coursari D, Patias G, Al-Shok L, Eissa AM. Functional pH-responsive polymers containing dynamic enaminone linkages for the release of active organic amines. Polym Chem 2022. [DOI: 10.1039/d2py00167e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dynamic covalent bonds have attracted attention for the development of pH-responsive polymers, however, studies using acid-cleavable enaminone linkages as a means of controlled drug release have been limited. Herein, we...
Collapse
|
8
|
Zhuo S, Zhang F, Yu J, Zhang X, Yang G, Liu X. pH-Sensitive Biomaterials for Drug Delivery. Molecules 2020; 25:E5649. [PMID: 33266162 PMCID: PMC7730929 DOI: 10.3390/molecules25235649] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/18/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022] Open
Abstract
The development of precise and personalized medicine requires novel formulation strategies to deliver the therapeutic payloads to the pathological tissues, producing enhanced therapeutic outcome and reduced side effects. As many diseased tissues are feathered with acidic characteristics microenvironment, pH-sensitive biomaterials for drug delivery present great promise for the purpose, which could protect the therapeutic payloads from metabolism and degradation during in vivo circulation and exhibit responsive release of the therapeutics triggered by the acidic pathological tissues, especially for cancer treatment. In the past decades, many methodologies, such as acidic cleavage linkage, have been applied for fabrication of pH-responsive materials for both in vitro and in vivo applications. In this review, we will summarize some pH-sensitive drug delivery system for medical application, mainly focusing on the pH-sensitive linkage bonds and pH-sensitive biomaterials.
Collapse
Affiliation(s)
- Shijie Zhuo
- Clinical Translational Center for Targeted Drug, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou 510632, China; (S.Z.); (F.Z.); (J.Y.)
| | - Feng Zhang
- Clinical Translational Center for Targeted Drug, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou 510632, China; (S.Z.); (F.Z.); (J.Y.)
| | - Junyu Yu
- Clinical Translational Center for Targeted Drug, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou 510632, China; (S.Z.); (F.Z.); (J.Y.)
| | - Xican Zhang
- Clinical Translational Center for Targeted Drug, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou 510632, China; (S.Z.); (F.Z.); (J.Y.)
| | - Guangbao Yang
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou 215123, China;
| | - Xiaowen Liu
- Clinical Translational Center for Targeted Drug, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou 510632, China; (S.Z.); (F.Z.); (J.Y.)
| |
Collapse
|
9
|
Wang P, Xue T, Sheng A, Cheng L, Zhang J. Application of Chemoselective Ligation in Biosensing. Crit Rev Anal Chem 2020; 52:170-193. [DOI: 10.1080/10408347.2020.1791044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Pei Wang
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, P. R. China
- Shanghai Key Laboratory of Bio-Energy Crops, Shanghai University, Shanghai, P. R. China
| | - Tianxiang Xue
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, P. R. China
| | - Anzhi Sheng
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, P. R. China
| | - Liangfen Cheng
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, P. R. China
| | - Juan Zhang
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, P. R. China
| |
Collapse
|
10
|
“pH-triggered” drug release using shell cross-linked micelles from aqueous RAFT-synthesized PAPMA-b-PNIPAM copolymers. JOURNAL OF POLYMER RESEARCH 2018. [DOI: 10.1007/s10965-018-1564-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
11
|
Badr HA, AlSadek DMM, El-Houseini ME, Saeui CT, Mathew MP, Yarema KJ, Ahmed H. Harnessing cancer cell metabolism for theranostic applications using metabolic glycoengineering of sialic acid in breast cancer as a pioneering example. Biomaterials 2017; 116:158-173. [PMID: 27926828 PMCID: PMC5193387 DOI: 10.1016/j.biomaterials.2016.11.044] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 11/14/2016] [Accepted: 11/24/2016] [Indexed: 12/18/2022]
Abstract
Abnormal cell surface display of sialic acids - a family of unusual 9-carbon sugars - is widely recognized as distinguishing feature of many types of cancer. Sialoglycans, however, typically cannot be identified with sufficiently high reproducibility and sensitivity to serve as clinically accepted biomarkers and similarly, almost all efforts to exploit cancer-specific differences in sialylation signatures for therapy remain in early stage development. In this report we provide an overview of important facets of glycosylation that contribute to cancer in general with a focus on breast cancer as an example of malignant disease characterized by aberrant sialylation. We then describe how cancer cells experience nutrient deprivation during oncogenesis and discuss how the resulting metabolic reprogramming, which endows breast cancer cells with the ability to obtain nutrients during scarcity, constitutes an "Achilles' heel" that we believe can be exploited by metabolic glycoengineering (MGE) strategies to develop new diagnostic methods and therapeutic approaches. In particular, we hypothesize that adaptations made by breast cancer cells that allow them to efficiently scavenge sialic acid during times of nutrient deprivation renders them vulnerable to MGE, which refers to the use of exogenously-supplied, non-natural monosaccharide analogues to modulate targeted aspects of glycosylation in living cells and animals. In specific, once non-natural sialosides are incorporated into the cancer "sialome" they can be exploited as epitopes for immunotherapy or as chemical tags for targeted delivery of imaging or therapeutic agents selectively to tumors.
Collapse
Affiliation(s)
- Haitham A Badr
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Dina M M AlSadek
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Motawa E El-Houseini
- Cancer Biology Department, National Cancer Institute, Cairo University, Cairo 11796, Egypt
| | - Christopher T Saeui
- Department of Biomedical Engineering and Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, MD 21231, USA
| | - Mohit P Mathew
- Department of Biomedical Engineering and Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, MD 21231, USA
| | - Kevin J Yarema
- Department of Biomedical Engineering and Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, MD 21231, USA.
| | - Hafiz Ahmed
- GlycoMantra, Inc., Baltimore, MD 21227, USA.
| |
Collapse
|
12
|
Hurrle S, Lauer A, Gliemann H, Mutlu H, Wöll C, Goldmann AS, Barner-Kowollik C. Two-in-One: λ-Orthogonal Photochemistry on a Radical Photoinitiating System. Macromol Rapid Commun 2016; 38. [DOI: 10.1002/marc.201600598] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 10/22/2016] [Indexed: 01/14/2023]
Affiliation(s)
- Silvana Hurrle
- Institut für Technische Chemie und Polymerchemie; Karlsruhe Institute of Technology (KIT); Engesserstr. 18 76133 Karlsruhe Germany
- Institut für Biologische Grenzflächen; Karlsruhe Institute of Technology (KIT); Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Andrea Lauer
- Institut für Technische Chemie und Polymerchemie; Karlsruhe Institute of Technology (KIT); Engesserstr. 18 76133 Karlsruhe Germany
- Institut für Biologische Grenzflächen; Karlsruhe Institute of Technology (KIT); Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Hartmut Gliemann
- Institut für Funktionelle Grenzflächen; Karlsruhe Institute of Technology (KIT); Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Hatice Mutlu
- Institut für Technische Chemie und Polymerchemie; Karlsruhe Institute of Technology (KIT); Engesserstr. 18 76133 Karlsruhe Germany
- Institut für Biologische Grenzflächen; Karlsruhe Institute of Technology (KIT); Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Christof Wöll
- Institut für Funktionelle Grenzflächen; Karlsruhe Institute of Technology (KIT); Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Anja S. Goldmann
- Institut für Technische Chemie und Polymerchemie; Karlsruhe Institute of Technology (KIT); Engesserstr. 18 76133 Karlsruhe Germany
- Institut für Biologische Grenzflächen; Karlsruhe Institute of Technology (KIT); Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
- School of Chemistry; Physics and Mechanical Engineering; Queensland University of Technology (QUT); 2 George Street QLD 4000 Brisbane Australia
| | - Christopher Barner-Kowollik
- Institut für Technische Chemie und Polymerchemie; Karlsruhe Institute of Technology (KIT); Engesserstr. 18 76133 Karlsruhe Germany
- Institut für Biologische Grenzflächen; Karlsruhe Institute of Technology (KIT); Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
- School of Chemistry; Physics and Mechanical Engineering; Queensland University of Technology (QUT); 2 George Street QLD 4000 Brisbane Australia
| |
Collapse
|
13
|
Moskvin M, Horák D. Carbohydrate-modified magnetic nanoparticles for radical scavenging. Physiol Res 2016; 65:S243-S251. [PMID: 27762590 DOI: 10.33549/physiolres.933426] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Maghemite (gamma-Fe2O3) nanoparticles, 12 nm in size, were prepared by co-precipitation of Fe(II) and Fe(III) chlorides with ammonium hydroxide and oxidation with hydrogen peroxide. To achieve stability and biocompatibility, obtained particles were coated with silica, to which glucose and ascorbic acid were bound by different mechanisms. The composite particles were thoroughly characterized by transmission electron microscopy, dynamic light scattering, elemental analysis, and FT-Raman and fluorescence spectroscopy to determine composition, morphology, size and its distribution, zeta-potential, and scavenging of peroxyl and hydroxyl radicals. As the particles showed promising antioxidative properties, they may have a possible application as a stable magnetically controlled scavenger of reactive oxygen species.
Collapse
Affiliation(s)
- M Moskvin
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Prague, Czech Republic.
| | | |
Collapse
|
14
|
Exploring human glycosylation for better therapies. Mol Aspects Med 2016; 51:125-43. [DOI: 10.1016/j.mam.2016.05.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/28/2016] [Accepted: 05/06/2016] [Indexed: 01/19/2023]
|
15
|
Hildebrandt N, Spillmann CM, Algar WR, Pons T, Stewart MH, Oh E, Susumu K, Díaz SA, Delehanty JB, Medintz IL. Energy Transfer with Semiconductor Quantum Dot Bioconjugates: A Versatile Platform for Biosensing, Energy Harvesting, and Other Developing Applications. Chem Rev 2016; 117:536-711. [DOI: 10.1021/acs.chemrev.6b00030] [Citation(s) in RCA: 457] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Niko Hildebrandt
- NanoBioPhotonics
Institut d’Electronique Fondamentale (I2BC), Université Paris-Saclay, Université Paris-Sud, CNRS, 91400 Orsay, France
| | | | - W. Russ Algar
- Department
of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Thomas Pons
- LPEM;
ESPCI Paris, PSL Research University; CNRS; Sorbonne Universités, UPMC, F-75005 Paris, France
| | | | - Eunkeu Oh
- Sotera Defense Solutions, Inc., Columbia, Maryland 21046, United States
| | - Kimihiro Susumu
- Sotera Defense Solutions, Inc., Columbia, Maryland 21046, United States
| | - Sebastian A. Díaz
- American Society for Engineering Education, Washington, DC 20036, United States
| | | | | |
Collapse
|
16
|
Cross-Linked Nano-Objects Containing Aldehyde Groups: Synthesis via RAFT Dispersion Polymerization and Application. MACROMOL CHEM PHYS 2016. [DOI: 10.1002/macp.201500443] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
17
|
Woods EC, Yee NA, Shen J, Bertozzi CR. Glycocalyx Engineering with a Recycling Glycopolymer that Increases Cell Survival In Vivo. Angew Chem Int Ed Engl 2015; 54:15782-8. [PMID: 26647316 PMCID: PMC4736730 DOI: 10.1002/anie.201508783] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Indexed: 11/10/2022]
Abstract
Synthetic glycopolymers that emulate cell-surface mucins have been used to elucidate the role of mucin overexpression in cancer. However, because they are internalized within hours, these glycopolymers could not be employed to probe processes that occur on longer time scales. In this work, we tested a panel of glycopolymers bearing a variety of lipids to identify those that persist on cell membranes. Strikingly, we found that cholesterylamine (CholA) anchored glycopolymers are internalized into vesicles that serve as depots for delivery back to the cell surface, allowing for the display of cell-surface glycopolymers for at least ten days, even while the cells are dividing. As with native mucins, the cell-surface display of CholA-anchored glycopolymers influenced the focal adhesion distribution. Furthermore, we show that these mimetics enhance the survival of nonmalignant cells in a zebrafish model of metastasis. CholA-anchored glycopolymers therefore expand the application of glycocalyx engineering in glycobiology.
Collapse
Affiliation(s)
- Elliot C Woods
- Department of Bioengineering, University of California, Berkeley, CA 94720 (USA)
| | - Nathan A Yee
- Department of Chemistry, Stanford University, Stanford, CA 94305-4401 (USA)
| | - Jeff Shen
- Department of Chemistry, Stanford University, Stanford, CA 94305-4401 (USA)
| | - Carolyn R Bertozzi
- Department of Chemistry, Stanford University, Stanford, CA 94305-4401 (USA).
- Howard Hughes Medical Institute (USA).
| |
Collapse
|
18
|
Woods EC, Yee NA, Shen J, Bertozzi CR. Glycocalyx Engineering with a Recycling Glycopolymer that Increases Cell Survival In Vivo. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201508783] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Elliot C. Woods
- Department of Bioengineering, University of California, Berkeley, CA 94720 (USA)
| | - Nathan A. Yee
- Department of Chemistry, Stanford University, Stanford, CA 94305‐4401 (USA)
| | - Jeff Shen
- Department of Chemistry, Stanford University, Stanford, CA 94305‐4401 (USA)
| | - Carolyn R. Bertozzi
- Department of Chemistry, Stanford University, Stanford, CA 94305‐4401 (USA)
- Howard Hughes Medical Institute (USA)
| |
Collapse
|
19
|
McCann J, Behrendt JM, Yan J, Halacheva S, Saunders BR. Poly(vinylamine) microgel–dextran composite hydrogels: Characterisation; properties and pH-triggered degradation. J Colloid Interface Sci 2015; 449:21-30. [DOI: 10.1016/j.jcis.2014.09.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 09/16/2014] [Accepted: 09/17/2014] [Indexed: 10/24/2022]
|
20
|
Qiu L, Hong CY, Pan CY. Doxorubicin-loaded aromatic imine-contained amphiphilic branched star polymer micelles: synthesis, self-assembly, and drug delivery. Int J Nanomedicine 2015; 10:3623-40. [PMID: 26056444 PMCID: PMC4445873 DOI: 10.2147/ijn.s78355] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Redox-and pH-sensitive branched star polymers (BSPs), BP(DMAEMA-co-MAEBA-co-DTDMA)(PMAIGP)ns, have been successively prepared by two steps of reversible addition–fragmentation chain transfer (RAFT) polymerization. The first step is RAFT polymerization of 2-(N,N-dimethylaminoethyl)methacrylate (DMAEMA) and p-(methacryloxyethoxy) benzaldehyde (MAEBA) in the presence of divinyl monomer, 2,2′-dithiodiethoxyl dimethacrylate (DTDMA). The resultant branched polymers were used as a macro-RAFT agent in the subsequent RAFT polymerization. After hydrolysis of the BSPs to form BP(DMAEMA-co-MAEBA-co-DTDMA)(PMAGP)ns (BSP-H), the anticancer drug doxorubicin (DOX) was covalently linked to branched polymer chains by reaction of primary amine of DOX and aldehyde groups in the polymer chains. Their compositions, structures, molecular weights, and molecular weight distributions were respectively characterized by nuclear magnetic resonance spectra and gel permeation chromatography measurements. The DOX-loaded micelles were fabricated by self-assembly of DOX-containing BSPs in water, which were characterized by transmission electron microscopy and dynamic light scattering. Aromatic imine linkage is stable in neutral water, but is acid-labile; controlled release of DOX from the BSP-H-DOX micelles was realized at pH values of 5 and 6, and at higher acidic solution, fast release of DOX was observed. In vitro cytotoxicity experiment results revealed low cytotoxicity of the BSPs and release of DOX from micelles in HepG2 and HeLa cells. Confocal laser fluorescence microscopy observations showed that DOX-loaded micelles have specific interaction with HepG2 cells. Thus, this type of BSP micelle is an efficient drug delivery system.
Collapse
Affiliation(s)
- Liang Qiu
- Chinese Academy of Sciences Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Chun-Yan Hong
- Chinese Academy of Sciences Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Cai-Yuan Pan
- Chinese Academy of Sciences Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| |
Collapse
|
21
|
Cobo I, Li M, Sumerlin BS, Perrier S. Smart hybrid materials by conjugation of responsive polymers to biomacromolecules. NATURE MATERIALS 2015; 14:143-59. [PMID: 25401924 DOI: 10.1038/nmat4106] [Citation(s) in RCA: 438] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Accepted: 09/04/2014] [Indexed: 05/18/2023]
Abstract
The chemical structure and function of biomacromolecules has evolved to fill many essential roles in biological systems. More specifically, proteins, peptides, nucleic acids and polysaccharides serve as vital structural components, and mediate chemical transformations and energy/information storage processes required to sustain life. In many cases, the properties and applications of biological macromolecules can be further expanded by attaching synthetic macromolecules. The modification of biomacromolecules by attaching a polymer that changes its properties in response to environmental variations, thus affecting the properties of the biomacromolecule, has led to the emergence of a new family of polymeric biomaterials. Here, we summarize techniques for conjugating responsive polymers to biomacromolecules and highlight applications of these bioconjugates reported so far. In doing so, we aim to show how advances in synthetic tools could lead to rapid expansion in the variety and uses of responsive bioconjugates.
Collapse
Affiliation(s)
- Isidro Cobo
- Key Centre for Polymers &Colloids, School of Chemistry, The University of Sydney, New South Wales 2006, Australia
| | - Ming Li
- Tyco Fire Protection Products, Mansfield, Texas 76063, USA
| | - Brent S Sumerlin
- George &Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science &Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, USA
| | - Sébastien Perrier
- 1] Department of Chemistry, The University of Warwick, Coventry CV4 7AL, UK [2] Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| |
Collapse
|
22
|
Seuyep Ntoukam DH, Luinstra GA, Theato P. Postpolymerization modification of reactive polymers derived from vinylcyclopropane. III. Polymer sequential functionalization using a combination of amines with alkoxyamines, hydrazides, isocyanates, or acyl halides. ACTA ACUST UNITED AC 2014. [DOI: 10.1002/pola.27311] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Denis Hervé Seuyep Ntoukam
- University of Hamburg, Institute for Technical and Macromolecular Chemistry; Bundesstr. 45 D-20146 Hamburg Germany
| | - Gerrit Albert Luinstra
- University of Hamburg, Institute for Technical and Macromolecular Chemistry; Bundesstr. 45 D-20146 Hamburg Germany
| | - Patrick Theato
- University of Hamburg, Institute for Technical and Macromolecular Chemistry; Bundesstr. 45 D-20146 Hamburg Germany
| |
Collapse
|
23
|
Access to bifunctionalized biomolecular platforms using oxime ligation. Carbohydr Res 2014; 393:9-14. [DOI: 10.1016/j.carres.2014.04.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 04/28/2014] [Accepted: 04/29/2014] [Indexed: 12/12/2022]
|
24
|
Tong R, Tang L, Ma L, Tu C, Baumgartner R, Cheng J. Smart chemistry in polymeric nanomedicine. Chem Soc Rev 2014; 43:6982-7012. [DOI: 10.1039/c4cs00133h] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
25
|
Biswas S, Kayaleh R, Pillai GG, Seon C, Roberts I, Popov V, Alamry KA, Katritzky AR. Long-Range Chemical Ligation from N→N Acyl Migrations in Tryptophan Peptides via Cyclic Transition States of 10- to 18-Members. Chemistry 2014; 20:8189-98. [DOI: 10.1002/chem.201400125] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Indexed: 11/07/2022]
|
26
|
|
27
|
Rasale DB, Maity I, Das AK. In situ generation of redox active peptides driven by selenoester mediated native chemical ligation. Chem Commun (Camb) 2014; 50:11397-400. [DOI: 10.1039/c4cc03835e] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Redox active peptides synthesized via selenoester mediated native chemical ligation with a propensity to self-assemble in aqueous medium. A gel–sol transition of self-assembled peptide in a reducing environment makes it a versatile candidate for the development of functional biomaterials.
Collapse
Affiliation(s)
| | - Indrajit Maity
- Department of Chemistry
- Indian Institute of Technology Indore
- Indore 452017, India
| | - Apurba K. Das
- Department of Chemistry
- Indian Institute of Technology Indore
- Indore 452017, India
| |
Collapse
|
28
|
Wendeler M, Grinberg L, Wang X, Dawson PE, Baca M. Enhanced catalysis of oxime-based bioconjugations by substituted anilines. Bioconjug Chem 2013; 25:93-101. [PMID: 24320725 DOI: 10.1021/bc400380f] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The conjugation of biomolecules by chemoselective oxime ligation is of great interest for the site-specific modification of proteins, peptides, nucleic acids, and carbohydrates. These conjugations proceed optimally at a reaction pH of 4-5, but some biomolecules are not soluble or stable under these conditions. Aniline can be used as a nucleophilic catalyst to enhance the rate of oxime formation, but even in its presence, the reaction rate at neutral pH can be slower than desired, particularly at low reagent concentrations and/or temperature. Recently, alternative catalysts with improved properties were reported, including anthranilic acid derivatives for small molecule ligations, as well as m-phenylenediamine at high concentrations for protein conjugations. Here, we report that p-substituted anilines containing an electron-donating ring substituent are superior catalysts of oxime-based conjugations at pH 7. One such catalyst, p-phenylenediamine, was studied in greater detail. This catalyst was highly effective at neutral pH, even at the low concentration of 2 mM. In a model oxime ligation using aminooxy-functionalized PEG, catalysis at pH 7 resulted in a 120-fold faster rate of protein PEGylation as compared to an uncatalyzed reaction, and 19-fold faster than the equivalent aniline-catalyzed reaction. p-Phenylenediamine (10 mM) was also an effective catalyst under acidic conditions and was more efficient than aniline throughout the pH range 4-7. This catalyst allows efficient oxime bioconjugations to proceed under mild conditions and low micromolar concentrations, as demonstrated by the PEGylation of a small protein.
Collapse
Affiliation(s)
- Michaela Wendeler
- Department of Purification Process Sciences and ‡Department of Antibody Discovery and Protein Engineering, MedImmune, LLC , Gaithersburg, Maryland 20878, United States
| | | | | | | | | |
Collapse
|
29
|
Tolstyka ZP, Richardson W, Bat E, Stevens CJ, Parra DP, Dozier JK, Distefano MD, Dunn B, Maynard HD. Chemoselective immobilization of proteins by microcontact printing and bio-orthogonal click reactions. Chembiochem 2013; 14:2464-71. [PMID: 24166802 PMCID: PMC3962834 DOI: 10.1002/cbic.201300478] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Indexed: 11/09/2022]
Abstract
Herein, a combination of microcontact printing of functionalized alkanethiols and site-specific modification of proteins is utilized to chemoselectively immobilize proteins onto gold surfaces, either by oxime- or copper-catalyzed alkyne-azide click chemistry. Two molecules capable of click reactions were synthesized, an aminooxy-functionalized alkanethiol and an azide-functionalized alkanethiol, and self-assembled monolayer (SAM) formation on gold was confirmed by IR spectroscopy. The alkanethiols were then individually patterned onto gold surfaces by microcontact printing. Site-specifically modified proteins-horse heart myoglobin (HHMb) containing an N-terminal α-oxoamide and a red fluorescent protein (mCherry-CVIA) with a C-terminal alkyne-were immobilized by incubation onto respective stamped functionalized alkanethiol patterns. Pattern formation was confirmed by fluorescence microscopy.
Collapse
Affiliation(s)
- Zachary P. Tolstyka
- Department of Chemistry and Biochemistry University of California, Los Angeles 607 Charles E. Young Drive East, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, Los Angeles, CA, 90095, USA University of California, Los Angeles Los Angeles, CA, 90095, USA
| | - Wade Richardson
- California NanoSystems Institute, Los Angeles, CA, 90095, USA University of California, Los Angeles Los Angeles, CA, 90095, USA
- Department of Materials Science and Engineering University of California, Los Angeles Los Angeles, California, 90095, USA
| | - Erhan Bat
- Department of Chemistry and Biochemistry University of California, Los Angeles 607 Charles E. Young Drive East, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, Los Angeles, CA, 90095, USA University of California, Los Angeles Los Angeles, CA, 90095, USA
| | - Caitlin J. Stevens
- Department of Chemistry and Biochemistry University of California, Los Angeles 607 Charles E. Young Drive East, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, Los Angeles, CA, 90095, USA University of California, Los Angeles Los Angeles, CA, 90095, USA
| | - Dayanara P. Parra
- Department of Chemistry and Biochemistry University of California, Los Angeles 607 Charles E. Young Drive East, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, Los Angeles, CA, 90095, USA University of California, Los Angeles Los Angeles, CA, 90095, USA
| | - Jonathan K. Dozier
- Department of Chemistry University of Minnesota 207 Pleasant Street S. E. Minneapolis, MN 55455, USA
| | - Mark D. Distefano
- Department of Chemistry University of Minnesota 207 Pleasant Street S. E. Minneapolis, MN 55455, USA
| | - Bruce Dunn
- California NanoSystems Institute, Los Angeles, CA, 90095, USA University of California, Los Angeles Los Angeles, CA, 90095, USA
- Department of Materials Science and Engineering University of California, Los Angeles Los Angeles, California, 90095, USA
| | - Heather D. Maynard
- Department of Chemistry and Biochemistry University of California, Los Angeles 607 Charles E. Young Drive East, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, Los Angeles, CA, 90095, USA University of California, Los Angeles Los Angeles, CA, 90095, USA
| |
Collapse
|
30
|
Ulrich S, Boturyn D, Marra A, Renaudet O, Dumy P. Oxime Ligation: A Chemoselective Click-Type Reaction for Accessing Multifunctional Biomolecular Constructs. Chemistry 2013; 20:34-41. [DOI: 10.1002/chem.201302426] [Citation(s) in RCA: 176] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
31
|
Malins LR, Mitchell NJ, Payne RJ. Peptide ligation chemistry at selenol amino acids. J Pept Sci 2013; 20:64-77. [DOI: 10.1002/psc.2581] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 10/09/2013] [Accepted: 10/10/2013] [Indexed: 01/18/2023]
Affiliation(s)
- Lara R. Malins
- School of Chemistry; The University of Sydney; Sydney NSW 2006 Australia
| | | | - Richard J. Payne
- School of Chemistry; The University of Sydney; Sydney NSW 2006 Australia
| |
Collapse
|
32
|
Tan E, Almaraz RT, Khanna HS, Du J, Yarema KJ. Experimental Design Considerations for In Vitro Non-Natural Glycan Display via Metabolic Oligosaccharide Engineering. ACTA ACUST UNITED AC 2013; 2:171-94. [PMID: 23839968 DOI: 10.1002/9780470559277.ch100059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Metabolic oligosaccharide engineering (MOE) refers to a technique where non-natural monosaccharide analogs are introduced into living biological systems. Once inside a cell, these compounds intercept a targeted biosynthetic glycosylation pathway and in turn are metabolically incorporated into cell-surface-displayed oligosaccharides where they can modulate a host of biological activities or be exploited as "tags" for bio-orthogonal and chemoselective ligation reactions. Undertaking a MOE experiment can be a daunting task based on the growing repertoire of analogs now available and the ever increasing number of metabolic pathways that can be targeted; therefore, a major emphasis of this article is to describe a general approach for analog design and selection and then provide protocols to ensure safe and efficacious analog usage by cells. Once cell-surface glycans have been successfully remodeled by MOE methodology, the stage is set for probing changes to the myriad cellular responses modulated by these versatile molecules. Curr. Protoc. Chem. Biol. 2:171-194 © 2010 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Elaine Tan
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, Maryland
| | | | | | | | | |
Collapse
|
33
|
Synergizing nucleic acid aptamers with 1-dimensional nanostructures as label-free field-effect transistor biosensors. Biosens Bioelectron 2013; 50:278-93. [PMID: 23872609 DOI: 10.1016/j.bios.2013.06.033] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 06/06/2013] [Accepted: 06/17/2013] [Indexed: 01/04/2023]
Abstract
Since the introduction by Gold et al. in 1990, nucleic acid aptamers had evolved to become a true contender in biosensors for protein and cell detections. Aptamers are short strands of synthetically designed DNA or RNA oligonucleotides that can be self-assembled into unique 3-dimensional structures and can bind to different proteins, cells or even small molecules at a high level of specificity and affinity. In recent years, there had been many reports in literature in using aptamers in place of conventional antibodies as capture biomolecules on the surface. This is mainly due to the better thermal stability properties and ease in production. Consequently, also these characteristics allowed the aptamers to find use in field effect transistors (FETs) based upon 1D nanostructured (1D-NS) as label-free biosensing. In terms of designing label-free platforms for biosensors applications, 1D-NS FET had been an attractive option due to reported high sensitivities toward protein targets arising from the large surface area for detection as well as to their label-free nature. Since the first aptamer-based 1D-NS FET biosensor had surfaced in 2005, there had been many more improvements in the overall design and sensitivity in recent years. In this review, the latest developments in synergizing these two interesting areas of research (aptamers and 1D-NS FET) will be discussed for a range of different nanowire types as well as for the detection results.
Collapse
|
34
|
Dhal PK, Polomoscanik SC, Gianolio DA, Starremans PG, Busch M, Alving K, Chen B, Miller RJ. Well-Defined Aminooxy Terminated N-(2-Hydroxypropyl) Methacrylamide Macromers for Site Specific Bioconjugation of Glycoproteins. Bioconjug Chem 2013; 24:865-77. [DOI: 10.1021/bc300472e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Pradeep K. Dhal
- Polymer & Biomaterial R&D, Sanofi-Genzyme R&D Center, Genzyme Corporation—A Sanofi Company, 270 Albany Street, Cambridge, Massachusetts 02139, United States
| | - Steven C. Polomoscanik
- Polymer & Biomaterial R&D, Sanofi-Genzyme R&D Center, Genzyme Corporation—A Sanofi Company, 270 Albany Street, Cambridge, Massachusetts 02139, United States
| | - Diego A. Gianolio
- Polymer & Biomaterial R&D, Sanofi-Genzyme R&D Center, Genzyme Corporation—A Sanofi Company, 270 Albany Street, Cambridge, Massachusetts 02139, United States
| | - Patrick G. Starremans
- Polymer & Biomaterial R&D, Sanofi-Genzyme R&D Center, Genzyme Corporation—A Sanofi Company, 270 Albany Street, Cambridge, Massachusetts 02139, United States
| | - Michelle Busch
- Polymer & Biomaterial R&D, Sanofi-Genzyme R&D Center, Genzyme Corporation—A Sanofi Company, 270 Albany Street, Cambridge, Massachusetts 02139, United States
| | - Kim Alving
- Polymer & Biomaterial R&D, Sanofi-Genzyme R&D Center, Genzyme Corporation—A Sanofi Company, 270 Albany Street, Cambridge, Massachusetts 02139, United States
| | - Bo Chen
- Polymer & Biomaterial R&D, Sanofi-Genzyme R&D Center, Genzyme Corporation—A Sanofi Company, 270 Albany Street, Cambridge, Massachusetts 02139, United States
| | - Robert J. Miller
- Polymer & Biomaterial R&D, Sanofi-Genzyme R&D Center, Genzyme Corporation—A Sanofi Company, 270 Albany Street, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
35
|
Sapsford KE, Algar WR, Berti L, Gemmill KB, Casey BJ, Oh E, Stewart MH, Medintz IL. Functionalizing nanoparticles with biological molecules: developing chemistries that facilitate nanotechnology. Chem Rev 2013; 113:1904-2074. [PMID: 23432378 DOI: 10.1021/cr300143v] [Citation(s) in RCA: 849] [Impact Index Per Article: 70.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Kim E Sapsford
- Division of Biology, Department of Chemistry and Materials Science, Office of Science and Engineering Laboratories, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Saha P, Saikia AK. An Efficient Method for the Synthesis of 10-Aminoartemisinin Derivative. J Heterocycl Chem 2013. [DOI: 10.1002/jhet.1025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Pipas Saha
- Department of Chemistry; Indian Institute of Technology Guwahati; Guwahati 781039; India
| | - Anil K. Saikia
- Department of Chemistry; Indian Institute of Technology Guwahati; Guwahati 781039; India
| |
Collapse
|
37
|
Ciupa A, De Bank PA, Caggiano L. Multicellular aggregation of maltol-modified cells triggered by Fe3+ ions. Chem Commun (Camb) 2013; 49:10148-50. [DOI: 10.1039/c3cc43727b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
38
|
Zhang Y, Yuan J, Song J, Wang Z, Huang L. An efficient method for selectively imaging and quantifying in situ the expression of sialylated glycoproteins on living cells. Glycobiology 2012; 23:643-53. [PMID: 23172875 DOI: 10.1093/glycob/cws148] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A simple and efficient method for selectively imaging and monitoring in situ the expression of sialylated glycoproteins on living cells has been developed. Treating living cells by mild periodate oxidation to selectively generate aldehydes on sialylated glycoproteins, followed by direct labeling of aldehydes with a commercially available fluorescent tag, fluorescein-5-thiosemicarbazide (FTSC), allows in situ imaging and quantification of sialylated glycoproteins on living cells. Under optimum reaction conditions, the periodate oxidation-based FTSC ligation (PF) strategy could be completed within 40 min. The cells undergoing the PF assay revealed a 91% viability and a fairly high-level of metabolic activity. Compared with current labeling methods, the PF assay proved to be a simpler and faster means of imaging sialylated glycoproteins on living cells. The PF assay has been successfully applied to imaging the location and quantification of the abundance of sialylated glycoproteins on tumor and normal cells. Our results demonstrated the methodological significance in clinical diagnosis and functional elucidation studies.
Collapse
Affiliation(s)
- Ying Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, 229 Northern Taibai Road, Xi'an 710069, PR China
| | | | | | | | | |
Collapse
|
39
|
Pauloehrl T, Delaittre G, Bruns M, Meißler M, Börner HG, Bastmeyer M, Barner-Kowollik C. (Bio)Molecular Surface Patterning by Phototriggered Oxime Ligation. Angew Chem Int Ed Engl 2012; 51:9181-4. [DOI: 10.1002/anie.201202684] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 06/08/2012] [Indexed: 12/19/2022]
|
40
|
Pattabiraman VR, Ogunkoya AO, Bode JW. Chemical Protein Synthesis by Chemoselective α-Ketoacid-Hydroxylamine (KAHA) Ligations with 5-Oxaproline. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201200907] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
41
|
Pattabiraman VR, Ogunkoya AO, Bode JW. Chemical Protein Synthesis by Chemoselective α-Ketoacid-Hydroxylamine (KAHA) Ligations with 5-Oxaproline. Angew Chem Int Ed Engl 2012; 51:5114-8. [DOI: 10.1002/anie.201200907] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Indexed: 12/22/2022]
|
42
|
Yablokova TV, Chelushkin PS, Dorosh MY, Efremov AM, Orlov SV, Burov SV. Synthesis of GnRH analogues and their application in targeted gene delivery systems. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2012. [DOI: 10.1134/s1068162012010190] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
43
|
Kolodziej CM, Kim SH, Broyer RM, Saxer SS, Decker CG, Maynard HD. Combination of integrin-binding peptide and growth factor promotes cell adhesion on electron-beam-fabricated patterns. J Am Chem Soc 2011; 134:247-55. [PMID: 22126191 DOI: 10.1021/ja205524x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Understanding and controlling cell adhesion on engineered scaffolds is important in biomaterials and tissue engineering. In this report we used an electron-beam (e-beam) lithography technique to fabricate patterns of a cell adhesive integrin ligand combined with a growth factor. Specifically, micron-sized poly(ethylene glycol) (PEG) hydrogels with aminooxy- and styrene sulfonate-functional groups were fabricated. Cell adhesion moieties were introduced using a ketone-functionalized arginine-glycine-aspartic acid (RGD) peptide to modify the O-hydroxylamines by oxime bond formation. Basic fibroblast growth factor (bFGF) was immobilized by electrostatic interaction with the sulfonate groups. Human umbilical vein endothelial cells (HUVECs) formed focal adhesion complexes on RGD- and RGD and bFGF-immobilized patterns as shown by immunostaining of vinculin and actin. In the presence of both bFGF and RGD, cell areas were larger. The data demonstrate confinement of cellular focal adhesions to chemically and physically well-controlled microenvironments created by a combination of e-beam lithography and "click" chemistry techniques. The results also suggest positive implications for addition of growth factors into adhesive patterns for cell-material interactions.
Collapse
Affiliation(s)
- Christopher M Kolodziej
- Department of Chemistry and Biochemistry and the California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive South, Los Angeles, California 90095, USA
| | | | | | | | | | | |
Collapse
|
44
|
Presolski SI, Hong VP, Finn M. Copper-Catalyzed Azide-Alkyne Click Chemistry for Bioconjugation. CURRENT PROTOCOLS IN CHEMICAL BIOLOGY 2011; 3:153-162. [PMID: 22844652 PMCID: PMC3404492 DOI: 10.1002/9780470559277.ch110148] [Citation(s) in RCA: 287] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The copper-catalyzed azide-alkyne cycloaddition reaction is widely used for the connection of molecular entities of all sizes. A protocol is provided here for the process with biomolecules. Ascorbate is used as reducing agent to maintain the required cuprous oxidation state. Since these convenient conditions produce reactive oxygen species, five equivalents of a copper-binding ligand is used with respect to metal. The ligand both accelerates the reaction and serves as a sacrificial reductant, protecting the biomolecules from oxidation. A procedure is also described for testing the efficiency of the reaction under desired conditions for purposes of optimization, before expensive biological reagents are used.
Collapse
Affiliation(s)
| | - Vu Phong Hong
- Department of Chemistry, The Scripps Research Institute, La Jolla, California
| | - M.G. Finn
- Department of Chemistry, The Scripps Research Institute, La Jolla, California
| |
Collapse
|
45
|
Synthesis and bio-applications of carbohydrate–gold nanoconjugates with nanoparticle and nanolayer forms. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2011. [DOI: 10.1016/j.msec.2010.10.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
46
|
Naiyanetr P, Butler JD, Meng L, Pfeiff J, Kenny TP, Guggenheim KG, Reiger R, Lam K, Kurth MJ, Ansari AA, Coppel RL, López-Hoyos M, Gershwin ME, Leung PSC. Electrophile-modified lipoic derivatives of PDC-E2 elicits anti-mitochondrial antibody reactivity. J Autoimmun 2011; 37:209-16. [PMID: 21763105 DOI: 10.1016/j.jaut.2011.06.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 05/24/2011] [Accepted: 06/01/2011] [Indexed: 12/27/2022]
Abstract
Our laboratory has hypothesized that xenobiotic modification of the native lipoyl moiety of the major mitochondrial autoantigen, the E2 subunit of the pyruvate dehydrogenase complex (PDC-E2), may lead to loss of self-tolerance in primary biliary cirrhosis (PBC). This thesis is based on the finding of readily detectable levels of immunoreactivity of PBC sera against extensive panels of protein microarrays containing mimics of the inner lipoyl domain of PDC-E2 and subsequent quantitative structure-activity relationships (QSARs). Importantly, we have demonstrated that murine immunization with one such mimic, 2-octynoic acid coupled to bovine serum albumin (BSA), induces anti-mitochondrial antibodies (AMAs) and cholangitis. Based upon these data, we have focused on covalent modifications of the lipoic acid disulfide ring and subsequent analysis of such xenobiotics coupled to a 15mer of PDC-E2 for immunoreactivity against a broad panel of sera from patients with PBC and controls. Our results demonstrate that AMA-positive PBC sera demonstrate marked reactivity against 6,8-bis(acetylthio)octanoic acid, implying that chemical modification of the lipoyl ring, i.e. disruption of the S-S disulfide, renders lipoic acid to its reduced form that will promote xenobiotic modification. This observation is particularly significant in light of the function of the lipoyl moiety in electron transport of which the catalytic disulfide constantly opens and closes and, thus, raises the intriguing thesis that common electrophilic agents, i.e. acetaminophen or non-steroidal anti-inflammatory drugs (NSAIDs), may lead to xenobiotic modification in genetically susceptible individuals that results in the generation of AMAs and ultimately clinical PBC.
Collapse
Affiliation(s)
- Phornnop Naiyanetr
- Division of Rheumatology, Allergy, and Clinical Immunology, Department of Internal Medicine, University of California, Davis, CA 95616, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Du J, Che PL, Wang ZY, Aich U, Yarema KJ. Designing a binding interface for control of cancer cell adhesion via 3D topography and metabolic oligosaccharide engineering. Biomaterials 2011; 32:5427-37. [PMID: 21549424 DOI: 10.1016/j.biomaterials.2011.04.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 04/05/2011] [Indexed: 01/12/2023]
Abstract
This study combines metabolic oligosaccharide engineering (MOE), a technology where the glycocalyx of living cells is endowed with chemical features not normally found in sugars, with custom-designed three-dimensional biomaterial substrates to enhance the adhesion of cancer cells and control their morphology and gene expression. Specifically, Ac(5)ManNTGc, a thiol-bearing analog of N-acetyl-d-mannosamine (ManNAc) was used to introduce thiolated sialic acids into the glycocalyx of human Jurkat T-lymphoma derived cells. In parallel 2D films and 3D electrospun nanofibrous scaffolds were prepared from polyethersulfone (PES) and (as controls) left unmodified or aminated. Alternately, the materials were malemided or gold-coated to provide bio-orthogonal binding partners for the thiol groups newly expressed on the cell surface. Cell attachment was modulated by both the topography of the substrate surface and by the chemical compatibility of the binding interface between the cell and the substrate; a substantial increase in binding for normally non-adhesive Jurkat line for 3D scaffold compared to 2D surfaces with an added degree of adhesion resulting from chemoselective binding to malemidede-derivatived or gold-coated surfaces. In addition, the morphology of the cells attached to the 3D scaffolds via MOE-mediated adhesion was dramatically altered and the expression of genes involved in cell adhesion changed in a time-dependent manner. This study showed that cell adhesion could be enhanced, gene expression modulated, and cell fate controlled by introducing the 3D topograhical cues into the growth substrate and by creating a glycoengineered binding interface where the chemistry of both the cell surface and biomaterials scaffold was controlled to facilitate a new mode of carbohydrate-mediated adhesion.
Collapse
Affiliation(s)
- Jian Du
- Department of Biomedical Engineering, The Johns Hopkins University,400 North Broadway, Baltimore, MD, USA
| | | | | | | | | |
Collapse
|
48
|
Synthesis and hydrolytic evaluation of acid-labile imine-linked cytotoxic isatin model systems. Bioorg Med Chem 2011; 19:1771-8. [DOI: 10.1016/j.bmc.2011.01.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2010] [Revised: 01/06/2011] [Accepted: 01/10/2011] [Indexed: 11/18/2022]
|
49
|
Broyer RM, Grover GN, Maynard HD. Emerging synthetic approaches for protein-polymer conjugations. Chem Commun (Camb) 2011; 47:2212-26. [PMID: 21229146 PMCID: PMC3066092 DOI: 10.1039/c0cc04062b] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Protein-polymer conjugates are important in diverse fields including drug delivery, biotechnology, and nanotechnology. This feature article highlights recent advances in the synthesis and application of protein-polymer conjugates by controlled radical polymerization techniques. Special emphasis on new applications of the materials, particularly in biomedicine, is provided.
Collapse
Affiliation(s)
| | | | - Heather D. Maynard
- Department of Chemistry & Biochemistry and the California NanoSystems Institute, University of California, 607 Charles E. Young Dr. East, Los Angeles, CA 90095, USA. ; Tel: +1 310 267 5162
| |
Collapse
|
50
|
Xu X, Flores JD, McCormick CL. Reversible Imine Shell Cross-Linked Micelles from Aqueous RAFT-Synthesized Thermoresponsive Triblock Copolymers as Potential Nanocarriers for “pH-Triggered” Drug Release. Macromolecules 2011. [DOI: 10.1021/ma102804h] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Xuewei Xu
- Department of Polymer Science and §Department of Chemistry and Biochemistry, The University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Joel D. Flores
- Department of Polymer Science and §Department of Chemistry and Biochemistry, The University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Charles L. McCormick
- Department of Polymer Science and §Department of Chemistry and Biochemistry, The University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| |
Collapse
|