1
|
Nishii M, Yasutomi M. Survival Time of Campylobacter jejuni in Broiler Crops. J Poult Sci 2024; 61:2024016. [PMID: 38827264 PMCID: PMC11136615 DOI: 10.2141/jpsa.2024016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 04/16/2024] [Indexed: 06/04/2024] Open
Abstract
Lactobacillus spp. inhibit the growth of Campylobacter spp. in vitro. However, in chicken crops, in which Lactobacillus spp. predominate, such inhibition of Campylobacter has not been confirmed. In our previous study, feeding paddy rice to broiler chicks increased the residence time of the food, which might enhance the bactericidal activity of the crop. Here, the bactericidal activity against the remaining Campylobacter spp. in broiler crops was evaluated. A suspension prepared by mixing Campylobacter jejuni and titanium dioxide (TiO2) was inoculated into the pharynx of 26-day-old broiler chicks fed a paddy rice-based diet. The crop contents were sampled at 20-min intervals. The TiO2 residual ratio in the crop gradually decreased with time after inoculation, with 57% of the inoculated TiO2 remaining in the crop 60 min after inoculation. The survival fraction of C. jejuni in the crops was 11% at 40 min, only 1% at 60 min, and was undetectable at 80 min. Most of the inoculated C. jejuni died in the crop before entering the next segment. These data indicated that bacterial death occurred between 30 min and 40 min after inoculation. The average survival time of C. jejuni in the crop was calculated to be 37.1 min. Thus, C. jejuni remaining in a chicken crop for more than 40 min died.
Collapse
Affiliation(s)
- Mari Nishii
- Kyoto Prefecture Agriculture
Experiment Station, Ayabe-Shi 623-0221,
Japan
| | - Masaharu Yasutomi
- Kyoto Prefecture Agriculture
Experiment Station, Ayabe-Shi 623-0221,
Japan
| |
Collapse
|
2
|
Khan RU, Naz S, Raziq F, Qudratullah Q, Khan NA, Laudadio V, Tufarelli V, Ragni M. Prospects of organic acids as safe alternative to antibiotics in broiler chickens diet. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:32594-32604. [PMID: 35195862 PMCID: PMC9072444 DOI: 10.1007/s11356-022-19241-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Genetically, modern broilers are fast-growing birds which attain the market age at the age of 5 weeks. To maintain optimum production, antibiotics have been commonly included in the diets as growth promoters. However, due to the increase in antimicrobial resistance, their uses have been banned worldwide. To keep the optimum level of production and health in broiler industry, the use of alternative growth promoters such as probiotics, prebiotics, enzymes, and organic acids has been proposed. Chemically, organic acids are weak acids and only partially dissociate. They are considered safe and have been used for preservation of food for centuries. Nowadays, organic acids have been reported for antibacterial, immune potentiating, and growth promoters in broilers. In this review, the effects of dietary inclusion of organic acids on growth, nutrient digestibility, intestinal integrity, immune system, and antibacterial activity in broilers are discussed.
Collapse
Affiliation(s)
- Rifat Ullah Khan
- College of Veterinary Sciences, Faculty of Animal Husbandry and Veterinary Sciences, The University of Agriculture, Peshawar, Pakistan
| | - Shabana Naz
- Department of Zoology, Government College University, Faisalabad, Pakistan
| | - Fazal Raziq
- Livestock and Dairy Development, Peshawar, Pakistan
| | - Qudratullah Qudratullah
- Department of Surgery and Pet Centre, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Nazir Ahmad Khan
- Department of Animal Nutrition, Faculty of Animal Husbandry & Veterinary Sciences, The University of Agriculture, Peshawar, Pakistan
| | - Vito Laudadio
- Department of DETO, Section of Veterinary Science and Animal Production, University of Bari 'Aldo Moro', Valenzano, Bari, Italy
| | - Vincenzo Tufarelli
- Department of DETO, Section of Veterinary Science and Animal Production, University of Bari 'Aldo Moro', Valenzano, Bari, Italy.
| | - Marco Ragni
- Department of Agro-Environmental and Territorial Science, University of Bari 'Aldo Moro', Bari, Italy
| |
Collapse
|
3
|
In Vitro and In Silico Based Approaches to Identify Potential Novel Bacteriocins from the Athlete Gut Microbiome of an Elite Athlete Cohort. Microorganisms 2022; 10:microorganisms10040701. [PMID: 35456752 PMCID: PMC9025905 DOI: 10.3390/microorganisms10040701] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/09/2022] [Accepted: 03/22/2022] [Indexed: 12/30/2022] Open
Abstract
Exercise reduces inflammation, fatigue, and aids overall health. Additionally, physical fitness has been associated with desirable changes in the community composition of the athlete gut microbiome, with health-associated taxa being shown to be increased in active individuals. Here, using a combination of in silico and in vitro methods, we investigate the antimicrobial activity of the athlete gut microbiome. In vitro approaches resulted in the generation of 284 gut isolates with inhibitory activity against Clostridioides difficile and/or Fusobacterium nucleatum, and the most potent isolates were further characterized, and potential bacteriocins were predicted using both MALDI-TOF MS and whole-genome sequencing. Additionally, metagenomic reads from the faecal samples were used to recover 770 Metagenome Assembled Genomes (MAGs), of which 148 were assigned to be high-quality MAGs and screened for the presence of putative bacteriocin gene clusters using BAGEL4 software, with 339 gene clusters of interest being identified. Class I was the most abundant bacteriocin class predicted, accounting for 91.3% of predictions, Class III had a predicted abundance of 7.5%, and Class II was represented by just 1% of all predictions.
Collapse
|
4
|
Śmiałek M, Kowalczyk J, Koncicki A. The Use of Probiotics in the Reduction of Campylobacter spp. Prevalence in Poultry. Animals (Basel) 2021; 11:1355. [PMID: 34068764 PMCID: PMC8150830 DOI: 10.3390/ani11051355] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/21/2021] [Accepted: 05/06/2021] [Indexed: 12/23/2022] Open
Abstract
Campylobacter spp. are widely distributed microorganisms, many of which are commensals of gastrointestinal tract in multiple animal species, including poultry. Most commonly detected are C. jejuni and C. coli. Although infections are usually asymptomatic in poultry, poultry meat and products represent main sources of infection with these bacteria to humans. According to recent EFSA report, campylobacteriosis is the most commonly reported zoonotic disease. In 2018, EFSA Panel on Biological Hazards indicated that use of feed and water additives is the second most likely strategy that can be successful in minimizing Campylobacter spp. colonization rate in broiler chickens. One of those feed and water additives are probiotics. From numerous research papers it can be concluded that probiotics exhibit plenty of mechanisms of anti-Campylobacter activity, which were evaluated under in vitro conditions. These results, to some extent, can explain the efficacy of probiotics in in vivo studies, although different outcome can be observed under these two laboratory conditions. Probiotics are capable of reducing Campylobacter spp. population count in poultry gastrointestinal tract and they can reduce carcass contamination. Potential modes of anti-Campylobacter activity of probiotics, results of in vivo studies and studies performed at a farm level are widely discussed in the paper.
Collapse
Affiliation(s)
- Marcin Śmiałek
- Department of Poultry Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego 13, 10-719 Olsztyn, Poland; (J.K.); (A.K.)
| | | | | |
Collapse
|
5
|
Sureshkumar S, Park JH, Kim IH. Effects of the Inclusion of Dietary Organic Acid Supplementation with Anti-Coccidium Vaccine on Growth Performance, Digestibility, Fecal Microbial, and Chicken Fecal Noxious Gas Emissions. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2021. [DOI: 10.1590/1806-9061-2020-1425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
| | - JH Park
- Dankook University, Republic of Korea
| | - IH Kim
- Dankook University, Republic of Korea
| |
Collapse
|
6
|
Deng W, Dittoe DK, Pavilidis HO, Chaney WE, Yang Y, Ricke SC. Current Perspectives and Potential of Probiotics to Limit Foodborne Campylobacter in Poultry. Front Microbiol 2020; 11:583429. [PMID: 33414767 PMCID: PMC7782433 DOI: 10.3389/fmicb.2020.583429] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/03/2020] [Indexed: 01/07/2023] Open
Abstract
Poultry has been one of the major contributors of Campylobacter related human foodborne illness. Numerous interventions have been applied to limit Campylobacter colonization in poultry at the farm level, but other strategies are under investigation to achieve more efficient control. Probiotics are viable microbial cultures that can establish in the gastrointestinal tract (GIT) of the host animal and elicit health and nutrition benefits. In addition, the early establishment of probiotics in the GIT can serve as a barrier to foodborne pathogen colonization. Thus, probiotics are a potential feed additive for reducing and eliminating the colonization of Campylobacter in the GIT of poultry. Screening probiotic candidates is laborious and time-consuming, requiring several tests and validations both in vitro and in vivo. The selected probiotic candidate should possess the desired physiological characteristics and anti-Campylobacter effects. Probiotics that limit Campylobacter colonization in the GIT rely on different mechanistic strategies such as competitive exclusion, antagonism, and immunomodulation. Although numerous research efforts have been made, the application of Campylobacter limiting probiotics used in poultry remains somewhat elusive. This review summarizes current research progress on identifying and developing probiotics against Campylobacter and presenting possible directions for future research efforts.
Collapse
Affiliation(s)
- Wenjun Deng
- Center of Food Safety, Department of Food Science, University of Arkansas, Fayetteville, AR, United States
| | - Dana K. Dittoe
- Center of Food Safety, Department of Food Science, University of Arkansas, Fayetteville, AR, United States
| | | | | | - Yichao Yang
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Steven C. Ricke
- Meat Science and Animal Biologics Discovery Program, Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI, United States
| |
Collapse
|
7
|
Nastasijevic I, Proscia F, Boskovic M, Glisic M, Blagojevic B, Sorgentone S, Kirbis A, Ferri M. The European Union control strategy for
Campylobacter
spp. in the broiler meat chain. J Food Saf 2020. [DOI: 10.1111/jfs.12819] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
| | | | - Marija Boskovic
- Faculty of Veterinary Medicine University of Belgrade Belgrade Serbia
| | - Milica Glisic
- Faculty of Veterinary Medicine University of Belgrade Belgrade Serbia
| | - Bojan Blagojevic
- Faculty of Agriculture, Department for Veterinary Medicine University of Novi Sad Novi Sad Serbia
| | | | - Andrej Kirbis
- Faculty of Veterinary Medicine University of Ljubljana Ljubljana Slovenia
| | - Maurizio Ferri
- Italian Society of Preventive Veterinary Medicine Rome Italy
| |
Collapse
|
8
|
Ushanov L, Lasareishvili B, Janashia I, Zautner AE. Application of Campylobacter jejuni Phages: Challenges and Perspectives. Animals (Basel) 2020; 10:E279. [PMID: 32054081 PMCID: PMC7070343 DOI: 10.3390/ani10020279] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/03/2020] [Accepted: 02/07/2020] [Indexed: 12/24/2022] Open
Abstract
Bacteriophages (phages) are the most abundant and diverse biological entities in the biosphere. Due to the rise of multi-drug resistant bacterial strains during the past decade, phages are currently experiencing a renewed interest. Bacteriophages and their derivatives are being actively researched for their potential in the medical and biotechnology fields. Phage applications targeting pathogenic food-borne bacteria are currently being utilized for decontamination and therapy of live farm animals and as a biocontrol measure at the post-harvest level. For this indication, the United States Food and Drug Administration (FDA) has approved several phage products targeting Listeria sp., Salmonella sp. and Escherichia coli. Phage-based applications against Campylobacter jejuni could potentially be used in ways similar to those against Salmonella sp. and Listeria sp.; however, only very few Campylobacter phage products have been approved anywhere to date. The research on Campylobacter phages conducted thus far indicates that highly diverse subpopulations of C. jejuni as well as phage isolation and enrichment procedures influence the specificity and efficacy of Campylobacter phages. This review paper emphasizes conclusions from previous findings instrumental in facilitating isolation of Campylobacter phages and improving specificity and efficacy of the isolates.
Collapse
Affiliation(s)
- Leonid Ushanov
- Institute of Veterinary Medicine, Agricultural University of Georgia, 0159 Tbilisi, Georgia; (L.U.); (B.L.)
| | - Besarion Lasareishvili
- Institute of Veterinary Medicine, Agricultural University of Georgia, 0159 Tbilisi, Georgia; (L.U.); (B.L.)
| | - Irakli Janashia
- Institute of Entomology, Agricultural University of Georgia, 0159 Tbilisi, Georgia;
| | - Andreas E. Zautner
- Institute of Medical Microbiology, University Medical Center Göttingen, 37075 Göttingen, Germany
| |
Collapse
|
9
|
|
10
|
Micciche A, Rothrock MJ, Yang Y, Ricke SC. Essential Oils as an Intervention Strategy to Reduce Campylobacter in Poultry Production: A Review. Front Microbiol 2019; 10:1058. [PMID: 31139172 PMCID: PMC6527745 DOI: 10.3389/fmicb.2019.01058] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/26/2019] [Indexed: 12/19/2022] Open
Abstract
Campylobacter is a major foodborne pathogen and can be acquired through consumption of poultry products. With 1.3 million United States cases a year, the high prevalence of Campylobacter within the poultry gastrointestinal tract is a public health concern and thus a target for the development of intervention strategies. Increasing demand for antibiotic-free products has led to the promotion of various alternative pathogen control measures both at the farm and processing level. One such measure includes utilizing essential oils in both pre- and post-harvest settings. Essential oils are derived from plant-based extracts, and there are currently over 300 commercially available compounds. They have been proposed to control Campylobacter in the gastrointestinal tract of broilers. When used in concentrations low enough to not influence sensory characteristics, essential oils have also been proposed to decrease bacterial contamination of the poultry product during processing. This review explores the use of essential oils, particularly thymol, carvacrol, and cinnamaldehyde, and their role in reducing Campylobacter concentrations both pre- and post-harvest. This review also details the suggested mechanisms of action of essential oils on Campylobacter.
Collapse
Affiliation(s)
- Andrew Micciche
- Center of Food Safety, Department of Food Science, University of Arkansas, Fayetteville, AR, United States
| | - Michael J. Rothrock
- United States Department of Agriculture, Agricultural Research Service, Athens, GA, United States
| | - Yichao Yang
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Steven C. Ricke
- Center of Food Safety, Department of Food Science, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
11
|
Bio-controlling capability of probiotic strain Lactobacillus rhamnosus against some common foodborne pathogens in yoghurt. Int Dairy J 2018. [DOI: 10.1016/j.idairyj.2018.04.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
12
|
Wan MLY, Forsythe SJ, El-Nezami H. Probiotics interaction with foodborne pathogens: a potential alternative to antibiotics and future challenges. Crit Rev Food Sci Nutr 2018; 59:3320-3333. [PMID: 29993263 DOI: 10.1080/10408398.2018.1490885] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Antibiotics are a key tool used nowadays in health care industry to fight against bacterial infections; however, repeated antibiotic use or misuses, have led to bacterial resistance, causing significant threats for many people with common bacterial infections. The use of probiotics to enhance gastrointestinal health has been proposed for many years. In recent years, there has been an increasing interest in the use of probiotic bacteria as alternatives for antibiotics for preventing or treating various intestinal infections. Several important underlying mechanisms responsible for the antagonistic effects of probiotics on different microorganisms include: (1) competitive exclusion for adhesion sites and nutritional sources; (2) secretion of antimicrobial substances; (3) enhancement of intestinal barrier function; and (4) immunomodulation. However, their mode of action is not very well understood and therefore a clearer understanding of these mechanisms is necessitated. This will enable appropriate probiotic strains to be selected for particular applications and may reveal new probiotic functions. The goal of this review was to highlight some studies from literature describing the probiotic interaction with several major foodborne pathogens, as well as explore the mechanisms for such probiotic-pathogen interaction. The review will conclude by presenting future perspective and challenges of probiotic application in food products.
Collapse
Affiliation(s)
- Murphy Lam Yim Wan
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, Pokfulam, Hong Kong S.A.R
| | | | - Hani El-Nezami
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, Pokfulam, Hong Kong S.A.R.,Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
13
|
Currie D, Green M, Dufailu OA, Matthaios P, Soultanas P, McCartney E, Lester H, Van Den Eede L, Apajalahti J, Mahdavi J. Dietary supplementation with ferric tyrosine improves zootechnical performance and reduces caecal Campylobacter spp. load in broilers. Br Poult Sci 2018; 59:646-653. [PMID: 30113210 DOI: 10.1080/00071668.2018.1507015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
1. The objective of this study was to evaluate the effect of ferric tyrosine on the reduction of Campylobacter spp. and zootechnical performance in broilers exposed to Campylobacter spp. using a natural challenge model to simulate commercial conditions. Additionally, the minimum inhibitory concentrations (MICs) of ferric tyrosine against common enteropathogens were evaluated. 2. At the start of the trial, 840 healthy male 1-d-old birds (Ross 308) were randomly allocated to 6 replicate pens of 35 birds each and fed diets containing different concentrations of ferric tyrosine (0, 0.02, 0.05 and 0.2 g/kg) in mash form for 42 d. 3. Broilers fed diets containing ferric tyrosine showed significantly higher body weight at d 42 and weight gain compared to the control group. However, birds fed ferric tyrosine ate significantly more than the control birds so significant improvements in feed conversion rate were not observed. 4. Microbiological analyses of caecal samples collected on d 42 of the study showed, per gram of sample, 2-3 log10 reduction in Campylobacter spp. and 1 log10 reduction in Escherichia coli in the groups fed diets containing ferric tyrosine compared to the control. 5. The MICs of ferric tyrosine was >400 mg/l for C. jejuni and >200 mg/l for E. coli and Salmonella enterica, indicating that ferric tyrosine did not exert antimicrobial activity. 6. The results showed that birds fed ferric tyrosine grew faster and consumed more feed compared to the control group, indicating potential benefits of faster time to reach slaughter weight with no significant reduction on feed efficiency. Moreover, ferric tyrosine significantly reduced caecal Campylobacter spp. and E. coli indicating potential as a non-antibiotic feed additive to lower the risk of infections transmitted through the food chain.
Collapse
Affiliation(s)
- D Currie
- a Roslin Nutrition Ltd ., East Lothian , Scotland
| | - M Green
- b School of Chemistry, Centre for Biomolecular Sciences , University of Nottingham , UK
| | - O A Dufailu
- b School of Chemistry, Centre for Biomolecular Sciences , University of Nottingham , UK
| | - P Matthaios
- b School of Chemistry, Centre for Biomolecular Sciences , University of Nottingham , UK
| | - P Soultanas
- b School of Chemistry, Centre for Biomolecular Sciences , University of Nottingham , UK
| | - E McCartney
- c Pen & Tec Consulting S.L.U ., Barcelona , Spain
| | - H Lester
- c Pen & Tec Consulting S.L.U ., Barcelona , Spain
| | | | | | - J Mahdavi
- b School of Chemistry, Centre for Biomolecular Sciences , University of Nottingham , UK
| |
Collapse
|
14
|
Tinrat S, Khuntayaporn P, Thirapanmethee K, Chomnawang MT. In vitro assessment of Enterococcus faecalis MTC 1032 as the potential probiotic in food supplements. Journal of Food Science and Technology 2018; 55:2384-2394. [PMID: 30042553 DOI: 10.1007/s13197-018-3155-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/12/2018] [Accepted: 04/05/2018] [Indexed: 01/22/2023]
Abstract
Probiotics become important bacteria in our daily life due to their benefit on human health. In this study, a subset of bacterial strains from children was isolated and evaluated for beneficial probiotic traits such as antimicrobial activity, bile and acid tolerance, and pathogenic cell adherence inhibition. The strain with the best antimicrobial activity was selected for further characterization on the basis of morphological, biochemical characteristics and gene sequence. This strain was Gram-positive, oxidase and catalase-negative, and it produced acids by fermenting sugar and starch as carbon sources. Additionally, it could only hydrolyze bile-esculin, but not red blood cells. The 16S rDNA gene sequence revealed that this strain was Enterococcus faecalis. Interestingly, this strain effectively inhibited a variety of pathogens by acid and bacteriocin production and was bile-tolerant, able to survive under acidic condition. In the safety assessments, E. faecalis MTC 1032 could adhere to host epithelial cells and evidently inhibited pathogenic cell adhesion as demonstrated by cell reduction over time of E. coli ATCC 25922 and S. typhimurium ATCC 13311 on Caco-2 cell line. In summary, it was clearly represented that E. faecalis MTC 1032 provided suitable properties and could be a candidate as a probiotic strain in food supplements.
Collapse
Affiliation(s)
- Sirikhwan Tinrat
- 1Department of Biotechnology, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok, Bangkok, 10800 Thailand
| | - Piyatip Khuntayaporn
- 2Department of Microbiology, Faculty of Pharmacy, Mahidol University, 447 Sri Ayudthaya Road, Rachathevi, Bangkok, 10400 Thailand
| | - Krit Thirapanmethee
- 2Department of Microbiology, Faculty of Pharmacy, Mahidol University, 447 Sri Ayudthaya Road, Rachathevi, Bangkok, 10400 Thailand
| | - Mullika Traidej Chomnawang
- 2Department of Microbiology, Faculty of Pharmacy, Mahidol University, 447 Sri Ayudthaya Road, Rachathevi, Bangkok, 10400 Thailand
| |
Collapse
|
15
|
Hossain MI, Sadekuzzaman M, Ha SD. Probiotics as potential alternative biocontrol agents in the agriculture and food industries: A review. Food Res Int 2017; 100:63-73. [DOI: 10.1016/j.foodres.2017.07.077] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 07/29/2017] [Accepted: 07/31/2017] [Indexed: 12/13/2022]
|
16
|
Helmy YA, Kassem II, Kumar A, Rajashekara G. In Vitro Evaluation of the Impact of the Probiotic E. coli Nissle 1917 on Campylobacter jejuni's Invasion and Intracellular Survival in Human Colonic Cells. Front Microbiol 2017; 8:1588. [PMID: 28878749 PMCID: PMC5572226 DOI: 10.3389/fmicb.2017.01588] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 08/04/2017] [Indexed: 12/31/2022] Open
Abstract
Campylobacter jejuni is a leading cause of bacterial food poisoning in humans. Due to the rise in antibiotic-resistant Campylobacter, there exists a need to develop antibiotic-independent interventions to control infections in humans. Here, we evaluated the impact of Escherichia coli Nissle 1917 (EcN), a probiotic strain, on C. jejuni’s invasion and intracellular survival in polarized human colonic cells (HT-29). To further understand how EcN mediates its impact, the expression of 84 genes associated with tight junctions and cell adhesion was profiled in HT-29 cells after treatment with EcN and challenge with C. jejuni. The pre-treatment of polarized HT-29 cells with EcN for 4 h showed a significant effect on C. jejuni’s invasion (∼2 log reduction) of the colonic cells. Furthermore, no intracellular C. jejuni were recovered from EcN pre-treated HT-29 cells at 24 h post-infection. Other probiotic strains tested had no significant impact on C. jejuni invasion and intracellular survival. C. jejuni decreased the expression of genes associated with epithelial cells permeability and barrier function in untreated HT-29 cells. However, EcN positively affected the expression of genes that are involved in enhanced intestinal barrier function, decreased cell permeability, and increased tight junction integrity. The results suggest that EcN impedes C. jejuni invasion and subsequent intracellular survival by affecting HT-29 cells barrier function and tight junction integrity. We conclude that EcN might be a viable alternative for controlling C. jejuni infections.
Collapse
Affiliation(s)
- Yosra A Helmy
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, Ohio Agricultural Research and Development Center, The Ohio State University, WoosterOH, United States.,Department of Animal Hygiene, Zoonoses and Animal Ethology, Faculty of Veterinary Medicine, Suez Canal UniversityIsmailia, Egypt
| | - Issmat I Kassem
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, Ohio Agricultural Research and Development Center, The Ohio State University, WoosterOH, United States.,Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences, American University of BeirutBeirut, Lebanon
| | - Anand Kumar
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, Ohio Agricultural Research and Development Center, The Ohio State University, WoosterOH, United States
| | - Gireesh Rajashekara
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, Ohio Agricultural Research and Development Center, The Ohio State University, WoosterOH, United States
| |
Collapse
|
17
|
Kobierecka PA, Wyszyńska AK, Aleksandrzak-Piekarczyk T, Kuczkowski M, Tuzimek A, Piotrowska W, Górecki A, Adamska I, Wieliczko A, Bardowski J, Jagusztyn-Krynicka EK. In vitro characteristics of Lactobacillus spp. strains isolated from the chicken digestive tract and their role in the inhibition of Campylobacter colonization. Microbiologyopen 2017; 6. [PMID: 28736979 PMCID: PMC5635155 DOI: 10.1002/mbo3.512] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/31/2017] [Accepted: 06/04/2017] [Indexed: 02/07/2023] Open
Abstract
Campylobacter jejuni/coli infections are the leading cause of bacterial diarrheal illnesses in humans. Many epidemiological studies indicate that improperly prepared meat from chickens that carry a high load of Campylobacter in their intestinal tracts is the key source of human infections. LAB, mainly members of the Lactococcus and Lactobacillus genera, increasingly have been tested as vehicles for the delivery of heterologous bacterial or viral antigens to animal mucosal immune systems. Thus, the objective of this study was to isolate, identify, and characterize Lactobacillus spp. strains isolated from chickens bred in Poland. Their ability to decrease the level of bird gut colonization by C. jejuni strain was also analyzed. First, the influence of the different chicken rearing systems was evaluated, especially the effect of diets on the Lactobacillus species that colonize the gut of chickens. Next, selected strains were analyzed in terms of their anti‐Campylobacter activity in vitro; potential probiotic traits such as adhesion properties, bile and low pH tolerance; and their ability to grow on a defined carbon source. Given that improperly prepared chicken meat is the main source of human infection by Campylobacter, the selected strains were also assessed for their ability to inhibit Campylobacter colonization in the bird's intestine. These experiments revealed enormous physiological diversity among the Lactobacillus genus strains. Altogether, our results showed that L. plantarum strains isolated from the digestive tracts of chickens bred in Poland displayed some probiotic attributes in vitro and were able to decrease the level of bird gut colonization by C. jejuni strain. This suggests that they can be employed as vectors to deliver Campylobacter immunodominant proteins to the bird's immune system to strengthen the efficacy of in ovo vaccination.
Collapse
Affiliation(s)
- Patrycja A Kobierecka
- Faculty of Biology, Department of Bacterial Genetics, Institute of Microbiology, University of Warsaw, Warsaw, Poland
| | - Agnieszka K Wyszyńska
- Faculty of Biology, Department of Bacterial Genetics, Institute of Microbiology, University of Warsaw, Warsaw, Poland
| | | | - Maciej Kuczkowski
- Faculty of Veterinary Medicine, Department of Epizootiology and the Clinic of Birds and Exotic Animals, University of Environmental and Life Sciences, Wrocław, Poland
| | - Anna Tuzimek
- Faculty of Biology, Department of Bacterial Genetics, Institute of Microbiology, University of Warsaw, Warsaw, Poland
| | - Wioletta Piotrowska
- Faculty of Biology, Department of Bacterial Genetics, Institute of Microbiology, University of Warsaw, Warsaw, Poland
| | - Adrian Górecki
- Faculty of Biology, Department of Bacterial Genetics, Institute of Microbiology, University of Warsaw, Warsaw, Poland
| | - Iwona Adamska
- Faculty of Biology, Department of Animal Physiology, Institute of Zoology, University of Warsaw, Warsaw, Poland
| | - Alina Wieliczko
- Faculty of Veterinary Medicine, Department of Epizootiology and the Clinic of Birds and Exotic Animals, University of Environmental and Life Sciences, Wrocław, Poland
| | - Jacek Bardowski
- Polish Academy of Sciences, Institute of Biochemistry and Biophysics, Warsaw, Poland
| | - Elżbieta K Jagusztyn-Krynicka
- Faculty of Biology, Department of Bacterial Genetics, Institute of Microbiology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
18
|
Saint-Cyr MJ, Guyard-Nicodème M, Messaoudi S, Chemaly M, Cappelier JM, Dousset X, Haddad N. Recent Advances in Screening of Anti-Campylobacter Activity in Probiotics for Use in Poultry. Front Microbiol 2016; 7:553. [PMID: 27303366 PMCID: PMC4885830 DOI: 10.3389/fmicb.2016.00553] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 04/04/2016] [Indexed: 12/17/2022] Open
Abstract
Campylobacteriosis is the most common cause of bacterial gastroenteritis worldwide. Campylobacter species involved in this infection usually include the thermotolerant species Campylobacter jejuni. The major reservoir for C. jejuni leading to human infections is commercial broiler chickens. Poultry flocks are frequently colonized by C. jejuni without any apparent symptoms. Risk assessment analyses have identified the handling and consumption of poultry meat as one of the most important sources of human campylobacteriosis, so elimination of Campylobacter in the poultry reservoir is a crucial step in the control of this foodborne infection. To date, the use of probiotics has demonstrated promising results to reduce Campylobacter colonization. This review provides recent insights into methods used for probiotic screening to reduce the prevalence and colonization of Campylobacter at the farm level. Different eukaryotic epithelial cell lines are employed to screen probiotics with an anti-Campylobacter activity and yield useful information about the inhibition mechanism involved. These in vitro virulence models involve only human intestinal or cervical cell lines whereas the use of avian cell lines could be a preliminary step to investigate mechanisms of C. jejuni colonization in poultry in the presence of probiotics. In addition, in vivo trials to evaluate the effect of probiotics on Campylobacter colonization are conducted, taking into account the complexity introduced by the host, the feed, and the microbiota. However, the heterogeneity of the protocols used and the short time duration of the experiments lead to results that are difficult to compare and draw conclusions at the slaughter-age of broilers. Nevertheless, the combined approach using complementary in vitro and in vivo tools (cell cultures and animal experiments) leads to a better characterization of probiotic strains and could be employed to assess reduced Campylobacter spp. colonization in chickens if some parameters are optimized.
Collapse
Affiliation(s)
| | - Muriel Guyard-Nicodème
- Hygiene and Quality of Poultry and Pork Products Unit, Ploufragan/Plouzané Laboratory, ANSES, Université Bretagne LoirePloufragan, France
| | - Soumaya Messaoudi
- SECALIM Unit UMR1014, Oniris, INRA, Université Bretagne LoireNantes, France
| | - Marianne Chemaly
- Hygiene and Quality of Poultry and Pork Products Unit, Ploufragan/Plouzané Laboratory, ANSES, Université Bretagne LoirePloufragan, France
| | | | - Xavier Dousset
- SECALIM Unit UMR1014, Oniris, INRA, Université Bretagne LoireNantes, France
| | - Nabila Haddad
- SECALIM Unit UMR1014, Oniris, INRA, Université Bretagne LoireNantes, France
| |
Collapse
|
19
|
Stašová D, Husáková E, Bobíková K, Karaffová V, Levkutová M, Levkut M. Expression of cytokines in chicken peripheral blood mononuclear cells after stimulation by probiotic bacteria and Campylobacter jejuni in vitro. FOOD AGR IMMUNOL 2015. [DOI: 10.1080/09540105.2015.1036356] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Affiliation(s)
- Dominika Stašová
- Institute of Epizootology and Parasitology for University of Veterinary Medicine and Pharmacy, Komenského 73, 04181 Košice, Slovak Republic
| | - Eva Husáková
- Institute of Epizootology and Parasitology for University of Veterinary Medicine and Pharmacy, Komenského 73, 04181 Košice, Slovak Republic
| | - Katarína Bobíková
- Institute of Epizootology and Parasitology for University of Veterinary Medicine and Pharmacy, Komenského 73, 04181 Košice, Slovak Republic
| | - Viera Karaffová
- Institute of Epizootology and Parasitology for University of Veterinary Medicine and Pharmacy, Komenského 73, 04181 Košice, Slovak Republic
| | - Mária Levkutová
- Institute of Epizootology and Parasitology for University of Veterinary Medicine and Pharmacy, Komenského 73, 04181 Košice, Slovak Republic
| | - Mikuláš Levkut
- Institute of Epizootology and Parasitology for University of Veterinary Medicine and Pharmacy, Komenského 73, 04181 Košice, Slovak Republic
- Neuroimmunological Institute, Slovak Academy of Sciences (SAS), Bratislava, Slovak Republic
| |
Collapse
|
20
|
The role of probiotics in the inhibition of Campylobacter jejuni colonization and virulence attenuation. Eur J Clin Microbiol Infect Dis 2015; 34:1503-13. [PMID: 25934376 DOI: 10.1007/s10096-015-2392-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 01/19/2015] [Indexed: 01/30/2023]
Abstract
Campylobacter jejuni is one of the most common bacterial causes of human gastroenterocolitis worldwide, leading to diarrhea and other serious post-infectious complications. Probiotics form an attractive alternative intervention strategy for most of the enteric infections. However, the role of probiotics in C. jejuni infections requires detailed investigations in order to delineate the probiotic strains that are effective against C. jejuni. Although there are several biological mechanisms involved in the inhibition of pathogenic bacterial growth, the strains of probiotics and their mechanisms of actions through which they combat C. jejuni invasion have not been studied in greater detail. This mini review details the factors that are involved in the colonization and establishment of C. jejuni infection, with special reference to chickens, the natural host of C. jejuni, and the studies that have investigated the effect of different probiotic strains against C. jejuni colonization and growth. This review has collated the studies conducted using probiotics to inhibit C. jejuni colonization and growth to date to provide a collective knowledge about the role of probiotics as an alternative intervention strategy for campylobacteriosis.
Collapse
|
21
|
Lohans CT, van Belkum MJ, Li J, Vederas JC. Characterization of bacterial antimicrobial peptides active against Campylobacter jejuni. CAN J CHEM 2015. [DOI: 10.1139/cjc-2014-0411] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Campylobacter jejuni is one of the major causes of food poisoning, often resulting from the consumption of improperly cooked poultry products. The emergence of C. jejuni strains resistant to conventional antibiotics necessitates the evaluation of other possible treatments or preventative measures to minimize the impact and prevalence of infections. Antimicrobial peptides produced by bacteria have begun to emerge as a potential means of decreasing the levels of C. jejuni in poultry, thereby limiting Campylobacter contamination in associated food products. A number of bacteriocins produced by Gram-positive bacteria have unexpectedly been described as having antimicrobial activity against the Gram-negative C. jejuni. Additionally, some nonribosomal lipopeptides produced by Bacillus and Paenibacillus spp. show efficacy against this pathogen. This review will describe the bacterial antimicrobial peptides reported to be active against C. jejuni, with an emphasis on the characterization of their primary structures. However, for many of these peptides, little is known about their amino acid sequences and structures. Furthermore, there are unusual inconsistencies associated with the reported amino acid sequences for several of the more well-studied bacteriocins. Clarifying the chemical nature of these promising antimicrobial peptides is necessary before their potential utility for livestock protection from C. jejuni can be fully explored. Once these peptides are better characterized, they may prove to be strong candidates for minimizing the impact of Campylobacter on human health.
Collapse
Affiliation(s)
- Christopher T. Lohans
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, AB T6G 2G2, Canada
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, AB T6G 2G2, Canada
| | - Marco J. van Belkum
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, AB T6G 2G2, Canada
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, AB T6G 2G2, Canada
| | - Jing Li
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, AB T6G 2G2, Canada
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, AB T6G 2G2, Canada
| | - John C. Vederas
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, AB T6G 2G2, Canada
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, AB T6G 2G2, Canada
| |
Collapse
|
22
|
Cean A, Stef L, Simiz E, Julean C, Dumitrescu G, Vasile A, Pet E, Drinceanu D, Corcionivoschi N. Effect of Human Isolated Probiotic Bacteria on PreventingCampylobacter jejuniColonization of Poultry. Foodborne Pathog Dis 2015; 12:122-30. [DOI: 10.1089/fpd.2014.1849] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Ada Cean
- School of Animal Sciences and Biotechnology, Banat's University of Agricultural Sciences and Veterinary Medicine–King Michael I of Romania, Timisoara, Romania
| | - Lavinia Stef
- School of Animal Sciences and Biotechnology, Banat's University of Agricultural Sciences and Veterinary Medicine–King Michael I of Romania, Timisoara, Romania
| | - Eliza Simiz
- School of Animal Sciences and Biotechnology, Banat's University of Agricultural Sciences and Veterinary Medicine–King Michael I of Romania, Timisoara, Romania
| | - Calin Julean
- School of Animal Sciences and Biotechnology, Banat's University of Agricultural Sciences and Veterinary Medicine–King Michael I of Romania, Timisoara, Romania
| | - Gabi Dumitrescu
- School of Animal Sciences and Biotechnology, Banat's University of Agricultural Sciences and Veterinary Medicine–King Michael I of Romania, Timisoara, Romania
| | | | - Elena Pet
- School of Animal Sciences and Biotechnology, Banat's University of Agricultural Sciences and Veterinary Medicine–King Michael I of Romania, Timisoara, Romania
| | - Dan Drinceanu
- School of Animal Sciences and Biotechnology, Banat's University of Agricultural Sciences and Veterinary Medicine–King Michael I of Romania, Timisoara, Romania
| | - Nicolae Corcionivoschi
- School of Animal Sciences and Biotechnology, Banat's University of Agricultural Sciences and Veterinary Medicine–King Michael I of Romania, Timisoara, Romania
- Food Microbiology, Agri-Food and Biosciences Institute, Belfast, United Kingdom
| |
Collapse
|
23
|
Robyn J, Rasschaert G, Pasmans F, Heyndrickx M. Thermotolerant Campylobacter during Broiler Rearing: Risk Factors and Intervention. Compr Rev Food Sci Food Saf 2015; 14:81-105. [PMID: 33401809 DOI: 10.1111/1541-4337.12124] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 10/07/2014] [Indexed: 01/01/2023]
Abstract
Thermotolerant Campylobacters are one of the most important bacterial causative agents of human gastrointestinal illness worldwide. In most European Union (EU) member states human campylobacteriosis is mainly caused by infection with Campylobacter jejuni or Campylobacter coli following consumption or inadequate handling of Campylobacter-contaminated poultry meat. To date, no effective strategy to control Campylobacter colonization of broilers during rearing is available. In this review, we describe the public health problem posed by Campylobacter presence in broilers and list and critically review all currently known measures that have been researched to lower the numbers of Campylobacter bacteria in broilers during rearing. We also discuss the most promising measures and which measures should be investigated further. We end this review by elaborating on readily usable measures to lower Campylobacter introduction and Campylobacter numbers in a broiler flock.
Collapse
Affiliation(s)
- Joris Robyn
- the Inst. for Agricultural and Fisheries Research (ILVO), Technology and Food Science Unit, Brusselsesteenweg 370, Melle, Belgium
| | - Geertrui Rasschaert
- the Inst. for Agricultural and Fisheries Research (ILVO), Technology and Food Science Unit, Brusselsesteenweg 370, Melle, Belgium
| | - Frank Pasmans
- the Dept. of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent Univ, Salisburylaan 133, Merelbeke, Belgium
| | - Marc Heyndrickx
- the Inst. for Agricultural and Fisheries Research (ILVO), Technology and Food Science Unit, Brusselsesteenweg 370, Melle, Belgium.,the Dept. of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent Univ, Salisburylaan 133, Merelbeke, Belgium
| |
Collapse
|
24
|
Wang G, Zhao Y, Tian F, Jin X, Chen H, Liu X, Zhang Q, Zhao J, Chen Y, Zhang H, Chen W. Screening of adhesive lactobacilli with antagonistic activity against Campylobacter jejuni. Food Control 2014. [DOI: 10.1016/j.foodcont.2014.03.042] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
25
|
Salaheen S, White B, Bequette BJ, Biswas D. Peanut fractions boost the growth of Lactobacillus casei that alters the interactions between Campylobacter jejuni and host epithelial cells. Food Res Int 2014. [DOI: 10.1016/j.foodres.2014.05.061] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
26
|
Melero B, Vinuesa R, Diez A, Jaime I, Rovira J. Application of protective cultures against Listeria monocytogenes and Campylobacter jejuni in chicken products packaged under modified atmosphere. Poult Sci 2013; 92:1108-16. [DOI: 10.3382/ps.2012-02539] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
27
|
Robyn J, Rasschaert G, Hermans D, Pasmans F, Heyndrickx M. In vivo broiler experiments to assess anti-Campylobacter jejuni activity of a live Enterococcus faecalis strain. Poult Sci 2013; 92:265-71. [DOI: 10.3382/ps.2012-02712] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
28
|
Ghareeb K, Awad W, Mohnl M, Porta R, Biarnés M, Böhm J, Schatzmayr G. Evaluating the efficacy of an avian-specific probiotic to reduce the colonization ofCampylobacter jejuni in broiler chickens. Poult Sci 2012; 91:1825-32. [DOI: 10.3382/ps.2012-02168] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
29
|
Campana R, Federici S, Ciandrini E, Baffone W. Antagonistic activity of Lactobacillus acidophilus ATCC 4356 on the growth and adhesion/invasion characteristics of human Campylobacter jejuni. Curr Microbiol 2012; 64:371-8. [PMID: 22271268 DOI: 10.1007/s00284-012-0080-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 12/22/2011] [Indexed: 12/30/2022]
Abstract
The aim of this research was to determine the potential probiotic activity of Lactobacillus acidophilus ATCC 4356 against several human Campylobacter jejuni isolates. The ability to inhibit the pathogen's growth was evaluated by co-culture experiments as well as by antimicrobial assays with cell-free culture supernatant (CFCS), while interference with adhesion/invasion to intestinal Caco-2 cells was studied by exclusion, competition, and displacement tests. In the co-culture experiments L. acidophilus ATCC 4356 strain reduced the growth of C. jejuni with variable percentages of inhibition related to the contact time. The CFCS showed inhibitory activity against C. jejuni strains, stability to low pH, and thermal treatment and sensitivity to proteinase K and trypsin. L. acidophilus ATCC 4356 was able to reduce the adhesion and invasion to Caco-2 cells by most of the human C. jejuni strains. Displacement and exclusion mechanisms seem to be the preferred modalities, which caused a significant reduction of adhesion/invasion of pathogens to intestinal cells. The observed inhibitory properties of L. acidophilus ATCC 4356 on growth ability and on cells adhesion/invasion of C. jejuni may offer potential use of this strain for the management of Campylobacter infections.
Collapse
Affiliation(s)
- Raffaella Campana
- Department of Biomolecular Science, Division of Toxicology, Hygienic and Environmental Science, University of Urbino Carlo Bo, via S. Chiara 27, Urbino, Italy
| | | | | | | |
Collapse
|
30
|
Gaggia F, Di Gioia D, Baffoni L, Biavati B. The role of protective and probiotic cultures in food and feed and their impact in food safety. Trends Food Sci Technol 2011. [DOI: 10.1016/j.tifs.2011.03.003] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Lilly K, Shires L, West B, Beaman K, Loop S, Turk P, Bissonnette G, Moritz J. Strategies to improve performance and reduce preslaughter Salmonella in organic broilers. J APPL POULTRY RES 2011. [DOI: 10.3382/japr.2010-00245] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
32
|
Hermans D, Van Deun K, Messens W, Martel A, Van Immerseel F, Haesebrouck F, Rasschaert G, Heyndrickx M, Pasmans F. Campylobacter control in poultry by current intervention measures ineffective: Urgent need for intensified fundamental research. Vet Microbiol 2011; 152:219-28. [DOI: 10.1016/j.vetmic.2011.03.010] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 03/02/2011] [Accepted: 03/10/2011] [Indexed: 11/24/2022]
|
33
|
Abbas RZ, Manzoor Z, Munawar SH, Iqbal Z, Khan MN, Saleemi MK, Zia MA, Yousaf A. Anticoccidial activity of hydrochloric acid (HCl) against Eimeria tenella in broiler chickens. PESQUISA VETERINARIA BRASILEIRA 2011. [DOI: 10.1590/s0100-736x2011000500010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
ABDEL-MOHSEIN HS, SASAKI T, TADA C, NAKAI Y. Characterization and partial purification of a bacteriocin-like substance produced by thermophilic Bacillus licheniformis H1 isolated from cow manure compost. Anim Sci J 2011; 82:340-51. [DOI: 10.1111/j.1740-0929.2010.00835.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Abbas RZ, Munawar SH, Manzoor Z, Iqbal Z, Khan MN, Saleemi MK, Zia MA, Yousaf A. Anticoccidial effects of acetic acid on performance and pathogenic parameters in broiler chickens challenged with Eimeria tenella. PESQUISA VETERINARIA BRASILEIRA 2011. [DOI: 10.1590/s0100-736x2011000200001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
36
|
Abdel-Mohsein H, Yamamoto N, Otawa K, Tada C, Nakai Y. Isolation of bacteriocin-like substances producing bacteria from finished cattle-manure compost and activity evaluation against some food-borne pathogenic and spoilage bacteria. J GEN APPL MICROBIOL 2010; 56:151-61. [PMID: 20513963 DOI: 10.2323/jgam.56.151] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
A finished compost sample was examined for bacteriocin-like substance production against five pathogenic bacteria: Salmonella typhimurium EF 85-9, Escherichia coli O157:H7 ATCC 43888, Enterococcus faecalis JCM 8726, Staphylococcus aureus JCM 2151, and Yersinia enterocolitica JCM 7577. At the preliminary detection of bacterial strains exhibiting antimicrobial activity from the compost sample, thirteen strains could be isolated. Screening of the inhibitory activity was done using agar-well diffusion assay and Microtiter plate growth assay. Six bacterial strains from the compost showed an antimicrobial activity against one or more of the tested indicator strains. Four strains (M1-M4) belonged to Shigella species and the other two strains (M5 and M6) belonged to Salmonella species. The antimicrobial activity was sensitive for alpha-chymotrypsin and papain. The antimicrobial substances from M3, M4 and M6 were heat stable when heated for 15 min at 121 degrees C with 100% relative activity. The bacteriocin-like substance produced by strain M2 was partially characterized. It exhibited an inhibitory activity against the tested food-borne pathogenic and spoilage bacteria, except Enterobacter aerogenes JCM 1235 and Lactobacillus plantarum subsp. plantarum JCM 1149. It was stable at a wide range of pH (3-11). There was no loss of activity for up to 3 weeks when stored at 4 and -20 degrees C or for up to 2 weeks when stored at 28 and -80 degrees C. This is the first report indicating the presence of bacteriocin-like activity in animal manure compost.
Collapse
Affiliation(s)
- Hosnia Abdel-Mohsein
- Sustainable Environmental Biology, Graduate School of Agricultural Science, Tohoku University, Osaki, Miyagi, Japan
| | | | | | | | | |
Collapse
|
37
|
Characterization of probiotic strains: An application as feed additives in poultry against Campylobacter jejuni. Int J Food Microbiol 2010; 141 Suppl 1:S98-108. [DOI: 10.1016/j.ijfoodmicro.2010.03.039] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 03/26/2010] [Accepted: 03/29/2010] [Indexed: 11/19/2022]
|
38
|
Probiotic colonization of the adherent mucus layer of HT29MTXE12 cells attenuates Campylobacter jejuni virulence properties. Infect Immun 2010; 78:2812-22. [PMID: 20308300 DOI: 10.1128/iai.01249-09] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The HT29MTXE12 (E12) cell line harbors an adherent mucus layer, providing a novel technique to model mucosal infection in vitro. In this study, we have characterized the interaction of Campylobacter jejuni with the E12 cell line and exploited its unique mucus layer to examine the potential efficacy of probiotic treatment to attenuate C. jejuni virulence properties. C. jejuni 81-176 colonized and reproduced in E12 mucus. Adhesion to and internalization of C. jejuni were enhanced in E12 cells harboring mucus compared to parental cells without mucus. Translocation of C. jejuni occurred at early time points following infection. C. jejuni aligned with tight junctions and colocalized with the tight junction protein occludin, suggesting a paracellular route of translocation. Probiotic strains Lactobacillus rhamnosus R0011, Lactobacillus helveticus R0052, Lactobacillus salivarius AH102, Bifidobacterium longum AH1205, a commercial combination of L. rhamnosus R0011 and L. helveticus R0052 (Lacidofil), and a cocktail consisting of L. rhamnosus, L. helveticus, and L. salivarius (RhHeSa) colonized E12 mucus and bound to underlying cells. Probiotics attenuated C. jejuni association with and internalization into E12 cells and translocation to the basolateral medium of transwells. Live bacteria and prolonged precolonization of E12 cells with probiotics were necessary for probiotic action. These results demonstrate the potential for E12 cells as a model of mucosal pathogenesis and provide a rationale for the further investigation of probiotics as prophylaxis against human campylobacteriosis.
Collapse
|
39
|
Gaggìa F, Mattarelli P, Biavati B. Probiotics and prebiotics in animal feeding for safe food production. Int J Food Microbiol 2010; 141 Suppl 1:S15-28. [PMID: 20382438 DOI: 10.1016/j.ijfoodmicro.2010.02.031] [Citation(s) in RCA: 446] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 02/04/2010] [Accepted: 02/28/2010] [Indexed: 01/16/2023]
Abstract
Recent outbreaks of food-borne diseases highlight the need for reducing bacterial pathogens in foods of animal origin. Animal enteric pathogens are a direct source for food contamination. The ban of antibiotics as growth promoters (AGPs) has been a challenge for animal nutrition increasing the need to find alternative methods to control and prevent pathogenic bacterial colonization. The modulation of the gut microbiota with new feed additives, such as probiotics and prebiotics, towards host-protecting functions to support animal health, is a topical issue in animal breeding and creates fascinating possibilities. Although the knowledge on the effects of such feed additives has increased, essential information concerning their impact on the host are, to date, incomplete. For the future, the most important target, within probiotic and prebiotic research, is a demonstrated health-promoting benefit supported by knowledge on the mechanistic actions. Genomic-based knowledge on the composition and functions of the gut microbiota, as well as its deviations, will advance the selection of new and specific probiotics. Potential combinations of suitable probiotics and prebiotics may prove to be the next step to reduce the risk of intestinal diseases and remove specific microbial disorders. In this review we discuss the current knowledge on the contribution of the gut microbiota to host well-being. Moreover, we review available information on probiotics and prebiotics and their application in animal feeding.
Collapse
Affiliation(s)
- Francesca Gaggìa
- Department of Agroenvironmental Sciences and Technologies, University of Bologna, Bologna, Italy
| | | | | |
Collapse
|
40
|
Wine E, Gareau MG, Johnson-Henry K, Sherman PM. Strain-specific probiotic (Lactobacillus helveticus) inhibition of Campylobacter jejuni invasion of human intestinal epithelial cells. FEMS Microbiol Lett 2009; 300:146-52. [PMID: 19765084 DOI: 10.1111/j.1574-6968.2009.01781.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Campylobacter jejuni is the most common bacterial cause of enterocolitis in humans, leading to diarrhoea and chronic extraintestinal diseases. Although probiotics are effective in preventing other enteric infections, beneficial microorganisms have not been extensively studied with C. jejuni. The aim of this study was to delineate the ability of selected probiotic Lactobacillus strains to reduce epithelial cell invasion by C. jejuni. Human colon T84 and embryonic intestine 407 epithelial cells were pretreated with Lactobacillus strains and then infected with two prototypic C. jejuni pathogens. Lactobacillus helveticus, strain R0052 reduced C. jejuni invasion into T84 cells by 35-41%, whereas Lactobacillus rhamnosus R0011 did not reduce pathogen invasion. Lactobacillus helveticus R0052 also decreased invasion of one C. jejuni isolate (strain 11168) into intestine 407 cells by 55%. Lactobacillus helveticus R0052 adhered to both epithelial cell types, which suggest that competitive exclusion could contribute to protection by probiotics. Taken together, these findings indicate that the ability of selected probiotics to prevent C. jejuni-mediated disease pathogenesis depends on the pathogen strain, probiotic strain and the epithelial cell type selected. The data support the concept of probiotic strain selectivity, which is dependent on the setting in which it is being evaluated and tested.
Collapse
Affiliation(s)
- Eytan Wine
- Research Institute, Hospital for Sick Children, Toronto, ON, Canada
| | | | | | | |
Collapse
|
41
|
Taheri H, Moravej H, Tabandeh F, Zaghari M, Shivazad M. Screening of lactic acid bacteria toward their selection as a source of chicken probiotic. Poult Sci 2009; 88:1586-93. [DOI: 10.3382/ps.2009-00041] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
42
|
Stern NJ, Eruslanov BV, Pokhilenko VD, Kovalev YN, Volodina LL, Perelygin VV, Mitsevich EV, Mitsevich IP, Borzenkov VN, Levchuk VP, Svetoch OE, Stepanshin YG, Svetoch EA. Bacteriocins reduceCampylobacter jejunicolonization while bacteria producing bacteriocins are ineffective. MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2009. [DOI: 10.1080/08910600802030196] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Norman J. Stern
- USDA, Agricultural Research Service, RRC, PMSRU, Athens, GA, USA
| | - Boris V. Eruslanov
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, Russia
| | - Victor D. Pokhilenko
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, Russia
| | - Yuri N. Kovalev
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, Russia
| | - Larisa L. Volodina
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, Russia
| | | | - Evgenii V. Mitsevich
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, Russia
| | - Irina P. Mitsevich
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, Russia
| | - Valery N. Borzenkov
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, Russia
| | - Vladimir P. Levchuk
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, Russia
| | - Olga E. Svetoch
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, Russia
| | - Yuri G. Stepanshin
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, Russia
| | - Edward A. Svetoch
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, Russia
| |
Collapse
|
43
|
Hekmat S, Soltani H, Reid G. Growth and survival of Lactobacillus reuteri RC-14 and Lactobacillus rhamnosus GR-1 in yogurt for use as a functional food. INNOV FOOD SCI EMERG 2009. [DOI: 10.1016/j.ifset.2008.10.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
44
|
O'Bryan CA, Crandall PG, Ricke SC. Organic Poultry Pathogen Control from Farm to Fork. Foodborne Pathog Dis 2008; 5:709-20. [DOI: 10.1089/fpd.2008.0091] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Corliss A. O'Bryan
- Center for Food Safety–IFSE and Department of Food Science, University of Arkansas, Fayetteville, Arkansas
| | - Philip G. Crandall
- Center for Food Safety–IFSE and Department of Food Science, University of Arkansas, Fayetteville, Arkansas
| | - Steven C. Ricke
- Center for Food Safety–IFSE and Department of Food Science, University of Arkansas, Fayetteville, Arkansas
- Department of Poultry Science, University of Arkansas, Fayetteville, Arkansas
| |
Collapse
|
45
|
Buchanan N, Hott J, Cutlip S, Rack A, Asamer A, Moritz J. The Effects of a Natural Antibiotic Alternative and a Natural Growth Promoter Feed Additive on Broiler Performance and Carcass Quality. J APPL POULTRY RES 2008. [DOI: 10.3382/japr.2007-00038] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
46
|
Ohkawara S, Furuya H, Nagashima K, Asanuma N, Hino T. Effect of oral administration of Butyrivibrio fibrisolvens MDT-1 on experimental enterocolitis in mice. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2006; 13:1231-6. [PMID: 16988006 PMCID: PMC1656548 DOI: 10.1128/cvi.00267-06] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2006] [Revised: 08/17/2006] [Accepted: 09/12/2006] [Indexed: 01/17/2023]
Abstract
Butyrivibrio fibrisolvens MDT-1, a butyrate-producing strain, was evaluated for use as a probiotic to prevent enterocolitis. Oral administration of the MDT-1 strain (10(9) CFU/dose) alleviated the symptoms of colitis (including body weight loss, diarrhea, bloody stool, organic disorder, and mucosal damage) that are induced in mice drinking water that contains 3.0% dextran sulfate sodium. In addition, myeloperoxidase (MPO) activity levels in colonic tissue were reduced, suggesting that MDT-1 mitigates bowel inflammation. The addition of MDT-1 culture supernatant inhibited the growth of nine clinical isolates of Campylobacter jejuni and Campylobacter coli that could potentially cause enterocolitis. Infection of mice with C. coli 11580-3, one of the isolates inhibited by MDT-1 in vitro, resulted in diarrhea, mucosal damage, increased MPO activity levels in colonic tissue, increased numbers of C. coli in the cecum, and decreased body weight gain. However, administration of MDT-1 to mice, prior to and during C. coli infection, reduced these effects. These results suggest that Campylobacter-induced enterocolitis can be alleviated by using B. fibrisolvens as a probiotic.
Collapse
Affiliation(s)
- Sou Ohkawara
- Department of Life Science, College of Agriculture, Meiji University, Higashimita, Tama-ku, Kawasaki 214-8571, Japan
| | | | | | | | | |
Collapse
|
47
|
Cole K, Farnell MB, Donoghue AM, Stern NJ, Svetoch EA, Eruslanov BN, Volodina LI, Kovalev YN, Perelygin VV, Mitsevich EV, Mitsevich IP, Levchuk VP, Pokhilenko VD, Borzenkov VN, Svetoch OE, Kudryavtseva TY, Reyes-Herrera I, Blore PJ, Solis de los Santos F, Donoghue DJ. Bacteriocins reduce Campylobacter colonization and alter gut morphology in turkey poults. Poult Sci 2006; 85:1570-5. [PMID: 16977842 DOI: 10.1093/ps/85.9.1570] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Campylobacter is a leading cause of food-borne illness in the United States. Recent evidence has demonstrated that bacteriocins produced by Bacillus circulans and Paenibacillus polymyxa reduce cecal Campylobacter colonization in broiler chickens infected with Campylobacter jejuni. As Campylobacter coli is the most prevalent Campylobacter isolate recovered in turkeys, the objectives of the present study were to evaluate the efficacy of these bacteriocins against C. coli colonization and their influence on the gastrointestinal architecture of young turkeys. In 3 separate trials, a total of 135 day-of-hatch poults (n = 45/trial) were orally challenged on d 3 with approximately 10(6) cfu of a mixture of 3 C. coli isolates. Immediately before bacteriocin treatment (d 10), cecal Campylobacter concentrations averaged 1.1 x 10(7) cfu/ g of cecal contents (n = 15/trial). On d 10 to 12 posthatch, 2 bacteriocin treatment groups were given free access to feed supplemented with purified, microencapsulated bacteriocins, whereas the positive control treatment group had access to untreated feed (n = 10/treatment group per trial). At the end of the 3-d dosing period, ceca and duodenal loops were collected for analysis. In each of the 3 separate trials, treatment with bacteriocin eliminated detectable ceca Campylobacter concentrations (detection limit, 1 x 10(2) cfu/g of cecal contents) vs. controls (1.0 x 106 cfu of Campylobacter/g of cecal contents). Duodenum crypt depth and goblet cell numbers were also reduced in turkeys treated with either bacteriocin vs. controls (P < 0.05). The dynamic reduction in crypt depth and goblet cell density in turkeys dosed with bacteriocin may provide clues to how bacteriocins inhibit enteric Campylobacter.
Collapse
Affiliation(s)
- K Cole
- Department of Poultry Science, University of Arkansas, Fayetteville 72701, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Griggs J, Jacob J. Alternatives to Antibiotics for Organic Poultry Production. J APPL POULTRY RES 2005. [DOI: 10.1093/japr/14.4.750] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
49
|
El-Shibiny A, Connerton PL, Connerton IF. Enumeration and diversity of campylobacters and bacteriophages isolated during the rearing cycles of free-range and organic chickens. Appl Environ Microbiol 2005; 71:1259-66. [PMID: 15746327 PMCID: PMC1065130 DOI: 10.1128/aem.71.3.1259-1266.2005] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2004] [Accepted: 10/07/2004] [Indexed: 11/20/2022] Open
Abstract
Campylobacters and Campylobacter-specific bacteriophages were isolated and enumerated during the rearing cycle of free-range (56 days) and organic chickens (73 days) at 3-day intervals from hatching until slaughter. In both flocks Campylobacter jejuni was the initial colonizer but Campylobacter coli was detected more frequently from 5 weeks of age. The diversity of the Campylobacter isolates was examined by pulsed-field gel electrophoresis of SmaI-digested genomic DNA and antimicrobial resistance typing. Bacteriophages were isolated from 51% (19 of 37 birds) of Campylobacter-positive organic birds (log10 2.5 to log10 5.7 PFU/g of cecal contents). The bacteriophages were all typical group III Campylobacter bacteriophages in terms of genomic size but could be characterized in terms of their host range and placed into five different groups. In contrast to the organic birds, anti-Campylobacter activity (bacteriocin-like) was observed in 26% (10 of 38 birds) of Campylobacter-positive free-range birds, and only one bacteriophage was isolated. Appearance of either bacteriophages or anti-Campylobacter activity was associated with changes in the levels of colonization and the predominant genotypes and species isolated. The frequency and potential influence of naturally occurring bacteriophages and/or inhibitory substances on the diversity and fluctuations of populations of campylobacters have not previously been reported in either free-range or organic chickens.
Collapse
Affiliation(s)
- A El-Shibiny
- Division of Food Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, United Kingdom
| | | | | |
Collapse
|