1
|
Kunz S, Durandy M, Seguin L, Feral CC. NANOBODY ® Molecule, a Giga Medical Tool in Nanodimensions. Int J Mol Sci 2023; 24:13229. [PMID: 37686035 PMCID: PMC10487883 DOI: 10.3390/ijms241713229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Although antibodies remain the most widely used tool for biomedical research, antibody technology is not flawless. Innovative alternatives, such as Nanobody® molecules, were developed to address the shortcomings of conventional antibodies. Nanobody® molecules are antigen-binding variable-domain fragments derived from the heavy-chain-only antibodies of camelids (VHH) and combine the advantageous properties of small molecules and monoclonal antibodies. Nanobody® molecules present a small size (~15 kDa, 4 nm long and 2.5 nm wide), high solubility, stability, specificity, and affinity, ease of cloning, and thermal and chemical resistance. Recombinant production in microorganisms is cost-effective, and VHH are also building blocks for multidomain constructs. These unique features led to numerous applications in fundamental research, diagnostics, and therapy. Nanobody® molecules are employed as biomarker probes and, when fused to radioisotopes or fluorophores, represent ideal non-invasive in vivo imaging agents. They can be used as neutralizing agents, receptor-ligand antagonists, or in targeted vehicle-based drug therapy. As early as 2018, the first Nanobody®, Cablivi (caplacizumab), a single-domain antibody (sdAb) drug developed by French pharmaceutical giant Sanofi for the treatment of adult patients with acquired thrombocytopenic purpura (aTTP), was launched. Nanobody® compounds are ideal tools for further development in clinics for diagnostic and therapeutic purposes.
Collapse
Affiliation(s)
- Sarah Kunz
- Université Côte d’Azur, CNRS UMR7284, INSERM U1081, IRCAN, 06107 Nice, France; (S.K.); (M.D.); (L.S.)
- Department of Oncology, Sanofi Research Center, 94400 Vitry-sur-Seine, France
| | - Manon Durandy
- Université Côte d’Azur, CNRS UMR7284, INSERM U1081, IRCAN, 06107 Nice, France; (S.K.); (M.D.); (L.S.)
| | - Laetitia Seguin
- Université Côte d’Azur, CNRS UMR7284, INSERM U1081, IRCAN, 06107 Nice, France; (S.K.); (M.D.); (L.S.)
| | - Chloe C. Feral
- Université Côte d’Azur, CNRS UMR7284, INSERM U1081, IRCAN, 06107 Nice, France; (S.K.); (M.D.); (L.S.)
| |
Collapse
|
2
|
Ji F, Ren J, Vincke C, Jia L, Muyldermans S. Nanobodies: From Serendipitous Discovery of Heavy Chain-Only Antibodies in Camelids to a Wide Range of Useful Applications. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2446:3-17. [PMID: 35157266 DOI: 10.1007/978-1-0716-2075-5_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The presence of unique heavy chain-only antibodies (HCAbs) in camelids was discovered at Vrije Universiteit Brussel (VUB, Brussels, Belgium) at a time when many researchers were exploring the cloning and expression of smaller antigen-binding fragments (Fv and Fab) from hybridoma-derived antibodies. The potential importance of this discovery was anticipated, and efforts were immediately undertaken to understand the emergence and ontogeny of these HCAbs as well as to investigate the applications of the single-domain antigen-binding variable domains of HCAbs (nanobodies). Nanobodies were demonstrated to possess multiple biochemical and biophysical advantages over other antigen-binding antibody fragments and alternative scaffolds. Today, nanobodies have a significant and growing impact on research, biotechnology, and medicine.
Collapse
Affiliation(s)
- Fangling Ji
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Jun Ren
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Cécile Vincke
- Cellular and Molecular Immunology Laboratory, Vrije Universiteit Brussel, Brussels, Belgium.,Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium
| | - Lingyun Jia
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Serge Muyldermans
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China. .,Cellular and Molecular Immunology Laboratory, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
3
|
Jong WSP, Schillemans M, ten Hagen-Jongman CM, Luirink J, van Ulsen P. Comparing autotransporter β-domain configurations for their capacity to secrete heterologous proteins to the cell surface. PLoS One 2018; 13:e0191622. [PMID: 29415042 PMCID: PMC5802855 DOI: 10.1371/journal.pone.0191622] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 01/08/2018] [Indexed: 01/11/2023] Open
Abstract
Monomeric autotransporters have been extensively used for export of recombinant proteins to the cell surface of Gram-negative bacteria. A bottleneck in the biosynthesis of such constructs is the passage of the outer membrane, which is facilitated by the β-domain at the C terminus of an autotransporter in conjunction with the Bam complex in the outer membrane. We have evaluated eight β-domain constructs for their capacity to secrete fused proteins to the cell surface. These constructs derive from the monomeric autotransporters Hbp, IgA protease, Ag43 and EstA and the trimeric autotransporter Hia, which all were selected because they have been previously used for secretion of recombinant proteins. We fused three different protein domains to the eight β-domain constructs, being a Myc-tag, the Hbp passenger and a nanobody or VHH domain, and assessed expression, membrane insertion and surface exposure. Our results show that expression levels differed considerably between the constructs tested. The constructs that included the β-domains of Hbp and IgA protease appeared the most efficient and resulted in expression levels that were detectable on Coomassie-stained SDS-PAGE gels. The VHH domain appeared the most difficult fusion partner to export, probably due to its complex immunoglobulin-like structure with a tertiary structure stabilized by an intramolecular disulfide bond. Overall, the Hbp β-domain compared favorably in exporting the fused recombinant proteins, because it showed in every instance tested a good level of expression, stable membrane insertion and clear surface exposure.
Collapse
Affiliation(s)
- Wouter S. P. Jong
- Section Molecular Microbiology, Department of Molecular Cell Biology, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Abera Bioscience AB, Stockholm, Sweden
- * E-mail: ;
| | | | - Corinne M. ten Hagen-Jongman
- Section Molecular Microbiology, Department of Molecular Cell Biology, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Joen Luirink
- Section Molecular Microbiology, Department of Molecular Cell Biology, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Abera Bioscience AB, Stockholm, Sweden
| | - Peter van Ulsen
- Section Molecular Microbiology, Department of Molecular Cell Biology, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- * E-mail: ;
| |
Collapse
|
4
|
Liu Y, Huang H. Expression of single-domain antibody in different systems. Appl Microbiol Biotechnol 2017; 102:539-551. [DOI: 10.1007/s00253-017-8644-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 11/09/2017] [Accepted: 11/12/2017] [Indexed: 10/18/2022]
|
5
|
Qiao JQ, Liang C, Wei LC, Cao ZM, Lian HZ. Retention of nucleic acids in ion-pair reversed-phase high-performance liquid chromatography depends not only on base composition but also on base sequence. J Sep Sci 2016; 39:4502-4511. [DOI: 10.1002/jssc.201600701] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/04/2016] [Accepted: 09/28/2016] [Indexed: 01/24/2023]
Affiliation(s)
- Jun-qin Qiao
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry & Chemical Engineering and Center of Materials Analysis; Nanjing University; Nanjing China
| | - Chao Liang
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry & Chemical Engineering and Center of Materials Analysis; Nanjing University; Nanjing China
| | - Lan-chun Wei
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry & Chemical Engineering and Center of Materials Analysis; Nanjing University; Nanjing China
| | - Zhao-ming Cao
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry & Chemical Engineering and Center of Materials Analysis; Nanjing University; Nanjing China
| | - Hong-zhen Lian
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry & Chemical Engineering and Center of Materials Analysis; Nanjing University; Nanjing China
| |
Collapse
|
6
|
Bever CS, Dong JX, Vasylieva N, Barnych B, Cui Y, Xu ZL, Hammock BD, Gee SJ. VHH antibodies: emerging reagents for the analysis of environmental chemicals. Anal Bioanal Chem 2016; 408:5985-6002. [PMID: 27209591 DOI: 10.1007/s00216-016-9585-x] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 03/24/2016] [Accepted: 04/19/2016] [Indexed: 01/28/2023]
Abstract
A VHH antibody (or nanobody) is the antigen binding fragment of heavy chain only antibodies. Discovered nearly 25 years ago, they have been investigated for their use in clinical therapeutics and immunodiagnostics, and more recently for environmental monitoring applications. A new and valuable immunoreagent for the analysis of small molecular weight environmental chemicals, VHH will overcome many pitfalls encountered with conventional reagents. In the work so far, VHH antibodies often perform comparably to conventional antibodies for small molecule analysis, are amenable to numerous genetic engineering techniques, and show ease of adaption to other immunodiagnostic platforms for use in environmental monitoring. Recent reviews cover the structure and production of VHH antibodies as well as their use in clinical settings. However, no report focuses on the use of these VHH antibodies to detect small environmental chemicals (MW < 1500 Da). This review article summarizes the efforts made to produce VHHs to various environmental targets, compares the VHH-based assays with conventional antibody assays, and discusses the advantages and limitations in developing these new antibody reagents particularly to small molecule targets. Graphical Abstract Overview of the production of VHHs to small environmental chemicals and highlights of the utility of these new emerging reagents.
Collapse
Affiliation(s)
- Candace S Bever
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Jie-Xian Dong
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Natalia Vasylieva
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Bogdan Barnych
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Yongliang Cui
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA.,Department of Oral Biology, School of Dental Medicine, University of Buffalo, State University of New York, Buffalo, NY, 14214, USA
| | - Zhen-Lin Xu
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Bruce D Hammock
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Shirley J Gee
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA.
| |
Collapse
|
7
|
Desmyter A, Spinelli S, Roussel A, Cambillau C. Camelid nanobodies: killing two birds with one stone. Curr Opin Struct Biol 2015; 32:1-8. [PMID: 25614146 DOI: 10.1016/j.sbi.2015.01.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 12/23/2014] [Accepted: 01/05/2015] [Indexed: 01/09/2023]
Abstract
In recent years, the use of single-domain camelid immunoglobulins, termed vHHs or nanobodies, has seen increasing growth in biotechnology, pharmaceutical applications and structure/function research. The usefulness of nanobodies in structural biology is now firmly established, as they provide access to new epitopes in concave and hinge regions - and stabilize them. These sites are often associated with enzyme inhibition or receptor neutralization, and, at the same time, provide favorable surfaces for crystal packing. Remarkable results have been achieved by using nanobodies with flexible multi-domain proteins, large complexes and, last but not least, membrane proteins. While generating nanobodies is still a rather long and expensive procedure, the advent of naive libraries might be expected to facilitate the whole process.
Collapse
Affiliation(s)
- Aline Desmyter
- Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques, France; Centre National de la Recherche Scientifique, AFMB, UMR 7257, case 932, 13288 Marseille Cedex 09, France
| | - Silvia Spinelli
- Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques, France; Centre National de la Recherche Scientifique, AFMB, UMR 7257, case 932, 13288 Marseille Cedex 09, France
| | - Alain Roussel
- Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques, France; Centre National de la Recherche Scientifique, AFMB, UMR 7257, case 932, 13288 Marseille Cedex 09, France
| | - Christian Cambillau
- Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques, France; Centre National de la Recherche Scientifique, AFMB, UMR 7257, case 932, 13288 Marseille Cedex 09, France.
| |
Collapse
|
8
|
Evaluation of disulfide bond position to enhance the thermal stability of a highly stable single domain antibody. PLoS One 2014; 9:e115405. [PMID: 25526640 PMCID: PMC4272287 DOI: 10.1371/journal.pone.0115405] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Accepted: 11/21/2014] [Indexed: 11/21/2022] Open
Abstract
Single domain antibodies are the small recombinant variable domains derived from camelid heavy-chain-only antibodies. They are renowned for their stability, in large part due to their ability to refold following thermal or chemical denaturation. In addition to refolding after heat denaturation, A3, a high affinity anti-Staphylococcal Enterotoxin B single domain antibody, possesses a melting temperature of ∼84°C, among the highest reported for a single domain antibody. In this work we utilized the recently described crystal structure of A3 to select locations for the insertion of a second disulfide bond and evaluated the impact that the addition of this second bond had on the melting temperature. Four double-disulfide versions of A3 were constructed and each was found to improve the melting temperature relative to the native structure without reducing affinity. Placement of the disulfide bond at a previously published position between framework regions 2 and 3 yielded the largest improvement (>6°C), suggesting this location is optimal, and seemingly provides a universal route to raise the melting temperature of single domain antibodies. This study further demonstrates that even single domain antibodies with extremely high melting points can be further stabilized by addition of disulfide bonds.
Collapse
|
9
|
De Buck S, Nolf J, De Meyer T, Virdi V, De Wilde K, Van Lerberge E, Van Droogenbroeck B, Depicker A. Fusion of an Fc chain to a VHH boosts the accumulation levels in Arabidopsis seeds. PLANT BIOTECHNOLOGY JOURNAL 2013; 11:1006-16. [PMID: 23915060 DOI: 10.1111/pbi.12094] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 05/22/2013] [Accepted: 05/24/2013] [Indexed: 05/18/2023]
Abstract
Nanobodies® (VHHs) provide powerful tools in therapeutic and biotechnological applications. Nevertheless, for some applications, bivalent antibodies perform much better, and for this, an Fc chain can be fused to the VHH domain, resulting in a bivalent homodimeric VHH-Fc complex. However, the production of bivalent antibodies in Escherichia coli is rather inefficient. Therefore, we compared the production of VHH7 and VHH7-Fc as antibodies of interest in Arabidopsis seeds for detecting prostate-specific antigen (PSA), a well-known biomarker for prostate cancer in the early stages of tumour development. The influence of the signal sequence (camel versus plant) and that of the Fc chain origin (human, mouse or pig) were evaluated. The accumulation levels of VHHs were very low, with a maximum of 0.13% VHH of total soluble protein (TSP) in homozygous T3 seeds, while VHH-Fc accumulation levels were at least 10- to 100-fold higher, with a maximum of 16.25% VHH-Fc of TSP. Both the camel and plant signal peptides were efficiently cleaved off and did not affect the accumulation levels. However, the Fc chain origin strongly affected the degree of proteolysis, but only had a slight influence on the accumulation level. Analysis of the mRNA levels suggested that the low amount of VHHs produced in Arabidopsis seeds was not due to a failure in transcription, but rather to translation inefficiency, protein instability and/or degradation. Most importantly, the plant-produced VHH7 and VHH7-Fc antibodies were functional in detecting PSA and could thus be used for diagnostic applications.
Collapse
Affiliation(s)
- Sylvie De Buck
- Department of Plant Systems Biology, VIB, Gent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Frenzel A, Hust M, Schirrmann T. Expression of recombinant antibodies. Front Immunol 2013; 4:217. [PMID: 23908655 PMCID: PMC3725456 DOI: 10.3389/fimmu.2013.00217] [Citation(s) in RCA: 227] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 07/15/2013] [Indexed: 12/15/2022] Open
Abstract
Recombinant antibodies are highly specific detection probes in research, diagnostics, and have emerged over the last two decades as the fastest growing class of therapeutic proteins. Antibody generation has been dramatically accelerated by in vitro selection systems, particularly phage display. An increasing variety of recombinant production systems have been developed, ranging from Gram-negative and positive bacteria, yeasts and filamentous fungi, insect cell lines, mammalian cells to transgenic plants and animals. Currently, almost all therapeutic antibodies are still produced in mammalian cell lines in order to reduce the risk of immunogenicity due to altered, non-human glycosylation patterns. However, recent developments of glycosylation-engineered yeast, insect cell lines, and transgenic plants are promising to obtain antibodies with "human-like" post-translational modifications. Furthermore, smaller antibody fragments including bispecific antibodies without any glycosylation are successfully produced in bacteria and have advanced to clinical testing. The first therapeutic antibody products from a non-mammalian source can be expected in coming next years. In this review, we focus on current antibody production systems including their usability for different applications.
Collapse
Affiliation(s)
- André Frenzel
- Abteilung Biotechnologie, Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Braunschweig, Germany
| | - Michael Hust
- Abteilung Biotechnologie, Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Braunschweig, Germany
| | - Thomas Schirrmann
- Abteilung Biotechnologie, Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
11
|
Fleetwood F, Devoogdt N, Pellis M, Wernery U, Muyldermans S, Ståhl S, Löfblom J. Surface display of a single-domain antibody library on Gram-positive bacteria. Cell Mol Life Sci 2013; 70:1081-93. [PMID: 23064703 PMCID: PMC11113301 DOI: 10.1007/s00018-012-1179-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 09/21/2012] [Accepted: 09/24/2012] [Indexed: 01/07/2023]
Abstract
Combinatorial protein engineering for selection of proteins with novel functions, such as enzymes and affinity reagents, is an important tool in biotechnology, drug discovery, and other biochemical fields. Bacterial display is an emerging technology for isolation of new affinity proteins from such combinatorial libraries. Cells have certain properties that are attractive for directed evolution purposes, in particular the option to use quantitative flow-cytometric cell sorting for selection of binders. Here, an immune library of around 10(7) camelid single-domain antibody fragments (Nanobodies) was displayed on both the Gram-positive bacterium Staphylococcus carnosus and on phage. As demonstrated for the first time, the antibody repertoire was found to be well expressed on the bacterial surface and flow-cytometric sorting yielded a number of Nanobodies with subnanomolar affinity for the target protein, green fluorescent protein (GFP). Interestingly, the staphylococcal output repertoire and the binders from the phage display selection contained two slightly different sets of clones, containing both unique as well as several similar variants. All of the Nanobodies from the staphylococcal selection were also shown to enhance the fluorescence of GFP upon binding, potentially due to the fluorescence-based sorting principle. Our study highlights the impact of the chosen display technology on the variety of selected binders and thus the value of having alternative methods available, and demonstrates in addition that the staphylococcal system is suitable for generation of high-affinity antibody fragments.
Collapse
Affiliation(s)
- Filippa Fleetwood
- Division of Molecular Biotechnology, School of Biotechnology, KTH, Royal Institute of Technology, AlbaNova University Center, 106 91 Stockholm, Sweden
| | - Nick Devoogdt
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
- Laboratory of In Vivo Cellular and Molecular Imaging, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Mireille Pellis
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
- Department of Structural Biology, VIB, Pleinlaan 2, 1050 Brussels, Belgium
| | - Ulrich Wernery
- Central Veterinary Research Laboratory (CVRL), PO Box 597, Dubai, United Arab Emirates
| | - Serge Muyldermans
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
- Department of Structural Biology, VIB, Pleinlaan 2, 1050 Brussels, Belgium
| | - Stefan Ståhl
- Division of Molecular Biotechnology, School of Biotechnology, KTH, Royal Institute of Technology, AlbaNova University Center, 106 91 Stockholm, Sweden
| | - John Löfblom
- Division of Molecular Biotechnology, School of Biotechnology, KTH, Royal Institute of Technology, AlbaNova University Center, 106 91 Stockholm, Sweden
| |
Collapse
|
12
|
Lentz EM, Garaicoechea L, Alfano EF, Parreño V, Wigdorovitz A, Bravo-Almonacid FF. Translational fusion and redirection to thylakoid lumen as strategies to improve the accumulation of a camelid antibody fragment in transplastomic tobacco. PLANTA 2012; 236:703-14. [PMID: 22526499 DOI: 10.1007/s00425-012-1642-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 03/28/2012] [Indexed: 05/03/2023]
Abstract
Fragments from camelid single-chain antibodies known as VHHs or nanobodies represent a valuable tool in diagnostics, investigation and passive immunity therapy. Here, we explored different strategies to improve the accumulation of a neutralizing VHH antibody against rotavirus in tobacco transplastomic plants. First, we attempted to express the VHH in the chloroplast stroma and then two alternative strategies were carried out to improve the expression levels: expression as a translational fusion to the β-glucuronidase enzyme (GUS-E-VHH), and redirection of the VHH into the thylakoid lumen (pep-VHH). Every attempt to produce transplastomic plants expressing the VHH in the stroma was futile. The transgene turned out to be unstable and the presence of the VHH protein was almost undetectable. Although pep-VHH plants also presented some of the aforementioned problems, higher accumulation of the nanobody was observed (2-3% of the total soluble proteins). The use of β-glucuronidase as a partner protein turned out to be a successful strategy and expression levels reached 3% of the total soluble proteins. The functionality of the VHHs produced by pep-VHH and GUS-E-VHH plants was studied and compared with that of the antibody produced in Escherichia coli. This work contributes to optimizing the expression of VHH in transplastomic plants. Recombinant proteins could be obtained either by accumulation in the thylakoid lumen or as a fusion protein with β-glucuronidase, and both strategies allow for further optimization.
Collapse
Affiliation(s)
- Ezequiel M Lentz
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
13
|
In vitro neutralisation of rotavirus infection by two broadly specific recombinant monovalent llama-derived antibody fragments. PLoS One 2012; 7:e32949. [PMID: 22403728 PMCID: PMC3293919 DOI: 10.1371/journal.pone.0032949] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 02/07/2012] [Indexed: 01/02/2023] Open
Abstract
Rotavirus is the main cause of viral gastroenteritis in young children. Therefore, the development of inexpensive antiviral products for the prevention and/or treatment of rotavirus disease remains a priority. Previously we have shown that a recombinant monovalent antibody fragment (referred to as Anti-Rotavirus Proteins or ARP1) derived from a heavy chain antibody of a llama immunised with rotavirus was able to neutralise rotavirus infection in a mouse model system. In the present work we investigated the specificity and neutralising activity of two llama antibody fragments, ARP1 and ARP3, against 13 cell culture adapted rotavirus strains of diverse genotypes. In addition, immunocapture electron microscopy (IEM) was performed to determine binding of ARP1 to clinical isolates and cell culture adapted strains. ARP1 and ARP3 were able to neutralise a broad variety of rotavirus serotypes/genotypes in vitro, and in addition, IEM showed specific binding to a variety of cell adapted strains as well as strains from clinical specimens. These results indicated that these molecules could potentially be used as immunoprophylactic and/or immunotherapeutic products for the prevention and/or treatment of infection of a broad range of clinically relevant rotavirus strains.
Collapse
|
14
|
Wei G, Meng W, Guo H, Pan W, Liu J, Peng T, Chen L, Chen CY. Potent neutralization of influenza A virus by a single-domain antibody blocking M2 ion channel protein. PLoS One 2011; 6:e28309. [PMID: 22164266 PMCID: PMC3229572 DOI: 10.1371/journal.pone.0028309] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 11/06/2011] [Indexed: 11/19/2022] Open
Abstract
Influenza A virus poses serious health threat to humans. Neutralizing antibodies against the highly conserved M2 ion channel is thought to offer broad protection against influenza A viruses. Here, we screened synthetic Camel single-domain antibody (VHH) libraries against native M2 ion channel protein. One of the isolated VHHs, M2-7A, specifically bound to M2-expressed cell membrane as well as influenza A virion, inhibited replication of both amantadine-sensitive and resistant influenza A viruses in vitro, and protected mice from a lethal influenza virus challenge. Moreover, M2-7A showed blocking activity for proton influx through M2 ion channel. These pieces of evidence collectively demonstrate for the first time that a neutralizing antibody against M2 with broad specificity is achievable, and M2-7A may have potential for cross protection against a number of variants and subtypes of influenza A viruses.
Collapse
Affiliation(s)
- Guowei Wei
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Weixu Meng
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Haijiang Guo
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Weiqi Pan
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Jinsong Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Tao Peng
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Ling Chen
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Chang-You Chen
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- * E-mail:
| |
Collapse
|
15
|
Isolation of a highly thermal stable lama single domain antibody specific for Staphylococcus aureus enterotoxin B. BMC Biotechnol 2011; 11:86. [PMID: 21933444 PMCID: PMC3193169 DOI: 10.1186/1472-6750-11-86] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 09/21/2011] [Indexed: 11/25/2022] Open
Abstract
Background Camelids and sharks possess a unique subclass of antibodies comprised of only heavy chains. The antigen binding fragments of these unique antibodies can be cloned and expressed as single domain antibodies (sdAbs). The ability of these small antigen-binding molecules to refold after heating to achieve their original structure, as well as their diminutive size, makes them attractive candidates for diagnostic assays. Results Here we describe the isolation of an sdAb against Staphyloccocus aureus enterotoxin B (SEB). The clone, A3, was found to have high affinity (Kd = 75 pM) and good specificity for SEB, showing no cross reactivity to related molecules such as Staphylococcal enterotoxin A (SEA), Staphylococcal enterotoxin D (SED), and Shiga toxin. Most remarkably, this anti-SEB sdAb had an extremely high Tm of 85°C and an ability to refold after heating to 95°C. The sharp Tm determined by circular dichroism, was found to contrast with the gradual decrease observed in intrinsic fluorescence. We demonstrated the utility of this sdAb as a capture and detector molecule in Luminex based assays providing limits of detection (LODs) of at least 64 pg/mL. Conclusion The anti-SEB sdAb A3 was found to have a high affinity and an extraordinarily high Tm and could still refold to recover activity after heat denaturation. This combination of heat resilience and strong, specific binding make this sdAb a good candidate for use in antibody-based toxin detection technologies.
Collapse
|
16
|
Rahbarizadeh F, Ahmadvand D, Sharifzadeh Z. Nanobody; an old concept and new vehicle for immunotargeting. Immunol Invest 2011; 40:299-338. [PMID: 21244216 DOI: 10.3109/08820139.2010.542228] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The use of antibodies in cancer therapy has come a long way since the day Paul Ehrlich described the concept and Kohler and Milstein devised the hybridoma technology to bring this theory to reality. The synthesis of murine monoclonal antibodies (mAbs) was the first success in this field, leading to the invention of chimerization, the production of variable fragments (Fv) with the progression to domain antibodies (dAb) and later humanization technologies to maximize the clinical utility of murine mAbs. It was just by chance that dAbs were found to exist in ?heavy chain? immunoglobulins from Camelidae family and cartilaginous fish. These unique antibody fragments interact with antigen by virtue of only one single variable domain, referred to as VHH or nanobody. Several characteristics make nanobody use superior to the abovementioned antibodies. They are non-immunogenic and show high thermal and chemical stability. There are several reports of raising specific nanobodies against enzymes, haptens, pathogens, toxins and tumor markers, which are outlined in this paper. All these characteristics make them strong candidates as targeting agents for cancer therapy.
Collapse
Affiliation(s)
- Fatemeh Rahbarizadeh
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | | | | |
Collapse
|
17
|
In vitro antiviral activity of single domain antibody fragments against poliovirus. Antiviral Res 2010; 87:257-64. [PMID: 20566349 DOI: 10.1016/j.antiviral.2010.05.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Revised: 05/19/2010] [Accepted: 05/31/2010] [Indexed: 11/20/2022]
Abstract
VHHs or Nanobodies are single-domain antigen-binding fragments derived from heavy chain antibodies found in camelids. It has already been shown that complex protein mixtures and even whole organisms elicit good immune responses in camelids; therefore we hypothesized that VHHs selected from a dromedary immunized with poliovirus type 1 might inhibit the in vitro replication of poliovirus through binding to essential biological sites on the viral capsid. In this study, we aimed to determine whether VHHs inhibit wild-type and vaccine strains of poliovirus type 1. Interestingly, VHHs showed a potent antipolio activity with EC50 values in the low nanomolar range. Moreover, these antibody fragments completely blocked viral multiplication at higher concentrations. Remarkably, no (immune) escape variants against some of these VHHs could be generated. In conclusion, VHHs fulfil several in vitro requirements to be assigned as potential antiviral compounds for further development of an anti-poliovirus drugs.
Collapse
|
18
|
Muyldermans S, Baral TN, Retamozzo VC, De Baetselier P, De Genst E, Kinne J, Leonhardt H, Magez S, Nguyen VK, Revets H, Rothbauer U, Stijlemans B, Tillib S, Wernery U, Wyns L, Hassanzadeh-Ghassabeh G, Saerens D. Camelid immunoglobulins and nanobody technology. Vet Immunol Immunopathol 2008; 128:178-83. [PMID: 19026455 DOI: 10.1016/j.vetimm.2008.10.299] [Citation(s) in RCA: 362] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
It is well established that all camelids have unique antibodies circulating in their blood. Unlike antibodies from other species, these special antibodies are devoid of light chains and are composed of a heavy-chain homodimer. These so-called heavy-chain antibodies (HCAbs) are expressed after a V-D-J rearrangement and require dedicated constant gamma-genes. An immune response is raised in these so-called heavy-chain antibodies following classical immunization protocols. These HCAbs are easily purified from serum, and the antigen-binding fragment interacts with parts of the target that are less antigenic to conventional antibodies. Since the antigen-binding site of the dromedary HCAb is comprised in one single domain, referred to as variable domain of heavy chain of HCAb (VHH) or nanobody (Nb), we designed a strategy to clone the Nb repertoire of an immunized dromedary and to select the Nbs with specificity for our target antigens. The monoclonal Nbs are well produced in bacteria, are very stable and highly soluble, and bind their cognate antigen with high affinity and specificity. We have successfully developed recombinant Nbs for research purposes, as probe in biosensors, to diagnose infections, and to treat diseases like cancer or trypanosomosis.
Collapse
Affiliation(s)
- S Muyldermans
- Laboratory of Cellular and Molecular Immunology, Department of Molecular and Cellular Interactions, VIB, Vrije Universiteit Brussel, Brussels, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Hu ZQ, Li HP, Zhang JB, Glinka E, Liao YC. Antibody-mediated prevention of Fusarium mycotoxins in the field. Int J Mol Sci 2008; 9:1915-1926. [PMID: 19325726 PMCID: PMC2635614 DOI: 10.3390/ijms9101915] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 09/26/2008] [Accepted: 10/06/2008] [Indexed: 01/18/2023] Open
Abstract
Fusarium mycotoxins directly accumulated in grains during the infection of wheat and other cereal crops by Fusarium head blight (FHB) pathogens are detrimental to humans and domesticated animals. Prevention of the mycotoxins via the development of FHB-resistant varieties has been a challenge due to the scarcity of natural resistance against FHB pathogens. Various antibodies specific to Fusarium fungi and mycotoxins are widely used in immunoassays and antibody-mediated resistance in planta against Fusarium pathogens has been demonstrated. Antibodies fused to antifungal proteins have been shown to confer a very significantly enhanced Fusarium resistance in transgenic plants. Thus, antibody fusions hold great promise as an effective tool for the prevention of mycotoxin contaminations in cereal grains. This review highlights the utilization of protective antibodies derived from phage display to increase endogenous resistance of wheat to FHB pathogens and consequently to reduce mycotoxins in field. The role played by Fusarium-specific antibody in the resistance is also discussed.
Collapse
Affiliation(s)
- Zu-Quan Hu
- Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan 430070, P.R. China. E-Mails:
(Z. H.);
(H. L.);
(J. Z.)
| | - He-Ping Li
- Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan 430070, P.R. China. E-Mails:
(Z. H.);
(H. L.);
(J. Z.)
| | - Jing-Bo Zhang
- Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan 430070, P.R. China. E-Mails:
(Z. H.);
(H. L.);
(J. Z.)
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Elena Glinka
- Laboratory of Structural Biochemistry, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia. E-Mails:
(E. G.)
| | - Yu-Cai Liao
- Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan 430070, P.R. China. E-Mails:
(Z. H.);
(H. L.);
(J. Z.)
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, P.R. China
| |
Collapse
|
20
|
Saerens D, Huang L, Bonroy K, Muyldermans S. Antibody Fragments as Probe in Biosensor Development. SENSORS 2008; 8:4669-4686. [PMID: 27873779 PMCID: PMC3705465 DOI: 10.3390/s8084669] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 08/06/2008] [Accepted: 08/07/2008] [Indexed: 11/30/2022]
Abstract
Today's proteomic analyses are generating increasing numbers of biomarkers, making it essential to possess highly specific probes able to recognize those targets. Antibodies are considered to be the first choice as molecular recognition units due to their target specificity and affinity, which make them excellent probes in biosensor development. However several problems such as difficult directional immobilization, unstable behavior, loss of specificity and steric hindrance, may arise from using these large molecules. Luckily, protein engineering techniques offer designed antibody formats suitable for biomarker analysis. Minimization strategies of antibodies into Fab fragments, scFv or even single-domain antibody fragments like VH, VL or VHHs are reviewed. Not only the size of the probe but also other issues like choice of immobilization tag, type of solid support and probe stability are of critical importance in assay development for biosensing. In this respect, multiple approaches to specifically orient and couple antibody fragments in a generic one-step procedure directly on a biosensor substrate are discussed.
Collapse
Affiliation(s)
- Dirk Saerens
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium.
- Department of Molecular and Cellular Interactions, VIB, Brussels, Belgium.
| | - Lieven Huang
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
- Department of Molecular and Cellular Interactions, VIB, Brussels, Belgium
- Department of Molecular Biology, Technologiepark 927, B-9052 Zwijnaarde, Ghent University, Ghent, Belgium
- Department for Molecular Biomedical Research, VIB, Ghent, Belgium
| | | | - Serge Muyldermans
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
- Department of Molecular and Cellular Interactions, VIB, Brussels, Belgium
| |
Collapse
|
21
|
Harmsen MM, De Haard HJ. Properties, production, and applications of camelid single-domain antibody fragments. Appl Microbiol Biotechnol 2007; 77:13-22. [PMID: 17704915 PMCID: PMC2039825 DOI: 10.1007/s00253-007-1142-2] [Citation(s) in RCA: 566] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Revised: 07/25/2007] [Accepted: 07/30/2007] [Indexed: 12/16/2022]
Abstract
Camelids produce functional antibodies devoid of light chains of which the single N-terminal domain is fully capable of antigen binding. These single-domain antibody fragments (VHHs or Nanobodies®) have several advantages for biotechnological applications. They are well expressed in microorganisms and have a high stability and solubility. Furthermore, they are well suited for construction of larger molecules and selection systems such as phage, yeast, or ribosome display. This minireview offers an overview of (1) their properties as compared to conventional antibodies, (2) their production in microorganisms, with a focus on yeasts, and (3) their therapeutic applications.
Collapse
Affiliation(s)
- M M Harmsen
- Institute for Animal Science and Health (ID-Lelystad) of Wageningen University and Research Centre, Edelhertweg 15, Lelystad, The Netherlands.
| | | |
Collapse
|
22
|
Sheedy C, MacKenzie CR, Hall JC. Isolation and affinity maturation of hapten-specific antibodies. Biotechnol Adv 2007; 25:333-52. [PMID: 17383141 DOI: 10.1016/j.biotechadv.2007.02.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2006] [Revised: 02/05/2007] [Accepted: 02/05/2007] [Indexed: 11/16/2022]
Abstract
More and more recombinant antibodies specific for haptens such as drugs of abuse, dyes and pesticides are being isolated from antibody libraries. Thereby isolated antibodies tend to possess lower affinity than their parental, full-size counterparts, and therefore the isolation techniques must be optimized or the antibody genes must be affinity-matured in order to reach high affinities and specificities required for practical applications. Several strategies have been explored to obtain high-affinity recombinant antibodies from antibody libraries: At the selection level, biopanning optimization can be performed through elution with free hapten, analogue pre-incubation and subtractive panning. At the mutagenesis level, techniques such as random mutagenesis, bacterial mutator strains passaging, site-directed mutagenesis, mutational hotspots targeting, parsimonious mutagenesis, antibody shuffling (chain, DNA and staggered extension process) have been used with various degrees of success to affinity mature or modify hapten-specific antibodies. These techniques are reviewed, illustrated and compared.
Collapse
Affiliation(s)
- Claudia Sheedy
- Department of Environmental Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | | | |
Collapse
|
23
|
Alvarez-Rueda N, Behar G, Ferré V, Pugnière M, Roquet F, Gastinel L, Jacquot C, Aubry J, Baty D, Barbet J, Birklé S. Generation of llama single-domain antibodies against methotrexate, a prototypical hapten. Mol Immunol 2007; 44:1680-90. [PMID: 17011035 DOI: 10.1016/j.molimm.2006.08.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2006] [Accepted: 08/03/2006] [Indexed: 10/24/2022]
Abstract
Single-domain antibodies specific to methotrexate (MTX) were obtained after immunization of one llama (Llama glama). Specific VHH domains (V-D-J-REGION) were selected by panning from an immune-llama library using phage display technology. The antibody fragments specific to MTX were purified from Escherichia coli (C41 strain) periplasm by immobilized metal affinity chromatography with an expression level of around 10mg/L. A single band around 16,000Da corresponding to VHH fragments was found after analysis by SDS-PAGE and Western blotting, while competition ELISA demonstrated selective binding to soluble MTX. Surface plasmon resonance (SPR) analysis showed that anti-MTX VHH domains had affinities in the nanomolar range (29-515nM) to MTX-serum albumin conjugates. The genes encoding anti-MTX VHH were found by IMGT/V-QUEST to be similar to the previously reported llama and human IGHV germline genes. The V-D and D-J junction rearrangements in the seven anti-MTX CDR3 sequences indicate that they were originated from three distinct progenitor B cells. Our results demonstrate that camelid single-domain antibodies are capable of high affinity binding to low molecular weight hydrosoluble haptens. Furthermore, these anti-MTX VHH give new insights on how the antigen binding repertoire of llama single-domain antibody can provide combining sites to haptens in the absence of a VL. This type of single-domain antibodies offers advantages compared to murine recombinant antibodies in terms of production rate and sequence similarity to the human IGHV3 subgroup genes.
Collapse
Affiliation(s)
- Nidia Alvarez-Rueda
- Inserm, Université de Nantes, Nantes Atlantique Universités, U601, Département de Recherche en Cancérologie, 9 quai Moncousu, F-44000 Nantes, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Systematic approaches to directed evolution of proteins have been documented since the 1970s. The ability to recruit new protein functions arises from the considerable substrate ambiguity of many proteins. The substrate ambiguity of a protein can be interpreted as the evolutionary potential that allows a protein to acquire new specificities through mutation or to regain function via mutations that differ from the original protein sequence. All organisms have evolutionarily exploited this substrate ambiguity. When exploited in a laboratory under controlled mutagenesis and selection, it enables a protein to "evolve" in desired directions. One of the most effective strategies in directed protein evolution is to gradually accumulate mutations, either sequentially or by recombination, while applying selective pressure. This is typically achieved by the generation of libraries of mutants followed by efficient screening of these libraries for targeted functions and subsequent repetition of the process using improved mutants from the previous screening. Here we review some of the successful strategies in creating protein diversity and the more recent progress in directed protein evolution in a wide range of scientific disciplines and its impacts in chemical, pharmaceutical, and agricultural sciences.
Collapse
Affiliation(s)
- Ling Yuan
- Department of Plant and Soil Sciences, and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546, USA.
| | | | | | | |
Collapse
|
25
|
Daley LP, Gagliardo LF, Duffy MS, Smith MC, Appleton JA. Application of monoclonal antibodies in functional and comparative investigations of heavy-chain immunoglobulins in new world camelids. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2005; 12:380-6. [PMID: 15753251 PMCID: PMC1065209 DOI: 10.1128/cdli.12.3.380-386.2005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Of the three immunoglobulin G (IgG) isotypes described to occur in camelids, IgG2 and IgG3 are distinct in that they do not incorporate light chains. These heavy-chain antibodies (HCAbs) constitute approximately 50% of the IgG in llama serum and as much as 75% of the IgG in camel serum. We have produced isotype-specific mouse monoclonal antibodies (MAbs) in order to investigate the roles of HCAbs in camelid immunity. Seventeen stable hybridomas were cloned, and three MAbs that were specific for epitopes on the gamma chains of llama IgG1, IgG2, or IgG3 were characterized in detail. Affinity chromatography revealed that each MAb bound its isotype in solution in llama serum. The antibodies bound to the corresponding alpaca IgGs, to guanaco IgG1 and IgG2, and to camel IgG1. Interestingly, anti-IgG2 MAbs bound three heavy-chain species in llama serum, confirming the presence of three IgG2 subisotypes. Two IgG2 subisotypes were detected in alpaca and guanaco sera. The MAbs detected llama serum IgGs when they were bound to antigen in enzyme-linked immunosorbent assays and were used to discern among isotypes induced during infection with a parasitic nematode. Diseased animals, infected with Parelaphostrongylus tenuis, did not produce antigen-specific HCAbs; rather, they produced the conventional isotype, IgG1, exclusively. Our data document the utility of these MAbs in functional and physiologic investigations of the immune systems of New World camelids.
Collapse
Affiliation(s)
- L P Daley
- James A. Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.
| | | | | | | | | |
Collapse
|
26
|
Abstract
Occurring naturally in "heavy chain" immunoglobulins from camels, and now produced in fully human form, domain antibodies (dAbs) are the smallest known antigen-binding fragments of antibodies, ranging from 11 kDa to 15 kDa. dAbs are the robust variable regions of the heavy and light chains of immunoglobulins (VH and VL respectively). They are highly expressed in microbial cell culture, show favourable biophysical properties including solubility and temperature stability, and are well suited to selection and affinity maturation by in vitro selection systems such as phage display. dAbs are bioactive as monomers and, owing to their small size and inherent stability, can be formatted into larger molecules to create drugs with prolonged serum half-lives or other pharmacological activities.
Collapse
Affiliation(s)
- Lucy J Holt
- Domantis Limited, Granta Park, Abington, Cambridge CB1 6GS, UK.
| | | | | | | | | |
Collapse
|
27
|
Yau KYF, Groves MAT, Li S, Sheedy C, Lee H, Tanha J, MacKenzie CR, Jermutus L, Hall JC. Selection of hapten-specific single-domain antibodies from a non-immunized llama ribosome display library. J Immunol Methods 2003; 281:161-75. [PMID: 14580890 DOI: 10.1016/j.jim.2003.07.011] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Picloram-specific variable fragments (V(HH)s) of heavy chain antibodies (HCAbs) were selected from a nai;ve-llama library using ribosome display technology. A cDNA library of V(HH)s was constructed from lymphocytes of a non-immunized llama and engineered to allow in vitro transcription and translation. With no stop codons present on the transcripts, trimeric complexes of ribosomes, mRNAs and nascent peptides were produced for affinity selection, i.e. panning. After three cycles of panning, seven different V(HH)s all belonging to the V(HH) subfamily 1 were isolated. Following another three cycles of selection, only two of the seven V(HH)s persisted. A comparison of these two sequences with known sequences in the literature suggests that point mutations may have been introduced into the DNA pool during PCR amplification steps of library construction, panning and/or cloning. Three separate point mutations causing three independent amino acid changes (nonsynonomous mutations) accumulated in the same sequence and enriched throughout the selection protocol, suggesting that these changes confer binding advantages. Surface plasmon resonance (SPR) analysis was used to determine binding kinetics of the two clones (3-1D2 and 3-1F6) representing the two different sets of isolated complementarity determining region (CDR)3s. Measured K(D)s were 3 and 254 muM, respectively. The results indicate that ribosome display technology can be used to efficiently isolate hapten-specific antibody (Ab) fragments from a nai;ve library and concurrently introduce diversity to the selected pool thereby facilitating molecular evolution. Ribosome display technology can compensate for the limited diversity of a V(HH) nai;ve library and provide an unlimited source of affinity-matured immunoactive reagents in vitro.
Collapse
Affiliation(s)
- Kerrm Y F Yau
- Department of Environmental Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Joosten V, Lokman C, van den Hondel CAMJJ, Punt PJ. The production of antibody fragments and antibody fusion proteins by yeasts and filamentous fungi. Microb Cell Fact 2003; 2:1. [PMID: 12605725 PMCID: PMC149433 DOI: 10.1186/1475-2859-2-1] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2002] [Accepted: 01/30/2003] [Indexed: 12/02/2022] Open
Abstract
In this review we will focus on the current status and views concerning the production of antibody fragments and antibody fusion proteins by yeasts and filamentous fungi. We will focus on single-chain antibody fragment production (scFv and VHH) by these lower eukaryotes and the possible applications of these proteins. Also the coupling of fragments to relevant enzymes or other components will be discussed. As an example of the fusion protein strategy, the 'magic bullet' approach for industrial applications, will be highlighted.
Collapse
Affiliation(s)
- Vivi Joosten
- TNO Nutrition and Food Research, Department of Applied Microbiology and Gene Technology, P.O. Box 360, 3700 AJ Zeist, The Netherlands
| | - Christien Lokman
- TNO Nutrition and Food Research, Department of Applied Microbiology and Gene Technology, P.O. Box 360, 3700 AJ Zeist, The Netherlands
| | - Cees AMJJ van den Hondel
- TNO Nutrition and Food Research, Department of Applied Microbiology and Gene Technology, P.O. Box 360, 3700 AJ Zeist, The Netherlands
| | - Peter J Punt
- TNO Nutrition and Food Research, Department of Applied Microbiology and Gene Technology, P.O. Box 360, 3700 AJ Zeist, The Netherlands
| |
Collapse
|
29
|
Affiliation(s)
- Peter J Hudson
- CRC for Diagnostics at CSIRO Health Sciences and Nutrition, Parkville, Victoria, Australia.
| | | |
Collapse
|
30
|
Jobling SA, Jarman C, Teh MM, Holmberg N, Blake C, Verhoeyen ME. Immunomodulation of enzyme function in plants by single-domain antibody fragments. Nat Biotechnol 2003; 21:77-80. [PMID: 12483224 DOI: 10.1038/nbt772] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2002] [Accepted: 10/08/2002] [Indexed: 11/09/2022]
Abstract
Immunomodulation involves the use of antibodies to alter the function of molecules and is an emerging tool for manipulating both plant and animal systems. To realize the full potential of this technology, two major obstacles must be overcome. First, most antibodies do not function well intracellularly because critical disulfide bonds cannot form in the reducing environment of the cytoplasm or because of difficulties in targeting to subcellular organelles. Second, few antibodies bind to the active sites of enzymes and thus they generally do not neutralize enzyme function. Here we show that the unique properties of single-domain antibodies from camelids (camels and llamas) can circumvent both these obstacles. We demonstrate that these antibodies can be correctly targeted to subcellular organelles and inhibit enzyme function in plants more efficiently than antisense approaches. The use of these single-domain antibody fragments may greatly facilitate the successful immunomodulation of metabolic pathways in many organisms.
Collapse
MESH Headings
- 1,4-alpha-Glucan Branching Enzyme/genetics
- 1,4-alpha-Glucan Branching Enzyme/immunology
- 1,4-alpha-Glucan Branching Enzyme/metabolism
- Adjuvants, Immunologic/genetics
- Adjuvants, Immunologic/metabolism
- Amylose/analysis
- Amylose/biosynthesis
- Animals
- Camelids, New World/immunology
- Camelids, New World/metabolism
- Enzyme Inhibitors/immunology
- Enzyme Inhibitors/metabolism
- Gene Expression Regulation, Enzymologic/immunology
- Gene Expression Regulation, Plant/immunology
- Immunoglobulin Fragments/genetics
- Immunoglobulin Fragments/immunology
- Immunoglobulin Heavy Chains/genetics
- Immunoglobulin Heavy Chains/immunology
- Plant Tubers/enzymology
- Plant Tubers/genetics
- Plant Tubers/immunology
- Plant Tubers/metabolism
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/immunology
- Plants, Genetically Modified/metabolism
- Solanum tuberosum/enzymology
- Solanum tuberosum/genetics
- Solanum tuberosum/immunology
- Solanum tuberosum/metabolism
- Starch/biosynthesis
- Starch/chemistry
- Starch/immunology
Collapse
|
31
|
Churchill RL, Sheedy C, Yau KY, Hall J. Evolution of antibodies for environmental monitoring: from mice to plants. Anal Chim Acta 2002. [DOI: 10.1016/s0003-2670(02)00093-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
32
|
Ewert S, Cambillau C, Conrath K, Plückthun A. Biophysical properties of camelid V(HH) domains compared to those of human V(H)3 domains. Biochemistry 2002; 41:3628-36. [PMID: 11888279 DOI: 10.1021/bi011239a] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Camelidae possess an unusual form of antibodies lacking the light chains. The variable domain of these heavy chain antibodies (V(HH)) is not paired, while the V(H) domain of all other antibodies forms a heterodimer with the variable domain of the light chain (V(L)), held together by a hydrophobic interface. Here, we analyzed the biophysical properties of four camelid V(HH) fragments (H14, AMD9, RN05, and CA05) and two human consensus V(H)3 domains with different CDR3 loops to gain insight into factors determining stability and aggregation of immunoglobulin domains. We show by denaturant-induced unfolding equilibria that the free energies of unfolding of V(HH) fragments are characterized by Delta G(N-U) values between 21.1 and 35.0 kJ/mol and thus lie in the upper range of values for V(H) fragments from murine and human antibodies. Nevertheless, the V(HH) fragments studied here did not reach the high values between 39.7 and 52.7 kJ/mol of the human consensus V(H)3 domains with which they share the highest degree of sequence similarity. Temperature-induced unfolding of the V(HH) fragments that were studied proved to be reversible, and the binding affinity after cooling was fully retained. The melting temperatures were determined to be between 60.1 and 66.7 degrees C. In contrast, the studied V(H)3 domains aggregated during temperature-induced denaturation at 63-65 degrees C. In summary, the camelid V(HH) fragments are characterized by a favorable but not unusually high stability. Their hallmark is the ability to reversibly melt without aggregation, probably mediated by the surface mutations characterizing the V(HH) domains, which allow them to regain binding activity after heat renaturation.
Collapse
Affiliation(s)
- Stefan Ewert
- Biochemisches Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | | | | | |
Collapse
|
33
|
Abstract
Recombinant antibodies now represent over 30% of biopharmaceuticals in clinical trials, highlighted by the recent approvals for cancer immunotherapy from the FDA which has awoken the biotechnology industry. Sales of these antibodies are increasing very rapidly to a predicted US$ 3 billion per annum worldwide by 2002. Since the development of new therapeutic reagent into commercial product takes 10 years, the recent FDA-approved antibodies are based on early antibody designs which are now considered primitive. Emerging technologies have created a vast range of novel, recombinant, antibody-based reagents which specifically target clinical biomarkers of disease. In the past year, radiolabelling of antibodies has increased their potential for cancer imaging and targeting. Recombinant antibodies have also been reduced in size and rebuilt into multivalent molecules for higher affinity. In addition, antibodies have been fused with many molecules including toxins, enzymes and viruses for prodrug therapy, cancer treatment and gene delivery. Recombinant antibody technology has enabled clever manipulations in the construction of complex antibody library repertoires for the selection of high-affinity reagents against refractory targets. Although phage display remains the most extensively used method, this year high affinity reagents have been isolated using alternative display and selection systems such as ribosome display and yeast display confirming the emergence of new display methods. Furthermore, innovative affinity maturation strategies have been developed to obtain high affinity reagents. This review focuses on developments in the last 12 months and describes the latest developments in the design, production and clinical use of recombinant antibodies for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- P J Hudson
- CRC for Diagnostics at CSIRO Health Sciences and Nutrition, 343 Royal Parade, Parkville, Victoria, 3052, Australia.
| | | |
Collapse
|