1
|
Zhang E, Hirao H. Exploring the Bonding Nature of Iron(IV)-Oxo Species through Valence Bond Calculations and Electron Density Analysis. J Phys Chem A 2024; 128:7167-7176. [PMID: 39163412 DOI: 10.1021/acs.jpca.4c04335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Compound I (Cpd I) plays a pivotal role in substrate transformations within the catalytic cycle of cytochrome P450 enzymes (P450s). A key constituent of Cpd I is the iron(IV)-oxo unit, a structural motif also found in other heme enzymes and nonheme enzymes. In this study, we performed ab initio valence bond (VB) calculations, employing the valence bond self-consistent field (VBSCF) and breathing orbital valence bond (BOVB) methods, to unveil the bonding nature of this vital "Fe(IV)═O″ unit in bioinorganic chemistry. Comparisons were drawn with the triplet O2 molecule, which shares some electronic characteristics with iron(IV)-oxo. Additionally, Cpd I models of horseradish peroxidase (HRP) and catalase (CAT) were analyzed to assess the proximal ligand effect on the electronic structure of iron(IV)-oxo. Our VB analysis underscores the significant role of noncovalent resonance effects in shaping the iron(IV)-oxo bonding. The resonance stabilization within the π and σ frameworks occurs to comparable degrees, with additional stabilization resulting from resonance between VB structures from these frameworks. Furthermore, we elucidated the substantial influence of proximal and equatorial ligands in modulating the relative significance of different VB structures. Notably, in the presence of these ligands, iron(IV)-oxo is better described as iron(III)-oxyl or iron(II)-oxygen, displaying weak covalent character but enhanced by resonance effects. Although both species exhibit diradicaloid characters, resonance stabilization in iron(IV)-oxo is weaker than in O2. Further exploration using the Laplacian of electron density shows that, unlike O2, which exhibits a charge concentration region between its two oxygen atoms, iron(IV)-oxo species display a charge depletion region.
Collapse
Affiliation(s)
- Enhua Zhang
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
| | - Hajime Hirao
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
| |
Collapse
|
2
|
Meta M, Huber ME, Birk M, Wedele M, Ončák M, Meyer J. Dynamics of carbene formation in the reaction of methane with the tantalum cation in the gas phase. Faraday Discuss 2024; 251:587-603. [PMID: 38764361 DOI: 10.1039/d3fd00171g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
The controlled activation of methane has drawn significant attention throughout various disciplines over the last few decades. In gas-phase experiments, the use of model systems with reduced complexity compared to condensed-phase catalytic systems allows us to investigate the intrinsic reactivity of elementary reactions down to the atomic level. Methane is rather inert in chemical reactions, as the weakening or cleavage of a C-H bond is required to make use of methane as C1-building block. The simplest model system for transition-metal-based catalysts is a mono-atomic metal ion. Only a few atomic transition-metal cations activate methane at room temperature. One of the most efficient elements is tantalum, which forms a carbene and releases molecular hydrogen in the reaction with methane: Ta+ + CH4 → TaCH2+ + H2. The reaction takes place at room temperature due to efficient intersystem crossing from the quintet to the triplet surface, i.e., from the electronic ground state of the tantalum cation to the triplet ground state of the tantalum carbene. This multi-state reactivity is often seen for reactions involving transition-metal centres, but leads to their theoretical treatment being a challenge even today. Chemical reactions, or to be precise reactive collisions, are dynamic processes making their description even more of a challenge to experiment and theory alike. Experimental energy- and angle-differential cross sections allow us to probe the rearrangement of atoms during a reactive collision. By interpreting the scattering signatures, we gain insight into the atomistic mechanisms and can move beyond stationary descriptions. Here, we present a study combining collision energy dependent experimentally measured differential cross sections with ab initio calculations of the minimum energy pathway. Product ion velocity distributions were recorded using our crossed-beam velocity map imaging experiment dedicated to studying transition-metal ion molecule reactions. TaCH2+ velocity distributions reveal a significant degree of indirect dynamics. However, the scattering distributions also show signatures of rebound dynamics. We compare the present results to the oxygen transfer reaction between Ta+ and carbon dioxide, which we recently studied.
Collapse
Affiliation(s)
- Marcel Meta
- RPTU Kaiserslautern-Landau, Fachbereich Chemie und Forschungszentrum OPTIMAS, Erwin-Schrödinger Str. 52, 67663 Kaiserslautern, Germany.
| | - Maximilian E Huber
- RPTU Kaiserslautern-Landau, Fachbereich Chemie und Forschungszentrum OPTIMAS, Erwin-Schrödinger Str. 52, 67663 Kaiserslautern, Germany.
| | - Maurice Birk
- RPTU Kaiserslautern-Landau, Fachbereich Chemie und Forschungszentrum OPTIMAS, Erwin-Schrödinger Str. 52, 67663 Kaiserslautern, Germany.
| | - Martin Wedele
- RPTU Kaiserslautern-Landau, Fachbereich Chemie und Forschungszentrum OPTIMAS, Erwin-Schrödinger Str. 52, 67663 Kaiserslautern, Germany.
| | - Milan Ončák
- Universität Innsbruck, Institut für Ionenenphysik und Angewandte Physik, Technikerstr. 25, 6020 Innsbruck, Austria
| | - Jennifer Meyer
- RPTU Kaiserslautern-Landau, Fachbereich Chemie und Forschungszentrum OPTIMAS, Erwin-Schrödinger Str. 52, 67663 Kaiserslautern, Germany.
| |
Collapse
|
3
|
Liu Y, Ončák M, Meyer J, Ard SG, Shuman NS, Viggiano AA, Guo H. Intersystem Crossing Control of the Nb + + CO 2 → NbO + + CO Reaction. J Phys Chem A 2024; 128:6943-6953. [PMID: 39117562 DOI: 10.1021/acs.jpca.4c04067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The transfer of an oxygen atom from carbon dioxide (CO2) to a transition metal cation in the gas phase offers atomic level insights into single-atom catalysis for CO2 activation. Given that these reactions often involve open-shell transition metals, they may proceed through intersystem crossing between different spin manifolds. However, a definitive understanding of such spin-forbidden reaction requires dynamical calculations on multiple global potential energy surfaces (PESs) coupled by spin-orbit couplings. In this work, we report global PESs and spin-orbit couplings for three low-lying spin (quintet, triplet, and singlet) states for the reaction between the niobium cation (Nb+) and CO2, which are used to investigate the nonadiabatic reaction dynamics and kinetics. Comparison with experimental data of kinetics and collision dynamics shows satisfactory agreement. This reaction is found to be very similar to that between Ta+ + CO2. Specifically, our theoretical findings suggest that the rate-limiting step in this reaction is intersystem crossing, rather than potential barriers.
Collapse
Affiliation(s)
- Yang Liu
- Department of Chemistry and Chemical Biology, Center for Computational Chemistry, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Milan Ončák
- Universität Innsbruck, Institut für Ionenenphysik und Angewandte Physik, Technikerstraße 25, Innsbruck 6020, Austria
| | - Jennifer Meyer
- RPTU Kaiserslautern-Landau, Fachbereich Chemie und Forschungszentrum OPTIMAS, Erwin-Schrödinger Str. 52, Kaiserslautern 67663, Germany
| | - Shaun G Ard
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, Albuquerque, New Mexico 87117, United States
| | - Nicholas S Shuman
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, Albuquerque, New Mexico 87117, United States
| | - Albert A Viggiano
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, Albuquerque, New Mexico 87117, United States
| | - Hua Guo
- Department of Chemistry and Chemical Biology, Center for Computational Chemistry, University of New Mexico, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
4
|
Peraça CST, Bittencourt AFB, Bezerra RC, Da Silva JLF. Atomistic insights from DFT calculations into the catalytic properties on ceria-lanthanum clusters for methane activation. J Chem Phys 2024; 160:244108. [PMID: 38920399 DOI: 10.1063/5.0198986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024] Open
Abstract
Improving the catalytic performance of materials based on cerium oxide (CeO2) for the activation of methane (CH4) can be achieved through the following strategies: mixture of CeO2 with different oxides (e.g., CeO2-La2O3) and the use of particles with different sizes. In this study, we present a theoretical investigation of the initial CH4 dehydrogenation on (La2Ce2O7)n clusters, where n = 2, 4, and 6. Our framework relies on density functional theory calculations combined with the unity bond index-quadratic exponential potential approximation. Our results indicate that chemical species arising from the first dehydrogenation of CH4, that is, CH3 and H, bind through the formation of C-O and H-O bonds with the clusters, respectively. The coordination of the adsorption site and the chemical environment plays a crucial role in the magnitude of the adsorption energy; for example, species adsorb more strongly in the low-coordinated topO sites located close to the La atoms. Thus, it affects the activation energy barrier, which tends to be lower in configurations where the adsorption of the chemical species is stronger. During CH4 dehydrogenation, the CH3 radical can be present in a planar or tetrahedral configuration. Its conformation changes as a function of the charge transference between the molecule and the cluster, which depends on the CH3-cluster distance. Finally, we analyze the effects of the Hubbard effective parameter (Ueff) on adsorption properties, as the magnitude of localization of Ce f-states affects the hybridization of the interaction between the molecule and the clusters and hence the magnitude of the adsorption energies. We obtained a linear decrease in the adsorption energies by increasing the Ueff parameter; however, the activation energy is only slightly affected.
Collapse
Affiliation(s)
- Carina S T Peraça
- São Carlos Institute of Chemistry, University of São Paulo, P.O. Box 780, 13560-970 São Carlos, SP, Brazil
| | - Albert F B Bittencourt
- São Carlos Institute of Chemistry, University of São Paulo, P.O. Box 780, 13560-970 São Carlos, SP, Brazil
| | - Raquel C Bezerra
- Secretaria de Estado de Educação e Qualidade do Ensino (SEDUC) do Estado do Amazonas, Escola Áurea Pinheiro Braga Av. Perimentral, s/n, Lot. Cidade do Leste, Gilberto Mestrinho, 69089-340 Manaus, AM, Brazil
| | - Juarez L F Da Silva
- São Carlos Institute of Chemistry, University of São Paulo, P.O. Box 780, 13560-970 São Carlos, SP, Brazil
| |
Collapse
|
5
|
Arakawa M, Kono S, Sekine Y, Terasaki A. Reaction of size-selected iron-oxide cluster cations with methane: a model study of rapid methane loss in Mars' atmosphere. Phys Chem Chem Phys 2024; 26:14684-14690. [PMID: 38716515 DOI: 10.1039/d4cp01337a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
We report gas-phase reactions of free iron-oxide clusters, FenOm+, and their Ar adducts with methane in the context of chemical processes in Mars' atmosphere. Methane activation was observed to produce FenOmCH2+/FenOmCD2+ and FenOmC+, where the reactivity exhibited size and composition dependence. For example, the rate coefficients of methane activation for Fe3O+ and Fe4O+ were estimated to be 1 × 10-13 and 3 × 10-13 cm3 s-1, respectively. Based on these reaction rate coefficients, the presence of iron-oxide clusters/particles with a density as low as 107 cm-3 in Mars' atmosphere would explain the rapid loss of methane observed recently by the Curiosity rover.
Collapse
Affiliation(s)
- Masashi Arakawa
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Satoshi Kono
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Yasuhito Sekine
- Earth-Life Science Institute (ELSI), Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
| | - Akira Terasaki
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
6
|
Zhou H, Ruan M, Liu QY, Zhao YX, Wang RY, Yang Y, He SG. Size-dependent reactivity of V nO + ( n = 1-9) clusters with ethane. Phys Chem Chem Phys 2024; 26:14186-14193. [PMID: 38713092 DOI: 10.1039/d4cp00857j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Cost-effective and readily accessible 3d transition metals (TMs) have been considered as promising candidates for alkane activation while 3d TMs especially the early TMs are usually not very reactive with light alkanes. In this study, the reactivity of Vn+ and VnO+ (n = 1-9) cluster cations towards ethane under thermal collision conditions has been investigated using mass spectrometry and density functional theory calculations. Among Vn+ (n = 1-9) clusters, only V3-5+ can react with C2H6 to generate dehydrogenation products and the reaction rate constants are below 10-13 cm3 molecule-1 s-1. In contrast, the reaction rate constants for all VnO+ (n = 1-9) with C2H6 significantly increase by about 2-4 orders of magnitude. Theoretical analysis evidences that the addition of ligand O affects the charge distribution of the metal centers, resulting in a significant increase in the cluster reactivity. The analysis of frontier orbitals indicates that the agostic interaction determines the size-dependent reactivity of VnO+ cluster cations. This study provides a novel approach for improving the reactivity of early 3d TMs.
Collapse
Affiliation(s)
- Hang Zhou
- Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Man Ruan
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Qing-Yu Liu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing 100190, P. R. China
| | - Yan-Xia Zhao
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing 100190, P. R. China
| | - Rui-Yong Wang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Yuan Yang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
7
|
Multem AJ, Tripodi GL, Roithová J. Properties of Metal Hydrides of the Iron Triad. J Am Chem Soc 2023; 145:27555-27562. [PMID: 38059367 PMCID: PMC10740003 DOI: 10.1021/jacs.3c08925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
Metal hydride complexes are essential intermediates in hydrogenation reactions. The hydride-donor ability determines the scope of use of these complexes. We present a new, simple mass-spectrometry method to study the hydride-donor ability of metal hydrides using a series of 18 iron, cobalt, and nickel complexes with N- and P-based ligands (L). The mixing of [(L)MII(OTf)2] with NaBH4 forms [(L)MII(BH4)]+ (M = Fe, Co, Ni) that can be detected by electrospray ionization mass spectrometry. Energy-resolved collision-induced dissociations of [(L)MII(BH4)]+ provide threshold energies (ΔECID) for the formations of [(L)MII(H)]+ that correlate well with the hydride donor ability of the metal hydride complexes. We studied the vibrational and electronic spectra of the generated metal hydrides, assigned their structure and spin state, and demonstrated a good correlation between ΔECID and the M-H stretching vibration frequencies. The ΔECID also correlates with reaction rates for hydride transfer reactivity in the gas phase and known reactivity trends in the solution phase.
Collapse
Affiliation(s)
- Arie J.
H. Multem
- Department of Spectroscopy and Catalysis,
Institute for Molecules and Materials, Radboud
University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Guilherme L. Tripodi
- Department of Spectroscopy and Catalysis,
Institute for Molecules and Materials, Radboud
University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Jana Roithová
- Department of Spectroscopy and Catalysis,
Institute for Molecules and Materials, Radboud
University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
8
|
Blagojevic V, Koyanagi GK, Böhme DK. Probing gas phase catalysis by atomic metal cations with flow tube mass spectrometry. MASS SPECTROMETRY REVIEWS 2023. [PMID: 36721337 DOI: 10.1002/mas.21831] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/29/2022] [Accepted: 12/16/2022] [Indexed: 06/18/2023]
Abstract
The evolution and applications of flow tube mass spectrometry in the study of catalysis promoted by atomic metal ions are tracked from the pioneering days in Boulder, Colorado, to the construction and application of the ICP/SIFT/QqQ and ESI/qQ/SIFT/QqQ instruments at York University and the VISTA-SIFT instrument at the Air Force Research Laboratory. The physical separation of various sources of atomic metal ions from the flow tube in the latter instruments facilitates the spatial resolution of redox reactions and allows the separate measurement of the kinetics of both legs of a two-step catalytic cycle, while also allowing a view of the catalytic cycle in progress downstream in the reaction region of the flow tube. We focus on measurements on O-atom transfer and bond activation catalysis as first identified in Boulder and emphasize fundamental aspects such as the thermodynamic window of opportunity for catalysis, catalytic efficiency, and computed energy landscapes for atomic metal cation catalysis. Gas-phase applications include: the catalytic oxidation of CO to CO2 , of H2 to H2 O, and of C2 H4 to CH3 CHO all with N2 O as the source of oxygen; the catalytic oxidation of CH4 to CH3 OH with O3 ; the catalytic oxidation of C6 H6 with O2 . We also address the environmentally important catalytic reduction of NO2 and NO to N2 with CO and H2 by catalytic coupling of two-step catalytic cycles in a multistep cycle. Overall, the power of atomic metal cations in catalysis, and the use of flow tube mass spectrometry in revealing this power, is clearly demonstrated.
Collapse
Affiliation(s)
- Voislav Blagojevic
- Department of Chemistry, York University, Ontario, Toronto, Canada
- BrightSpec Inc., Virginia, Charlottesville, USA
| | | | - Diethard K Böhme
- Department of Chemistry, York University, Ontario, Toronto, Canada
| |
Collapse
|
9
|
Münst MG, Barwa E, Beyer MK. Energy release and product ion fragmentation in proton transfer reactions of N 2H + and ArH + with acetone*. Mol Phys 2022. [DOI: 10.1080/00268976.2022.2155259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Maximilian G. Münst
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck Innsbruck, Austria
| | - Erik Barwa
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck Innsbruck, Austria
| | - Martin K. Beyer
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck Innsbruck, Austria
| |
Collapse
|
10
|
Tripodi G, Roithová J. Unmasking the Iron-Oxo Bond of the [(Ligand)Fe-OIAr] 2+/+ Complexes. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1636-1643. [PMID: 35920859 PMCID: PMC9460779 DOI: 10.1021/jasms.2c00094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
ArIO (ArI = 2-(tBuSO2)C6H4I) is an oxidant used to oxidize FeII species to their FeIV-oxo state, enabling hydrogen-atom transfer (HAT) and oxygen-atom transfer (OAT) reactions at low energy barriers. ArIO, as a ligand, generates masked Fen═O species of the type Fe(n-2)-OIAr. Herein, we used gas-phase ion-molecule reactions and DFT calculations to explore the properties of masked iron-oxo species and to understand their unmasking mechanisms. The theory shows that the I-O bond cleavage in [(TPA)FeIVO(ArIO)]2+ (12+, TPA = tris(2-pyridylmethyl)amine)) is highly endothermic; therefore, it can be achieved only in collision-induced dissociation of 12+ leading to the unmasked iron(VI) dioxo complex. The reduction of 12+ by HAT leads to [(TPA)FeIIIOH(ArIO)]2+ with a reduced energy demand for the I-O bond cleavage but is, however, still endothermic. The exothermic unmasking of the Fe═O bond is predicted after one-electron reduction of 12+ or after OAT reactivity. The latter leads to the 4e- oxidation of unsaturated hydrocarbons: The initial OAT from [(TPA)FeIVO(ArIO)]2+ leads to the epoxidation of an alkene and triggers the unmasking of the second Fe═O bond still within one collisional complex. The second oxidation step starts with HAT from a C-H bond and follows with the rebound of the C-radical and the OH group. The process starting with the one-electron reduction could be studied with [(TQA)FeIVO(ArIO)]2+ (22+, TQA = tris(2-quinolylmethyl)amine)) because it has a sufficient electron affinity for electron transfer with alkenes. Accordingly, the reaction of 22+ with 2-carene leads to [(TQA)FeIIIO(ArIO)]2+ that exothermically eliminates ArI and unmasks the reactive FeV-dioxo species.
Collapse
Affiliation(s)
- Guilherme
L. Tripodi
- Department of spectroscopy
and Catalysis, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Jana Roithová
- Department of spectroscopy
and Catalysis, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
11
|
Armentrout PB. Periodic trends in gas-phase oxidation and hydrogenation reactions of lanthanides and 5d transition metal cations. MASS SPECTROMETRY REVIEWS 2022; 41:606-626. [PMID: 34028077 DOI: 10.1002/mas.21703] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Affiliation(s)
- P B Armentrout
- Department of Chemistry, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
12
|
Viggiano AA, Ard SG, Shuman NS. Temperature and energy dependences of ion-molecule reactions: Studies inspired by Diethard Böhme. MASS SPECTROMETRY REVIEWS 2022; 41:568-592. [PMID: 34159628 DOI: 10.1002/mas.21700] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 06/13/2023]
Abstract
Diethard Böhme has had a long career covering many topics in ion-molecule reactivity. In this review, we describe the work done at the Air Force Research Laboratory (and its variously named preceding organizations) that was inspired by his studies. These fall into two main areas: nucleophilic displacement (SN 2) and metal cation chemistry. In SN 2 chemistry, we revisited many of the reactions Diethard pioneered and studied them in more detail. We found nonstatistical behavior, both competition and noncompetition between multiple channels. New channels were found as hydration occurred, with more solution-like behavior occurring as only a few ligands were added. Temperature-dependent studies revealed details that were not observable at room temperature. These and other highlights will be discussed. In metal cation reactions, Diethard's use of an inductively coupled ion source allowed him to systematically study the periodic table of elements with a number of simple neutrals. We have taken the most interesting of these and studied them in greater detail. In doing so, we were able to identify curve crossing rates, in a few instances information about product states, and the importance of multiple entrance channels.
Collapse
Affiliation(s)
- Albert A Viggiano
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, Albuquerque, New Mexico, USA
| | - Shaun G Ard
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, Albuquerque, New Mexico, USA
| | - Nicholas S Shuman
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, Albuquerque, New Mexico, USA
| |
Collapse
|
13
|
Sweeny BC, Long BA, Viggiano AA, Ard SG, Shuman NS. Effect of Intersystem Crossings on the Kinetics of Thermal Ion-Molecule Reactions: Ti + + O 2, CO 2, and N 2O. J Phys Chem A 2022; 126:859-869. [PMID: 35107288 DOI: 10.1021/acs.jpca.1c10196] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A selected-ion flow tube apparatus has been used to measure rate constants and product branching fractions of 2Ti+ reacting with O2, CO2, and N2O over the range of 200-600 K. Ti+ + O2 proceeds at near the Langevin capture rate constant of 6-7 × 10-10 cm3 s-1 at all temperatures to yield 4TiO+ + O. Reactions initiated on doublet or quartet surfaces are formally spin-allowed; however, the 50% of reactions initiated on sextet surfaces must undergo an intersystem crossing (ISC). Statistical theory is used to calculate the energy and angular momentum dependences of the specific rate constants for the competing isomerization and dissociation channels. This acts as an internal clock on the lifetime to ISC, setting an upper limit on the order of τISC < 1e-11 s. 2Ti+ + CO2 produces 4TiO+ + CO less efficiently, with a rate constant fit as 5.5 ± 1.3 × 10-11 (T/300)-1.1 ± 0.2 cm3 s-1. The reaction is formally spin-prohibited, and statistical modeling shows that ISC, not a submerged transition state, is rate-limiting, occurring with a lifetime on the order of 10-7 s. Ti+ + N2O proceeds at near the capture rate constant. In this case, both Ti+ON2 and Ti+N2O entrance channel complexes are formed and can interconvert over a barrier. The main product is >90% TiO+ + N2, and the remainder is TiN+ + NO. Both channels need to undergo ISC to form ground-state products but TiO+ can be formed in an excited state exothermically. Therefore, kinetic information is obtained only for the TiN+ channel, where ISC occurs with a lifetime on the order of 10-9 s. Statistical modeling indicates that the dipole-preferred Ti+ON2 complex is formed in ∼80% of collisions, and this value is reproduced using a capture model based on the generic ion-dipole + quadrupole long-range potential.
Collapse
Affiliation(s)
- Brendan C Sweeny
- Institute for Scientific Research, Boston College, Boston, Massachusetts 02467, United States
| | - Bryan A Long
- NRC Postdoc at Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, New Mexico 87117, United States
| | - Albert A Viggiano
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, New Mexico 87117, United States
| | - Shaun G Ard
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, New Mexico 87117, United States
| | - Nicholas S Shuman
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, New Mexico 87117, United States
| |
Collapse
|
14
|
Lewis TWR, Mastin EM, Theis ZC, Gutierrez MG, Bellert DJ. Measurement of time dependent product branching ratios indicates two-state reactivity in metal mediated chemical reactions. Phys Chem Chem Phys 2022; 24:2300-2308. [PMID: 35015007 DOI: 10.1039/d1cp05473b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
For several decades, the influence of Two State Reactivity (TSR) has been implicated in a host of reactions, but has lacked a stand-alone, definitive experimental kinetic signature identifying its occurrence. Here, we demonstrate that the measurement of a temporally dependent product branching ratio is indicative of spin inversion and is a kinetic signature of TSR. This is caused by products exiting different hypersurfaces with different rates and relative exothermicities. The composite measurement of product intensities with the same mass but with different multiplicities yield biexponential temporal dependences with the sampled product ratio changing in time. These measurements are made using the single photon initiated dissociative rearrangement reaction (SPIDRR) technique which identifies TSR but further determines the kinetic parameters for reaction along the original ground electronic surface in competition with spin inversion and its consequent TSR.
Collapse
Affiliation(s)
- Tucker W R Lewis
- Department of Chemistry and Biochemistry, Baylor University, Darrin Bellert, One Bear Place #97348, Waco, TX 76798, USA
| | - Evan M Mastin
- Department of Chemistry and Biochemistry, Baylor University, Darrin Bellert, One Bear Place #97348, Waco, TX 76798, USA
| | - Zachry C Theis
- Department of Chemistry and Biochemistry, Baylor University, Darrin Bellert, One Bear Place #97348, Waco, TX 76798, USA
| | - Michael G Gutierrez
- Department of Chemistry and Biochemistry, Baylor University, Darrin Bellert, One Bear Place #97348, Waco, TX 76798, USA
| | - Darrin J Bellert
- Department of Chemistry and Biochemistry, Baylor University, Darrin Bellert, One Bear Place #97348, Waco, TX 76798, USA
| |
Collapse
|
15
|
Theoretical study on the corrosion of thorium nuclear fuel by water: The effect of two-state reaction mechanism. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2021.139167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Mercero JM, Rezabal E, Ugalde JM, Weiske T, Li J. Experiment and Theory Clarify: Sc+ Receives One Oxygen Atom from SO2 to Form ScO+, which Proves to be a Catalyst for the Hidden Oxygen-Exchange with SO2. Chemphyschem 2021; 23:e202100773. [PMID: 34942051 PMCID: PMC9303259 DOI: 10.1002/cphc.202100773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/23/2021] [Indexed: 11/05/2022]
Abstract
Using Fourier‐transform ion cyclotron resonance mass spectrometry, it was experimentally determined that Sc+ in the highly diluted gas phase reacts with SO2 to form ScO+ and SO. By 18O labeling, ScO+ was shown to play the role of a catalyst when further reacting with SO2 in a Mars‐van Krevelen‐like (MvK) oxygen exchange process, where a solid catalyst actively reacts with the substrate but emerges apparently unchanged at the end of the cycle. High‐level quantum chemical calculations confirmed that the multi‐step process to form ScO+ and SO is exoergic and that all intermediates and transition states in between are located energetically below the entrance level. The reaction starts from the triplet surface; although three spin‐crossing points with minimal energy have been identified by computational means, there is no evidence that a two‐state scenario is involved in the course of the reaction, by which the reactants could switch from the triplet to the singlet surface and back. Pivotal to the oxygen exchange reaction of ScO+ with SO2 is the occurrence of a highly symmetric four‐membered cyclic intermediate by which two oxygen atoms become equivalent.
Collapse
Affiliation(s)
- Jose M Mercero
- Universidad del Pais Vasco / Euskal Herriko Unibertsitatea, SGIker, PK 1072, 20080, Donostia, SPAIN
| | - Elixabete Rezabal
- Euskal Herriko Unibertsitatea: Universidad del Pais Vasco, Advanced Polymers and Materials: Physics, Chemistry and Technology, SPAIN
| | - Jesus M Ugalde
- Euskal Herriko Unibertsitatea: Universidad del Pais Vasco, Advanced Polymers and Materials: Physics, Chemistry and Technology, SPAIN
| | | | - Jilai Li
- Jilin University, Institute of theoretical Chemistry, CHINA
| |
Collapse
|
17
|
Lockwood SP, Chunga T, Metz RB. Bonding, Thermodynamics, and Dissociation Dynamics of NiO + and NiS + Determined by Photofragment Imaging and Theory. J Phys Chem A 2021; 125:7425-7436. [PMID: 34427080 DOI: 10.1021/acs.jpca.1c05405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We use photofragment ion imaging and ab initio calculations to determine the bond strength and photodissociation dynamics of the nickel oxide (NiO+) and nickel sulfide (NiS+) cations. NiO+ photodissociates broadly from 20350 to 32000 cm-1, forming ground state products Ni+(2D) + O(3P) below ∼29000 cm-1. Above this energy, Ni+(4F) + O(3P) products become accessible and dominate over the ground state channel. In certain images, product spin-orbit levels are resolved, and spin-orbit propensities are determined. Image anisotropy and the results of MRCI calculations suggest NiO+ photodissociates via a 3 4Σ- ← X 4Σ- transition above the Ni+(4F) threshold and via 3 4Σ-, 2 4Σ-, and/or 2 4Π and 3 4Π excited states below the 4F threshold. The photodissociation spectrum of NiS+ from 19900 to 23200 cm-1 is highly structured, with ∼12 distinct vibronic peaks, each containing underlying substructure. Above 21600 cm-1, the Ni+(2D5/2) + S(3P) and Ni+(2D3/2) + S(3P) product spin-orbit channels compete, with a branching ratio of ∼2:1. At lower energy, Ni+(2D5/2) is formed exclusively, and S(3P2) and S(3P1) spin-orbit channels are resolved. MRCI calculations predict the ground state of NiS+ to be one of two nearly degenerate states, the 1 4Σ- and 1 4Δ. Based on images and spectra, the ground state of NiS+ is assigned as 4Δ7/2, with the 1 4Σ3/2- and 1 4Σ1/2- states 81 ± 30 and 166 ± 50 cm-1 higher in energy, respectively. The majority of the photodissociation spectrum is assigned to transitions from the 1 4Δ state to two overlapping, predissociative excited 4Δ states. Our D0 measurements for NiO+ (D0 = 244.6 ± 2.4 kJ/mol) and NiS+ (D0 = 240.3 ± 1.4 kJ/mol) are more precise and closer to each other than previously reported values. Finally, using a recent measurement of D0(NiS), we derive a more precise value for IE (NiS): 8.80 ± 0.02 eV (849 ± 1.7 kJ/mol).
Collapse
Affiliation(s)
- Schuyler P Lockwood
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Tala Chunga
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Ricardo B Metz
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
18
|
Yu M, Ge X, Zhou S. On the origins of the mechanistic variants in the thermal reactions of S x+ (x = 1-3) with benzene. Phys Chem Chem Phys 2021; 23:17512-17520. [PMID: 34364310 DOI: 10.1039/d1cp01959g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The S-π interaction between sulfur atom(s) and aromatic ring prevails in chemical and biochemical processes. The thermal gas-phase reactions of the Sn+ (n = 1-3) ions with benzene have been explored by using Quadrupole-Ion Trap (Q-IT) mass spectrometry complemented by quantum chemical calculations. Charge transfer was found to be the only reaction channel for S2+/C6H6, while both charge transfer and bond activation are available for the S+/C6H6 and S3+/C6H6 couples. Upon interrogating the associated electronic origins, multiple factors were found to matter for these processes. In contrast to the σ-type two-center three-electron (2c-3e) S-π hemibond as reported previously, unusual S-π hemibonds were addressed for the Sn+/C6H6 couples, i.e. the 2c-3e π(S061Eπ) and the three-center three-electron (3c-3e) σ(S2061Eπ) hemibonds. Such S-π interaction was found to be responsible for the charge transfer processes in S+/C6H6 and S2+/C6H6, but uninvolved in any transformation for S3+/C6H6.
Collapse
Affiliation(s)
- Mincheng Yu
- College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, 310027 Hangzhou, P. R. China.
| | | | | |
Collapse
|
19
|
Ard SG, Viggiano AA, Shuman NS. Old School Techniques with Modern Capabilities: Kinetics Determination of Dynamical Information Such as Barriers, Multiple Entrance Channel Complexes, Product States, Spin Crossings, and Size Effects in Metallic Ion–Molecule Reactions. J Phys Chem A 2021; 125:3503-3527. [DOI: 10.1021/acs.jpca.0c11395] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Shaun G. Ard
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, Albuquerque, New Mexico 87117, United States
| | - Albert A. Viggiano
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, Albuquerque, New Mexico 87117, United States
| | - Nicholas S. Shuman
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, Albuquerque, New Mexico 87117, United States
| |
Collapse
|
20
|
Kim J, Armentrout PB. Thermochemistry of the Ir + + SO 2 reaction using guided ion beam tandem mass spectrometry and theory. J Chem Phys 2021; 154:124302. [PMID: 33810653 DOI: 10.1063/5.0047513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Kinetic energy dependences of the reactions of Ir+ (5F5) with SO2 were studied using a guided ion beam tandem mass spectrometer and theory. The observed cationic products are IrO+, IrS+, and IrSO+, formed in endothermic reactions. Bond dissociation energies (BDEs) of the products are determined by modeling the kinetic energy dependent product cross sections: D0(Ir+-O) = 4.27 ± 0.11 eV, D0(Ir+-S) = 4.03 ± 0.06 eV, and D0(Ir+-SO) ≥ 2.95 ± 0.06 eV. The oxide BDE agrees well with literature values, whereas the two latter results are novel measurements. Quantum mechanical calculations are performed at the B3LYP level of theory using the def2-TZVPPD basis set for all product BDEs with additional calculations for IrS+, IrO2 +, and IrSO+ at the coupled cluster with single, double, and perturbative triple excitation levels with def2-QZVPPD and aug-cc-pVXZ (X = T and Q and for IrS+, also X = 5) basis sets and complete basis set extrapolations. These theoretical BDEs agree reasonably well with the experimental values. 1A1 (IrO2 +), 5Δ4 (IrS+), and 3A″/1A' (IrSO+) are found to be the ground states after including empirical spin-orbit corrections. The potential energy surfaces including intermediates and transition states for each reaction are also calculated at the B3LYP/def2-TZVPPD level. The formation of MO+ (M = Re, Os, and Ir) from M+ + SO2 reactions is compared with those from the M+ + O2 and M+ + CO reactions, where interesting trends in cross sections are observed. Overall, these studies suggest that the M+ + O2 reactions had restrictions associated with reactions along A' and A″ surfaces.
Collapse
Affiliation(s)
- JungSoo Kim
- Department of Chemistry, University of Utah, 315 S 1400 E Rm 2020, Salt Lake City, Utah 84112, USA
| | - P B Armentrout
- Department of Chemistry, University of Utah, 315 S 1400 E Rm 2020, Salt Lake City, Utah 84112, USA
| |
Collapse
|
21
|
Nandy A, Kulik HJ. Why Conventional Design Rules for C–H Activation Fail for Open-Shell Transition-Metal Catalysts. ACS Catal 2020. [DOI: 10.1021/acscatal.0c04300] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Aditya Nandy
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Heather J. Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
22
|
Garcia JM, Shaffer RE, Sayres SG. Ultrafast pump-probe spectroscopy of neutral Fe nO m clusters ( n, m < 16). Phys Chem Chem Phys 2020; 22:24624-24632. [PMID: 33095221 DOI: 10.1039/d0cp03889j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Neutral iron oxide clusters (FenOm, n, m ≤ 16) are produced in a laser vaporization source using O2 gas seeded in He. The neutral clusters are ionized with a sequence of femtosecond laser pulses and detected using time-of-flight mass spectrometry. Small clusters are confirmed to be most prominent in the stoichiometric (n = m) distribution, with m = n + 1 clusters observed above n = 4. Pump-probe spectroscopy is employed to study the dynamics of an electron transfer from an oxygen orbital to an iron nonbonding orbital of iron oxide clusters that is driven by absorption of a 400 nm photon. A bifurcation of the initial wavepacket occurs, where a femtosecond component is attributed to electron relaxation assisted through internuclear vibrational relaxation and high density of states, and a slow relaxation shows the formation of a bound excited state. The lifetime and relative ratio of the two pathways depend on both the cluster size and iron oxidation state. The femtosecond lifetime decreases with increased cluster size until a saturation timescale is achieved at n > 5. The relative population of the long-lived excited state decreases with cluster size and suggests that the excited electron remains on the Fe atom for >20 ps.
Collapse
Affiliation(s)
- Jacob M Garcia
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA. and Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287, USA
| | - Ryan E Shaffer
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA. and Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287, USA
| | - Scott G Sayres
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA. and Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
23
|
Li J, Geng C, Weiske T, Schwarz H. Counter‐Intuitive Gas‐Phase Reactivities of [V
2
]
+
and [V
2
O]
+
towards CO
2
Reduction: Insight from Electronic Structure Calculations. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jilai Li
- Institut für Chemie Technische Universität Berlin 10623 Berlin Germany
- Institute of Theoretical Chemistry Jilin University 130023 Changchun China
| | - Caiyun Geng
- Institut für Chemie Technische Universität Berlin 10623 Berlin Germany
| | - Thomas Weiske
- Institut für Chemie Technische Universität Berlin 10623 Berlin Germany
| | - Helmut Schwarz
- Institut für Chemie Technische Universität Berlin 10623 Berlin Germany
| |
Collapse
|
24
|
Li J, Geng C, Weiske T, Schwarz H. Counter-Intuitive Gas-Phase Reactivities of [V 2 ] + and [V 2 O] + towards CO 2 Reduction: Insight from Electronic Structure Calculations. Angew Chem Int Ed Engl 2020; 59:12308-12314. [PMID: 32100908 PMCID: PMC7383893 DOI: 10.1002/anie.202001223] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Indexed: 11/19/2022]
Abstract
[V2 O]+ remains "invisible" in the thermal gas-phase reaction of bare [V2 ]+ with CO2 giving rise to [V2 O2 ]+ ; this is because the [V2 O]+ intermediate is being consumed more than 230 times faster than it is generated. However, the fleeting existence of [V2 O]+ and its involvement in the [V2 ]+ → [V2 O2 ]+ chemistry are demonstrated by a cross-over labeling experiment with a 1:1 mixture of C16 O2 /C18 O2 , generating the product ions [V2 16 O2 ]+ , [V2 16 O18 O]+ , and [V2 18 O2 ]+ in a 1:2:1 ratio. Density functional theory (DFT) calculations help to understand the remarkable and unexpected reactivity differences of [V2 ]+ versus [V2 O]+ towards CO2 .
Collapse
Affiliation(s)
- Jilai Li
- Institut für ChemieTechnische Universität Berlin10623BerlinGermany
- Institute of Theoretical ChemistryJilin University130023ChangchunChina
| | - Caiyun Geng
- Institut für ChemieTechnische Universität Berlin10623BerlinGermany
| | - Thomas Weiske
- Institut für ChemieTechnische Universität Berlin10623BerlinGermany
| | - Helmut Schwarz
- Institut für ChemieTechnische Universität Berlin10623BerlinGermany
| |
Collapse
|
25
|
Li J, Geng C, Weiske T, Schwarz H. On the Crucial Role of Isolated Electronic States in the Thermal Reaction of ReC + with Dihydrogen. Angew Chem Int Ed Engl 2020; 59:9370-9376. [PMID: 32181571 PMCID: PMC7317438 DOI: 10.1002/anie.202001599] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Indexed: 01/19/2023]
Abstract
Presented here is that isolated, long‐lived electronic states of ReC+ serve as the root cause for distinctly different reactivities of this diatomic ion in the thermal activation of dihydrogen. Detailed high‐level quantum chemical calculations support the experimental findings obtained in the highly diluted gas phase using FT‐ICR mass spectrometry. The origin for the existence of these long‐lived excited electronic states and the resulting implications for the varying mechanisms of dihydrogen splitting are addressed.
Collapse
Affiliation(s)
- Jilai Li
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 115, 10623, Berlin, Germany.,Institute of Theoretical Chemistry, Jilin University, 130023, Changchun, China
| | - Caiyun Geng
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 115, 10623, Berlin, Germany
| | - Thomas Weiske
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 115, 10623, Berlin, Germany
| | - Helmut Schwarz
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 115, 10623, Berlin, Germany
| |
Collapse
|
26
|
Li J, Geng C, Weiske T, Schwarz H. On the Crucial Role of Isolated Electronic States in the Thermal Reaction of ReC
+
with Dihydrogen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jilai Li
- Institut für ChemieTechnische Universität Berlin Straße des 17. Juni 115 10623 Berlin Germany
- Institute of Theoretical ChemistryJilin University 130023 Changchun China
| | - Caiyun Geng
- Institut für ChemieTechnische Universität Berlin Straße des 17. Juni 115 10623 Berlin Germany
| | - Thomas Weiske
- Institut für ChemieTechnische Universität Berlin Straße des 17. Juni 115 10623 Berlin Germany
| | - Helmut Schwarz
- Institut für ChemieTechnische Universität Berlin Straße des 17. Juni 115 10623 Berlin Germany
| |
Collapse
|
27
|
Affiliation(s)
- Sason Shaik
- Institute of Chemistry The Hebrew University of Jerusalem Edmond J. Safra Campus, Givat Ram Jerusalem 9090401 Israel
| |
Collapse
|
28
|
Sweeny BC, Pan H, Ard SG, Shuman NS, Viggiano AA. On the Role of Hydrogen Atom Transfer (HAT) in Thermal Activation of Methane by MnO+: Entropy vs. Energy. ACTA ACUST UNITED AC 2019. [DOI: 10.1515/zpch-2018-1354] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Abstract
The temperature dependent kinetics and product branching fractions of first-row transition metal oxide cation MnO+ with CH4 and CD4 at temperatures between 200 and 600 K are measured using a selected-ion flow tube apparatus. Likely reaction mechanisms are determined by comparison of temperature dependent kinetics to statistical modeling along calculated reaction coordinates. The data is well-modeled with the reaction proceeding over a rate limiting four-centered transition state leading to an insertion intermediate, similar to reactions of NiO+ and FeO+, and showing characteristics of proton-coupled electron transfer (PCET). However, a more direct pathway traversing a transition state of hydrogen atom transfer (HAT) character to a hydroxyl intermediate is found to possibly be competitive, especially with increasing temperature. While uncertainties in calculated energetics limit quantitative assessment of the role of HAT at thermal energies, it is clear that this mechanism becomes increasingly prevalent in higher energy regimes.
Collapse
Affiliation(s)
- Brendan C. Sweeny
- NRC postdoc at Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base , New Mexico 87117 , USA
| | - Hanqing Pan
- USRA Space Scholar at Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base , New Mexico 87117 , USA
| | - Shaun G. Ard
- Institute for Scientific Research, Boston College , Boston, MA 02467 , USA
| | - Nicholas S. Shuman
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base , New Mexico 87117 , USA
| | - Albert A. Viggiano
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base , New Mexico 87117 , USA
| |
Collapse
|
29
|
Selective Generation of Free Hydrogen Atoms in the Reaction of Methane with Diatomic Gold Boride Cations. ACTA ACUST UNITED AC 2019. [DOI: 10.1515/zpch-2018-1334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Abstract
The thermal reaction of diatomic gold boride cation AuB+ with methane has been studied by using state-of-the-art mass spectrometry in conjunction with density functional theory calculations. The AuB+ ion can activate a methane molecule to produce exclusively the free hydrogen atom, an important intermediate in hydrocarbon transformation. This result is different from the reactivity of AuC+ and CuB+ counterparts with methane in previous studies. The AuC+ cation mainly transforms methane into ethylene. The CuB+ reaction system principally generates the free hydrogen atoms, but it also gives rise a portion of ethylene-like product H2B−CH2. The B atom of AuB+ is the active site to activate methane. The strong relativistic effect on gold plays an important role for the product selectivity. The mechanistic insights obtained from this study provide guidance for rational design of active sites with high product selectivity toward methane activation.
Collapse
|
30
|
Sun X, Zhou S, Yue L, Schlangen M, Schwarz H. Thermal Activation of CH 4 and H 2 as Mediated by the Ruthenium Oxide Cluster Ions [RuO x ] + (x=1-3): On the Influence of Oxidation States. Chemistry 2019; 25:3550-3559. [PMID: 30681209 DOI: 10.1002/chem.201806187] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Indexed: 12/12/2022]
Abstract
Thermal gas-phase reactions of the ruthenium-oxide clusters [RuOx ]+ (x=1-3) with methane and dihydrogen have been explored by using FT-ICR mass spectrometry complemented by high-level quantum chemical calculations. For methane activation, as compared to the previously studied [RuO]+ /CH4 couple, the higher oxidized Ru systems give rise to completely different product distributions. [RuO2 ]+ brings about the generations of [Ru,O,C,H2 ]+ /H2 O, [Ru,O,C]+ /H2 /H2 O, and [Ru,O,H2 ]+ /CH2 O, whereas [RuO3 ]+ exhibits a higher selectivity and efficiency in producing formaldehyde and syngas (CO+H2 ). Regarding the reactions with H2 , as compared to CH4 , both [RuO]+ and [RuO2 ]+ react similarly inefficiently with oxygen-atom transfer being the main reaction channel; in contrast, [RuO3 ]+ is inert toward dihydrogen. Theoretical analysis reveals that the reduction of the metal center drives the overall oxidation of methane, whereas the back-bonding orbital interactions between the cluster ions and dihydrogen control the H-H bond activation. Furthermore, the reactivity patterns of [RuOx ]+ (x=1-3) with CH4 and H2 have been compared with the previously reported results of Group 8 analogues [OsOx ]+ /CH4 /H2 (x=1-3) and the [FeO]+ /H2 system. The electronic origins for their distinctly different reaction behaviors have been addressed.
Collapse
Affiliation(s)
- Xiaoyan Sun
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Shaodong Zhou
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany.,Zhejiang Provincial Key Laboratory of, Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, 310027, Hangzhou, P. R. China
| | - Lei Yue
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Maria Schlangen
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Helmut Schwarz
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| |
Collapse
|
31
|
Schwarz H, Asmis KR. Identification of Active Sites and Structural Characterization of Reactive Ionic Intermediates by Cryogenic Ion Trap Vibrational Spectroscopy. Chemistry 2019; 25:2112-2126. [PMID: 30623993 DOI: 10.1002/chem.201805836] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/07/2019] [Indexed: 01/02/2023]
Abstract
Cryogenic ion trap vibrational spectroscopy paired with quantum chemistry currently represents the most generally applicable approach for the structural investigation of gaseous cluster ions that are not amenable to direct absorption spectroscopy. Here, we give an overview of the most popular variants of infrared action spectroscopy and describe the advantages of using cryogenic ion traps in combination with messenger tagging and vibrational predissociation spectroscopy. We then highlight a few recent studies that apply this technique to identify highly reactive ionic intermediates and to characterize their reactive sites. We conclude by commenting on future challenges and potential developments in the field.
Collapse
Affiliation(s)
- Helmut Schwarz
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Knut R Asmis
- Wilhelm-Ostwald Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstr. 2, 04103, Leipzig, Germany
| |
Collapse
|
32
|
Barwa E, Ončák M, Pascher TF, Taxer T, van der Linde C, Beyer MK. CO 2/O 2 Exchange in Magnesium-Water Clusters Mg +(H 2O) n. J Phys Chem A 2019; 123:73-81. [PMID: 30516989 PMCID: PMC6331139 DOI: 10.1021/acs.jpca.8b10530] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/03/2018] [Indexed: 11/30/2022]
Abstract
Hydrated singly charged metal ions doped with carbon dioxide, Mg2+(CO2)-(H2O) n, in the gas phase are valuable model systems for the electrochemical activation of CO2. Here, we study these systems by Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry combined with ab initio calculations. We show that the exchange reaction of CO2 with O2 proceeds fast with bare Mg+(CO2), with a rate coefficient kabs = 1.2 × 10-10 cm3 s-1, while hydrated species exhibit a lower rate in the range of kabs = (1.2-2.4) × 10-11 cm3 s-1 for this strongly exothermic reaction. Water makes the exchange reaction more exothermic but, at the same time, considerably slower. The results are rationalized with a need for proper orientation of the reactants in the hydrated system, with formation of a Mg2+(CO4)-(H2O) n intermediate while the activation energy is negligible. According to our nanocalorimetric analysis, the exchange reaction of the hydrated ion is exothermic by -1.7 ± 0.5 eV, in agreement with quantum chemical calculations.
Collapse
Affiliation(s)
- Erik Barwa
- Institut für Ionenphysik
und Angewandte Physik, Universität
Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Milan Ončák
- Institut für Ionenphysik
und Angewandte Physik, Universität
Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Tobias F. Pascher
- Institut für Ionenphysik
und Angewandte Physik, Universität
Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Thomas Taxer
- Institut für Ionenphysik
und Angewandte Physik, Universität
Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Christian van der Linde
- Institut für Ionenphysik
und Angewandte Physik, Universität
Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Martin K. Beyer
- Institut für Ionenphysik
und Angewandte Physik, Universität
Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| |
Collapse
|
33
|
Geng C, Weiske T, Li J, Shaik S, Schwarz H. Intrinsic Reactivity of Diatomic 3d Transition-Metal Carbides in the Thermal Activation of Methane: Striking Electronic Structure Effects. J Am Chem Soc 2018; 141:599-610. [PMID: 30520302 DOI: 10.1021/jacs.8b11739] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mechanistic aspects of the C-H bond activation of methane by metal-carbide cations MC+ of the 3d transition-metals Sc-Zn were elucidated by NEVPT2//CASSCF quantum-chemical calculations and verified experimentally for M = Ti, V, Fe, and Cu by using Fourier transform ion-cyclotron resonance mass spectrometry. While MC+ species with M = Sc, Ti, V, Cr, Cu, and Zn activate CH4 at ambient temperature, this is prevented with carbide cations of M = Mn, Fe, and Co by high apparent barriers; NiC+ has a small apparent barrier. Hydrogen-atom transfers from methane to metal-carbide cations were found to proceed via a proton-coupled electron transfer mechanism for M = Sc-Co; wherein the doubly occupied πxz/yz-orbitals between metal and carbon at the carbon site serve as electron donors and the corresponding metal-centered vacant π*xz/yz-orbitals as electron acceptors. Classical hydrogen-atom transfer transpires only in the case of NiC+, while ZnC+ follows a mechanistic scenario, in which a formally hydridic hydrogen is transferred. CuC+ reacts by a synchronous activation of two C-H bonds. While spin density is often so crucial for the reactions of numerous MO+/CH4 couples, it is much less important for the C-H bond activation by carbide cations of the 3d transition-metals, in which one notes large changes in bond dissociation energies, spin states, number of d-electrons, and charge distributions. All these factors jointly affect both the reactivity of the metal carbides and their mechanisms of C-H bond activation.
Collapse
Affiliation(s)
- Caiyun Geng
- Institut für Chemie , Technische Universität Berlin , Straße des 17. Juni 115 , 10623 Berlin , Germany
| | - Thomas Weiske
- Institut für Chemie , Technische Universität Berlin , Straße des 17. Juni 115 , 10623 Berlin , Germany
| | - Jilai Li
- Institute of Theoretical Chemistry , Jilin University , Changchun 130023 , People's Republic of China.,Institut für Chemie , Technische Universität Berlin , Straße des 17. Juni 115 , 10623 Berlin , Germany
| | - Sason Shaik
- Institute of Chemistry , The Hebrew University of Jerusalem , 9190401 Jerusalem , Israel
| | - Helmut Schwarz
- Institut für Chemie , Technische Universität Berlin , Straße des 17. Juni 115 , 10623 Berlin , Germany
| |
Collapse
|
34
|
Theoretical investigation of the gas-phase reaction of NiO+ with ethane. Struct Chem 2018. [DOI: 10.1007/s11224-018-1238-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
35
|
Ta 2 +-mediated ammonia synthesis from N 2 and H 2 at ambient temperature. Proc Natl Acad Sci U S A 2018; 115:11680-11687. [PMID: 30352846 DOI: 10.1073/pnas.1814610115] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In a full catalytic cycle, bare Ta2 + in the highly diluted gas phase is able to mediate the formation of ammonia in a Haber-Bosch-like process starting from N2 and H2 at ambient temperature. This finding is the result of extensive quantum chemical calculations supported by experiments using Fourier transform ion cyclotron resonance MS. The planar Ta2N2 +, consisting of a four-membered ring of alternating Ta and N atoms, proved to be a key intermediate. It is formed in a highly exothermic process either by the reaction of Ta2 + with N2 from the educt side or with two molecules of NH3 from the product side. In the thermal reaction of Ta2 + with N2, the N≡N triple bond of dinitrogen is entirely broken. A detailed analysis of the frontier orbitals involved in the rate-determining step shows that this unexpected reaction is accomplished by the interplay of vacant and doubly occupied d-orbitals, which serve as both electron acceptors and electron donors during the cleavage of the triple bond of N≡N by the ditantalum center. The ability of Ta2 + to serve as a multipurpose tool is further shown by splitting the single bond of H2 in a less exothermic reaction as well. The insight into the microscopic mechanisms obtained may provide guidance for the rational design of polymetallic catalysts to bring about ammonia formation by the activation of molecular nitrogen and hydrogen at ambient conditions.
Collapse
|
36
|
Sweeny BC, Ard SG, Shuman NS, Viggiano AA. The Role of Non‐Reactive Binding Sites in the AlVO
4
+
+CO/AlVO
3
+
+N
2
O Catalytic Cycle. Chemphyschem 2018; 19:2835-2838. [DOI: 10.1002/cphc.201800714] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Indexed: 01/02/2023]
Affiliation(s)
- Brendan C. Sweeny
- National Academy of Sciences Washington DC 20001
- Air Force Research Laboratory, Space Vehicles Directorate Kirtland Air Force Base New Mexico 87117
| | - Shaun G. Ard
- Institute for Scientific Research Boston College Boston MA 02467
- Air Force Research Laboratory, Space Vehicles Directorate Kirtland Air Force Base New Mexico 87117
| | - Nicholas S. Shuman
- Air Force Research Laboratory, Space Vehicles Directorate Kirtland Air Force Base New Mexico 87117
| | - Albert A. Viggiano
- Air Force Research Laboratory, Space Vehicles Directorate Kirtland Air Force Base New Mexico 87117
| |
Collapse
|
37
|
Taylor WS, Pedder RE, Eden AB, Emmerling CL. Systematic Ligand Effects in the Reactions of Fe +( 6D) and FeX +( 5Δ) with CF 3X (X = Cl, Br, I). Ion Mobility Measurements of FeX +( 5Δ) (X = F, Cl, Br, I) in He. J Phys Chem A 2018; 122:6509-6523. [PMID: 30020785 DOI: 10.1021/acs.jpca.8b05708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The gas phase reactions of Fe+(6D) and FeX+(5Δ) with CF3X (X = Cl, Br, I) were examined using a selected-ion drift cell reactor under near-thermal energetic conditions. All reactions were carried out in a uniform electric field at a total pressure of 3.5 Torr at room temperature. In addition, reduced zero-field mobilities were measured for FeX+(5Δ) (X = F, Cl, Br, I) in He, yielding values of 14.2 ± 0.4, 13.7 ± 0.3, 13.3 ± 0.2, and 13.0 ± 0.3 cm2·V-1·s-1, respectively. Fe+(6D) reacts slowly with CF3Cl and CF3Br, producing an adduct exclusively with the former and FeBr+ with the latter. Conversely, Fe+(6D) exhibits efficient chemistry with CF3I to yield FeI+, FeCF3+, and FeFI+ in parallel reactions. Dependent on the halogen, FeX+(5Δ) reactions display one or more of four different processes: F- abstraction, X- abstraction, halogen switching, and association. In general, the presence of the halogen ligand enhances the rate of reaction over that of Fe+(6D) with the same molecular substrate. With CF3Cl, this ligand effect is observed to vary systematically with the electron-withdrawing capability of the halogen. This is illustrated by the correlation between reaction efficiency and the charge distribution on FeX+(5Δ) as determined from DFT calculations. Specific reaction outcomes for the FeX+(5Δ) reactions lead to upper and lower bounds on XFe-Y bond strengths (X, Y = F, Cl, Br, I) that are generally consistent with one another and with known trends.
Collapse
Affiliation(s)
- William S Taylor
- Department of Chemistry University of Central Arkansas Conway , Arkansas 72035 , United States
| | - Randall E Pedder
- Department of Chemistry University of Central Arkansas Conway , Arkansas 72035 , United States
| | - Angela B Eden
- Department of Chemistry University of Central Arkansas Conway , Arkansas 72035 , United States
| | - Christopher L Emmerling
- Department of Chemistry University of Central Arkansas Conway , Arkansas 72035 , United States
| |
Collapse
|
38
|
Gutsev GL, Bozhenko KV, Gutsev LG, Utenyshev AN, Aldoshin SM. Dependence of Properties and Exchange Coupling Constants on the Charge in the Mn2On and Fe2On Series. J Phys Chem A 2018; 122:5644-5655. [DOI: 10.1021/acs.jpca.8b03496] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- G. L. Gutsev
- Department of Physics, Florida A&M University, Tallahassee, Florida 32307, United States
| | - K. V. Bozhenko
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka 142432, Moscow Region, Russia
- Department of Physical and Colloid Chemistry, Peoples’ Friendship University of Russia, Moscow 117198, Russia
| | - L. G. Gutsev
- Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - A. N. Utenyshev
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka 142432, Moscow Region, Russia
| | - S. M. Aldoshin
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka 142432, Moscow Region, Russia
| |
Collapse
|
39
|
Zhao Y, Hu JC, Cui JT, Xu LL, Ma JB. Fe 2 O + Cation Mediated Propane Oxidation by Dioxygen in the Gas Phase. Chemistry 2018; 24:5920-5926. [PMID: 29424048 DOI: 10.1002/chem.201705997] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Indexed: 11/11/2022]
Abstract
The mass-selected Fe2 O+ cation mediated propane oxidation by O2 was investigated by mass spectrometry and density functional theory calculations. In the reaction of Fe2 O+ with C3 H8 , H2 was liberated by C-H bond activation to give Fe2 OC3 H6+ . Interestingly, when a mixture of C3 H8 /O2 was introduced into the reactor, an intense signal that corresponded to the Fe2 O2+ cation was present; the experiments indicated that O2 was activated in its reaction with Fe2 O(C3 H6 )+ to give Fe2 O2+ and C3 H6 O (acetone or propanal). A Langmuir-Hinshelwood-like mechanism was adopted in the propane oxidation reaction by O2 on gas-phase Fe2 O+ cations. In comparison with the absence of Fe2 O2+ in the reaction of Fe2 O+ with O2 , the ligand effect of C3 H6 on Fe2 OC3 H6+ is important in the oxygen activation reaction. The theoretical results are consistent with the experimental observations. The propane oxidation by O2 in the presence of Fe2 O+ might be applied as a model for alkane and O2 activations over iron oxide catalysts, and the mechanisms and kinetic data are useful for understanding corresponding heterogeneous reactions.
Collapse
Affiliation(s)
- Yue Zhao
- The Institute for Chemical Physics, Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 102488, Beijing, P. R. China
| | - Ji-Chuang Hu
- The Institute for Chemical Physics, Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 102488, Beijing, P. R. China
| | - Jia-Tong Cui
- The Institute for Chemical Physics, Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 102488, Beijing, P. R. China
| | - Lin-Lin Xu
- The Institute for Chemical Physics, Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 102488, Beijing, P. R. China
| | - Jia-Bi Ma
- The Institute for Chemical Physics, Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 102488, Beijing, P. R. China
| |
Collapse
|
40
|
Sun X, Zhou S, Yue L, Schlangen M, Schwarz H. On the Origin of the Distinctly Different Reactivity of Ruthenium in [MO]+
/CH4
Systems (M=Fe, Ru, Os). Angew Chem Int Ed Engl 2018. [DOI: 10.1002/anie.201800173] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xiaoyan Sun
- Institut für Chemie; Technische Universität Berlin; Straße des 17. Juni 135 10623 Berlin Germany
| | - Shaodong Zhou
- Institut für Chemie; Technische Universität Berlin; Straße des 17. Juni 135 10623 Berlin Germany
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering; Zhejiang University; 310027 Hangzhou P.R. China
| | - Lei Yue
- Institut für Chemie; Technische Universität Berlin; Straße des 17. Juni 135 10623 Berlin Germany
| | - Maria Schlangen
- Institut für Chemie; Technische Universität Berlin; Straße des 17. Juni 135 10623 Berlin Germany
| | - Helmut Schwarz
- Institut für Chemie; Technische Universität Berlin; Straße des 17. Juni 135 10623 Berlin Germany
| |
Collapse
|
41
|
Sun X, Zhou S, Yue L, Schlangen M, Schwarz H. Über die Ursachen der deutlich unterschiedlichen Reaktivität von Ruthenium unter den [MO]+
/CH4
-Systemen (M=Fe, Ru, Os). Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201800173] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xiaoyan Sun
- Institut für Chemie; Technische Universität Berlin; Straße des 17. Juni 135 10623 Berlin Deutschland
| | - Shaodong Zhou
- Institut für Chemie; Technische Universität Berlin; Straße des 17. Juni 135 10623 Berlin Deutschland
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering; Zhejiang University; 310027 Hangzhou V.R. China
| | - Lei Yue
- Institut für Chemie; Technische Universität Berlin; Straße des 17. Juni 135 10623 Berlin Deutschland
| | - Maria Schlangen
- Institut für Chemie; Technische Universität Berlin; Straße des 17. Juni 135 10623 Berlin Deutschland
| | - Helmut Schwarz
- Institut für Chemie; Technische Universität Berlin; Straße des 17. Juni 135 10623 Berlin Deutschland
| |
Collapse
|
42
|
Gani TZH, Kulik HJ. Unifying Exchange Sensitivity in Transition-Metal Spin-State Ordering and Catalysis through Bond Valence Metrics. J Chem Theory Comput 2017; 13:5443-5457. [DOI: 10.1021/acs.jctc.7b00848] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Terry Z. H. Gani
- Department
of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Heather J. Kulik
- Department
of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
43
|
Li XN, Zou XP, He SG. Metal-mediated catalysis in the gas phase: A review. CHINESE JOURNAL OF CATALYSIS 2017. [DOI: 10.1016/s1872-2067(17)62782-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
44
|
Sun X, Zhou S, Yue L, Schlangen M, Schwarz H. Metal‐Free, Room‐Temperature Oxygen‐Atom Transfer in the N
2
O/CO Redox Couple as Catalyzed by [Si
2
O
x
]
.+
(
x
=2
–
5). Angew Chem Int Ed Engl 2017. [DOI: 10.1002/anie.201703453] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Xiaoyan Sun
- Institut für ChemieTechnische Universität Berlin Strasse des 17. Juni 135 10623 Berlin Germany
| | - Shaodong Zhou
- Institut für ChemieTechnische Universität Berlin Strasse des 17. Juni 135 10623 Berlin Germany
| | - Lei Yue
- Institut für ChemieTechnische Universität Berlin Strasse des 17. Juni 135 10623 Berlin Germany
| | - Maria Schlangen
- Institut für ChemieTechnische Universität Berlin Strasse des 17. Juni 135 10623 Berlin Germany
| | - Helmut Schwarz
- Institut für ChemieTechnische Universität Berlin Strasse des 17. Juni 135 10623 Berlin Germany
| |
Collapse
|
45
|
Sun X, Zhou S, Yue L, Schlangen M, Schwarz H. Metallfreier, durch [Si
2
O
x
]
.+
(
x
=2
–
5) katalysierter Sauerstofftransfer im N
2
O/CO‐Redoxpaar bei Raumtemperatur. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201703453] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xiaoyan Sun
- Institut für ChemieTechnische Universität Berlin Straße des 17. Juni 135 10623 Berlin Deutschland
| | - Shaodong Zhou
- Institut für ChemieTechnische Universität Berlin Straße des 17. Juni 135 10623 Berlin Deutschland
| | - Lei Yue
- Institut für ChemieTechnische Universität Berlin Straße des 17. Juni 135 10623 Berlin Deutschland
| | - Maria Schlangen
- Institut für ChemieTechnische Universität Berlin Straße des 17. Juni 135 10623 Berlin Deutschland
| | - Helmut Schwarz
- Institut für ChemieTechnische Universität Berlin Straße des 17. Juni 135 10623 Berlin Deutschland
| |
Collapse
|
46
|
Thompson MC, Dodson LG, Weber JM. Structural Motifs of [Fe(CO2)n]− Clusters (n = 3–7). J Phys Chem A 2017; 121:4132-4138. [DOI: 10.1021/acs.jpca.7b02742] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Michael C. Thompson
- JILA
and Department of Chemistry and Biochemistry and ‡JILA and NIST, University of Colorado, 440 UCB, Boulder, Colorado 80309-0440, United States
| | - Leah G. Dodson
- JILA
and Department of Chemistry and Biochemistry and ‡JILA and NIST, University of Colorado, 440 UCB, Boulder, Colorado 80309-0440, United States
| | - J. Mathias Weber
- JILA
and Department of Chemistry and Biochemistry and ‡JILA and NIST, University of Colorado, 440 UCB, Boulder, Colorado 80309-0440, United States
| |
Collapse
|
47
|
Essafi S, Tew DP, Harvey JN. The Dynamics of the Reaction of FeO+
and H2
: A Model for Inorganic Oxidation. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201702009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Stéphanie Essafi
- School of Chemistry; University of Bristol; Cantock's Close Bristol BS8 1TS UK
| | - David P. Tew
- School of Chemistry; University of Bristol; Cantock's Close Bristol BS8 1TS UK
| | - Jeremy N. Harvey
- School of Chemistry; University of Bristol; Cantock's Close Bristol BS8 1TS UK
- Department of Chemistry; KU Leuven; Celestijnenlaan 200F 3001 Heverlee Belgium
| |
Collapse
|
48
|
Essafi S, Tew DP, Harvey JN. The Dynamics of the Reaction of FeO+
and H2
: A Model for Inorganic Oxidation. Angew Chem Int Ed Engl 2017; 56:5790-5794. [DOI: 10.1002/anie.201702009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Stéphanie Essafi
- School of Chemistry; University of Bristol; Cantock's Close Bristol BS8 1TS UK
| | - David P. Tew
- School of Chemistry; University of Bristol; Cantock's Close Bristol BS8 1TS UK
| | - Jeremy N. Harvey
- School of Chemistry; University of Bristol; Cantock's Close Bristol BS8 1TS UK
- Department of Chemistry; KU Leuven; Celestijnenlaan 200F 3001 Heverlee Belgium
| |
Collapse
|
49
|
Wang Y, Sun X, Zhang J, Li J. A Theoretical Study on Methane C—H Bond Activation by Bare [FeO]+/0/–. J Phys Chem A 2017; 121:3501-3514. [DOI: 10.1021/acs.jpca.6b13113] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yang Wang
- Institute of Theoretical
Chemistry, Jilin University, Changchun 130023, People’s Republic of China
| | - Xiaoli Sun
- Institute of Theoretical
Chemistry, Jilin University, Changchun 130023, People’s Republic of China
| | - Jun Zhang
- Department
of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Jilai Li
- Institute of Theoretical
Chemistry, Jilin University, Changchun 130023, People’s Republic of China
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| |
Collapse
|
50
|
Beck JE, Dudley TJ. Theoretical Investigation of the Gas-Phase Reaction of CrO + with Propane. J Phys Chem A 2017; 121:1715-1725. [DOI: 10.1021/acs.jpca.6b10909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jennifer E. Beck
- Department
of Chemistry, Villanova University, 800 Lancaster Avenue, Villanova, Pennsylvania 19085, United States
| | - Timothy J. Dudley
- Department
of Chemistry, Villanova University, 800 Lancaster Avenue, Villanova, Pennsylvania 19085, United States
- Math,
Science and Technology Department, University of Minnesota Crookston, 2900 University Avenue, Crookston, Minnesota 56716, United States
| |
Collapse
|