1
|
Zhou Y, Du W, Chen Y, Li L, Xiao X, Xu Y, Yang W, Hu X, Wang B, Zhang J, Jiang Q, Wang Y. Pathogen detection via inductively coupled plasma mass spectrometry analysis with nanoparticles. Talanta 2024; 277:126325. [PMID: 38833906 DOI: 10.1016/j.talanta.2024.126325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/24/2024] [Accepted: 05/24/2024] [Indexed: 06/06/2024]
Abstract
Infections caused by viruses and bacteria pose a significant threat to global public health, emphasizing the critical importance of timely and precise detection methods. Inductively coupled plasma mass spectrometry (ICP-MS), a contemporary approach for pathogen detection, offers distinct advantages such as high sensitivity, a wide linear range, and multi-index capabilities. This review elucidates the underexplored application of ICP-MS in conjunction with functional nanoparticles (NPs) for the identification of viruses and bacteria. The review commences with an elucidation of the underlying principles, procedures, target pathogens, and NP requirements for this innovative approach. Subsequently, a thorough analysis of the advantages and limitations associated with these techniques is provided. Furthermore, the review delves into a comprehensive examination of the challenges encountered when utilizing NPs and ICP-MS for pathogen detection, culminating in a forward-looking assessment of the potential pathways for advancement in this domain. Thus, this review contributes novel perspectives to the field of pathogen detection in biomedicine by showcasing the promising synergy of ICP-MS and NPs.
Collapse
Affiliation(s)
- Yujie Zhou
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China
| | - Wenli Du
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China
| | - Yuzuo Chen
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Lei Li
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China
| | - Xuanyu Xiao
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China
| | - Yuanyuan Xu
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China
| | - Wenjuan Yang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xuefeng Hu
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Baoning Wang
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Jieyu Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China.
| | - Qing Jiang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China
| |
Collapse
|
2
|
Younes N, Yassine HM, Kourentzi K, Tang P, Litvinov D, Willson RC, Abu-Raddad LJ, Nasrallah GK. A review of rapid food safety testing: using lateral flow assay platform to detect foodborne pathogens. Crit Rev Food Sci Nutr 2023; 64:9910-9932. [PMID: 37350754 DOI: 10.1080/10408398.2023.2217921] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Abstract
The detrimental impact of foodborne pathogens on human health makes food safety a major concern at all levels of production. Conventional methods to detect foodborne pathogens, such as live culture, high-performance liquid chromatography, and molecular techniques, are relatively tedious, time-consuming, laborious, and expensive, which hinders their use for on-site applications. Recurrent outbreaks of foodborne illness have heightened the demand for rapid and simple technologies for detection of foodborne pathogens. Recently, Lateral flow assays (LFA) have drawn attention because of their ability to detect pathogens rapidly, cheaply, and on-site. Here, we reviewed the latest developments in LFAs to detect various foodborne pathogens in food samples, giving special attention to how reporters and labels have improved LFA performance. We also discussed different approaches to improve LFA sensitivity and specificity. Most importantly, due to the lack of studies on LFAs for the detection of viral foodborne pathogens in food samples, we summarized our recent research on developing LFAs for the detection of viral foodborne pathogens. Finally, we highlighted the main challenges for further development of LFA platforms. In summary, with continuing improvements, LFAs may soon offer excellent performance at point-of-care that is competitive with laboratory techniques while retaining a rapid format.
Collapse
Affiliation(s)
- Nadin Younes
- Biomedical Research Center, Qatar University, Doha, Qatar
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Hadi M Yassine
- Biomedical Research Center, Qatar University, Doha, Qatar
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Katerina Kourentzi
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas, USA
| | - Patrick Tang
- Department of Pathology, Sidra Medicine, Doha, Qatar
| | - Dmitri Litvinov
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas, USA
- Center for Integrated Bio & Nano Systems, University of Houston, Houston, Texas, USA
| | - Richard C Willson
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas, USA
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Laith J Abu-Raddad
- Infectious Disease Epidemiology Group, Weill Cornell Medicine-Qatar, Cornell University, Doha, Qatar
- World Health Organization Collaborating Centre for Disease Epidemiology Analytics on HIV/AIDS, Sexually Transmitted Infections, and Viral Hepatitis, Weill Cornell Medicine-Qatar, Cornell University, Doha, Qatar
- Department of Healthcare Policy and Research, Weill Cornell Medicine, Cornell University, New York, New York, USA
| | - Gheyath K Nasrallah
- Biomedical Research Center, Qatar University, Doha, Qatar
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
3
|
Singha S, Thomas R, Viswakarma JN, Gupta VK. Foodborne illnesses of Escherichia coli O157origin and its control measures. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:1274-1283. [PMID: 36936116 PMCID: PMC10020406 DOI: 10.1007/s13197-022-05381-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/12/2022] [Accepted: 01/21/2022] [Indexed: 12/31/2022]
Abstract
Foodborne illnesses are leading source of morbidity and mortality in both developed and developing nations. Escherichia coli O157 is one of the most reported foodborne pathogen that emerged in the past few decades. South East Asia region suffers the highest average burden of diarrhoeal mortality, especially when it comes to child mortality.Query Many studies were undertaken in the developed nations to evaluate the role of E. coli O157 as one of the etiological agent in foodborne outbreaks. In this article, we discuss the distribution of E. coli O157 serotype in the food chains of South East Asian countries, with a special focus on India where more than half a million child diarrhoeal deaths occurs every year and the reasons for which is often not ascertained to the fullest extent. The article also describes in detail about the various detection methods and control measures with respect to E. coli O157. The aim of this study is to document and highlight the extent of Foodborne infections of E. coli O157 origin and thereby taking effective and proactive preventive measures.
Collapse
Affiliation(s)
- Songeeta Singha
- Food Quality Control Laboratory, ICAR-National Research Centre on Pig, Rani, Guwahati, Assam 781131 India
| | - Rajendran Thomas
- Food Quality Control Laboratory, ICAR-National Research Centre on Pig, Rani, Guwahati, Assam 781131 India
| | - Jai Narain Viswakarma
- Assam Don Bosco University, Tapesia Gardens, Kamarkuchi, Sonapur, Assam 782402 India
| | - Vivek Kumar Gupta
- Food Quality Control Laboratory, ICAR-National Research Centre on Pig, Rani, Guwahati, Assam 781131 India
| |
Collapse
|
4
|
Schurig S, Kobialka R, Wende A, Ashfaq Khan MA, Lübcke P, Eger E, Schaufler K, Daugschies A, Truyen U, Abd El Wahed A. Rapid Reverse Purification DNA Extraction Approaches to Identify Microbial Pathogens in Wastewater. Microorganisms 2023; 11:813. [PMID: 36985386 PMCID: PMC10056086 DOI: 10.3390/microorganisms11030813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/06/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023] Open
Abstract
Wastewater monitoring became a promising solution in the early detection of outbreaks. Despite the achievements in the identification of pathogens in wastewater using real-time PCR, there is still a lack of reliable rapid nucleic acid extraction protocols. Therefore, in this study, samples were subjected to alkali, proteinase K and/or bead-beating followed by reverse purification magnetic beads-based separation. Wastewater samples spiked with S. aureus, E. coli and C. parvum were used as examples for Gram-positive and -negative bacteria and protozoa, respectively. All results were compared with a spin column technology as a reference method. Proteinase K with bead beating (vortexing with 0.1 mm glass beads for three minutes) was particularly successful for bacterial DNA extraction (three- to five-fold increase). The most useful extraction protocol for protozoa was pre-treatment with proteinase K (eight-fold increase). The selected methods were sensitive as far as detecting one bacterial cell per reaction for S. aureus, ten bacterial cells for E. coli and two oocysts for C. parvum. The extraction reagents are cold chain independent and no centrifuge or other large laboratory equipment is required to perform DNA extraction. A controlled validation trial is needed to test the effectiveness at field levels.
Collapse
Affiliation(s)
- Sarah Schurig
- Institute of Animal Hygiene and Veterinary Public Health, Leipzig University, 04103 Leipzig, Germany
- Xpedite Diagnostics GmbH, 80687 Munich, Germany
| | - Rea Kobialka
- Institute of Animal Hygiene and Veterinary Public Health, Leipzig University, 04103 Leipzig, Germany
| | - Andy Wende
- Xpedite Diagnostics GmbH, 80687 Munich, Germany
| | - Md Anik Ashfaq Khan
- Institute of Animal Hygiene and Veterinary Public Health, Leipzig University, 04103 Leipzig, Germany
| | - Phillip Lübcke
- Institute of Pharmacy, University of Greifswald, 17489 Greifswald, Germany
| | - Elias Eger
- Institute of Infection Medicine, Christian-Albrecht University Kiel, 24105 Kiel, Germany
- University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Katharina Schaufler
- Institute of Pharmacy, University of Greifswald, 17489 Greifswald, Germany
- Institute of Infection Medicine, Christian-Albrecht University Kiel, 24105 Kiel, Germany
- University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Arwid Daugschies
- Institute of Parasitology, Centre for Infectious Disease, Leipzig University, 04103 Leipzig, Germany
| | - Uwe Truyen
- Institute of Animal Hygiene and Veterinary Public Health, Leipzig University, 04103 Leipzig, Germany
| | - Ahmed Abd El Wahed
- Institute of Animal Hygiene and Veterinary Public Health, Leipzig University, 04103 Leipzig, Germany
| |
Collapse
|
5
|
Sarengaowa, Hu W, Feng K, Jiang A, Xiu Z, Lao Y, Li Y, Long Y. An in situ-Synthesized Gene Chip for the Detection of Food-Borne Pathogens on Fresh-Cut Cantaloupe and Lettuce. Front Microbiol 2020; 10:3089. [PMID: 32117079 PMCID: PMC7012807 DOI: 10.3389/fmicb.2019.03089] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 12/20/2019] [Indexed: 02/04/2023] Open
Abstract
Fresh foods are vulnerable to foodborne pathogens which cause foodborne illness and endanger people's life and safety. The rapid detection of foodborne pathogens is crucial for food safety surveillance. An in situ-synthesized gene chip for the detection of foodborne pathogens on fresh-cut fruits and vegetables was developed. The target genes were identified and screened by comparing the specific sequences of Salmonella Typhimurium, Vibrio parahemolyticus, Staphylococcus aureus, Listeria monocytogenes, and Escherichia coli O157:H7 from the National Center for Biotechnology Information database. Tiling array probes were designed to target selected genes in an optimized hybridization system. A total of 141 specific probes were selected from 3,227 hybridization probes, comprising 26 L. monocytogenes, 24 S. aureus, 25 E. coli O157:H7, 20 Salmonella Typhimurium, and 46 V. parahemolyticus probes that are unique to this study. The optimized assay had strong amplification signals and high accuracy. The detection limit for the five target pathogens on fresh-cut cantaloupe and lettuce was approximately 3 log cfu/g without culturing and with a detection time of 24 h. The detection technology established in this study can rapidly detect and monitor the foodborne pathogens on fresh-cut fruits and vegetables throughout the logistical distribution chain, i.e., processing, cleaning, fresh-cutting, packaging, storage, transport, and sale, and represents a valuable technology that support the safety of fresh agricultural products.
Collapse
Affiliation(s)
- Sarengaowa
- School of Bioengineering, Dalian University of Technology, Dalian, China
- College of Life Science, Dalian Minzu University, Dalian, China
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian, China
| | - Wenzhong Hu
- College of Life Science, Dalian Minzu University, Dalian, China
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian, China
| | - Ke Feng
- College of Life Science, Dalian Minzu University, Dalian, China
| | - Aili Jiang
- College of Life Science, Dalian Minzu University, Dalian, China
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian, China
| | - Zhilong Xiu
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Ying Lao
- College of Life Science, Dalian Minzu University, Dalian, China
| | - Yuanzheng Li
- College of Life Science, Dalian Minzu University, Dalian, China
| | - Ya Long
- College of Life Science, Dalian Minzu University, Dalian, China
| |
Collapse
|
6
|
Ravan H, Amandadi M, Esmaeili-Mahani S. DNA Domino-Based Nanoscale Logic Circuit: A Versatile Strategy for Ultrasensitive Multiplexed Analysis of Nucleic Acids. Anal Chem 2017; 89:6021-6028. [PMID: 28459545 DOI: 10.1021/acs.analchem.7b00607] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In recent years, the analytical application of logical nanodevices has attracted much attention for making accurate decisions on molecular diagnosis. Herein, a DNA domino-based nanoscale logic circuit has been constructed by integrating three logic gates (AND-AND-YES) for simultaneous analysis of multiple nucleic acid biomarkers. In the first AND gate, a chimeric target DNA comprising of four biomarkers was hybridized to three biomarker-specific oligonucleotides (TRs) via their 5'-end regions and to a capture probe-magnetic microparticle. After harvesting the complex, 3' overhang regions of the TRs were labeled with three distinct monolayer double-stranded (ds) DNA-gold nanoparticles (DNA-AuNPs). Upon gleaning the complex and addition of initiator oligonucleotide, a series of toehold-mediated strand displacement reactions, which are reminiscent of a domino chain, spontaneously occurred between the confined dsDNAs on the nanoparticles' surface in the second AND gate. The output of the second gate entered into the last gate and triggered an exponential hairpin assembly to form four-way junction nanostructures. The resulting nanostructures bear split parts of DNAzyme at each end of the four arms which, in the presence of hemin, form catalytic hemin/G-quadruplex DNAzymes with peroxidase activity. The smart biosensor has exhibited a turn-on signal when all biomarkers are present in the sample. In fact, should any of the biomarkers be nonexistent, the signal remains turned-off. The biosensor can detect the biomarkers with a LOD value of 100 aM and a noticeable capability to discriminate single-nucleotide substitutions.
Collapse
Affiliation(s)
- Hadi Ravan
- Department of Biology, Faculty of Science, Shahid Bahonar University of Kerman , Kerman, Iran 7616914111
| | - Mojdeh Amandadi
- Department of Biology, Faculty of Science, Shahid Bahonar University of Kerman , Kerman, Iran 7616914111
| | - Saeed Esmaeili-Mahani
- Department of Biology, Faculty of Science, Shahid Bahonar University of Kerman , Kerman, Iran 7616914111
| |
Collapse
|
7
|
|
8
|
Sun H, Liu P, Nolan LK, Lamont SJ. Thymus transcriptome reveals novel pathways in response to avian pathogenic Escherichia coli infection. Poult Sci 2016; 95:2803-2814. [PMID: 27466434 PMCID: PMC5144662 DOI: 10.3382/ps/pew202] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/03/2016] [Accepted: 05/05/2016] [Indexed: 01/05/2023] Open
Abstract
Avian pathogenic Escherichia coli (APEC) can cause significant morbidity in chickens. The thymus provides the essential environment for T cell development; however, the thymus transcriptome has not been examined for gene expression in response to APEC infection. An improved understanding of the host genomic response to APEC infection could inform future breeding programs for disease resistance and APEC control. We therefore analyzed the transcriptome of the thymus of birds challenged with APEC, contrasting susceptible and resistant phenotypes. Thousands of genes were differentially expressed in birds of the 5-day post infection (dpi) challenged-susceptible group vs. 5 dpi non-challenged, in 5 dpi challenged-susceptible vs. 5 dpi challenged-resistant birds, as well as in 5 dpi vs. one dpi challenged-susceptible birds. The Toll-like receptor signaling pathway was the major innate immune response for birds to respond to APEC infection. Moreover, lysosome and cell adhesion molecules pathways were common mechanisms for chicken response to APEC infection. The T-cell receptor signaling pathway, cell cycle, and p53 signaling pathways were significantly activated in resistant birds to resist APEC infection. These results provide a comprehensive assessment of global gene networks and biological functionalities of differentially expressed genes in the thymus under APEC infection. These findings provide novel insights into key molecular genetic mechanisms that differentiate host resistance from susceptibility in this primary lymphoid tissue, the thymus.
Collapse
Affiliation(s)
- H Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China, 225009.,Department of Animal Science, Iowa State University, Ames 50011
| | - P Liu
- Department of Statistics, Iowa State University, Ames 50011
| | - L K Nolan
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames 50011
| | - S J Lamont
- Department of Animal Science, Iowa State University, Ames 50011
| |
Collapse
|
9
|
Ravan H, Amandadi M, Sanadgol N. A highly specific and sensitive loop-mediated isothermal amplification method for the detection of Escherichia coli O157:H7. Microb Pathog 2015; 91:161-5. [PMID: 26724736 DOI: 10.1016/j.micpath.2015.12.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 12/19/2015] [Accepted: 12/22/2015] [Indexed: 01/25/2023]
Abstract
E. coli O157:H7 is one of the most important foodborne pathogen that causes some human illnesses such as bloody diarrhea, hemolytic-uremic syndrome, and kidney failure. We developed a loop-mediated isothermal amplification (LAMP) assay with six special primers that target a highly specific 299-bp region of the Z3276 gene for the detection of E. coli O157:H7. Among 117 bacterial strains tested in this study, positive results were only obtained from E. coli O157:H7 strains. The sensitivity level of the Z3276-LAMP assay was determined to be 5 CFU/reaction tube in pure bacterial culture. Moreover, the LAMP assay was successfully applied to artificially contaminated ground beef with a sensitivity level of 10(3) CFU/mL without pre-enrichment and 10 CFU/mL after a 4-h pre-enrichment. In conclusion, the present LAMP assay would be a useful and powerful tool for the rapid, sensitive, and specific diagnosis of E. coli O157:H7 strains in resource limited laboratories.
Collapse
Affiliation(s)
- Hadi Ravan
- Department of Biology, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, Iran.
| | - Mojdeh Amandadi
- Department of Biology, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Nima Sanadgol
- Department of Biology, Faculty of Science, Zabol University, Zabol, Iran; Pharmaceutical Science Research Center (PSRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
10
|
On-chip quantitative detection of pathogen genes by autonomous microfluidic PCR platform. Biosens Bioelectron 2015. [DOI: 10.1016/j.bios.2015.07.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Wang Y, Salazar JK. Culture-Independent Rapid Detection Methods for Bacterial Pathogens and Toxins in Food Matrices. Compr Rev Food Sci Food Saf 2015; 15:183-205. [DOI: 10.1111/1541-4337.12175] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 09/14/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Yun Wang
- Div. of Food Processing Science and Technology; U.S. Food and Drug Administration; Bedford Park IL U.S.A
| | - Joelle K. Salazar
- Div. of Food Processing Science and Technology; U.S. Food and Drug Administration; Bedford Park IL U.S.A
| |
Collapse
|
12
|
Úrbez-Torres JR, Haag P, Bowen P, Lowery T, O'Gorman DT. Development of a DNA Macroarray for the Detection and Identification of Fungal Pathogens Causing Decline of Young Grapevines. PHYTOPATHOLOGY 2015; 105:1373-1388. [PMID: 25938177 DOI: 10.1094/phyto-03-15-0069-r] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Young vine decline (YVD) is a complex disease caused by at least 51 different fungi and responsible for important economic losses to the grapevine industry worldwide. YVD fungi are known to occur in planting material. Hence, detection prior to planting is critical to assure longevity of newly established vineyards. A DNA macroarray based on reverse dot-blot hybridization containing 102 oligonucleotides complementary to portions of the β-tubulin region was developed for detection of YVD fungi. Specificity of the array was first evaluated against 138 pure fungal cultures representing 72 different taxa from nine genera, including 37 YVD species. In total, 61 species, including 34 YVD pathogens, were detected and identified by the array. The detection limit of the array was below 0.1 pg of genomic DNA. The array was validated against artificially inoculated canes and soil and commercial planting material, with the latter showing a high incidence of YVD fungi in nursery plants otherwise not detected by traditional plating and culturing. This DNA array proved to be a rapid and specific tool to simultaneously detect and identify most YVD fungi in a single test, which has the potential to be used in commercial diagnostics or by the grapevine nursery industry to determine the health status of the planting material.
Collapse
Affiliation(s)
- J R Úrbez-Torres
- Agriculture and Agri-Food Canada, Science & Technology Branch, Pacific Agri-Food Research Centre, Summerland, British Columbia V0H 1Z0, Canada
| | - P Haag
- Agriculture and Agri-Food Canada, Science & Technology Branch, Pacific Agri-Food Research Centre, Summerland, British Columbia V0H 1Z0, Canada
| | - P Bowen
- Agriculture and Agri-Food Canada, Science & Technology Branch, Pacific Agri-Food Research Centre, Summerland, British Columbia V0H 1Z0, Canada
| | - T Lowery
- Agriculture and Agri-Food Canada, Science & Technology Branch, Pacific Agri-Food Research Centre, Summerland, British Columbia V0H 1Z0, Canada
| | - D T O'Gorman
- Agriculture and Agri-Food Canada, Science & Technology Branch, Pacific Agri-Food Research Centre, Summerland, British Columbia V0H 1Z0, Canada
| |
Collapse
|
13
|
Adesoji AT, Ogunjobi AA, Olatoye IO. Molecular characterization of selected multidrug resistant Pseudomonas from water distribution systems in southwestern Nigeria. Ann Clin Microbiol Antimicrob 2015; 14:39. [PMID: 26328550 PMCID: PMC4557310 DOI: 10.1186/s12941-015-0102-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 08/19/2015] [Indexed: 12/26/2022] Open
Abstract
Background Persistence of antibiotic resistant bacteria, including multidrug resistant (MDR) pseudomonads, is an important environmental health problem associated with drinking water distribution systems (DWDS) worldwide. There is paucity of data on the molecular characteristics of antibiotic resistance genes and their mode of transfer among pseudomonads from DWDS located in resource-challenged areas such as southwestern Nigeria. Methods MDR pseudomonads (n = 22) were selected from a panel of 296 different strains that were isolated from treated and untreated water in six DWDS located across southwest Nigeria. Primarily, the isolated pseudomonads strains were identified by 16S rDNA sequencing and antibiotic-resistance testing was completed using agar breakpoints assays. The final panel of strains of resistant to more than three classes of antibiotics (i.e. MDR), were further characterized by PCR genotyping, Sanger sequencing, and plasmid profiling. Results Pseudomonad resistance to gentamicin and streptomycin ranged from 22.7 to 54.6 % while resistance to tetracycline, ceftiofur and sulphamethoxazole ranged from 40.9 to 77.3 %. The most commonly detected antibiotic resistance genes were tet(A) (31.8 % of isolates), sul1 (31.8 %), blaTEM (40.9 %) and aph(3″)c (36.4 %). Class 1 integron sequences were evident in 27.3 % of isolates and they harbored genes encoding resistance to aminoglycosides (aadA2, aadA1), trimethoprim (dfrA15, dfr7) and sulphonamide (sul1) while the plasmid ranged between 22 and 130 kb. Conclusions Pseudomonas spp, isolated from these DWDS possess resistance genes and factors that are of public and environmental health significance. Therefore, has the potential of contributing to the global scourge of resistance genes transfer in human, animals and environments, thereby, useful in the epidemiology of antimicrobial resistance.
Collapse
Affiliation(s)
- Ayodele T Adesoji
- Department of Biological Sciences, Federal University Dutsin-Ma, Dutsin-Ma, Katsina State, Nigeria.
| | | | - Isaac O Olatoye
- Department of Veterinary Public Health and Preventive Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria. .,Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, USA.
| |
Collapse
|
14
|
Law JWF, Ab Mutalib NS, Chan KG, Lee LH. Rapid methods for the detection of foodborne bacterial pathogens: principles, applications, advantages and limitations. Front Microbiol 2015. [PMID: 25628612 DOI: 10.3389/fmicb.2014.00770.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The incidence of foodborne diseases has increased over the years and resulted in major public health problem globally. Foodborne pathogens can be found in various foods and it is important to detect foodborne pathogens to provide safe food supply and to prevent foodborne diseases. The conventional methods used to detect foodborne pathogen are time consuming and laborious. Hence, a variety of methods have been developed for rapid detection of foodborne pathogens as it is required in many food analyses. Rapid detection methods can be categorized into nucleic acid-based, biosensor-based and immunological-based methods. This review emphasizes on the principles and application of recent rapid methods for the detection of foodborne bacterial pathogens. Detection methods included are simple polymerase chain reaction (PCR), multiplex PCR, real-time PCR, nucleic acid sequence-based amplification (NASBA), loop-mediated isothermal amplification (LAMP) and oligonucleotide DNA microarray which classified as nucleic acid-based methods; optical, electrochemical and mass-based biosensors which classified as biosensor-based methods; enzyme-linked immunosorbent assay (ELISA) and lateral flow immunoassay which classified as immunological-based methods. In general, rapid detection methods are generally time-efficient, sensitive, specific and labor-saving. The developments of rapid detection methods are vital in prevention and treatment of foodborne diseases.
Collapse
Affiliation(s)
- Jodi Woan-Fei Law
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia Selangor Darul Ehsan, Malaysia ; School of Science, Monash University Malaysia Selangor Darul Ehsan, Malaysia
| | - Nurul-Syakima Ab Mutalib
- UKM Medical Molecular Biology Institute (UMBI), UKM Medical Centre, Bandar Tun Razak Kuala Lumpur, Malaysia
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya Kuala Lumpur, Malaysia
| | - Learn-Han Lee
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia Selangor Darul Ehsan, Malaysia
| |
Collapse
|
15
|
Law JWF, Ab Mutalib NS, Chan KG, Lee LH. Rapid methods for the detection of foodborne bacterial pathogens: principles, applications, advantages and limitations. Front Microbiol 2015; 5:770. [PMID: 25628612 PMCID: PMC4290631 DOI: 10.3389/fmicb.2014.00770] [Citation(s) in RCA: 549] [Impact Index Per Article: 54.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 12/17/2014] [Indexed: 12/11/2022] Open
Abstract
The incidence of foodborne diseases has increased over the years and resulted in major public health problem globally. Foodborne pathogens can be found in various foods and it is important to detect foodborne pathogens to provide safe food supply and to prevent foodborne diseases. The conventional methods used to detect foodborne pathogen are time consuming and laborious. Hence, a variety of methods have been developed for rapid detection of foodborne pathogens as it is required in many food analyses. Rapid detection methods can be categorized into nucleic acid-based, biosensor-based and immunological-based methods. This review emphasizes on the principles and application of recent rapid methods for the detection of foodborne bacterial pathogens. Detection methods included are simple polymerase chain reaction (PCR), multiplex PCR, real-time PCR, nucleic acid sequence-based amplification (NASBA), loop-mediated isothermal amplification (LAMP) and oligonucleotide DNA microarray which classified as nucleic acid-based methods; optical, electrochemical and mass-based biosensors which classified as biosensor-based methods; enzyme-linked immunosorbent assay (ELISA) and lateral flow immunoassay which classified as immunological-based methods. In general, rapid detection methods are generally time-efficient, sensitive, specific and labor-saving. The developments of rapid detection methods are vital in prevention and treatment of foodborne diseases.
Collapse
Affiliation(s)
- Jodi Woan-Fei Law
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University MalaysiaSelangor Darul Ehsan, Malaysia
- School of Science, Monash University MalaysiaSelangor Darul Ehsan, Malaysia
| | - Nurul-Syakima Ab Mutalib
- UKM Medical Molecular Biology Institute (UMBI), UKM Medical Centre, Bandar Tun RazakKuala Lumpur, Malaysia
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of MalayaKuala Lumpur, Malaysia
| | - Learn-Han Lee
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University MalaysiaSelangor Darul Ehsan, Malaysia
| |
Collapse
|
16
|
Loff M, Mare L, de Kwaadsteniet M, Khan W. 3M™ Molecular detection system versus MALDI-TOF mass spectrometry and molecular techniques for the identification of Escherichia coli 0157:H7, Salmonella spp. &Listeria spp. J Microbiol Methods 2014; 101:33-43. [PMID: 24721188 DOI: 10.1016/j.mimet.2014.03.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 03/27/2014] [Accepted: 03/27/2014] [Indexed: 11/19/2022]
Abstract
The aim of this study was to compare standard selective plating, conventional PCR (16S rRNA and species specific primers), MALDI-TOF MS and the 3M™ Molecular Detection System for the routine detection of the pathogens Listeria, Salmonella and Escherichia coli 0157:H7 in wastewater and river water samples. MALDI-TOF MS was able to positively identify 20/21 (95%) of the E. coli isolates obtained at genus and species level, while 16S rRNA sequencing only correctly identified 6/21 (28%) as E. coli strains. None of the presumptive positive Listeria spp. and Salmonella spp. isolates obtained by culturing on selective media were positively identified by MALDI-TOF and 16S rRNA analysis. The species-specific E. coli 0157:H7 PCR described in this present study, was not able to detect any E. coli 0157:H7 strains in the wastewater and river water samples analysed. However, E. coli strains, Listeria spp., L. monocytogenes and Salmonella spp. were detected using species specific PCR. Escherichia coli 0157:H7, Listeria spp. and Salmonella spp. were also sporadically detected throughout the sampling period in the wastewater and river water samples analysed by the 3M™ Molecular Detection System. MALDI-TOF MS, which is a simple, accurate and cost-effective detection method, efficiently identified the culturable organisms, while in the current study both species specific PCR (Listeria spp. and Salmonella spp.) and 3M™ Molecular Detection System could be utilised for the direct routine analysis of pathogens in water sources.
Collapse
Affiliation(s)
- Marché Loff
- Department of Microbiology, Faculty of Science, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch, 7602 South Africa
| | - Louise Mare
- 3M™ South Africa (Pty) Ltd., Private Bag X926, Rivonia, 2128 South Africa
| | - Michele de Kwaadsteniet
- Department of Microbiology, Faculty of Science, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch, 7602 South Africa
| | - Wesaal Khan
- Department of Microbiology, Faculty of Science, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch, 7602 South Africa.
| |
Collapse
|
17
|
Feng M, Yong Q, Wang W, Kuang H, Wang L, Xu C. Development of a monoclonal antibody-based ELISA to detectEscherichia coliO157:H7. FOOD AGR IMMUNOL 2013. [DOI: 10.1080/09540105.2012.716026] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
18
|
Olowe OA, Choudhary S, Schierack P, Wieler LH, Makanjuola OB, Olayemi AB, Anjum M. Pathotyping bla CTX-M Escherichia coli from Nigeria. Eur J Microbiol Immunol (Bp) 2013; 3:120-5. [PMID: 24265928 DOI: 10.1556/eujmi.3.2013.2.5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 03/19/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Escherichia coli have become the enterobacteriaceae species most affected by extended-spectrum β-lactamases (ESBLs) in view of the emergence of CTX-M-type ESBLs. These CTX-M-positive E. coli have been reported in numerous regions worldwide. Virulence determinants of already reported CTX-M-positive E. coli were investigated. METHODOLOGY To gain insights into the mechanism underlying this phenomenon, we assessed serogroup, susceptibility pattern and diversity of virulence profiles within a collection of nine bla CTX-M-positive E. coli strains and their virulent determinant using miniaturized DNA microarray techniques. The nine ESBL-positive E. coli isolates were from eight male and one female patient(s) selected for study based on previous work. Virulence potential was inferred by detection of 63 virulence factor (VF) genes. RESULTS Four (44.4%) of the 9 E. coli isolates exhibited the same set of core characteristics: serotype O8:Hnt, while all were positive for OXA-1, ciprofloxacin resistance. Five of the isolates exhibited highly similar (91% to 100%) VF profiles. CONCLUSION The findings describe a broadly disseminated, bla CTX-M-positive and virulent E. coli serogroup with highly homogeneous virulence genotypes, suggesting recent emergence in this zone. Understanding how this clone has emerged and successfully disseminated within the hospital and community, including across national boundaries, should be a public health priority.
Collapse
|
19
|
Establishment and preliminary application of oligonucleotide microarray assay for detection of food-borne toxigenic microorganisms. Eur Food Res Technol 2013. [DOI: 10.1007/s00217-013-1951-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
20
|
Novel stem–loop probe DNA arrays: Detection of specific acetotrophic 16S ribosomal RNA signatures. Anal Biochem 2013; 435:60-7. [DOI: 10.1016/j.ab.2012.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 11/24/2012] [Accepted: 12/03/2012] [Indexed: 11/19/2022]
|
21
|
Wong MY, Smart CD. A New Application Using a Chromogenic Assay in a Plant Pathogen DNA Macroarray Detection System. PLANT DISEASE 2012; 96:1365-1371. [PMID: 30727148 DOI: 10.1094/pdis-07-11-0593-sr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A DNA macroarray was previously developed to detect major fungal and oomycete pathogens of solanaceous crops. To provide a convenient alternative for researchers with no access to X-ray film-developing facilities, specific CCD cameras or Chemidoc XRS systems, a chromogenic detection method with sensitivity comparable with chemiluminescent detection, has been developed. A fungal (Stemphylium solani) and an oomycete (Phytophthora capsici) pathogen were used to develop the protocol using digoxigenin (DIG)-labeled targets. The internal transcribed spacer (ITS) region of the nuclear ribosomal DNA (rDNA), including ITS1, 5.8S rDNA, and ITS2, was used as the target gene and polymerase chain reaction amplified as in the previous protocol. Various amounts of species-specific oligonucleotides on the array, quantities of DIG-labeled ITS amplicon, and hybridization temperatures were tested. The optimal conditions for hybridization were 55°C for 2 h using at least 10 pmol of each species-specific oligonucleotide and labeled target at 10 ng/ml of hybridization buffer. Incubation of the hybridized array with anti-DIG conjugated alkaline phosphatase substrates, NBT/BCIP, produced visible target signals between 1 and 3 h compared with 1 h in chemiluminescent detection. Samples from pure cultures, soil, and artificially inoculated plants were also used to compare the detection using chemiluminescent and chromogenic methods. Chromogenic detection was shown to yield similar results compared with chemiluminescent detection in regard to signal specificity, duration of hybridization between the array and targets, and cost, though it takes 1 to 2 h longer for the visualization process, thus providing a convenient alternative for researchers who lack darkroom facilities. To our knowledge, this is the first report of DNA macroarray detection of plant pathogens using a chromogenic method.
Collapse
Affiliation(s)
- Mui-Yun Wong
- Department of Plant Protection, Faculty of Agriculture, and Institute of Tropical Agriculture, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Christine D Smart
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Geneva, NY 14456
| |
Collapse
|
22
|
Thapa SP, Han AR, Cho JM, Hur JH. Multiplex PCR and DNA array for the detection of Bacillus cereus, Staphylococcus aureus, Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella spp. targeting virulence-related genes. ANN MICROBIOL 2012. [DOI: 10.1007/s13213-012-0526-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
23
|
Hwang BH, Shin HH, Seo JH, Cha HJ. Specific Multiplex Analysis of Pathogens Using a Direct 16S rRNA Hybridization in Microarray System. Anal Chem 2012; 84:4873-9. [DOI: 10.1021/ac300476k] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Quiñones B, Swimley MS, Narm KE, Patel RN, Cooley MB, Mandrell RE. O-antigen and virulence profiling of shiga toxin-producing Escherichia coli by a rapid and cost-effective DNA microarray colorimetric method. Front Cell Infect Microbiol 2012; 2:61. [PMID: 22919652 PMCID: PMC3417394 DOI: 10.3389/fcimb.2012.00061] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 04/18/2012] [Indexed: 12/23/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) is a leading cause of foodborne illness worldwide. The present study developed the use of DNA microarrays with the ampliPHOX colorimetric method to rapidly detect and genotype STEC strains. A low-density 30-mer oligonucleotide DNA microarray was designed to target O-antigen gene clusters of 11 E. coli serogroups (O26, O45, O91, O103, O104, O111, O113, O121, O128, O145, and O157) that have been associated with the majority of STEC infections. In addition, the DNA microarray targeted 11 virulence genes, encoding adhesins, cytotoxins, proteases, and receptor proteins, which have been implicated in conferring increased ability to cause disease for STEC. Results from the validation experiments demonstrated that this microarray-based colorimetric method allowed for a rapid and accurate genotyping of STEC reference strains from environmental and clinical sources and from distinct geographical locations. Positive hybridization signals were detected only for probes targeting serotype and virulence genes known to be present in the STEC reference strains. Quantification analysis indicated that the mean pixel intensities of the signal for probes targeting O-antigen or virulence genes were at least three times higher when compared to the background. Furthermore, this microarray-based colorimetric method was then employed to genotype a group of E. coli isolates from watershed sediment and animal fecal samples that were collected from an important region for leafy-vegetable production in the central coast of California. The results indicated an accurate identification of O-type and virulence genes in the tested isolates and confirmed that the ampliPHOX colorimetric method with low-density DNA microarrays enabled a fast assessment of the virulence potential of STEC using low-cost reagents and instrumentation.
Collapse
Affiliation(s)
- Beatriz Quiñones
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, U.S. Department of Agriculture/Agricultural Research Service Albany, CA, USA.
| | | | | | | | | | | |
Collapse
|
25
|
Al-Khaldi SF, Mossoba MM, Allard MM, Lienau EK, Brown ED. Bacterial identification and subtyping using DNA microarray and DNA sequencing. Methods Mol Biol 2012; 881:73-95. [PMID: 22639211 DOI: 10.1007/978-1-61779-827-6_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The era of fast and accurate discovery of biological sequence motifs in prokaryotic and eukaryotic cells is here. The co-evolution of direct genome sequencing and DNA microarray strategies not only will identify, isotype, and serotype pathogenic bacteria, but also it will aid in the discovery of new gene functions by detecting gene expressions in different diseases and environmental conditions. Microarray bacterial identification has made great advances in working with pure and mixed bacterial samples. The technological advances have moved beyond bacterial gene expression to include bacterial identification and isotyping. Application of new tools such as mid-infrared chemical imaging improves detection of hybridization in DNA microarrays. The research in this field is promising and future work will reveal the potential of infrared technology in bacterial identification. On the other hand, DNA sequencing by using 454 pyrosequencing is so cost effective that the promise of $1,000 per bacterial genome sequence is becoming a reality. Pyrosequencing technology is a simple to use technique that can produce accurate and quantitative analysis of DNA sequences with a great speed. The deposition of massive amounts of bacterial genomic information in databanks is creating fingerprint phylogenetic analysis that will ultimately replace several technologies such as Pulsed Field Gel Electrophoresis. In this chapter, we will review (1) the use of DNA microarray using fluorescence and infrared imaging detection for identification of pathogenic bacteria, and (2) use of pyrosequencing in DNA cluster analysis to fingerprint bacterial phylogenetic trees.
Collapse
Affiliation(s)
- Sufian F Al-Khaldi
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, USA.
| | | | | | | | | |
Collapse
|
26
|
Kostić T, Sessitsch A. Microbial Diagnostic Microarrays for the Detection and Typing of Food- and Water-Borne (Bacterial) Pathogens. ACTA ACUST UNITED AC 2011; 1:3-24. [PMID: 27605332 PMCID: PMC5007712 DOI: 10.3390/microarrays1010003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 10/05/2011] [Accepted: 10/07/2011] [Indexed: 01/02/2023]
Abstract
Reliable and sensitive pathogen detection in clinical and environmental (including food and water) samples is of greatest importance for public health. Standard microbiological methods have several limitations and improved alternatives are needed. Most important requirements for reliable analysis include: (i) specificity; (ii) sensitivity; (iii) multiplexing potential; (iv) robustness; (v) speed; (vi) automation potential; and (vii) low cost. Microarray technology can, through its very nature, fulfill many of these requirements directly and the remaining challenges have been tackled. In this review, we attempt to compare performance characteristics of the microbial diagnostic microarrays developed for the detection and typing of food and water pathogens, and discuss limitations, points still to be addressed and issues specific for the analysis of food, water and environmental samples.
Collapse
Affiliation(s)
- Tanja Kostić
- AIT Austrian Institute of Technology GmbH, Health & Environment Department, Bioresources Unit, Konrad Lorenz Strasse 24, A-3430 Tulln an der Donau, Austria.
- Christian Doppler Laboratory for Molecular Food Analytics, University of Veterinary Medicine, Veterinärplatz 1, A-1210 Vienna, Austria.
| | - Angela Sessitsch
- AIT Austrian Institute of Technology GmbH, Health & Environment Department, Bioresources Unit, Konrad Lorenz Strasse 24, A-3430 Tulln an der Donau, Austria
| |
Collapse
|
27
|
Shallom SJ, Weeks JN, Galindo CL, McIver L, Sun Z, McCormick J, Adams LG, Garner HR. A species independent universal bio-detection microarray for pathogen forensics and phylogenetic classification of unknown microorganisms. BMC Microbiol 2011; 11:132. [PMID: 21672191 PMCID: PMC3130645 DOI: 10.1186/1471-2180-11-132] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 06/14/2011] [Indexed: 12/18/2022] Open
Abstract
Background The ability to differentiate a bioterrorist attack or an accidental release of a research pathogen from a naturally occurring pandemic or disease event is crucial to the safety and security of this nation by enabling an appropriate and rapid response. It is critical in samples from an infected patient, the environment, or a laboratory to quickly and accurately identify the precise pathogen including natural or engineered variants and to classify new pathogens in relation to those that are known. Current approaches for pathogen detection rely on prior genomic sequence information. Given the enormous spectrum of genetic possibilities, a field deployable, robust technology, such as a universal (any species) microarray has near-term potential to address these needs. Results A new and comprehensive sequence-independent array (Universal Bio-Signature Detection Array) was designed with approximately 373,000 probes. The main feature of this array is that the probes are computationally derived and sequence independent. There is one probe for each possible 9-mer sequence, thus 49 (262,144) probes. Each genome hybridized on this array has a unique pattern of signal intensities corresponding to each of these probes. These signal intensities were used to generate an un-biased cluster analysis of signal intensity hybridization patterns that can easily distinguish species into accepted and known phylogenomic relationships. Within limits, the array is highly sensitive and is able to detect synthetically mixed pathogens. Examples of unique hybridization signal intensity patterns are presented for different Brucella species as well as relevant host species and other pathogens. These results demonstrate the utility of the UBDA array as a diagnostic tool in pathogen forensics. Conclusions This pathogen detection system is fast, accurate and can be applied to any species. Hybridization patterns are unique to a specific genome and these can be used to decipher the identity of a mixed pathogen sample and can separate hosts and pathogens into their respective phylogenomic relationships. This technology can also differentiate between different species and classify genomes into their known clades. The development of this technology will result in the creation of an integrated biomarker-specific bio-signature, multiple select agent specific detection system.
Collapse
Affiliation(s)
- Shamira J Shallom
- Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Mohanty SR, Kollah B, Brodie EL, Hazen TC, Roden EE. 16S rRNA gene microarray analysis of microbial communities in ethanol-stimulated subsurface sediment. Microbes Environ 2011; 26:261-5. [PMID: 21558677 DOI: 10.1264/jsme2.me11111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A high-density 16S rRNA gene microarray was used to analyze microbial communities in a slurry of ethanol-amended, uranium-contaminated subsurface sediment. Of specific interest was the extent to which the microarray could detect temporal patterns in the relative abundance of major metabolic groups (nitrate-reducing, metal-reducing, sulfate-reducing, and methanogenic taxa) that were stimulated by ethanol addition. The results show that the microarray, when used in conjunction with geochemical data and knowledge of the physiological properties of relevant taxa, provided accurate assessment of the response of key functional groups to biostimulation.
Collapse
Affiliation(s)
- Santosh R Mohanty
- Department of Geoscience, University of Wisconsin, Madison, 1215 W. Dayton St., WI 53706, USA
| | | | | | | | | |
Collapse
|
29
|
Kim GY, Son A. Quantitative detection of E. coli O157:H7 eaeA gene using quantum dots and magnetic particles. BIOTECHNOL BIOPROC E 2011. [DOI: 10.1007/s12257-010-0032-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
30
|
Quiñones B, Swimley MS, Taylor AW, Dawson ED. Identification of Escherichia coli O157 by using a novel colorimetric detection method with DNA microarrays. Foodborne Pathog Dis 2011; 8:705-11. [PMID: 21288130 DOI: 10.1089/fpd.2010.0753] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Shiga toxin-producing Escherichia coli O157 is a leading cause of foodborne illness worldwide. To evaluate better methods to rapidly detect and genotype E. coli O157 strains, the present study evaluated the use of ampliPHOX, a novel colorimetric detection method based on photopolymerization, for pathogen identification with DNA microarrays. A low-density DNA oligonucleotide microarray was designed to target stx1 and stx2 genes encoding Shiga toxin production, the eae gene coding for adherence membrane protein, and the per gene encoding the O157-antigen perosamine synthetase. Results from the validation experiments demonstrated that the use of ampliPHOX allowed the accurate genotyping of the tested E. coli strains, and positive hybridization signals were observed for only probes targeting virulence genes present in the reference strains. Quantification showed that the average signal-to-noise ratio values ranged from 47.73 ± 7.12 to 76.71 ± 8.33, whereas average signal-to-noise ratio values below 2.5 were determined for probes where no polymer was formed due to lack of specific hybridization. Sensitivity tests demonstrated that the sensitivity threshold for E. coli O157 detection was 100-1000 CFU/mL. Thus, the use of DNA microarrays in combination with photopolymerization allowed the rapid and accurate genotyping of E. coli O157 strains.
Collapse
Affiliation(s)
- Beatriz Quiñones
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, California 94710, USA.
| | | | | | | |
Collapse
|
31
|
Dwivedi HP, Jaykus LA. Detection of pathogens in foods: the current state-of-the-art and future directions. Crit Rev Microbiol 2010; 37:40-63. [PMID: 20925593 DOI: 10.3109/1040841x.2010.506430] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Over the last fifty years, microbiologists have developed reliable culture-based techniques to detect food borne pathogens. Although these are considered to be the "gold-standard," they remain cumbersome and time consuming. Despite the advent of rapid detection methods such as ELISA and PCR, it is clear that reduction and/or elimination of cultural enrichment will be essential in the quest for truly real-time detection methods. As such, there is an important role for bacterial concentration and purification from the sample matrix as a step preceding detection, so-called pre-analytical sample processing. This article reviews recent advancements in food borne pathogen detection and discusses future methods with a focus on pre-analytical sample processing, culture independent methods, and biosensors.
Collapse
Affiliation(s)
- Hari P Dwivedi
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC-27695-7624, USA.
| | | |
Collapse
|
32
|
Kostić T, Stessl B, Wagner M, Sessitsch A, Bodrossy L. Microbial diagnostic microarray for food- and water-borne pathogens. Microb Biotechnol 2010; 3:444-54. [PMID: 21255342 PMCID: PMC3815810 DOI: 10.1111/j.1751-7915.2010.00176.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 03/21/2010] [Indexed: 11/27/2022] Open
Abstract
A microbial diagnostic microarray for the detection of the most relevant bacterial food- and water-borne pathogens and indicator organisms was developed and thoroughly validated. The microarray platform based on sequence-specific end labelling of oligonucleotides and the pyhylogenetically robust gyrB marker gene allowed a highly specific (resolution on genus/species level) and sensitive (0.1% relative and 10(4) cfu absolute detection sensitivity) detection of the target pathogens. Validation was performed using a set of reference strains and a set of spiked environmental samples. Reliability of the obtained data was additionally verified by independent analysis of the samples via fluorescence in situ hybridization (FISH) and conventional microbiological reference methods. The applicability of this diagnostic system for food analysis was demonstrated through extensive validation using artificially and naturally contaminated spiked food samples. The microarray-based pathogen detection was compared with the corresponding microbiological reference methods (performed according to the ISO norm). Microarray results revealed high consistency with the reference microbiological data.
Collapse
Affiliation(s)
- Tanja Kostić
- AIT Austrian Institute of Technology GmbH, Bioresources Unit, A-2444 Seibersdorf, Austria.
| | | | | | | | | |
Collapse
|
33
|
Shafi J, Andrew PW, Barer MR. Microarrays for public health: genomic epidemiology of tuberculosis. Comp Funct Genomics 2010; 3:362-5. [PMID: 18629269 PMCID: PMC2448433 DOI: 10.1002/cfg.191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2002] [Accepted: 06/12/2002] [Indexed: 11/06/2022] Open
Abstract
In response to a large local school-based outbreak of tuberculosis, we have been evaluating the utility of microarray bacterial genomic analysis in outbreak management. After initial comparison of the isolate from the index case with Mycobacterium tuberculosis H37Rv, it was possible to design robust PCRs directed towards strain-specific deletions. Rapid PCR analysis of isolates proved valuable in determining whether or not other isolates were compatible with the outbreak strain and further microarray studies revealed genetic markers that could be used to discriminate between locally circulating strains.We suggest that this approach forms the basis for developing rapid local genotyping schemes applicable to M. tuberculosis and that application to other pathogens warrants consideration.
Collapse
Affiliation(s)
- Jamila Shafi
- Department of Microbiology and Immunology, Medical Sciences Building, University Road, Leicester LE1 9HN, UK
| | | | | |
Collapse
|
34
|
Response to Questions Posed by the Food Safety and Inspection Service Regarding Determination of the Most Appropriate Technologies for the Food Safety and Inspection Service To Adopt in Performing Routine and Baseline Microbiological Analyses†,‡. J Food Prot 2010; 73:1160-200. [DOI: 10.4315/0362-028x-73.6.1160] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
35
|
Shabani A, Zourob M, Allain B, Marquette CA, Lawrence MF, Mandeville R. Bacteriophage-modified microarrays for the direct impedimetric detection of bacteria. Anal Chem 2009; 80:9475-82. [PMID: 19072262 DOI: 10.1021/ac801607w] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel method is presented for the specific and direct detection of bacteria using bacteriophages as recognition receptors immobilized covalently onto functionalized screen-printed carbon electrode (SPE) microarrays. The SPE networks were functionalized through electrochemical oxidation in acidic media of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) by applying a potential of +2.2 V to the working electrode. Immobilization of T4 bacteriophage onto the SPEs was achieved via EDC by formation of amide bonds between the protein coating of the phage and the electrochemically generated carboxylic groups at the carbon surface. The surface functionalization with EDC, and the binding of phages, was verified by time-of-flight secondary ion mass spectrometry. The immobilized T4 phages were then used to specifically detect E. coli bacteria. The presence of surface-bound bacteria was verified by scanning electron and fluorescence microscopies. Impedance measurements (Nyquist plots) show shifts of the order of 10(4) Omega due to the binding of E. coli bacteria to the T4 phages. No significant change in impedance was observed for control experiments using immobilized T4 phage in the presence of Salmonella. Impedance variations as a function of incubation time show a maximum shift after 20 min, indicating onset of lysis, as also confirmed by fluorescence microscopy. Concentration-response curves yield a detection limit of 10(4) cfu/mL for 50-microL samples.
Collapse
|
36
|
LU XB, WU HB, WANG M, LI BD, YANG CL, SUN HW. Developing a Method of Oligonucleotide Microarray for Event Specific Detec-tion of Transgenic Maize ( Zea mays). ZUOWU XUEBAO 2009. [DOI: 10.3724/sp.j.1006.2009.01432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
Al-Khaldi SF, Mossoba MM, Burke TL, Fry FS. Differentiation of Whole Bacterial Cells Based on High-Throughput Microarray Chip Printing and Infrared Microspectroscopic Readout. Foodborne Pathog Dis 2009; 6:1001-7. [DOI: 10.1089/fpd.2009.0276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Sufian F. Al-Khaldi
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, Maryland
| | - Magdi M. Mossoba
- Division of Analytical Chemistry, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, Maryland
| | - Tara L. Burke
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, Maryland
| | - Frederick S. Fry
- Division of Analytical Chemistry, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, Maryland
| |
Collapse
|
38
|
Robust detection and identification of multiple oomycetes and fungi in environmental samples by using a novel cleavable padlock probe-based ligation detection assay. Appl Environ Microbiol 2009; 75:4185-93. [PMID: 19395562 DOI: 10.1128/aem.00071-09] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Simultaneous detection and identification of multiple pathogenic microorganisms in complex environmental samples are required in numerous diagnostic fields. Here, we describe the development of a novel, background-free ligation detection (LD) system using a single compound detector probe per target. The detector probes used, referred to as padlock probes (PLPs), are long oligonucleotides containing asymmetric target complementary regions at both their 5' and 3' ends which confer extremely specific target detection. Probes also incorporate a desthiobiotin moiety and an internal endonuclease IV cleavage site. DNA samples are PCR amplified, and the resulting products serve as potential targets for PLP ligation. Upon perfect target hybridization, the PLPs are circularized via enzymatic ligation, captured, and cleaved, allowing only the originally ligated PLPs to be visualized on a universal microarray. Unlike previous procedures, the probes themselves are not amplified, thereby allowing a simple PLP cleavage to yield a background-free assay. We designed and tested nine PLPs targeting several oomycetes and fungi. All of the probes specifically detected their corresponding targets and provided perfect discrimination against closely related nontarget organisms, yielding an assay sensitivity of 1 pg genomic DNA and a dynamic detection range of 10(4). A practical demonstration with samples collected from horticultural water circulation systems was performed to test the robustness of the newly developed multiplex assay. This novel LD system enables highly specific detection and identification of multiple pathogens over a wide range of target concentrations and should be easily adaptable to a variety of applications in environmental microbiology.
Collapse
|
39
|
Rasooly A, Herold KE. Food microbial pathogen detection and analysis using DNA microarray technologies. Foodborne Pathog Dis 2008; 5:531-50. [PMID: 18673074 DOI: 10.1089/fpd.2008.0119] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Culture-based methods used for microbial detection and identification are simple to use, relatively inexpensive, and sensitive. However, culture-based methods are too time-consuming for high-throughput testing and too tedious for analysis of samples with multiple organisms and provide little clinical information regarding the pathogen (e.g., antibiotic resistance genes, virulence factors, or strain subtype). DNA-based methods, such as polymerase chain reaction (PCR), overcome some these limitations since they are generally faster and can provide more information than culture-based methods. One limitation of traditional PCR-based methods is that they are normally limited to the analysis of a single pathogen, a small group of related pathogens, or a small number of relevant genes. Microarray technology enables a significant expansion of the capability of DNA-based methods in terms of the number of DNA sequences that can be analyzed simultaneously, enabling molecular identification and characterization of multiple pathogens and many genes in a single array assay. Microarray analysis of microbial pathogens has potential uses in research, food safety, medical, agricultural, regulatory, public health, and industrial settings. In this article, we describe the main technical elements of microarray technology and the application and potential use of DNA microarrays for food microbial analysis.
Collapse
Affiliation(s)
- Avraham Rasooly
- U.S. Food and Drug Administration, Center for Devices and Radiological Health, Silver Spring, Maryland, USA.
| | | |
Collapse
|
40
|
Basselet P, Wegrzyn G, Enfors SO, Gabig-Ciminska M. Sample processing for DNA chip array-based analysis of enterohemorrhagic Escherichia coli (EHEC). Microb Cell Fact 2008; 7:29. [PMID: 18851736 PMCID: PMC2572036 DOI: 10.1186/1475-2859-7-29] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2008] [Accepted: 10/13/2008] [Indexed: 11/10/2022] Open
Abstract
Background Exploitation of DNA-based analyses of microbial pathogens, and especially simultaneous typing of several virulence-related genes in bacteria is becoming an important objective of public health these days. Results A procedure for sample processing for a confirmative analysis of enterohemorrhagic Escherichia coli (EHEC) on a single colony with DNA chip array was developed and is reported here. The protocol includes application of fragmented genomic DNA from ultrasonicated colonies. The sample processing comprises first 2.5 min of ultrasonic treatment, DNA extraction (2×), and afterwards additional 5 min ultrasonication. Thus, the total sample preparation time for a confirmative analysis of EHEC is nearly 10 min. Additionally, bioinformatic revisions were performed in order to design PCR primers and array probes specific to most conservative regions of the EHEC-associated genes. Six strains with distinct pathogenic properties were selected for this study. At last, the EHEC chip array for a parallel and simultaneous detection of genes etpC-stx1-stx2-eae was designed and examined. This should permit to sense all currently accessible variants of the selected sequences in EHEC types and subtypes. Conclusion In order to implement the DNA chip array-based analysis for direct EHEC detection the sample processing was established in course of this work. However, this sample preparation mode may also be applied to other types of EHEC DNA-based sensing systems.
Collapse
Affiliation(s)
- Pascal Basselet
- School of Biotechnology, Royal Institute of Technology (KTH), S-10691 Stockholm, Sweden.
| | | | | | | |
Collapse
|
41
|
Bagchi M, Zafra-Stone S, Sen CK, Roy S, Bagchi D. DNA Microarray Technology in the Evaluation of Weight Management Potential of a Novel Calcium-Potassium Salt of (—)-Hydroxycitric Acid. Toxicol Mech Methods 2008; 16:129-35. [PMID: 20021004 DOI: 10.1080/15376520600558549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
42
|
Jin D, Qi H, Chen S, Zeng T, Liu Q, Wang S. Simultaneous detection of six human diarrheal pathogens by using DNA microarray combined with tyramide signal amplification. J Microbiol Methods 2008; 75:365-8. [DOI: 10.1016/j.mimet.2008.06.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 06/18/2008] [Accepted: 06/20/2008] [Indexed: 11/29/2022]
|
43
|
In situ-synthesized virulence and marker gene biochip for detection of bacterial pathogens in water. Appl Environ Microbiol 2008; 74:2200-9. [PMID: 18245235 DOI: 10.1128/aem.01962-07] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Pathogen detection tools with high reliability are needed for various applications, including food and water safety and clinical diagnostics. In this study, we designed and validated an in situ-synthesized biochip for detection of 12 microbial pathogens, including a suite of pathogens relevant to water safety. To enhance the reliability of presence/absence calls, probes were designed for multiple virulence and marker genes (VMGs) of each pathogen, and each VMG was targeted by an average of 17 probes. Hybridization of the biochip with amplicon mixtures demonstrated that 95% of the initially designed probes behaved as predicted in terms of positive/negative signals. The probes were further validated using DNA obtained from three different types of water samples and spiked with pathogen genomic DNA at decreasing relative abundance. Excellent specificity for making presence/absence calls was observed by using a cutoff of 0.5 for the positive fraction (i.e., the fraction of probes yielding a positive signal for a given VMG). A split multiplex PCR design for simultaneous amplification of the VMGs resulted in a detection limit of between 0.1 and 0.01% relative abundance, depending on the type of pathogen and the VMG. Thermodynamic analysis of the hybridization patterns obtained with DNA from the different water samples demonstrated that probes with a hybridization Gibbs free energy of approximately -19.3 kcal/mol provided the best trade-off between sensitivity and specificity. The developed biochip may be used to detect the described bacterial pathogens in water samples when parallel and specific detection is required.
Collapse
|
44
|
Chen SH, Wu VCH, Chuang YC, Lin CS. Using oligonucleotide-functionalized Au nanoparticles to rapidly detect foodborne pathogens on a piezoelectric biosensor. J Microbiol Methods 2008; 73:7-17. [PMID: 18279983 DOI: 10.1016/j.mimet.2008.01.004] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Revised: 01/03/2008] [Accepted: 01/09/2008] [Indexed: 11/19/2022]
Abstract
A circulating-flow piezoelectric biosensor, based on an Au nanoparticle amplification and verification method, was used for real-time detection of a foodborne pathogen, Escherichia coli O157:H7. A synthesized thiolated probe (Probe 1; 30-mer) specific to E. coli O157:H7 eaeA gene was immobilized onto the piezoelectric biosensor surface. Hybridization was induced by exposing the immobilized probe to the E. coli O157:H7 eaeA gene fragment (104-bp) amplified by PCR, resulting in a mass change and a consequent frequency shift of the piezoelectric biosensor. A second thiolated probe (Probe 2), complementary to the target sequence, was conjugated to the Au nanoparticles and used as a "mass enhancer" and "sequence verifier" to amplify the frequency change of the piezoelectric biosensor. The PCR products amplified from concentrations of 1.2 x 10(2) CFU/ml of E. coli O157:H7 were detectable by the piezoelectric biosensor. A linear correlation was found when the E. coli O157:H7 detected from 10(2) to 10(6) CFU/ml. The piezoelectric biosensor was able to detect targets from real food samples.
Collapse
Affiliation(s)
- Sz-Hau Chen
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 30005, Taiwan
| | | | | | | |
Collapse
|
45
|
Jin DZ, Xu XJ, Chen SH, Wen SY, Ma XE, Zhang Z, Lin F, Wang SQ. Detection and identification of enterohemorrhagic Escherichia coli O157:H7 and Vibrio cholerae O139 using oligonucleotide microarray. Infect Agent Cancer 2007; 2:23. [PMID: 18154687 PMCID: PMC2267443 DOI: 10.1186/1750-9378-2-23] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2007] [Accepted: 12/23/2007] [Indexed: 01/17/2023] Open
Abstract
Background The rapid and accurate detection and identification of the new subtype of the pathogens is crucial for diagnosis, treatment and control of the contagious disease outbreak. Here, in this study, an approach to detect and identify Escherichia coli O157:H7 and Vibrio cholerae O139 was established using oligonucleotide microarray. We coupled multiplex PCR with oligonucleotide microarray to construct an assay suitable for simultaneous identification of two subtypes of the pathogens. Results The stx1, stx2 gene and uidA gene having the specific mutant spot were chosen as the targets for Escherichia coli O157:H7, and meanwhile the ctxA, tcpA, and LPSgt gene for Vibrio cholerae O139. The oligonucleotide microarray was composed of eight probes including negative control and positive control from 16S rDNA gene. The six primers were designed to amplify target fragments in two triplex PCR, and then hybridized with oligonucleotide microarray. An internal control would be to run a PCR reaction in parallel. Multiplex PCR did not produce any non-specific amplicons when 149 related species or genera of standard bacteria were tested (100% specificity). In addition, Escherichia coli O157:H7 and Escherichia coli O157:non-H7, Vibrio cholerae O139 and Vibrio cholerae O1 had been discriminated respectively. Using recombinant plasmid and target pathogens, we were able to detect positive hybridization signals with 102 copies/μL and 103 cfu/mL per reaction. Conclusion The DNA microarray assay reported here could detect and identify Escherichia coli O157:H7 and Vibrio cholerae O139, and furthermore the subtype was distinguished. This assay was a specific and sensitive tool for simultaneous detection and identification of the new subtype of two pathogens causing diarrhea in human.
Collapse
Affiliation(s)
- Da-Zhi Jin
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Xiao-Jing Xu
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Su-Hong Chen
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Si-Yuan Wen
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Xue-En Ma
- College of Animal Science and Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Zheng Zhang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310009, China
| | - Feng Lin
- Wenzhou Medicine College affiliated Wenling First Hospital, Wenling, Zhejiang province, Wenling, 317500, China
| | - Sheng-Qi Wang
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| |
Collapse
|
46
|
Fournier PE, Drancourt M, Raoult D. Bacterial genome sequencing and its use in infectious diseases. THE LANCET. INFECTIOUS DISEASES 2007; 7:711-23. [DOI: 10.1016/s1473-3099(07)70260-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
47
|
Ojha S, Kostrzynska M. Examination of animal and zoonotic pathogens using microarrays. Vet Res 2007; 39:4. [DOI: 10.1051/vetres:2007042] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Accepted: 07/27/2007] [Indexed: 01/13/2023] Open
|
48
|
Zhu Q, Shih WY, Shih WH. Real-Time, Label-Free, All-Electrical Detection of Salmonella typhimurium Using Lead Zirconate Titanate/Gold-Coated Glass Cantilevers at any Relative Humidity. SENSORS AND ACTUATORS. B, CHEMICAL 2007; 125:379-388. [PMID: 22872784 PMCID: PMC3412147 DOI: 10.1016/j.snb.2007.02.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
We have examined non-insulated PZT/gold-coated glass cantilevers for real-time, label-free detection of Salmonella t. by partial dipping at any relative humidity. The PZT/gold-coated glass cantilevers were consisted of a 0.127 mm thick PZT layer about 0.8 mm long, 2 mm wide bonded to a 0.15 mm thick gold-coated glass layer with a 3.0 mm long gold-coated glass tip for detection. We showed that by placing the water level at the nodal point, about 0.8 mm from the free end of the gold-glass tip, there was a 1-hr window in which the resonance frequency was stable despite the water level change by evaporation at 20% relative humidity or higher. By dipping the cantilevers to their nodal point, we were able to do real-time, label-free detection without background resonance frequency corrections at any relative humidity. The partially dipped PZT/gold-coated glass cantilever exhibited mass detection sensitivity, Δm/Δf = -5×10(-11)g/Hz, and a detection concentration sensitivity, 5×10(3) cells/ml in 2 ml of liquid, which was about two orders of magnitude lower than that of a 5 MHz QCM. It was also about two orders of magnitude lower than the infection dosage and one order of magnitude lower that the detection limit of a commercial Raptor sensor.
Collapse
Affiliation(s)
- Qing Zhu
- Department of Materials Science and Engineering
| | | | | |
Collapse
|
49
|
Anjum MF, Mafura M, Slickers P, Ballmer K, Kuhnert P, Woodward MJ, Ehricht R. Pathotyping Escherichia coli by using miniaturized DNA microarrays. Appl Environ Microbiol 2007; 73:5692-7. [PMID: 17630299 PMCID: PMC2042074 DOI: 10.1128/aem.00419-07] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The detection of virulence determinants harbored by pathogenic Escherichia coli is important for establishing the pathotype responsible for infection. A sensitive and specific miniaturized virulence microarray containing 60 oligonucleotide probes was developed. It detected six E. coli pathotypes and will be suitable in the future for high-throughput use.
Collapse
Affiliation(s)
- Muna F Anjum
- Department of Food and Environmental Safety, Veterinary Laboratories Agency-Weybridge, New Haw, Addlestone, Surrey KT15 3NB, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
50
|
Zhu Q, Shih WY, Shih WH. In situ, in-liquid, all-electrical detection of Salmonella typhimurium using lead titanate zirconate/gold-coated glass cantilevers at any dipping depth. Biosens Bioelectron 2007; 22:3132-8. [PMID: 17387007 PMCID: PMC6469510 DOI: 10.1016/j.bios.2007.02.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2006] [Revised: 12/16/2006] [Accepted: 02/06/2007] [Indexed: 11/19/2022]
Abstract
Most biosensing techniques are indirect, slow, and require labeling. Even though silicon-based microcantilever sensors are sensitive and label-free, they are not suitable for in-liquid detection. More recently lead zirconate titanate (PZT) thin-film-based microcantilevers are shown to be sensitive and in situ. However, they require microfabrication and must be electrically insulated. In this study, we show that highly sensitive, in situ, Salmonella typhimurium detection can be achieved at 90% relative humidity using a lead zirconate titanate (PZT)/gold-coated glass cantilever 0.7 mm long with a non-piezoelectric 2.7 mm long gold-coated glass tip by partially dipping the gold-coated glass tip in the suspension at any depth without electrically insulating the PZT. In particular, we showed that at 90% relative humidity and with a dipping depth larger than 0.8mm the PZT/gold-coated glass cantilever showed virtually no background resonance frequency up-shift due to water evaporation and exhibited a mass detection sensitivity of Deltam/Deltaf=-5 x 10(-11)g/Hz. The concentration sensitivities of this PZT/gold-coated glass cantilever were 1 x 10(3) and 500 cells/ml in 2 ml of liquid with a 1 and 1.5mm dipping depth, respectively, both more than two orders of magnitude lower than the infectious dose and more than one order of magnitude lower than the detection limit of a commercial Raptor sensor.
Collapse
Affiliation(s)
- Qing Zhu
- Department of Materials Science and Engineering, Drexel University, Philadelphia, PA 19104, United States.
| | | | | |
Collapse
|