1
|
Respiration-related control of abdominal motoneurons. Respir Physiol Neurobiol 2011; 179:80-8. [DOI: 10.1016/j.resp.2011.01.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Revised: 12/17/2010] [Accepted: 01/08/2011] [Indexed: 11/22/2022]
|
2
|
Iizuka M. Abdominal expiratory muscle activity in anesthetized vagotomized neonatal rats. J Physiol Sci 2009; 59:157-63. [PMID: 19340545 PMCID: PMC10717712 DOI: 10.1007/s12576-009-0020-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Accepted: 12/26/2008] [Indexed: 11/24/2022]
Abstract
The pattern of respiratory activity in abdominal muscles was studied in anesthetized, spontaneously breathing, vagotomized neonatal rats at postnatal days 0-3. Anesthesia (2.0% isoflurane, 50% O(2)) depressed breathing and resulted in hypercapnia. Under this condition, abdominal muscles showed discharge late in the expiratory phase (E2 activity) in most rats. As the depth of anesthesia decreased, the amplitude of discharges in the diaphragm and abdominal muscles increased. A small additional burst frequently occurred in abdominal muscles just after the termination of diaphragmatic inspiratory activity (E1 or postinspiratory activity). Since this E1 activity is not often observed in adult rats, the abdominal respiratory pattern likely changes during postnatal development. Anoxia-induced gasping after periodic expiratory activity without inspiratory activity, and in most rats, abdominal expiratory activity disappeared before terminal apnea. These results suggest that a biphasic abdominal motor pattern (a combination of E2 and E1 activity) is a characteristic of vagotomized neonatal rats during normal respiration.
Collapse
Affiliation(s)
- Makito Iizuka
- Center for Medical Sciences, Ibaraki Prefectural University of Health Sciences, 4669-2 Ami, Ibaraki, 300-0394, Japan.
| |
Collapse
|
3
|
Taccola G, Secchia L, Ballanyi K. Anoxic persistence of lumbar respiratory bursts and block of lumbar locomotion in newborn rat brainstem spinal cords. J Physiol 2007; 585:507-24. [PMID: 17932145 DOI: 10.1113/jphysiol.2007.143594] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The tolerance of breathing in neonates to oxygen depletion is reflected by persistence of inspiratory-related motor output during sustained anoxia in newborn rat brainstem preparations. It is not known whether lumbar motor networks innervating expiratory abdominal muscles are, in contrast, inhibited by anoxia similar to locomotor networks in neonatal mouse lumbar cords. To test this, we recorded inspiratory-related cervical/hypoglossal plus pre/postinspiratory lumbar/facial nerve activities and, sometimes simultaneously, locomotor rhythms in newborn rat brainstem-spinal cords. Chemical anoxia slowed 1 : 1-coupled cervical and lumbar respiratory rhythms and induced cervical burst doublets associated with depressed preinspiratory and augmented postinspiratory lumbar activities. Similarly, anoxia evoked repetitive hypoglossal bursts and shifted facial activity toward augmented postinspiratory bursting in medullas without spinal cord. Selective lumbar anoxia augmented pre/postinspiratory lumbar bursting without slowing the rhythm. This suggests a medullary origin of both anoxic inspiratory double bursts and preinspiratory depression, but a mixed medullary/lumbar origin of boosted postinspiratory lumbar activity. Lumbar respiratory rhythm is likely to be generated by the parafacial respiratory group expiratory centre as indicated by lack of normoxic and anoxic bursting following brainstem transection between the facial motonucleus and the more caudal pre-Bötzinger complex inspiratory centre. Opposed to sustained respiratory activities, anoxia reversibly abolished non-rhythmic spinal discharges and electrically or chemically evoked lumbar locomotor activities, followed by pronounced postanoxic spinal hyperexcitability. We hypothesize that (i) the anoxia tolerance of neonatal breathing includes pFRG-driven lumbar expiratory networks, (ii) the anoxic respiratory pattern transformation is due to disturbed inspiratory-expiratory centre interactions, and (iii) postanoxic lumbar hyperexcitability contributes to spasticity in cerebral palsy.
Collapse
Affiliation(s)
- Giuliano Taccola
- Perinatal Research Centre, Department of Physiology, University of Alberta, Edmonton, AB, Canada T6G 2S2
| | | | | |
Collapse
|
4
|
Miyake A, Yamada K, Kosaka T, Miki T, Seino S, Inagaki N. Disruption of Kir6.2-containing ATP-sensitive potassium channels impairs maintenance of hypoxic gasping in mice. Eur J Neurosci 2007; 25:2349-63. [PMID: 17445233 DOI: 10.1111/j.1460-9568.2007.05499.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hypoxic gasping emerges under severe hypoxia/ischemia in various species, exerting a life-protective role by assuring minimum ventilation even in loss of consciousness. However, the molecular basis of its generation and maintenance is not well understood. Here we found that mice lacking Kir6.2- but not Kir6.1-containing ATP-sensitive potassium (K(ATP)) channels [knockout (KO) mice] exhibited few gaSPS when subjected to abrupt ischemia by decapitation, whereas wild-type mice all exhibited more than 10 gaSPS. Under anesthesia, wild-type mice initially responded to severe hypoxic insult with augmented breathing (tachypnea) accompanied by sighs and subsequent depression of respiratory frequency. Gasping then emerged and persisted stably (persistent gasping); if the hypoxia continued, several gaSPS with distinct patterns appeared (terminal gasping) before cessation of breathing. KO mice showed similar hypoxic responses but both depression and the two types of gasping were of much shorter duration than in wild-type mice. Moreover, in the unanesthetized condition, the onset of terminal gasping in KO mice, which was always earlier than in wild-type mice, was unaltered by decreasing O(2) concentrations within the severe range (4.5-7.0%), whereas onset in wild-type mice became earlier in response to lowered O(2) concentrations. Thus, the mechanism responsible for regulating the hypoxic response in accordance with the severity of the hypoxia was dysfunctional in these KO mice, suggesting that Kir6.2-containing K(ATP) channels are critically involved in the maintenance rather than the generation of hypoxic gasping and depression of respiratory frequency.
Collapse
Affiliation(s)
- Akari Miyake
- Department of Physiology, Akita University School of Medicine, Akita, Japan
| | | | | | | | | | | |
Collapse
|
5
|
Abstract
During eupnoea, rhythmic motor activities of the hypoglossal, vagal and phrenic nerves are linked temporally. The inspiratory discharges of the hypoglossal and vagus motor neurones commence before the onset of the phrenic burst. The vagus nerve also discharges in expiration. Upon exposure to hypocapnia or hypothermia, the hypoglossal discharge became uncoupled from that of the phrenic nerve. This uncoupling was evidenced by variable times of onset of hypoglossal discharge before or after the onset of phrenic discharge, extra bursts of hypoglossal activity in neural expiration, or complete absence of any hypoglossal discharge during a respiratory cycle. No such changes were found for vagal discharge, which remained linked to the phrenic bursts. Intracellular recordings in the hypoglossal nucleus revealed that all changes in hypoglossal discharge were due to neuronal depolarization. These results add support to the conclusion that the brainstem control of respiratory-modulated hypoglossal activity differs from control of phrenic and vagal activity. These findings have implications for any studies in which activity of the hypoglossal nerve is used as the sole index of neural inspiration. Indeed, our results establish that hypoglossal discharge alone is an equivocal index of the pattern of overall ventilatory activity and that this is accentuated by hypercapnia and hypothermia.
Collapse
Affiliation(s)
- Walter M St-John
- Department of Physiology, Dartmouth Medical School, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA.
| | | | | |
Collapse
|
6
|
Bodineau L, Cayetanot F, Marlot D, Collin T, Gros F, Frugière A. Endogenous 5-HT(1/2) systems and the newborn rat respiratory control. A comparative in vivo and in vitro study. Respir Physiol Neurobiol 2004; 141:47-57. [PMID: 15234675 DOI: 10.1016/j.resp.2004.03.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2004] [Indexed: 10/26/2022]
Abstract
Consequences of 5-HT(1/2) systems blockade by methysergide on newborn rats respiratory drive were evaluated in vivo with unrestrained animals and in vitro using brainstem-spinal cord preparations. A decrease in respiratory frequency until a plateau level was observed under both in vivo (82.8 +/- 0.6% of control values) and in vitro (76.8 +/- 0.8% of control values) conditions whereas an increase in inspiratory amplitude (135.1 +/- 2.1% of control values) was only retrieved in vivo. By the use of the c-fos expression analysis, we correlated these effects with neuronal activity changes, particularly, in vivo in two key structures between the respiratory ponto-medullary network and the peripheral or suprapontine afferences, namely the commissural subnucleus of the nucleus of the solitary tract and the lateral parabrachial nucleus. Thus, peripheral and suprapontine inputs seem to be of a primeval importance in the respiratory influence of endogenous 5-HT. Besides, as 5-HT is involved in the respiratory perturbations that occur in sudden infant death syndrome (SIDS), our results suggest a participation of peripheral and suprapontine inputs in these disorders.
Collapse
MESH Headings
- Analysis of Variance
- Animals
- Animals, Newborn/physiology
- Brain Stem/cytology
- Brain Stem/drug effects
- Brain Stem/physiology
- In Vitro Techniques
- Methysergide/pharmacology
- Neurons/drug effects
- Neurons/metabolism
- Proto-Oncogene Proteins c-fos/metabolism
- Pulmonary Ventilation/drug effects
- Pulmonary Ventilation/physiology
- Rats
- Rats, Sprague-Dawley
- Receptors, Serotonin, 5-HT1/drug effects
- Receptors, Serotonin, 5-HT1/physiology
- Receptors, Serotonin, 5-HT2/drug effects
- Receptors, Serotonin, 5-HT2/physiology
- Respiratory Mechanics/drug effects
- Respiratory Mechanics/physiology
- Serotonin Antagonists/pharmacology
- Spinal Cord/cytology
- Spinal Cord/drug effects
- Spinal Cord/physiology
Collapse
Affiliation(s)
- Laurence Bodineau
- Dysrégulations métaboliques acquises et génétiques, EA 2088-2629, Faculté de Médecine, Université de Picardie Jules Verne, 3 rue des Louvels, 80036 Amiens cedex 1, France.
| | | | | | | | | | | |
Collapse
|
7
|
Abstract
To describe a pattern of rhythmic activity as "breathing" or "respiration" inevitably leads to the conclusion that this rhythmic activity is "normal" or "eupneic". Initially, it must be noted that, by strictest definition, "eupnea" can only be applied to "breathing" in an unanesthetized preparation. Any experimental perturbation, including anesthesia, changes eupnea, primarily by reducing the frequency of "breathing". However, a "eupneic pattern", in terms of the pattern of airflow of individual breaths, remains. Also remaining are patterns of neural and neuronal activities which are characteristic of individual breaths of eupnea. In this commentary, we consider these patterns of activities, which define a eupneic pattern and contrast these with patterns during apneusis and gasping. It has long been recognized that these three different patterns of "respiratory activity", eupnea, apneusis and gasping, can be generated in preparations in which all of the central nervous system has been removed, exclusive of the brainstem and spinal cord.
Collapse
Affiliation(s)
- Walter M St -John
- Department of Physiology, Dartmouth Medical School, Lebanon, NH 03756, USA
| | | |
Collapse
|
8
|
O'Boyle MP, Do V, Derrick BE, Claiborne BJ. In vivo recordings of long-term potentiation and long-term depression in the dentate gyrus of the neonatal rat. J Neurophysiol 2003; 91:613-22. [PMID: 14645375 DOI: 10.1152/jn.00307.2003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previous in vitro studies demonstrated that long-term potentiation (LTP) could be elicited at medial perforant path (MPP) synapses onto hippocampal granule cells in slices from 7-day-old rats. In contrast, in vivo studies suggested that LTP at perforant path synapses could not be induced until at least days 9 or 10 and then in only a small percentage of animals. Because several characteristics of the oldest granule cells are adult-like on day 7, we re-examined the possibility of eliciting LTP in 7-day-old rats in vivo. We also recorded from 8- and 9-day-old rats to further elucidate the occurrence and magnitude of LTP in neonates. With halothane anesthesia, all animals in each age group exhibited synaptic plasticity of the excitatory postsynaptic potential following high-frequency stimulation of the MPP. In 7-day-old rats, LTP was elicited in 40% of the animals and had an average magnitude of 143%. Long-term depression (LTD) alone (magnitude of 84%) was induced in 40% of the animals, while short-term potentiation (STP) alone (magnitude of 123%) was induced in 10%. STP followed by LTD was elicited in the remaining 10%. Data were similar for all ages combined. In addition, the N-methyl-d-aspartate (NMDA) antagonist (R,S)-3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid (CPP) blocked the occurrence of LTP at each age and doubled the percentage of animals expressing LTD alone for all ages combined. These results demonstrate that tetanic stimulation can elicit LTP or LTD at MPP synapses in 7-day-old rats, supporting our premise that at least a portion of the dentate gyrus is functional at this early age.
Collapse
Affiliation(s)
- Michael P O'Boyle
- Department of Biology, The University of Texas at San Antonio, San Antonio, Texas 78249, USA
| | | | | | | |
Collapse
|
9
|
Rybak IA, Shevtsova NA, St-John WM, Paton JFR, Pierrefiche O. Endogenous rhythm generation in the pre-Bötzinger complex and ionic currents: modelling and in vitro studies. Eur J Neurosci 2003; 18:239-57. [PMID: 12887406 DOI: 10.1046/j.1460-9568.2003.02739.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The pre-Bötzinger complex is a small region in the mammalian brainstem involved in generation of the respiratory rhythm. As shown in vitro, this region, under certain conditions, can generate endogenous rhythmic bursting activity. Our investigation focused on the conditions that may induce this bursting behaviour. A computational model of a population of pacemaker neurons in the pre-Bötzinger complex was developed and analysed. Each neuron was modelled in the Hodgkin-Huxley style and included persistent sodium and delayed-rectifier potassium currents. We found that the firing behaviour of the model strongly depended on the expression of these currents. Specifically, bursting in the model could be induced by a suppression of delayed-rectifier potassium current (either directly or via an increase in extracellular potassium concentration, [K+]o) or by an augmentation of persistent sodium current. To test our modelling predictions, we recorded endogenous population activity of the pre-Bötzinger complex and activity of the hypoglossal (XII) nerve from in vitro transverse brainstem slices (700 micro m) of neonatal rats (P0-P4). Rhythmic activity was absent at 3 mm[K+]o but could be triggered by either the elevation of [K+]o to 5-7 mm or application of potassium current blockers (4-AP, 50-200 micro m, or TEA, 2 or 4 mm), or by blocking aerobic metabolism with NaCN (2 mm). This rhythmic activity could be abolished by the persistent sodium current blocker riluzole (25 or 50 micro m). These findings are discussed in the context of the role of endogenous bursting activity in the respiratory rhythm generation in vivo vs. in vitro and during normal breathing in vivo vs. gasping.
Collapse
Affiliation(s)
- Ilya A Rybak
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA.
| | | | | | | | | |
Collapse
|
10
|
St-John WM, Paton JFR. Neurogenesis of gasping does not require inhibitory transmission using GABA(A) or glycine receptors. Respir Physiol Neurobiol 2002; 132:265-77. [PMID: 12208085 DOI: 10.1016/s1569-9048(02)00079-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We evaluated the hypothesis that the neurogenesis of gasping is not dependent upon inhibitory synaptic transmission involving GABA(A) or glycine receptors. Activity of the phrenic nerve was recorded in a perfused juvenile rat preparation. The pattern of phrenic activity was altered from eupnea to gasping in severe hypoxia or ischaemia. To block GABA(A) receptors, bicuculline or picrotoxin was administered. Strychnine was used to block transmission by glycine. Following administrations of bicuculline, picrotoxin or strychnine, the eupneic rhythm was greatly distorted whereas the decrementing pattern of the gasp was maintained. At high concentrations of these antagonists, the frequency of gasps was increased and the peak height of gasps fell. We conclude that the neurogenesis of gasping is not dependent upon fast, chloride-mediated inhibitory synaptic transmission.
Collapse
Affiliation(s)
- Walter M St-John
- Department of Physiology, Dartmouth Medical School, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03755, USA.
| | | |
Collapse
|
11
|
|
12
|
St -John WM, Rybak IA. Influence of levels of carbon dioxide and oxygen upon gasping in perfused rat preparation. RESPIRATION PHYSIOLOGY 2002; 129:279-87. [PMID: 11788131 DOI: 10.1016/s0034-5687(01)00322-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In vivo, the augmenting pattern of integrated phrenic nerve discharge of eupnea is altered to the decrementing pattern of gasping in severe hypoxia or ischaemia. Identical alterations in phrenic discharge are found in perfused in situ preparations of the juvenile rat. In this preparation, gasping was produced by equilibration of the perfusate with various levels of carbon dioxide and oxygen. The duration of the phrenic burst, the interval between bursts and the burst amplitude were not significantly different following equilibration with 21-6%O(2) at 5% CO(2) or with 0-9% CO(2) at 6% O(2), with the exception that the burst amplitude was significantly greater in hypercapnic-hypoxia (9% CO(2) at 6% O(2)). It is proposed that hypoxia-induced gasping results from the release of an endogenous pacemaker activity of rostral medullary neurons. This release is caused by cellular mechanisms that change the balance between membrane ionic currents. Moreover, these cellular mechanisms may be explicitly induced by alterations in the ionic and metabolic homeostasis.
Collapse
Affiliation(s)
- Walter M St -John
- Dartmouth-Hitchcock Medical Center, Department of Physiology, Dartmouth Medical School, Borwell Building, Lebanon, NH 03756, USA.
| | | |
Collapse
|