1
|
Reha-Krantz LJ, Woodgate S, Goodman MF. Engineering processive DNA polymerases with maximum benefit at minimum cost. Front Microbiol 2014; 5:380. [PMID: 25136334 PMCID: PMC4120765 DOI: 10.3389/fmicb.2014.00380] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 07/07/2014] [Indexed: 11/25/2022] Open
Abstract
DNA polymerases need to be engineered to achieve optimal performance for biotechnological applications, which often require high fidelity replication when using modified nucleotides and when replicating difficult DNA sequences. These tasks are achieved for the bacteriophage T4 DNA polymerase by replacing leucine with methionine in the highly conserved Motif A sequence (L412M). The costs are minimal. Although base substitution errors increase moderately, accuracy is maintained for templates with mono- and dinucleotide repeats while replication efficiency is enhanced. The L412M substitution increases intrinsic processivity and addition of phage T4 clamp and single-stranded DNA binding proteins further enhance the ability of the phage T4 L412M-DNA polymerase to replicate all types of difficult DNA sequences. Increased pyrophosphorolysis is a drawback of increased processivity, but pyrophosphorolysis is curbed by adding an inorganic pyrophosphatase or divalent metal cations, Mn2+ or Ca2+. In the absence of pyrophosphorolysis inhibitors, the T4 L412M-DNA polymerase catalyzed sequence-dependent pyrophosphorolysis under DNA sequencing conditions. The sequence specificity of the pyrophosphorolysis reaction provides insights into how the T4 DNA polymerase switches between nucleotide incorporation, pyrophosphorolysis and proofreading pathways. The L-to-M substitution was also tested in the yeast DNA polymerases delta and alpha. Because the mutant DNA polymerases displayed similar characteristics, we propose that amino acid substitutions in Motif A have the potential to increase processivity and to enhance performance in biotechnological applications. An underlying theme in this chapter is the use of genetic methods to identify mutant DNA polymerases with potential for use in current and future biotechnological applications.
Collapse
Affiliation(s)
- Linda J Reha-Krantz
- Department of Biological Sciences, University of Alberta Edmonton, AB, Canada
| | | | | |
Collapse
|
2
|
Harb F, Tinland B. Electric migration of α-hemolysin in supported n-bilayers: a model for transmembrane protein microelectrophoresis. Electrophoresis 2013; 34:3054-63. [PMID: 23925931 DOI: 10.1002/elps.201300202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 06/26/2013] [Accepted: 07/12/2013] [Indexed: 11/06/2022]
Abstract
Proteome analysis involves separating proteins as a preliminary step toward their characterization. This paper reports on the translational migration of a model transmembrane protein (α-hemolysin) in supported n-bilayers (n, the number of bilayers, varies from 1 to around 500 bilayers) when an electric field parallel to the membrane plane is applied. The migration changes in direction as the charge on the protein changes its sign. Its electrophoretic mobility is shown to depend on size and charge. The electrophoretic mobility varies as 1/R(2), with R the equivalent geometric radius of the embedded part of the protein. Measuring mobilities at differing pH in our system enables us to determine the pI and the charge of the protein. Establishing all these variations points to the feasibility of electrophoretic transport of a charged object in this medium and is a first step toward electrophoretic separation of membrane proteins in n-bilayer systems.
Collapse
Affiliation(s)
- Frédéric Harb
- Aix-Marseille Université, CINaM, CNRS, Marseille, France
| | | |
Collapse
|
3
|
Novak BR, Moldovan D, Nikitopoulos DE, Soper SA. Distinguishing single DNA nucleotides based on their times of flight through nanoslits: a molecular dynamics simulation study. J Phys Chem B 2013; 117:3271-9. [PMID: 23461845 DOI: 10.1021/jp309486c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Transport of single molecules in nanochannels or nanoslits might be used to identify them via their transit (flight) times. In this paper, we present molecular dynamics simulations of transport of single deoxynucleotide 5'-monophoshates (dNMP) in aqueous solution under pressure-driven flow, to average velocities between 0.4 and 1.0 m/s, in 3 nm wide slits with hydrophobic walls. The simulation results show that, while moving along the slit, the mononucleotides are adsorbed and desorbed from the walls multiple times. For the simulations, the estimated minimum slit length required for separation of the dNMP flight time distributions is about 5.9 μm, and the minimum analysis time per dNMP is about 10 μs. These are determined by the nature of the nucleotide-wall interactions, channel width, and by the flow characteristics. A simple analysis using realistic dNMP velocities shows that, in order to reduce the effects of diffusional broadening and keep the analysis time per dNMP reasonably small, the nucleotide velocity should be relatively high. Tailored surface chemistry could lead to further reduction of the analysis time toward its minimum value for a given driving force.
Collapse
Affiliation(s)
- Brian R Novak
- Department of Mechanical and Industrial Engineering, and Center for Computation and Technology, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | | | | | | |
Collapse
|
4
|
Terentyeva TG, Hofkens J, Komatsuzaki T, Blank K, Li CB. Time-Resolved Single Molecule Fluorescence Spectroscopy of an α-Chymotrypsin Catalyzed Reaction. J Phys Chem B 2013; 117:1252-60. [DOI: 10.1021/jp310663v] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tatyana G. Terentyeva
- Photochemistry & Spectroscopy, Department of Chemistry, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Johan Hofkens
- Photochemistry & Spectroscopy, Department of Chemistry, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Tamiki Komatsuzaki
- Molecule & Life Nonlinear Sciences, Research Institute for Electronic Science (RIES), Hokkaido University, Sapporo, Japan
| | - Kerstin Blank
- Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Chun-Biu Li
- Molecule & Life Nonlinear Sciences, Research Institute for Electronic Science (RIES), Hokkaido University, Sapporo, Japan
| |
Collapse
|
5
|
Harb F, Sarkis J, Ferte N, Tinland B. Beyond Saffman-Delbruck approximation: a new regime for 2D diffusion of α-hemolysin complexes in supported lipid bilayer. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2012; 35:118. [PMID: 23160766 DOI: 10.1140/epje/i2012-12118-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 09/10/2012] [Accepted: 10/11/2012] [Indexed: 06/01/2023]
Abstract
Cell mechanisms are actively modulated by membrane dynamics. We studied the dynamics of a first-stage biomimetic system by Fluorescence Recovery After Patterned Photobleaching. Using this simple biomimetic system, constituted by α -hemolysin from Staphylococcus aureus inserted as single heptameric pore or complexes of pores in a glass-supported DMPC bilayer, we observed true diffusion behavior, with no immobile fraction. We find two situations: i) when incubation is shorter than 15 hours, the protein inserts as a heptameric pore and diffuses roughly three times more slowly than its host lipid bilayer; ii) incubation longer than 15 hours leads to the formation of larger complexes which diffuse more slowly. Our results indicate that, while the Saffman-Delbruck model adequately describes the diffusion coefficient D for small radii, D of the objects decreases as 1/R(2) for the size range explored in this study. Additionally, in the presence of inserted proteins, the gel-to-fluid transition of the supported bilayer as well as a temperature shift in the gel-to-fluid transition are observed.
Collapse
Affiliation(s)
- Frédéric Harb
- CNRS, UMR, Aix-Marseille Université, CINaM, Marseille, France
| | | | | | | |
Collapse
|
6
|
Zheng D, Zou R, Lou X. Label-free fluorescent detection of ions, proteins, and small molecules using structure-switching aptamers, SYBR Gold, and exonuclease I. Anal Chem 2012; 84:3554-60. [PMID: 22424113 DOI: 10.1021/ac300690r] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We have demonstrated a label-free sensing strategy employing structure-switching aptamers (SSAs), SYBR Gold, and exonuclease I to detect a broad range of targets including inorganic ions, proteins, and small molecules. This nearly universal biosensor approach is based on the observation that SSAs at binding state with their targets, which fold into secondary structures such as quadruplex structure or Y shape structure, show more resistance to nuclease digestion than SSAs at unfolded states. The amount of aptamer left after nuclease reaction is proportional to the concentrations of the targets and in turn is proportional to the fluorescence intensities from SYBR Gold that can only stain nucleic acids but not their digestion products, nucleoside monophosphates (dNMPs). Fluorescent assays employing this mechanism for the detection of potassium ion (K(+)) are sensitive, selective, and convenient. Twenty μM K(+) is readily detected even at the presence of a 500-fold excess of Na(+). Likewise, we have generalized the approach to the specific and convenient detection of proteins (thrombin) and small molecules (cocaine). The assays were then validated by detecting K(+), cocaine, and thrombin in urine and serum or cutting and masking adulterants with good agreements with the true values. Compared to other reported approaches, most limited to G-quadruplex structures, the demonstrated method has less structure requirements of both the SSAs and their complexes with targets, therefore rending its wilder applications for various targets. The detection scheme could be easily modified and extended to detection platforms to further improve the detection sensitivity or for other applications as well as being useful in high-throughput and paralleled analysis of multiple targets.
Collapse
Affiliation(s)
- Dongmei Zheng
- Department of Chemistry, Capital Normal University, Beijing, China
| | | | | |
Collapse
|
7
|
Ehrlich N, Anhalt K, Paulsen H, Brakmann S, Hübner CG. Exonucleolytic degradation of high-density labeled DNA studied by fluorescence correlation spectroscopy. Analyst 2012; 137:1160-7. [PMID: 22268065 DOI: 10.1039/c2an15879e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The exonucleolytic degradation of high-density labeled DNA by exonuclease III was monitored using two-color fluorescence correlation spectroscopy (FCS). One strand of the double stranded template DNA was labeled on either one or two base types and additionally at one end via a 5' Cy5 tagged primer. Exonucleolytic degradation was followed via the diffusion time, the brightness of the remaining DNA as well as the concentration of released labeled bases. We found a hydrolyzation rate of about 11 to 17 nucleotides per minute per enzyme (nt/min/enzyme) for high-density labeled DNA, which is by a factor of about 4 slower than for unlabeled DNA. The exonucleolytic degradation of a 488 base pair long double stranded DNA resulted in a short double stranded DNA segment of 112 ± 40 base pairs (bp) length with two single-stranded tails.
Collapse
Affiliation(s)
- Nicky Ehrlich
- Institute of Physics, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany.
| | | | | | | | | |
Collapse
|
8
|
Yuan M, Zhu Y, Lou X, Chen C, Wei G, Lan M, Zhao J. Sensitive label-free oligonucleotide-based microfluidic detection of mercury (II) ion by using exonuclease I. Biosens Bioelectron 2012; 31:330-6. [DOI: 10.1016/j.bios.2011.10.043] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 10/10/2011] [Accepted: 10/19/2011] [Indexed: 02/06/2023]
|
9
|
Hohlbein J, Gryte K, Heilemann M, Kapanidis AN. Surfing on a new wave of single-molecule fluorescence methods. Phys Biol 2010; 7:031001. [DOI: 10.1088/1478-3975/7/3/031001] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
10
|
Ehrlich N, Anhalt K, Hübner C, Brakmann S. Exonuclease III action on microarrays: Observation of DNA degradation by fluorescence correlation spectroscopy. Anal Biochem 2010; 399:251-6. [DOI: 10.1016/j.ab.2009.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 11/26/2009] [Accepted: 12/03/2009] [Indexed: 10/20/2022]
|
11
|
Efcavitch JW, Thompson JF. Single-molecule DNA analysis. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2010; 3:109-128. [PMID: 20636036 DOI: 10.1146/annurev.anchem.111808.073558] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The ability to detect single molecules of DNA or RNA has led to an extremely rich area of exploration of the single most important biomolecule in nature. In cases in which the nucleic acid molecules are tethered to a solid support, confined to a channel, or simply allowed to diffuse into a detection volume, novel techniques have been developed to manipulate the DNA and to examine properties such as structural dynamics and protein-DNA interactions. Beyond the analysis of the properties of nucleic acids themselves, single-molecule detection has enabled dramatic improvements in the throughput of DNA sequencing and holds promise for continuing progress. Both optical and nonoptical detection methods that use surfaces, nanopores, and zero-mode waveguides have been attempted, and one optically based instrument is already commercially available. The breadth of literature related to single-molecule DNA analysis is vast; this review focuses on a survey of efforts in molecular dynamics and nucleic acid sequencing.
Collapse
|
12
|
Xu M, Fujita D, Hanagata N. Perspectives and challenges of emerging single-molecule DNA sequencing technologies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2009; 5:2638-2649. [PMID: 19904762 DOI: 10.1002/smll.200900976] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The growing demand for analysis of the genomes of many species and cancers, for understanding the role of genetic variation among individuals in disease, and with the ultimate goal of deciphering individual human genomes has led to the development of non-Sanger reaction-based technologies towards rapid and inexpensive DNA sequencing. Recent advancements in new DNA sequencing technologies are changing the scientific horizon by dramatically accelerating biological and biomedical research and promising an era of personalized medicine for improved human health. Two single-molecule sequencing technologies based on fluorescence detection are already in a working state. The newly launched and emerging single-molecule DNA sequencing approaches are reviewed here. The current challenges of these technologies and potential methods of overcoming these challenges are critically discussed. Further research and development of single-molecule sequencing will allow researchers to gather nearly error-free genomic data in a timely and inexpensive manner.
Collapse
Affiliation(s)
- Mingsheng Xu
- International Center for Young Scientists National Institute for Materials Science, Tsukuba, Ibaraki, Japan.
| | | | | |
Collapse
|
13
|
Clarke J, Wu HC, Jayasinghe L, Patel A, Reid S, Bayley H. Continuous base identification for single-molecule nanopore DNA sequencing. NATURE NANOTECHNOLOGY 2009; 4:265-70. [PMID: 19350039 DOI: 10.1038/nnano.2009.12] [Citation(s) in RCA: 1120] [Impact Index Per Article: 74.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Accepted: 01/14/2009] [Indexed: 05/02/2023]
Abstract
A single-molecule method for sequencing DNA that does not require fluorescent labelling could reduce costs and increase sequencing speeds. An exonuclease enzyme might be used to cleave individual nucleotide molecules from the DNA, and when coupled to an appropriate detection system, these nucleotides could be identified in the correct order. Here, we show that a protein nanopore with a covalently attached adapter molecule can continuously identify unlabelled nucleoside 5'-monophosphate molecules with accuracies averaging 99.8%. Methylated cytosine can also be distinguished from the four standard DNA bases: guanine, adenine, thymine and cytosine. The operating conditions are compatible with the exonuclease, and the kinetic data show that the nucleotides have a high probability of translocation through the nanopore and, therefore, of not being registered twice. This highly accurate tool is suitable for integration into a system for sequencing nucleic acids and for analysing epigenetic modifications.
Collapse
Affiliation(s)
- James Clarke
- Oxford Nanopore Technologies Ltd, Begbroke Science Park, Sandy Lane, Oxford OX5 1PF, UK
| | | | | | | | | | | |
Collapse
|
14
|
Yang L, Zhu S, Hang W, Wu L, Yan X. Development of an Ultrasensitive Dual-Channel Flow Cytometer for the Individual Analysis of Nanosized Particles and Biomolecules. Anal Chem 2009; 81:2555-63. [DOI: 10.1021/ac802464a] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lingling Yang
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, The Key Laboratory for Chemical Biology of Fujian Province, The Key Laboratory of Analytical Science of the Ministry of Education, Xiamen University, Xiamen 361005, China
| | - Shaobin Zhu
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, The Key Laboratory for Chemical Biology of Fujian Province, The Key Laboratory of Analytical Science of the Ministry of Education, Xiamen University, Xiamen 361005, China
| | - Wei Hang
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, The Key Laboratory for Chemical Biology of Fujian Province, The Key Laboratory of Analytical Science of the Ministry of Education, Xiamen University, Xiamen 361005, China
| | - Lina Wu
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, The Key Laboratory for Chemical Biology of Fujian Province, The Key Laboratory of Analytical Science of the Ministry of Education, Xiamen University, Xiamen 361005, China
| | - Xiaomei Yan
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, The Key Laboratory for Chemical Biology of Fujian Province, The Key Laboratory of Analytical Science of the Ministry of Education, Xiamen University, Xiamen 361005, China
| |
Collapse
|
15
|
Gupta PK. Single-molecule DNA sequencing technologies for future genomics research. Trends Biotechnol 2008; 26:602-11. [DOI: 10.1016/j.tibtech.2008.07.003] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Revised: 07/05/2008] [Accepted: 07/16/2008] [Indexed: 10/21/2022]
|
16
|
Williams JGK, Steffens DL, Anderson JP, Urlacher TM, Lamb DT, Grone DL, Egelhoff JC. An artificial processivity clamp made with streptavidin facilitates oriented attachment of polymerase-DNA complexes to surfaces. Nucleic Acids Res 2008; 36:e121. [PMID: 18723573 PMCID: PMC2566871 DOI: 10.1093/nar/gkn531] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Single molecule analysis of individual enzymes can require oriented immobilization of the subject molecules on a detection surface. As part of a technology development project for single molecule DNA sequencing, we faced the multiple challenges of immobilizing both a DNA polymerase and its DNA template together in an active, stable complex capable of highly processive DNA synthesis on a nonstick surface. Here, we report the genetic modification of the archaeal DNA polymerase 9°N in which two biotinylated peptide ‘legs’ are inserted at positions flanking the DNA-binding cleft. Streptavidin binding on either side of the cleft both traps the DNA template in the polymerase and orients the complex on a biotinylated surface. We present evidence that purified polymerase–DNA–streptavidin complexes are active both in solution and immobilized on a surface. Processivity is improved from <20 nt in the unmodified polymerase to several thousand nucleotides in the engineered complexes. High-molecular weight DNA synthesized by immobilized complexes is observed moving above the surface even as it remains tethered to the polymerase. Pre-formed polymerase–DNA–streptavidin complexes can be stored frozen and subsequently thawed without dissociation or loss of activity, making them convenient for use in single molecule analysis.
Collapse
Affiliation(s)
- John G K Williams
- Advanced Research & Development, LI-COR Biosciences, Lincoln, NE, USA.
| | | | | | | | | | | | | |
Collapse
|
17
|
Kurita H, Inaishi KI, Torii K, Urisu M, Nakano M, Katsura S, Mizuno A. Real-time Direct Observation of Single-molecule DNA Hydrolysis by Exonuclease III. J Biomol Struct Dyn 2008; 25:473-80. [DOI: 10.1080/07391102.2008.10507194] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
18
|
Affiliation(s)
- Karel Klepárník
- Institute of Analytical Chemistry, Academy of Sciences of the Czech Republic, Veveří 97, CZ-602 00 Brno, Czech Republic
| | - Petr Boček
- Institute of Analytical Chemistry, Academy of Sciences of the Czech Republic, Veveří 97, CZ-602 00 Brno, Czech Republic
| |
Collapse
|
19
|
Schlapak R, Kinns H, Wechselberger C, Hesse J, Howorka S. Sizing Trinucleotide Repeat Sequences by Single-Molecule Analysis of Fluorescence Brightness. Chemphyschem 2007; 8:1618-21. [PMID: 17614345 DOI: 10.1002/cphc.200700163] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Robert Schlapak
- Center for Biomedical Nanotechnology, Upper Austrian Research GmbH, 4020 Linz, Austria
| | | | | | | | | |
Collapse
|
20
|
Cotlet M, Goodwin PM, Waldo GS, Werner JH. A comparison of the fluorescence dynamics of single molecules of a green fluorescent protein: one- versus two-photon excitation. Chemphyschem 2007; 7:250-60. [PMID: 16353266 DOI: 10.1002/cphc.200500247] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We report on the dynamics of fluorescence from individual molecules of a mutant of the wild-type green fluorescent protein (GFP) from Aequorea victoria, super folder GFP (SFGFP). SFGFP is a novel and robust variant designed for in vivo high-throughput screening of protein expression levels. It shows increased thermal stability and is able to retain its fluorescence when fused to poorly folding proteins. We use a recently developed single-molecule technique which combines fluorescence-fluctuation spectroscopy and time-correlated single photon counting in order to characterize the photophysical properties of SFGFP under one- (OPE) and two- (TPE) photon excitation conditions. We use Rhodamine 110 as a model chromophore to validate the methodology and to explain the single-molecule results of SFGFP. Under OPE, single SFGFP molecules undergo fluorescence flickering on the time scale of micros and tens of micros due to triplet formation and ground-state protonation-deprotonation, respectively, as demonstrated by excitation intensity- and pH-dependent experiments. OPE single-molecule fluorescence lifetimes indicate heterogeneity in the population of SFGFP, indicating the presence of the deprotonated I and B forms of the SFGFP chromophore. TPE of single SFGFP molecules results in the photoconversion of the chromophore. TPE of single SFGFP molecules show fluorescence flickering on the time scale of micros due to triplet formation. A flicker connected with protonation-deprotonation of the SFGFP chromophore is detected only at low pH. Our results show that SFGFP is a promising fusion reporter for intracellular applications using OPE and TPE microscopy.
Collapse
Affiliation(s)
- Mircea Cotlet
- Los Alamos National Laboratory, Material Science and Technology Division, Center for Integrated Nanotechnologies, Mail Stop J586, Los Alamos NM 87545, USA.
| | | | | | | |
Collapse
|
21
|
Widengren J, Kudryavtsev V, Antonik M, Berger S, Gerken M, Seidel CAM. Single-molecule detection and identification of multiple species by multiparameter fluorescence detection. Anal Chem 2007; 78:2039-50. [PMID: 16536444 DOI: 10.1021/ac0522759] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two general strategies are introduced to identify and quantify single molecules in dilute solutions by employing a spectroscopic method for data registration and specific burst analysis, denoted multiparameter fluorescence detection (MFD). MFD uses pulsed excitation and time-correlated single-photon counting to simultaneously monitor the evolution of the eight-dimensional fluorescence information (fundamental anisotropy, fluorescence lifetime, fluorescence intensity, time, excitation spectrum, fluorescence spectrum, fluorescence quantum yield, distance between fluorophores) in real time and allows for selection of specific events for subsequent analysis. Using the multiple fluorescence dimensions, we demonstrate a dye labeling scheme of oligonucleotides, by which it is possible to identify and separate 16 different compounds in the mixture via their characteristic pattern by MFD. Such identification procedures and multiplex assays with single-molecule sensitivity may have a great impact on screening of species and events that do not lend themselves so easily to amplification, such as disease-specific proteins and their interactions.
Collapse
Affiliation(s)
- Jerker Widengren
- Department of Applied Physics, Royal Institute of Technology, Albanova University Center, 10691 Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
22
|
Werner JH, McCarney ER, Keller RA, Plaxco KW, Goodwin PM. Increasing the resolution of single pair fluorescence resonance energy transfer measurements in solution via molecular cytometry. Anal Chem 2007; 79:3509-13. [PMID: 17385843 DOI: 10.1021/ac070142c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report a method to increase the resolution of single pair fluorescence resonance energy transfer (spFRET) measurements in aqueous solutions. Solution-based spFRET measurements of fluorescently labeled biological molecules (proteins, RNA, DNA) are often used to obtain histograms of molecular conformation without resorting to sample immobilization. However, for solution-phase spFRET studies, the number of photons detected from a single molecule as it diffuses through an open confocal volume element are quite limited. An "average" transit may yield on the order of 40 photons. Shot noise on the number of detected photons substantially limits the resolution of the measurement. The method reported here uses a hydrodynamically focused sample stream to ensure molecules traverse the full width of an excitation laser beam. This substantially increases the average number of photons detected per molecular transit (approximately 85 photons/molecule), which increases measurement precision. In addition, this method minimizes another source of heterogeneity present in diffusive measures of spFRET: the distribution of paths taken through the excitation laser beam. We demonstrate here using a FRET labeled protein sample (a FynSH3 domain) that superior resolution (a factor of approximately 2) can be obtained via molecular cytometry compared to spFRET measurements based upon diffusion through an open confocal volume element.
Collapse
Affiliation(s)
- James H Werner
- Center for Integrated Nanotechnologies, and Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
| | | | | | | | | |
Collapse
|
23
|
Xiao Y, Buschmann V, Weston KD. Scanning fluorescence correlation spectroscopy: a tool for probing microsecond dynamics of surface-bound fluorescent species. Anal Chem 2007; 77:36-46. [PMID: 15623276 DOI: 10.1021/ac049010z] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this report, a combined imaging and fluorescence correlation spectroscopy (FCS) method is described and its ability to characterize microsecond fluctuations in the fluorescence emission of a sample is demonstrated. A sample scanning laser confocal microscope is operated in the customary way while recording the time that each photon is detected with a time resolution of 50 ns using a low-cost counting board. The serial data stream of photon detection times allows access to fluorescence signal fluctuations that can be used to characterize dynamics using correlation methods. The same data stream is used to generate images of the sample. Using the technique, we demonstrate that it is possible to characterize the kinetics of transitions to and from nonemitting or "dark" states of the fluorescent dyes DiIC16 and ATTO 520. Results are similar to, but deviate slightly from, a model that has been frequently used for extracting singlet-triplet: conversion rates using conventional solution-based FCS. Like conventional FCS, the concentration, or in our case the areal density of coverage, of fluorescent species can also be obtained. Many single-molecule fluorescence experiments aim to extract kinetics from intensity trajectories; this method may be used as a rapid and convenient technique for characterization of surface-linked or thin-film samples prior to performing the more time and effort intensive single-molecule measurements. Besides the capacity to measure photophysical phenomena, the surface-sensitive FCS method could also be applied for measuring conformational changes or interaction kinetics for species immobilized on a surface. One possible scenario is measurements of the frequency and duration of association of ligand-receptor pairs where a fluorescently labeled component is freely diffusing and the other is surface immobilized. Given that microarrays of custom-designed, surface-immobilized peptides and nucleic acids are now readily available, the ability to sensitively measure association and dissociation rates of the surface-linked species with a freely diffusing species could be a useful extension to what has already become an extremely important tool for characterizing the interactions of biomolecules.
Collapse
Affiliation(s)
- Ying Xiao
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA
| | | | | |
Collapse
|
24
|
Rhee M, Burns MA. Nanopore sequencing technology: research trends and applications. Trends Biotechnol 2006; 24:580-6. [PMID: 17055093 DOI: 10.1016/j.tibtech.2006.10.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Revised: 08/04/2006] [Accepted: 10/11/2006] [Indexed: 11/15/2022]
Abstract
Nanopore sequencing is one of the most promising technologies being developed as a cheap and fast alternative to the conventional Sanger sequencing method. Protein or synthetic nanopores have been used to detect DNA or RNA molecules. Although none of the technologies to date has shown single-base resolution for de novo DNA sequencing, there have been several reports of alpha-hemolysin protein nanopores being used for basic DNA analyses, and various synthetic nanopores have been fabricated. This review will examine current nanopore sequencing technologies, including recent developments of new applications.
Collapse
Affiliation(s)
- Minsoung Rhee
- Departments of Chemical Engineering and Biomedical Engineering, Ann Arbor, MI, 48109, USA
| | | |
Collapse
|
25
|
Zhou G, Kajiyama T, Gotou M, Kishimoto A, Suzuki S, Kambara H. Enzyme System for Improving the Detection Limit in Pyrosequencing. Anal Chem 2006; 78:4482-9. [PMID: 16808457 DOI: 10.1021/ac051927q] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Highly sensitive real-time pyrosequencing seems promising for constructing an inexpensive and small DNA sequencer with a low running cost. A DNA sample of a picomole level is usually used in the conventional pyrosequencing based on a luciferase assay coupled with an APS-ATP surfurylase reaction for producing ATP from pyrophosphate (PPi). Although the luminescence intensity could be increased by increasing the amount of luciferase, it was impossible to reduce the target DNA amount because of a large background luminescence due to the luciferase-APS reaction. In this report, a novel approach using a new conversion reaction of PPi to ATP is proposed. This method has a very low background and can produce high signals in the presence of a large amount of luciferase; thus, the sample amount required for sequencing is significantly reduced. The ATP production from PPi is catalyzed with pyruvate orthophosphate dikinase (PPDK) using AMP and phosphoenolpyruvate as the substrates, which are inactive for the luciferase-catalyzed reaction. All of the components in the AMP-PPDK-based pyrosequencing system are suitable for highly sensitive DNA sequencing in one tube. Real-time DNA sequencing with a readable length up to 70 bases was successfully demonstrated by using this system. By increasing the amount of luciferase, as low as 2.5 fmol of DNA templates was accurately sequenced by the proposed method with a novel simple and inexpensive DNA sequencer having a photodiode array as a sensor instead of a PMT or CCD camera. A sample amount as low as 2 orders of magnitude smaller than that used in the conventional pyrosequencer can be used.
Collapse
Affiliation(s)
- Guohua Zhou
- Central Research Laboratory, Hitachi, Ltd., 1-280 Higashi-Koigakubo, Kokubunji-shi, Tokyo 185-8601, Japan
| | | | | | | | | | | |
Collapse
|
26
|
Krieg A, Ruckstuhl T, Seeger S. Towards single-molecule DNA sequencing: assays with low nonspecific adsorption. Anal Biochem 2005; 349:181-5. [PMID: 16412374 DOI: 10.1016/j.ab.2005.11.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2005] [Revised: 10/21/2005] [Accepted: 11/04/2005] [Indexed: 10/25/2022]
Abstract
New DNA sequencing techniques are currently being developed using single-molecule fluorescence-based detection of enzymatic double-strand synthesis. Such application requires surface architectures on which single-stranded templates can be immobilized. A further important attribute is a very low tendency to attract fluorescently labeled bases nonspecifically. On this account, the adsorption behaviour of Cy5-dNTPs on a variety of surface coatings was studied by performing real-time measurements of the DNA synthesis using a supercritical angle fluorescence biosensor. It is demonstrated that polyacrylic acid coatings are an excellent choice to minimize the nonspecific binding of the bases.
Collapse
Affiliation(s)
- Alexander Krieg
- Wellcome Trust Centre for Human Genetics, University of Oxford, Headington, Oxford OX3 7BN, UK.
| | | | | |
Collapse
|
27
|
Dittrich PS, Manz A. Single-molecule fluorescence detection in microfluidic channels—the Holy Grail in μTAS? Anal Bioanal Chem 2005; 382:1771-82. [PMID: 16075229 DOI: 10.1007/s00216-005-3335-9] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2005] [Revised: 05/12/2005] [Accepted: 05/19/2005] [Indexed: 10/25/2022]
Abstract
Both single-molecule detection (SMD) methods and miniaturization technologies have developed very rapidly over the last ten years. By merging these two techniques, it may be possible to achieve the optimal requirements for the analysis and manipulation of samples on a single molecule scale. While miniaturized structures and channels provide the interface required to handle small particles and molecules, SMD permits the discovery, localization, counting and identification of compounds. Widespread applications, across various bioscience/analytical science fields, such as DNA-analysis, cytometry and drug screening, are envisaged. In this review, the unique benefits of single fluorescent molecule detection in microfluidic channels are presented. Recent and possible future applications are discussed.
Collapse
Affiliation(s)
- Petra S Dittrich
- Department of Miniaturization, Institute for Analytical Sciences (ISAS), Bunsen-Kirchhoff-Str. 11, 44139 Dortmund, Germany.
| | | |
Collapse
|
28
|
Chan EY. Advances in sequencing technology. Mutat Res 2005; 573:13-40. [PMID: 15829235 DOI: 10.1016/j.mrfmmm.2005.01.004] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2004] [Revised: 01/04/2005] [Accepted: 01/05/2005] [Indexed: 11/20/2022]
Abstract
Faster sequencing methods will undoubtedly lead to faster single nucleotide polymorphism (SNP) discovery. The Sanger method has served as the cornerstone for genome sequence production since 1977, close to almost 30 years of tremendous utility [Sanger, F., Nicklen, S., Coulson, A.R, DNA sequencing with chain-terminating inhibitors, Proc. Natl. Acad. Sci. U.S.A. 74 (1977) 5463-5467]. With the completion of the human genome sequence [Venter, J.C. et al., The sequence of the human genome, Science 291 (2001) 1304-1351; Lander, E.S. et al., Initial sequencing and analysis of the human genome, Nature 409 (2001) 860-921], there is now a focus on developing new sequencing methodologies that will enable "personal genomics", or the routine study of our individual genomes. Technologies that will lead us to this lofty goal are those that can provide improvements in three areas: read length, throughput, and cost. As progress is made in this field, large sections of genomes and then whole genomes of individuals will become increasingly more facile to sequence. SNP discovery efforts will be enhanced lock-step with these improvements. Here, the breadth of new sequencing approaches will be summarized including their status and prospects for enabling personal genomics.
Collapse
Affiliation(s)
- Eugene Y Chan
- The DNA Medicine Institute, 116 Charles Street, Suite 6, Boston, MA 02114, USA.
| |
Collapse
|
29
|
Tinnefeld P, Sauer M. Branching Out of Single‐Molecule Fluorescence Spectroscopy: Challenges for Chemistry and Influence on Biology. Angew Chem Int Ed Engl 2005; 44:2642-2671. [PMID: 15849689 DOI: 10.1002/anie.200300647] [Citation(s) in RCA: 182] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In the last decade emerging single-molecule fluorescence-spectroscopy tools have been developed and adapted to analyze individual molecules under various conditions. Single-molecule-sensitive optical techniques are now well established and help to increase our understanding of complex problems in different disciplines ranging from materials science to cell biology. Previous dreams, such as the monitoring of the motility and structural changes of single motor proteins in living cells or the detection of single-copy genes and the determination of their distance from polymerase molecules in transcription factories in the nucleus of a living cell, no longer constitute unsolvable problems. In this Review we demonstrate that single-molecule fluorescence spectroscopy has become an independent discipline capable of solving problems in molecular biology. We outline the challenges and future prospects for optical single-molecule techniques which can be used in combination with smart labeling strategies to yield quantitative three-dimensional information about the dynamic organization of living cells.
Collapse
Affiliation(s)
- Philip Tinnefeld
- Applied Laserphysics und Laserspectroscopy, Faculty of Physics, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany, Fax: (+49) 521-106-2958
| | - Markus Sauer
- Applied Laserphysics und Laserspectroscopy, Faculty of Physics, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany, Fax: (+49) 521-106-2958
| |
Collapse
|
30
|
Tinnefeld P, Sauer M. Neue Wege in der Einzelmolekül-Fluoreszenzspektroskopie: Herausforderungen für die Chemie und Einfluss auf die Biologie. Angew Chem Int Ed Engl 2005. [DOI: 10.1002/ange.200300647] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
31
|
Werner JH, Cai H, Keller RA, Goodwin PM. Exonuclease I hydrolyzes DNA with a distribution of rates. Biophys J 2004; 88:1403-12. [PMID: 15542563 PMCID: PMC1305142 DOI: 10.1529/biophysj.104.044255] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We report heterogeneity in the time necessary for Exonuclease I to hydrolyze identical DNA fragments. A real-time fluorescence method measured the time required by molecules of Exonuclease I to hydrolyze single-stranded DNA that was synthesized to have two fluorescently labeled nucleotides. One fluorescently labeled nucleotide was located near the 3' end of the DNA and the other near the 5' end. Heterogeneity in the hydrolysis rate of the exonuclease population was inferred from the distribution of times necessary to cleave these DNA fragments. In particular, we found simple first-order kinetics, using a single hydrolysis rate, did not result in a good fit to the data. Better fits to the data were obtained if one assumed a distribution of hydrolysis rates for the exonuclease population. Under our experimental conditions, this broad distribution of rates was centered near 100 nt/s.
Collapse
Affiliation(s)
- James H Werner
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA.
| | | | | | | |
Collapse
|
32
|
Powe AM, Fletcher KA, St Luce NN, Lowry M, Neal S, McCarroll ME, Oldham PB, McGown LB, Warner IM. Molecular Fluorescence, Phosphorescence, and Chemiluminescence Spectrometry. Anal Chem 2004; 76:4614-34. [PMID: 15307770 DOI: 10.1021/ac040095d] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Aleeta M Powe
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | | | | | | | | | | | | | | | | |
Collapse
|