1
|
Yu S, Zheng B, Chen Z, Huo YX. Metabolic engineering of Corynebacterium glutamicum for producing branched chain amino acids. Microb Cell Fact 2021; 20:230. [PMID: 34952576 PMCID: PMC8709942 DOI: 10.1186/s12934-021-01721-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/11/2021] [Indexed: 11/10/2022] Open
Abstract
Background Branched chain amino acids (BCAAs) are widely applied in the food, pharmaceutical, and animal feed industries. Traditional chemical synthetic and enzymatic BCAAs production in vitro has been hampered by expensive raw materials, harsh reaction conditions, and environmental pollution. Microbial metabolic engineering has attracted considerable attention as an alternative method for BCAAs biosynthesis because it is environmentally friendly and delivers high yield. Main text Corynebacterium glutamicum (C. glutamicum) possesses clear genetic background and mature gene manipulation toolbox, and has been utilized as industrial host for producing BCAAs. Acetohydroxy acid synthase (AHAS) is a crucial enzyme in the BCAAs biosynthetic pathway of C. glutamicum, but feedback inhibition is a disadvantage. We therefore reviewed AHAS modifications that relieve feedback inhibition and then investigated the importance of AHAS modifications in regulating production ratios of three BCAAs. We have comprehensively summarized and discussed metabolic engineering strategies to promote BCAAs synthesis in C. glutamicum and offer solutions to the barriers associated with BCAAs biosynthesis. We also considered the future applications of strains that could produce abundant amounts of BCAAs. Conclusions Branched chain amino acids have been synthesized by engineering the metabolism of C. glutamicum. Future investigations should focus on the feedback inhibition and/or transcription attenuation mechanisms of crucial enzymes. Enzymes with substrate specificity should be developed and applied to the production of individual BCAAs. The strategies used to construct strains producing BCAAs provide guidance for the biosynthesis of other high value-added compounds.
Collapse
Affiliation(s)
- Shengzhu Yu
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Haidian District, Beijing, 100081, China
| | - Bo Zheng
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Haidian District, Beijing, 100081, China
| | - Zhenya Chen
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Haidian District, Beijing, 100081, China.
| | - Yi-Xin Huo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Haidian District, Beijing, 100081, China
| |
Collapse
|
2
|
Luo Z, Yu S, Zeng W, Zhou J. Comparative analysis of the chemical and biochemical synthesis of keto acids. Biotechnol Adv 2021; 47:107706. [PMID: 33548455 DOI: 10.1016/j.biotechadv.2021.107706] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/28/2022]
Abstract
Keto acids are essential organic acids that are widely applied in pharmaceuticals, cosmetics, food, beverages, and feed additives as well as chemical synthesis. Currently, most keto acids on the market are prepared via chemical synthesis. The biochemical synthesis of keto acids has been discovered with the development of metabolic engineering and applied toward the production of specific keto acids from renewable carbohydrates using different metabolic engineering strategies in microbes. In this review, we provide a systematic summary of the types and applications of keto acids, and then summarize and compare the chemical and biochemical synthesis routes used for the production of typical keto acids, including pyruvic acid, oxaloacetic acid, α-oxobutanoic acid, acetoacetic acid, ketoglutaric acid, levulinic acid, 5-aminolevulinic acid, α-ketoisovaleric acid, α-keto-γ-methylthiobutyric acid, α-ketoisocaproic acid, 2-keto-L-gulonic acid, 2-keto-D-gluconic acid, 5-keto-D-gluconic acid, and phenylpyruvic acid. We also describe the current challenges for the industrial-scale production of keto acids and further strategies used to accelerate the green production of keto acids via biochemical routes.
Collapse
Affiliation(s)
- Zhengshan Luo
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Shiqin Yu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Weizhu Zeng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
3
|
Ma W, Wang J, Li Y, Yin L, Wang X. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) co-produced with L-isoleucine in Corynebacterium glutamicum WM001. Microb Cell Fact 2018; 17:93. [PMID: 29907151 PMCID: PMC6004086 DOI: 10.1186/s12934-018-0942-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/08/2018] [Indexed: 11/30/2022] Open
Abstract
Background Co-production of polyhydroxyalkanoate (PHA) and amino acids makes bacteria effective microbial cell factories by secreting amino acids outside while accumulating PHA granules inside. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) is one of the PHAs with biocompatibility and fine mechanical properties, but its production is limited by the low level of intracellular propionyl-CoA. Results l-Isoleucine producing Corynebacterium glutamicum strain WM001 were analyzed by genome and transcriptome sequencing. The results showed that the most over-expressed genes in WM001 are relevant not only to l-isoleucine production but also to propionyl-CoA accumulation. Compared to the wild-type C. glutamicum ATCC13869, the transcriptional levels of the genes prpC2, prpD2, and prpB2, which are key genes relevant to propionyl-CoA accumulation, increased 26.7, 25.8, and 28.4-folds in WM001, respectively; and the intracellular level of propionyl-CoA increased 16.9-fold in WM001. When the gene cluster phaCAB for PHA biosynthesis was introduced into WM001, the recombinant strain WM001/pDXW-8-phaCAB produced 15.0 g/L PHBV with high percentage of 3-hydroxyvalerate as well as 29.8 g/L l-isoleucine after fed-batch fermentation. The maximum 3-hydroxyvalerate fraction in PHBV produced by WM001/pDXW-8-phaCAB using glucose as the sole carbon source could reach 72.5%, which is the highest reported so far. Conclusions Genome and transcriptome analysis showed that C. glutamicum WM001 has potential to accumulate l-isoleucine and propionyl-CoA pool. This was experimentally confirmed by introducing the phaCAB gene cluster into WM001. The recombinant strain WM001/pDXW-8-phaCAB produced high levels of PHBV with high 3-hydroxyvalerate fraction as well as l-isoleucine. Because of its high level of intracellular propionyl-CoA pool, WM001 might be used for producing other propionyl-CoA derivatives. Electronic supplementary material The online version of this article (10.1186/s12934-018-0942-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wenjian Ma
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Jianli Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Ye Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Lianghong Yin
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Xiaoyuan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China. .,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China. .,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
4
|
Abstract
One of the greatest sources of metabolic and enzymatic diversity are microorganisms. In recent years, emerging recombinant DNA and genomic techniques have facilitated the development of new efficient expression systems, modification of biosynthetic pathways leading to new metabolites by metabolic engineering, and enhancement of catalytic properties of enzymes by directed evolution. Complete sequencing of industrially important microbial genomes is taking place very rapidly, and there are already hundreds of genomes sequenced. Functional genomics and proteomics are major tools used in the search for new molecules and development of higher-producing strains.
Collapse
Affiliation(s)
| | - Sergio Sánchez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, CDMX, México
| |
Collapse
|
5
|
Huang Q, Liang L, Wu W, Wu S, Huang J. Metabolic engineering of Corynebacterium glutamicum to enhance L-leucine production. ACTA ACUST UNITED AC 2017. [DOI: 10.5897/ajb2017.15911] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
6
|
Ma W, Wang J, Li Y, Hu X, Shi F, Wang X. Enhancing pentose phosphate pathway in Corynebacterium glutamicum to improve l-isoleucine production. Biotechnol Appl Biochem 2016; 63:877-885. [PMID: 27010514 DOI: 10.1002/bab.1442] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 08/26/2015] [Indexed: 11/09/2022]
Abstract
Three genes, gnd, pgl, and fbp, relevant to the pentose phosphate pathway (PPP) were overexpressed in Corynebacterium glutamicum IWJ001, leading to increase of l-isoleucine production. The transcriptional levels of gnd, pgl, and fbp significantly increased in IWJ001/pDXW-8-gnd-fbp-pgl. Compared with the control strain IWJ001/pDXW-8, intracellular NADPH/NADP+ ratios in IWJ001/pDXW-8-gnd and IWJ001/pDXW-8-gnd-fbp cells grown for 36 H increased threefold and fourfold, respectively, indicating that overexpression of gnd and fbp redirected the carbon flux to PPP. Intracellular NADPH/NADP+ ratio in IWJ001/pDXW-8-gnd-fbp-pgl grown for 36 H was similar to IWJ001/pDXW-8, suggesting that the NADPH produced by PPP could be quickly consumed for l-isoleucine production. 10.9 and 28.96 g/L of l-isoleucine was produced in IWJ001/pDXW-8-gnd-fbp-pgl in shake flask cultivation and fed-batch fermentation, respectively. In addition, IWJ001/pDXW-8-gnd-fbp-pgl grew fast, its dry cell weight reached 49 g/L after 48 H, whereas the start strain IWJ001/pDXW-8 reached only 40 g/L. After 96 H fermentation, l-isoleucine yield on glucose in IWJ001/pDXW-8-gnd-fbp-pgl reached 0.138 g/g. The results demonstrate that carbon flux redirection to PPP is an efficient approach to enhance l-isoleucine production in C. glutamicum.
Collapse
Affiliation(s)
- Wenjian Ma
- School of Biotechnology, Jiangnan University, Wuxi, People's Republic of China
| | - Jianli Wang
- School of Biotechnology, Jiangnan University, Wuxi, People's Republic of China
| | - Ye Li
- School of Biotechnology, Jiangnan University, Wuxi, People's Republic of China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Xiaoqing Hu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.,Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, People's Republic of China
| | - Feng Shi
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.,Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, People's Republic of China
| | - Xiaoyuan Wang
- School of Biotechnology, Jiangnan University, Wuxi, People's Republic of China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.,Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, People's Republic of China
| |
Collapse
|
7
|
Overexpression of ribosome elongation factor G and recycling factor increases L-isoleucine production in Corynebacterium glutamicum. Appl Microbiol Biotechnol 2015; 99:4795-805. [PMID: 25707863 DOI: 10.1007/s00253-015-6458-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 02/02/2015] [Accepted: 02/03/2015] [Indexed: 10/24/2022]
Abstract
Ribosome elongation factor G encoded by fusA promotes the translocation step of protein synthesis in bacteria; ribosome recycling factor encoded by frr, together with the elongation factor G, dissociates ribosomes from messenger RNA after the termination of translation. Both factors play important roles during protein synthesis in bacteria. In this study, we found that overexpression of fusA and/or frr led to the increase of L-isoleucine production in Corynebacterium glutamicum IWJ001, an L-isoleucine production strain generated by random mutagenesis. Reverse transcription polymerase chain reaction analysis showed that transcriptional levels of genes lysC, hom, thrB, ilvA, ilvBN, and ilvE encoding the key enzymes in the biosynthetic pathway of L-isoleucine increased in C. glutamicum IWJ001 when fusA and/or frr were overexpressed. Co-overexpression of fusA and frr, together with genes ilvA, ilvB, ilvN, and ppnk in C. glutamicum IWJ001, led to 76.5 % increase of L-isoleucine production in flask cultivation and produced 28.5 g/L L-isoleucine in 72-h fed-batch fermentation. The results demonstrate that overexpressing ribosome elongation factor G and ribosome recycling factor is an efficient approach to enhance L-isoleucine production in C. glutamicum.
Collapse
|
8
|
Wang Y, Zhang Y, Jiang T, Meng J, Sheng B, Yang C, Gao C, Xu P, Ma C. A novel biocatalyst for efficient production of 2-oxo-carboxylates using glycerol as the cost-effective carbon source. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:186. [PMID: 26609321 PMCID: PMC4659176 DOI: 10.1186/s13068-015-0368-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 10/28/2015] [Indexed: 05/02/2023]
Abstract
BACKGROUND The surplus of glycerol has increased remarkably as a main byproduct during the biofuel's production. Exploiting an alternative route for glycerol utilization is significantly important for sustainability of biofuels. RESULTS A novel biocatalyst that could be prepared from glycerol for producing 2-oxo-carboxylates was developed. First, Pseudomonas putida KT2440 was reconstructed by deleting lldR to develop a mutant expressing the NAD-independent lactate dehydrogenases (iLDHs) constitutively. Then, the Vitreoscilla hemoglobin (VHb) was heterologously expressed to further improve the biotransformation activity. The reconstructed strain, P. putida KT2440 (ΔlldR)/pBSPPcGm-vgb, exhibited high activities of iLDHs when cultured with glycerol as the carbon source. This cost-effective biocatalyst could efficiently produce pyruvate and 2-oxobutyrate from dl-lactate and dl-2-hydroxybutyrate with high molar conversion rates of 91.9 and 99.8 %, respectively. CONCLUSIONS The process would not only be a promising alternative for the production of 2-oxo-carboxylates, but also be an example for preparation of efficient biocatalysts for the value-added utilization of glycerol.
Collapse
Affiliation(s)
- Yujiao Wang
- />State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100 People’s Republic of China
| | - Yingxin Zhang
- />State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100 People’s Republic of China
| | - Tianyi Jiang
- />State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100 People’s Republic of China
| | - Jingjing Meng
- />State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100 People’s Republic of China
| | - Binbin Sheng
- />State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100 People’s Republic of China
| | - Chunyu Yang
- />State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100 People’s Republic of China
| | - Chao Gao
- />State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100 People’s Republic of China
| | - Ping Xu
- />State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100 People’s Republic of China
- />State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 People’s Republic of China
| | - Cuiqing Ma
- />State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100 People’s Republic of China
| |
Collapse
|
9
|
The contest for precursors: channelling l-isoleucine synthesis in Corynebacterium glutamicum without byproduct formation. Appl Microbiol Biotechnol 2014; 99:791-800. [DOI: 10.1007/s00253-014-6109-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 09/22/2014] [Indexed: 10/24/2022]
|
10
|
Characterization and modification of enzymes in the 2-ketoisovalerate biosynthesis pathway of Ralstonia eutropha H16. Appl Microbiol Biotechnol 2014; 99:761-74. [DOI: 10.1007/s00253-014-5965-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 07/15/2014] [Accepted: 07/16/2014] [Indexed: 11/27/2022]
|
11
|
Enhancing the carbon flux and NADPH supply to increase L-isoleucine production in Corynebacterium glutamicum. BIOTECHNOL BIOPROC E 2014. [DOI: 10.1007/s12257-013-0416-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
12
|
Lorenz E, Klatte S, Wendisch VF. Reductive amination by recombinant Escherichia coli: whole cell biotransformation of 2-keto-3-methylvalerate to L-isoleucine. J Biotechnol 2013; 168:289-94. [PMID: 23831557 DOI: 10.1016/j.jbiotec.2013.06.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 06/17/2013] [Accepted: 06/24/2013] [Indexed: 10/26/2022]
Abstract
A whole cell biotransformation system for reductive amination has been studied in recombinant Escherichia coli cells. Reductive amination of 2-keto-3-methylvalerate to L-isoleucine by a two-enzyme-cascade was achieved by overproduction of endogenous L-alanine dependent transaminase AvtA and heterologous L-alanine dehydrogenase from Bacillus subtilis in recombinant E. coli. Up to 100 mM L-isoleucine were produced from 100 mM 2-keto-3-methylvalerate and 100 mM ammonium sulfate. Regeneration of NADH as cofactor in the whole cell system was driven by glucose catabolism. The effects of defined gene deletions in the central carbon metabolism on biotransformation were tested. Strains lacking the NuoG subunit of NADH:ubiquinone oxidoreductase (complex I) or aceA encoding the glyoxylate cycle enzyme isocitrate lyase exhibited increased biotransformation rates.
Collapse
Affiliation(s)
- Elisabeth Lorenz
- Chair of Genetics of Prokaryotes, Faculty of Biology & CeBiTec, Bielefeld University, D-33615 Bielefeld, Germany
| | | | | |
Collapse
|
13
|
Abstract
Microorganisms are one of the greatest sources of metabolic and enzymatic diversity. In recent years, emerging recombinant DNA and genomic techniques have facilitated the development of new efficient expression systems, modification of biosynthetic pathways leading to new metabolites by metabolic engineering, and enhancement of catalytic properties of enzymes by directed evolution. Complete sequencing of industrially important microbial genomes is taking place very rapidly and there are already hundreds of genomes sequenced. Functional genomics and proteomics are major tools used in the search for new molecules and development of higher-producing strains.
Collapse
|
14
|
Co-expression of feedback-resistant threonine dehydratase and acetohydroxy acid synthase increase L-isoleucine production in Corynebacterium glutamicum. Metab Eng 2012; 14:542-50. [PMID: 22771937 DOI: 10.1016/j.ymben.2012.06.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 05/19/2012] [Accepted: 06/26/2012] [Indexed: 11/24/2022]
Abstract
Threonine dehydratase and acetohydroxy acid synthase are critical enzymes in the L-isoleucine biosynthesis pathway of Corynebacterium glutamicum, but their activities are usually feedback-inhibited. In this study, we characterized a feedback-resistant threonine dehydratase and an acetohydroxy acid synthase from an L-isoleucine producing strain C. glutamicum JHI3-156. Sequence analysis showed that there was only a single amino acid substitution (Phe383Val) in the feedback-resistant threonine dehydratase, and there were three mutated amino acids (Pro176Ser, Asp426Glu, and Leu575Trp) in the big subunit of feedback-resistant acetohydroxy acid synthase. The mutated threonine dehydratase over-expressed in E. coli not only showed completely resistance to L-isoleucine inhibition, but also showed enhanced activity. The mutated acetohydroxy acid synthase over-expressed in E. coli showed more resistance to L-isoleucine inhibition than the wild type. Over-expression of the feedback-resistant threonine dehydratase or acetohydroxy acid synthase in C. glutamicum JHI3-156 led to increase of L-isoleucine production; co-expression of them in C. glutamicum JHI3-156 led to 131.7% increase in flask cultivation, and could produce 30.7g/L L-isoleucine in 72-h fed-batch fermentation. These results would be useful to enhance L-isoleucine production in C. glutamicum.
Collapse
|
15
|
Zhang W, Gao C, Che B, Ma C, Zheng Z, Qin T, Xu P. Efficient bioconversion of l-threonine to 2-oxobutyrate using whole cells of Pseudomonas stutzeri SDM. BIORESOURCE TECHNOLOGY 2012; 110:719-22. [PMID: 22342587 DOI: 10.1016/j.biortech.2012.01.123] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Revised: 01/18/2012] [Accepted: 01/20/2012] [Indexed: 05/18/2023]
Abstract
2-Oxobutyrate (2-OBA) is an important intermediate with many applications in the drug and chemical industries. l-Threonine, an industrial fermentation product, could be used as a suitable starting material for the 2-OBA production. In this study, whole cells of Pseudomonas stutzeri SDM were confirmed to possess a good ability to convert l-threonine into 2-OBA. The bioconversion conditions were optimized for the 2-OBA production from l-threonine. Using 9.2g dry cell weight l(-1) of whole cells of strain SDM as biocatalyst, the biocatalytic process produced 2-OBA at a high concentration (25.6gl(-1)) with a high molar conversion rate (99.6%) at 6h from 30g1(-1) of l-threonine.
Collapse
Affiliation(s)
- Wen Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
16
|
Corynebacterium glutamicum as a host for synthesis and export of D-Amino Acids. J Bacteriol 2011; 193:1702-9. [PMID: 21257776 DOI: 10.1128/jb.01295-10] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A number of d-amino acids occur in nature, and there is growing interest in their function and metabolism, as well as in their production and use. Here we use the well-established l-amino-acid-producing bacterium Corynebacterium glutamicum to study whether d-amino acid synthesis is possible and whether mechanisms for the export of these amino acids exist. In contrast to Escherichia coli, C. glutamicum tolerates d-amino acids added extracellularly. Expression of argR (encoding the broad-substrate-specific racemase of Pseudomonas taetrolens) with its signal sequence deleted results in cytosolic localization of ArgR in C. glutamicum. The isolated enzyme has the highest activity with lysine (100%) but also exhibits activity with serine (2%). Upon overexpression of argR in an l-arginine, l-ornithine, or l-lysine producer, equimolar mixtures of the d- and l-enantiomers accumulated extracellularly. Unexpectedly, argR overexpression in an l-serine producer resulted in extracellular accumulation of a surplus of d-serine (81 mM d-serine and 37 mM l-serine) at intracellular concentrations of 125 mM d-serine plus 125 mM l-serine. This points to a nonlimiting ArgR activity for intracellular serine racemization and to the existence of a specific export carrier for d-serine. Export of d-lysine relies fully on the presence of lysE, encoding the exporter for l-lysine, which is apparently promiscuous with respect to the chirality of lysine. These data show that d-amino acids can also be produced with C. glutamicum and that in special cases, due to specific carriers, even a preferential extracellular accumulation of this enantiomer is possible.
Collapse
|
17
|
Sanchez S, Demain AL. Metabolic regulation and overproduction of primary metabolites. Microb Biotechnol 2008; 1:283-319. [PMID: 21261849 PMCID: PMC3815394 DOI: 10.1111/j.1751-7915.2007.00015.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Revised: 10/04/2007] [Accepted: 10/23/2007] [Indexed: 12/01/2022] Open
Abstract
Overproduction of microbial metabolites is related to developmental phases of microorganisms. Inducers, effectors, inhibitors and various signal molecules play a role in different types of overproduction. Biosynthesis of enzymes catalysing metabolic reactions in microbial cells is controlled by well-known positive and negative mechanisms, e.g. induction, nutritional regulation (carbon or nitrogen source regulation), feedback regulation, etc. The microbial production of primary metabolites contributes significantly to the quality of life. Fermentative production of these compounds is still an important goal of modern biotechnology. Through fermentation, microorganisms growing on inexpensive carbon and nitrogen sources produce valuable products such as amino acids, nucleotides, organic acids and vitamins which can be added to food to enhance its flavour, or increase its nutritive values. The contribution of microorganisms goes well beyond the food and health industries with the renewed interest in solvent fermentations. Microorganisms have the potential to provide many petroleum-derived products as well as the ethanol necessary for liquid fuel. Additional applications of primary metabolites lie in their impact as precursors of many pharmaceutical compounds. The roles of primary metabolites and the microbes which produce them will certainly increase in importance as time goes on. In the early years of fermentation processes, development of producing strains initially depended on classical strain breeding involving repeated random mutations, each followed by screening or selection. More recently, methods of molecular genetics have been used for the overproduction of primary metabolic products. The development of modern tools of molecular biology enabled more rational approaches for strain improvement. Techniques of transcriptome, proteome and metabolome analysis, as well as metabolic flux analysis. have recently been introduced in order to identify new and important target genes and to quantify metabolic activities necessary for further strain improvement.
Collapse
Affiliation(s)
- Sergio Sanchez
- Departamento de Biologia Molecular y Biotecnologia, Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico (UNAM), Mexico City, Mexico
| | - Arnold L. Demain
- Research Institute for Scientists Emeriti (RISE), Drew University, Madison, NJ 07940, USA
| |
Collapse
|
18
|
Proteomic investigation on the pyk-F gene knockout Escherichia coli for aromatic amino acid production. Enzyme Microb Technol 2007. [DOI: 10.1016/j.enzmictec.2007.03.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Marienhagen J, Kennerknecht N, Sahm H, Eggeling L. Functional analysis of all aminotransferase proteins inferred from the genome sequence of Corynebacterium glutamicum. J Bacteriol 2005; 187:7639-46. [PMID: 16267288 PMCID: PMC1280304 DOI: 10.1128/jb.187.22.7639-7646.2005] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Twenty putative aminotransferase (AT) proteins of Corynebacterium glutamicum, or rather pyridoxal-5'-phosphate (PLP)-dependent enzymes, were isolated and assayed among others with L-glutamate, L-aspartate, and L-alanine as amino donors and a number of 2-oxo-acids as amino acceptors. One outstanding AT identified is AlaT, which has a broad amino donor specificity utilizing (in the order of preference) L-glutamate > 2-aminobutyrate > L-aspartate with pyruvate as acceptor. Another AT is AvtA, which utilizes L-alanine to aminate 2-oxo-isovalerate, the L-valine precursor, and 2-oxo-butyrate. A second AT active with the L-valine precursor and that of the other two branched-chain amino acids, too, is IlvE, and both enzyme activities overlap partially in vivo, as demonstrated by the analysis of deletion mutants. Also identified was AroT, the aromatic AT, and this and IlvE were shown to have comparable activities with phenylpyruvate, thus demonstrating the relevance of both ATs for L-phenylalanine synthesis. We also assessed the activity of two PLP-containing cysteine desulfurases, supplying a persulfide intermediate. One of them is SufS, which assists in the sulfur transfer pathway for the Fe-S cluster assembly. Together with the identification of further ATs and the additional analysis of deletion mutants, this results in an overview of the ATs within an organism that may not have been achieved thus far.
Collapse
Affiliation(s)
- Jan Marienhagen
- Institute of Biotechnology, Research Centre Juelich, Germany
| | | | | | | |
Collapse
|
20
|
Peters-Wendisch P, Stolz M, Etterich H, Kennerknecht N, Sahm H, Eggeling L. Metabolic engineering of Corynebacterium glutamicum for L-serine production. Appl Environ Microbiol 2005; 71:7139-44. [PMID: 16269752 PMCID: PMC1287687 DOI: 10.1128/aem.71.11.7139-7144.2005] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Accepted: 06/16/2005] [Indexed: 11/20/2022] Open
Abstract
Although L-serine proceeds in just three steps from the glycolytic intermediate 3-phosphoglycerate, and as much as 8% of the carbon assimilated from glucose is directed via L-serine formation, previous attempts to obtain a strain producing L-serine from glucose have not been successful. We functionally identified the genes serC and serB from Corynebacterium glutamicum, coding for phosphoserine aminotransferase and phosphoserine phosphatase, respectively. The overexpression of these genes, together with the third biosynthetic serA gene, serA(delta197), encoding an L-serine-insensitive 3-phosphoglycerate dehydrogenase, yielded only traces of L-serine, as did the overexpression of these genes in a strain with the L-serine dehydratase gene sdaA deleted. However, reduced expression of the serine hydroxymethyltransferase gene glyA, in combination with the overexpression of serA(delta197), serC, and serB, resulted in a transient accumulation of up to 16 mM L-serine in the culture medium. When sdaA was also deleted, the resulting strain, C. glutamicum delta sdaA::pK18mobglyA'(pEC-T18mob2serA(delta197)CB), accumulated up to 86 mM L-serine with a maximal specific productivity of 1.2 mmol h(-1) g (dry weight)(-1). This illustrates a high rate of L-serine formation and also utilization in the C. glutamicum wild type. Therefore, metabolic engineering of L-serine production from glucose can be achieved only by addressing the apparent key position of this amino acid in the central metabolism.
Collapse
Affiliation(s)
- Petra Peters-Wendisch
- Institut für Biotechnologie 1, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany.
| | | | | | | | | | | |
Collapse
|
21
|
Morbach S, Junger C, Sahm H, Eggeling L. Attenuation control of ilvBNC in Corynebacterium glutamicum: evidence of leader peptide formation without the presence of a ribosome binding site. J Biosci Bioeng 2005; 90:501-7. [PMID: 16232899 DOI: 10.1016/s1389-1723(01)80030-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2000] [Accepted: 08/01/2000] [Indexed: 11/25/2022]
Abstract
The ilvBNC operon of Corynebacterium glutamicum encodes acetohydroxy acid synthase and isomero-reductase, which are key enzymes of L-isoleucine, L-valine and L-leucine syntheses. In this study we identified the transcript initiation site of ilvBNC operon 292 nucleotides in front of the first structural gene, and detected the formation of a short transcript from the leader region in addition to the full-length transcript of the operon. This identifies the control of ilvBNC transcription by an attenuation mechanism involving antitermination. Mutations in the leader region were made and their effect on the operon expression in ilvB'lacZ fusions was quantified. Although a presumed leader-peptide-coding region is only one nucleotide away from the transcript initiation site determined, there is clear evidence to support the formation of this leader peptide: (i) the substitution of initiation codon ATG of the peptide by AGG reduced lacZ expression of the appropriate fusion construct to 19%; (ii) the replacement of three subsequent Val codons by Ala codons resulted in the loss of Val-dependent expression; and (iii) a leader peptide LacZ fusion resulted in active beta-galactosidase. Based on these results, it is concluded that transcription of ilvBNC is controlled by a translational-coupled attenuation mechanism. The absence of a ribosome binding site for leader peptide formation means that additional mechanisms may contribute to the transcription control at the decoding initiation step in the leader peptide formation.
Collapse
Affiliation(s)
- S Morbach
- Institut für Biochemie der Universität zu Köln, Zülpicher Str. 47, 50674 Köln, Germany
| | | | | | | |
Collapse
|
22
|
Srivastava P, Deb JK. Gene expression systems in corynebacteria. Protein Expr Purif 2005; 40:221-9. [PMID: 15766862 DOI: 10.1016/j.pep.2004.06.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2004] [Revised: 06/13/2004] [Indexed: 11/29/2022]
Abstract
Corynebacterium belongs to a group of gram-positive bacteria having moderate to high G+C content, the other members being Mycobacterium, Nocardia, and Rhodococcus. Considerable information is now available on the plasmids, gene regulatory elements, and gene expression in corynebacteria, especially in soil corynebacteria such as Corynebacterium glutamicum. These bacteria are non-pathogenic and, unlike Bacillus and Streptomyces, are low in proteolytic activity and thus have the potential of becoming attractive systems for expression of heterologous proteins. This review discusses recent advances in our understanding of the organization of various regulatory elements, such as promoters, transcription terminators, and development of vectors for cloning and gene expression.
Collapse
Affiliation(s)
- Preeti Srivastava
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi, New Delhi 110 016, India
| | | |
Collapse
|
23
|
Kim YH, Park JS, Cho JY, Cho K, Park YH, Lee J. Proteomic response analysis of a threonine-overproducing mutant of Escherichia coli. Biochem J 2004; 381:823-9. [PMID: 15104539 PMCID: PMC1133892 DOI: 10.1042/bj20031763] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2003] [Revised: 04/21/2004] [Accepted: 04/23/2004] [Indexed: 11/17/2022]
Abstract
The proteomic response of a threonine-overproducing mutant of Escherichia coli was quantitatively analysed by two-dimensional electrophoresis. Evidently, 12 metabolic enzymes that are involved in threonine biosynthesis showed a significant difference in intracellular protein level between the mutant and native strain. The level of malate dehydrogenase was more than 30-fold higher in the mutant strain, whereas the synthesis of citrate synthase seemed to be severely inhibited in the mutant. Therefore, in the mutant, it is probable that the conversion of oxaloacetate into citrate was severely inhibited, but the oxidation of malate to oxaloacetate was significantly up-regulated. Accumulation of oxaloacetate may direct the metabolic flow towards the biosynthetic route of aspartate, a key metabolic precursor of threonine. Synthesis of aspartase (aspartate ammonia-lyase) was significantly inhibited in the mutant strain, which might lead to the enhanced synthesis of threonine by avoiding unfavourable degradation of aspartate to fumarate and ammonia. Synthesis of threonine dehydrogenase (catalysing the degradation of threonine finally back to pyruvate) was also significantly down-regulated in the mutant. The far lower level of cystathionine beta-lyase synthesis in the mutant seems to result in the accumulation of homoserine, another key precursor of threonine. In the present study, we report that the accumulation of important threonine precursors, such as oxaloacetate, aspartate and homoserine, and the inhibition of the threonine degradation pathway played a critical role in increasing the threonine biosynthesis in the E. coli mutant.
Collapse
Affiliation(s)
- Yang-Hoon Kim
- *Department of Chemical and Biological Engineering, Korea University, Anam-Dong 5-1, Sungbuk-Ku, Seoul 136-701, South Korea
| | - Jin-Seung Park
- *Department of Chemical and Biological Engineering, Korea University, Anam-Dong 5-1, Sungbuk-Ku, Seoul 136-701, South Korea
| | - Jae-Yong Cho
- †Department of Bioindustry and Technology, Sangji University, 660 Wonju-Si, Kangwon-Do 220-702, South Korea
| | - Kwang Myung Cho
- ‡R&D Center for Bioproducts, Institute of Science and Technology, CJ Corporation, Ichon-Si, Kyongggi-Do 467-810, South Korea
| | - Young-Hoon Park
- ‡R&D Center for Bioproducts, Institute of Science and Technology, CJ Corporation, Ichon-Si, Kyongggi-Do 467-810, South Korea
- Correspondence may be addressed to either author (e-mail )
| | - Jeewon Lee
- *Department of Chemical and Biological Engineering, Korea University, Anam-Dong 5-1, Sungbuk-Ku, Seoul 136-701, South Korea
- Correspondence may be addressed to either author (e-mail )
| |
Collapse
|
24
|
Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L, Goesmann A, Hartmann M, Huthmacher K, Krämer R, Linke B, McHardy AC, Meyer F, Möckel B, Pfefferle W, Pühler A, Rey DA, Rückert C, Rupp O, Sahm H, Wendisch VF, Wiegräbe I, Tauch A. The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins. J Biotechnol 2003; 104:5-25. [PMID: 12948626 DOI: 10.1016/s0168-1656(03)00154-8] [Citation(s) in RCA: 697] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The complete genomic sequence of Corynebacterium glutamicum ATCC 13032, well-known in industry for the production of amino acids, e.g. of L-glutamate and L-lysine was determined. The C. glutamicum genome was found to consist of a single circular chromosome comprising 3282708 base pairs. Several DNA regions of unusual composition were identified that were potentially acquired by horizontal gene transfer, e.g. a segment of DNA from C. diphtheriae and a prophage-containing region. After automated and manual annotation, 3002 protein-coding genes have been identified, and to 2489 of these, functions were assigned by homologies to known proteins. These analyses confirm the taxonomic position of C. glutamicum as related to Mycobacteria and show a broad metabolic diversity as expected for a bacterium living in the soil. As an example for biotechnological application the complete genome sequence was used to reconstruct the metabolic flow of carbon into a number of industrially important products derived from the amino acid L-aspartate.
Collapse
Affiliation(s)
- Jörn Kalinowski
- Institut für Genomforschung, Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
DNA microarray technology has become an important research tool for microbiology and biotechnology as it allows for comprehensive DNA and RNA analyses to characterize genetic diversity and gene expression in a genome-wide manner. DNA microarrays have been applied extensively to study the biology of many bacteria including Mycobacterium tuberculosis, but only recently have they been used for the related high-GC Gram-positive Corynebacterium glutamicum, which is widely used for biotechnological amino acid production. Besides the design and generation of microarrays as well as their use in hybridization experiments and subsequent data analysis, recent applications of DNA microarray technology in C. glutamicum including the characterization of ribose-specific gene expression and the valine stress response will be described. Emerging perspectives of functional genomics to enlarge our insight into fundamental biology of C. glutamicum and their impact on applied biotechnology will be discussed.
Collapse
Affiliation(s)
- Volker F Wendisch
- Institute of Biotechnology, 1 Research Center Jülich, D-52428 Jülich, Germany.
| |
Collapse
|
26
|
Abstract
Corynebacterium glutamicum is an aerobic bacterium that requires oxygen as exogenous electron acceptor for respiration. Recent molecular and biochemical analyses together with information obtained from the genome sequence showed that C. glutamicum possesses a branched electron transport chain to oxygen with some remarkable features. Reducing equivalents obtained by the oxidation of various substrates are transferred to menaquinone via at least eight different dehydrogenases, i.e. NADH dehydrogenase, succinate dehydrogenase, malate:quinone oxidoreductase, pyruvate:quinone oxidoreductase, D-lactate dehydrogenase, L-lactate dehydrogenase, glycerol-3-phosphate dehydrogenase and L-proline dehydrogenase. All these enzymes contain a flavin cofactor and, except succinate dehydrogenase, are single subunit peripheral membrane proteins located inside the cell. From menaquinol, the electrons are passed either via the cytochrome bc(1) complex to the aa(3)-type cytochrome c oxidase with low oxygen affinity, or to the cytochrome bd-type menaquinol oxidase with high oxygen affinity. The former branch is exceptional, in that it does not involve a separate cytochrome c for electron transfer from cytochrome c(1) to the Cu(A) center in subunit II of cytochrome aa(3). Rather, cytochrome c(1) contains two covalently bound heme groups, one of which presumably takes over the function of a separate cytochrome c. The bc(1) complex and cytochrome aa(3) oxidase form a supercomplex in C. glutamicum. The phenotype of defined mutants revealed that the bc(1)-aa(3) branch, but not the bd branch, is of major importance for aerobic growth in minimal medium. Changes of the efficiency of oxidative phosphorylation caused by qualitative changes of the respiratory chain or by a defective F(1)F(0)-ATP synthase were found to have strong effects on metabolism and amino acid production. Therefore, the system of oxidative phosphorylation represents an attractive target for improving amino acid productivity of C. glutamicum by metabolic engineering.
Collapse
Affiliation(s)
- Michael Bott
- Institut für Biotechnologie 1, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany.
| | | |
Collapse
|
27
|
Leyval D, Uy D, Delaunay S, Goergen JL, Engasser JM. Characterisation of the enzyme activities involved in the valine biosynthetic pathway in a valine-producing strain of Corynebacterium glutamicum. J Biotechnol 2003; 104:241-52. [PMID: 12948642 DOI: 10.1016/s0168-1656(03)00162-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The enzyme activities of the valine biosynthetic pathway and their regulation have been studied in the valine-producing strain, Corynebacterium glutamicum 13032DeltailvApJC1ilvBNCD. In this micro-organism, this pathway might involve up to five enzyme activities: acetohydroxy acid synthase (AHAS), acetohydroxy acid isomeroreductase (AHAIR), dihydroxyacid dehydratase and transaminases B and C. For each enzyme, kinetic parameters (optimal temperature, optimal pH and affinity for substrates) were determined. The first enzyme of the pathway, AHAS, was shown to exhibit a weak affinity for pyruvate (K(m)=8.3 mM). It appeared that valine and leucine inhibited the three first steps of the pathway (AHAS, AHAIR and DHAD). Moreover, the AHAS activity was inhibited by isoleucine. Considering the kinetic data collected during this work, AHAS would be a key enzyme for further strain improvement intending to increase the valine production by C. glutamicum.
Collapse
Affiliation(s)
- D Leyval
- Laboratoire Bioprocédés Agro-Alimentaires, ENSAIA, Institut National Polytechnique de Lorraine-2, Avenue de la Forêt de Haye, BP 172, F-54505 Vandoeuvre-lès-Nancy cedex, France
| | | | | | | | | |
Collapse
|
28
|
Kirchner O, Tauch A. Tools for genetic engineering in the amino acid-producing bacterium Corynebacterium glutamicum. J Biotechnol 2003; 104:287-99. [PMID: 12948646 DOI: 10.1016/s0168-1656(03)00148-2] [Citation(s) in RCA: 234] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
During the last decades, the gram-positive soil bacterium Corynebacterium glutamicum has been shown to be a very versatile microorganism for the large-scale fermentative production of L-amino acids. Up to now, a vast amount of techniques and tools for genetic engineering and amplification of relevant structural genes have been developed. The objectives of this study are to summarize the published literature on tools for genetic engineering in C. glutamicum and to focus on new sophisticated and highly efficient methods in the fields of DNA transfer techniques, cloning vectors, integrative genetic tools, and antibiotic-free self-cloning. This repertoire of C. glutamicum methodology provides an experimental basis for efficient genetic analyses of the recently completed genome sequence.
Collapse
Affiliation(s)
- Oliver Kirchner
- Lehrstuhl für Gentechnologie/Mikrobiologie, Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany
| | | |
Collapse
|
29
|
Lange C, Rittmann D, Wendisch VF, Bott M, Sahm H. Global expression profiling and physiological characterization of Corynebacterium glutamicum grown in the presence of L-valine. Appl Environ Microbiol 2003; 69:2521-32. [PMID: 12732517 PMCID: PMC154540 DOI: 10.1128/aem.69.5.2521-2532.2003] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Addition of L-valine (50 to 200 mM) to glucose minimal medium had no effect on the growth of wild-type Corynebacterium glutamicum ATCC 13032 but inhibited the growth of the derived valine production strain VAL1 [13032 DeltailvA DeltapanBC(pJC1ilvBNCD)] in a concentration-dependent manner. In order to explore this strain-specific valine effect, genomewide expression profiling was performed using DNA microarrays, which showed that valine caused an increased ilvBN mRNA level in VAL1 but not in the wild type. This unexpected result was confirmed by an increased cellular level of the ilvB protein product, i.e., the large subunit of acetohydroxyacid synthase (AHAS), and by an increased AHAS activity of valine-treated VAL1 cells. The conclusion that valine caused the limitation of another branched-chain amino acid was confirmed by showing that high concentrations of L-isoleucine could relieve the valine effect on VAL1 whereas L-leucine had the same effect as valine. The valine-caused isoleucine limitation was supported by the finding that the inhibitory valine effect was linked to the ilvA deletion that results in isoleucine auxotrophy. Taken together, these results implied that the valine effect is caused by competition for uptake of isoleucine by the carrier BrnQ, which transports all branched-chained amino acids. Indeed, valine inhibition could also be relieved by supplementing VAL1 with the dipeptide isoleucyl-isoleucine, which is taken up by a dipeptide transport system rather than by BrnQ. Interestingly, addition of external valine stimulated valine production by VAL1. This effect is most probably due to a reduced carbon usage for biomass production and to the increased expression of ilvBN, indicating that AHAS activity may still be a limiting factor for valine production in the VAL1 strain.
Collapse
Affiliation(s)
- C Lange
- Institut für Biotechnologie 1, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | | | | | | | | |
Collapse
|
30
|
Kennerknecht N, Sahm H, Yen MR, Pátek M, Saier Jr MH, Eggeling L. Export of L-isoleucine from Corynebacterium glutamicum: a two-gene-encoded member of a new translocator family. J Bacteriol 2002; 184:3947-56. [PMID: 12081967 PMCID: PMC135157 DOI: 10.1128/jb.184.14.3947-3956.2002] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2002] [Accepted: 04/15/2002] [Indexed: 11/20/2022] Open
Abstract
Bacteria possess amino acid export systems, and Corynebacterium glutamicum excretes L-isoleucine in a process dependent on the proton motive force. In order to identify the system responsible for L-isoleucine export, we have used transposon mutagenesis to isolate mutants of C. glutamicum sensitive to the peptide isoleucyl-isoleucine. In one such mutant, strong peptide sensitivity resulted from insertion into a gene designated brnF encoding a hydrophobic protein predicted to possess seven transmembrane spanning helices. brnE is located downstream of brnF and encodes a second hydrophobic protein with four putative membrane-spanning helices. A mutant deleted of both genes no longer exports L-isoleucine, whereas an overexpressing strain exports this amino acid at an increased rate. BrnF and BrnE together are also required for the export of L-leucine and L-valine. BrnFE is thus a two-component export permease specific for aliphatic hydrophobic amino acids. Upstream of brnFE and transcribed divergently is an Lrp-like regulatory gene required for active export. Searches for homologues of BrnFE show that this type of exporter is widespread in prokaryotes but lacking in eukaryotes and that both gene products which together comprise the members of a novel family, the LIV-E family, generally map together within a single operon. Comparisons of the BrnF and BrnE phylogenetic trees show that gene duplication events in the early bacterial lineage gave rise to multiple paralogues that have been retained in alpha-proteobacteria but not in other prokaryotes analyzed.
Collapse
|
31
|
Simic P, Willuhn J, Sahm H, Eggeling L. Identification of glyA (encoding serine hydroxymethyltransferase) and its use together with the exporter ThrE to increase L-threonine accumulation by Corynebacterium glutamicum. Appl Environ Microbiol 2002; 68:3321-7. [PMID: 12089010 PMCID: PMC126772 DOI: 10.1128/aem.68.7.3321-3327.2002] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
L-threonine can be made by the amino acid-producing bacterium Corynebacterium glutamicum. However, in the course of this process, some of the L-threonine is degraded to glycine. We detected an aldole cleavage activity of L-threonine in crude extracts with an activity of 2.2 nmol min(-1) (mg of protein)(-1). In order to discover the molecular reason for this activity, we cloned glyA, encoding serine hydroxymethyltransferase (SHMT). By using affinity-tagged glyA, SHMT was isolated and its substrate specificity was determined. The aldole cleavage activity of purified SHMT with L-threonine as the substrate was 1.3 micromol min(-1) (mg of protein)(-1), which was 4% of that with L-serine as substrate. Reduction of SHMT activity in vivo was obtained by placing the essential glyA gene in the chromosome under the control of P(tac), making glyA expression isopropylthiogalactopyranoside dependent. In this way, the SHMT activity in an L-threonine producer was reduced to 8% of the initial activity, which led to a 41% reduction in glycine, while L-threonine was simultaneously increased by 49%. The intracellular availability of L-threonine to aldole cleavage was also reduced by overexpressing the L-threonine exporter thrE. In C. glutamicum DR-17, which overexpresses thrE, accumulation of 67 mM instead of 49 mM L-threonine was obtained. This shows that the potential for amino acid formation can be considerably improved by reducing its intracellular degradation and increasing its export.
Collapse
Affiliation(s)
- Petra Simic
- Institut für Biotechnologie, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
| | | | | | | |
Collapse
|
32
|
Radmacher E, Vaitsikova A, Burger U, Krumbach K, Sahm H, Eggeling L. Linking central metabolism with increased pathway flux: L-valine accumulation by Corynebacterium glutamicum. Appl Environ Microbiol 2002; 68:2246-50. [PMID: 11976094 PMCID: PMC127577 DOI: 10.1128/aem.68.5.2246-2250.2002] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2001] [Accepted: 02/12/2002] [Indexed: 11/20/2022] Open
Abstract
Mutants of Corynebacterium glutamicum were made and enzymatically characterized to clone ilvD and ilvE, which encode dihydroxy acid dehydratase and transaminase B, respectively. These genes of the branched-chain amino acid synthesis were overexpressed together with ilvBN (which encodes acetohydroxy acid synthase) and ilvC (which encodes isomeroreductase) in the wild type, which does not excrete L-valine, to result in an accumulation of this amino acid to a concentration of 42 mM. Since L-valine originates from two pyruvate molecules, this illustrates the comparatively easy accessibility of the central metabolite pyruvate. The same genes, ilvBNCD, overexpressed in an ilvA deletion mutant which is unable to synthesize L-isoleucine increased the concentration of this amino acid to 58 mM. A further dramatic increase was obtained when panBC was deleted, making the resulting mutant auxotrophic for D-pantothenate. When the resulting strain, C. glutamicum 13032DeltailvADeltapanBC with ilvBNCD overexpressed, was grown under limiting conditions it accumulated 91 mM L-valine. This is attributed to a reduced coenzyme A availability and therefore reduced flux of pyruvate via pyruvate dehydrogenase enabling its increased drain-off via the L-valine biosynthesis pathway.
Collapse
Affiliation(s)
- Eva Radmacher
- Institut für Biotechnologie, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | | | | | | | | | | |
Collapse
|
33
|
Tauch A, Homann I, Mormann S, Rüberg S, Billault A, Bathe B, Brand S, Brockmann-Gretza O, Rückert C, Schischka N, Wrenger C, Hoheisel J, Möckel B, Huthmacher K, Pfefferle W, Pühler A, Kalinowski J. Strategy to sequence the genome of Corynebacterium glutamicum ATCC 13032: use of a cosmid and a bacterial artificial chromosome library. J Biotechnol 2002; 95:25-38. [PMID: 11879709 DOI: 10.1016/s0168-1656(01)00443-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The initial strategy of the Corynebacterium glutamicum genome project was to sequence overlapping inserts of an ordered cosmid library. High-density colony grids of approximately 28 genome equivalents were used for the identification of overlapping clones by Southern hybridization. Altogether 18 contiguous genomic segments comprising 95 overlapping cosmids were assembled. Systematic shotgun sequencing of the assembled cosmid set revealed that only 2.84 Mb (86.6%) of the C. glutamicum genome were represented by the cosmid library. To obtain a complete genome coverage, a bacterial artificial chromosome (BAC) library of the C. glutamicum chromosome was constructed in pBeloBAC11 and used for genome mapping. The BAC library consists of 3168 BACs and represents a theoretical 63-fold coverage of the C. glutamicum genome (3.28 Mb). Southern screening of 2304 BAC clones with PCR-amplified chromosomal markers and subsequent insert terminal sequencing allowed the identification of 119 BACs covering the entire chromosome of C. glutamicum. The minimal set representing a 100% genome coverage contains 44 unique BAC clones with an average overlap of 22 kb. A total of 21 BACs represented linking clones between previously sequenced cosmid contigs and provided a valuable tool for completing the genome sequence of C. glutamicum.
Collapse
Affiliation(s)
- Andreas Tauch
- Zentrum für Genomforschung, Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Hwang BJ, Yeom HJ, Kim Y, Lee HS. Corynebacterium glutamicum utilizes both transsulfuration and direct sulfhydrylation pathways for methionine biosynthesis. J Bacteriol 2002; 184:1277-86. [PMID: 11844756 PMCID: PMC134843 DOI: 10.1128/jb.184.5.1277-1286.2002] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A direct sulfhydrylation pathway for methionine biosynthesis in Corynebacterium glutamicum was found. The pathway was catalyzed by metY encoding O-acetylhomoserine sulfhydrylase. The gene metY, located immediately upstream of metA, was found to encode a protein of 437 amino acids with a deduced molecular mass of 46,751 Da. In accordance with DNA and protein sequence data, the introduction of metY into C. glutamicum resulted in the accumulation of a 47-kDa protein in the cells and a 30-fold increase in O-acetylhomoserine sulfhydrylase activity, showing the efficient expression of the cloned gene. Although disruption of the metB gene, which encodes cystathionine gamma-synthase catalyzing the transsulfuration pathway of methionine biosynthesis, or the metY gene was not enough to lead to methionine auxotrophy, an additional mutation in the metY or the metB gene resulted in methionine auxotrophy. The growth pattern of the metY mutant strain was identical to that of the metB mutant strain, suggesting that both methionine biosynthetic pathways function equally well. In addition, an Escherichia coli metB mutant could be complemented by transformation of the strain with a DNA fragment carrying corynebacterial metY and metA genes. These data clearly show that C. glutamicum utilizes both transsulfuration and direct sulfhydrylation pathways for methionine biosynthesis. Although metY and metA are in close proximity to one another, separated by 143 bp on the chromosome, deletion analysis suggests that they are expressed independently. As with metA, methionine could also repress the expression of metY. The repression was also observed with metB, but the degree of repression was more severe with metY, which shows almost complete repression at 0.5 mM methionine in minimal medium. The data suggest a physiologically distinctive role of the direct sulfhydrylation pathway in C. glutamicum.
Collapse
Affiliation(s)
- Byung-Joon Hwang
- Graduate School of Biotechnology, Korea University, Anam-Dong, Sungbuk-Ku, Seoul 136-701, Korea
| | | | | | | |
Collapse
|
35
|
de Graaf AA, Eggeling L, Sahm H. Metabolic engineering for L-lysine production by Corynebacterium glutamicum. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2002; 73:9-29. [PMID: 11816814 DOI: 10.1007/3-540-45300-8_2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Corynebacterium glutamicum has been used since several decades for the large-scale production of amino acids, esp. L-glutamate and L-lysine. After initial successes of random mutagenesis and screening approaches, further strain improvements now require a much more rational design, i.e. metabolic engineering. Not only recombinant DNA technology but also mathematical modelling of metabolism as well as metabolic flux analysis represent important metabolic engineering tools. This review covers as state-of-the-art examples of these techniques the genetic engineering of the L-lysine biosynthetic pathway resulting in a vectorless strain with significantly increased dihydrodipicolinate synthase activity, and the detailed metabolic flux analysis by 13C isotopomer labelling strategies of the anaplerotic enzyme activities in C. glutamicum resulting in the identification of gluconeogenic phosphoenolpyruvate carboxykinase as a limiting enzyme.
Collapse
Affiliation(s)
- A A de Graaf
- Institut für Biotechnologie 1, Forschungszentrum Jülich, 52425 Jülich, Germany.
| | | | | |
Collapse
|
36
|
Abstract
The paper gives a review on the recent development of bioprocess engineering. It includes monitoring of product formation processes by flow injection analysis, various types of chromatographic and spectroscopic methods as well as by biosensors. The evaluation of mycelial morphology and physiology by digital image analysis is discussed also. It deals with advanced control of indirectly evaluated process variables by means of state estimation/observer, with the use of structured and hybrid models, expert systems and pattern recognition for process optimization and gives a short report on the state of the art of metabolic flux analysis and metabolic engineering.
Collapse
Affiliation(s)
- K Schügerl
- Institut für Technische Chemie der Universität Hannover, Callinstr. 3, D-30167, Hannover, Germany.
| |
Collapse
|
37
|
Eggeling L, Sahm H. The cell wall barrier of Corynebacterium glutamicum and amino acid efflux. J Biosci Bioeng 2001. [DOI: 10.1016/s1389-1723(01)80251-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
38
|
EGGELING LOTHAR, SAHM HERMANN. The Cell Wall Barrier of Corynebacterium glutamicum and Amino Acid Efflux. J Biosci Bioeng 2001. [DOI: 10.1263/jbb.92.201] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
39
|
Engel S, Barak Z, Chipman DM, Merchuk JC. Purification of acetohydroxy acid synthase by separation in an aqueous two-phase system. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL SCIENCES AND APPLICATIONS 2000; 743:281-6. [PMID: 10942298 DOI: 10.1016/s0378-4347(00)00053-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Extraction in a polyethylene glycol (PEG)-phosphate aqueous two-phase system was considered as a primary step in purification of the acetohydroxy acid synthase III large catalytic subunit from an E. coli extract. Extraction optimization was achieved by varying the system parameters. Two systems with the following weight compositions were chosen for purification: PEG-2000 (16%)-phosphate (6%) and PEG-4000 (14%)-phosphate (5.5%)-KCl (8%), both at pH 7.0 and 1 mg total protein per 1 g system. Significant purification was achieved by a single extraction step with 70% recovery of the enzyme. After an additional ion-exchange chromatography step, pure enzyme was obtained in a 50% overall yield.
Collapse
Affiliation(s)
- S Engel
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | | | | | | |
Collapse
|
40
|
Sahm H, Eggeling L. D-Pantothenate synthesis in Corynebacterium glutamicum and use of panBC and genes encoding L-valine synthesis for D-pantothenate overproduction. Appl Environ Microbiol 1999; 65:1973-9. [PMID: 10223988 PMCID: PMC91285 DOI: 10.1128/aem.65.5.1973-1979.1999] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
D-Pantothenate is synthesized via four enzymes from ketoisovalerate, which is an intermediate of branched-chain amino acid synthesis. We quantified three of these enzyme activities in Corynebacterium glutamicum and determined specific activities ranging from 0.00014 to 0.001 micromol/min mg (protein)-1. The genes encoding the ketopantoatehydroxymethyl transferase and the pantothenate synthetase were cloned, sequenced, and functionally characterized. These studies suggest that panBC constitutes an operon. By using panC, an assay system was developed to quantify D-pantothenate. The wild type of C. glutamicum was found to accumulate 9 micrograms of this vitamin per liter. A strain was constructed (i) to abolish L-isoleucine synthesis, (ii) to result in increased ketoisovalerate formation, and (iii) to enable its further conversion to D-pantothenate. The best resulting strain has ilvA deleted from its chromosome and has two plasmids to overexpress genes of ketoisovalerate (ilvBNCD) and D-pantothenate (panBC) synthesis. With this strain a D-pantothenate accumulation of up to 1 g/liter is achieved, which is a 10(5)-fold increase in concentration compared to that of the original wild-type strain. From the series of strains analyzed it follows that an increased ketoisovalerate availability is mandatory to direct the metabolite flux into the D-pantothenate-specific part of the pathway and that the availability of beta-alanine is essential for D-pantothenate formation.
Collapse
Affiliation(s)
- H Sahm
- Institut für Biotechnologie, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | | |
Collapse
|
41
|
Boynton ZL, Koon JJ, Brennan EM, Clouart JD, Horowitz DM, Gerngross TU, Huisman GW. Reduction of cell lysate viscosity during processing of poly(3-hydroxyalkanoates) by chromosomal integration of the staphylococcal nuclease gene in Pseudomonas putida. Appl Environ Microbiol 1999; 65:1524-9. [PMID: 10103246 PMCID: PMC91216 DOI: 10.1128/aem.65.4.1524-1529.1999] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Poly(3-hydroxyalkanoates) (PHAs) are biodegradable thermoplastics which are accumulated by many bacterial species in the form of intracellular granules and which are thought to serve as reserves of carbon and energy. Pseudomonas putida accumulates a polyester, composed of medium-side-chain 3-hydroxyalkanoic acids, which has excellent film-forming properties. Industrial processing of PHA involves purification of the PHA granules from high-cell-density cultures. After the fermentation process, cells are lysed by homogenization and PHA granules are purified by chemical treatment and repeated washings to yield a PHA latex. Unfortunately, the liberation of chromosomal DNA during lysis causes a dramatic increase in viscosity, which is problematic in the subsequent purification steps. Reduction of the viscosity is generally achieved by the supplementation of commercially available nuclease preparations or by heat treatment; however, both procedures add substantial costs to the process. As a solution to this problem, a nuclease-encoding gene from Staphylococcus aureus was integrated into the genomes of several PHA producers. Staphylococcal nuclease is readily expressed in PHA-producing Pseudomonas strains and is directed to the periplasm, and occasionally to the culture medium, without affecting PHA production or strain stability. During downstream processing, the viscosity of the lysate from a nuclease-integrated Pseudomonas strain was reduced to a level similar to that observed for the wild-type strain after treatment with commercial nuclease. The nuclease gene was also functionally integrated into the chromosomes of other PHA producers, including Ralstonia eutropha.
Collapse
Affiliation(s)
- Z L Boynton
- Departments of Molecular Biology, Metabolix Inc., Cambridge, Massachusetts 02142, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Marx A, Eikmanns BJ, Sahm H, de Graaf AA, Eggeling L. Response of the central metabolism in Corynebacterium glutamicum to the use of an NADH-dependent glutamate dehydrogenase. Metab Eng 1999; 1:35-48. [PMID: 10935753 DOI: 10.1006/mben.1998.0106] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The extensive use of 13C enrichments in precursor metabolites for flux quantification does not rely on NADPH stoichiometries and can therefore be used to quantify reducing power fluxes. As an application of this concept, the NADPH fluxes were quantified in an L-lysine producer of Corynebacterium glutamicum grown into metabolic and isotopic steady state with [1-13C]glucose. In this case, where the organism's NADPH-dependent glutamate dehydrogenase consumes reducing power, the NADPH flux generated is 210% (molar flux relative to glucose uptake rate) with its major part (72% of the total) generated via the pentose phosphate pathway activity. An isogenic strain in which the glutamate dehydrogenase of C. glutamicum was replaced by the NADH-dependent glutamate dehydrogenase of Peptostreptococcus asaccharolyticus was made and the metabolite fluxes were again estimated. The major response to this local perturbation is a drastically reduced NADPH generation of only 139%. Most of the NADPH (62% of the total) is now generated via the tricarboxylic acid cycle activity. This shows the extraordinary flexibility of the central metabolism and provides a picture of the global regulatory properties of the central metabolism. Furthermore, a detailed analysis of the fluxes and exchange fluxes within the anaplerotic reactions is given. It is hypothesized that these reactions might also serve to balance the total reducing power budget as well as the energy budget within the cell.
Collapse
Affiliation(s)
- A Marx
- Institut für Biotechnologie, Forschungszentrum Jülich GmbH, Germany
| | | | | | | | | |
Collapse
|
43
|
Hermann T, Wersch G, Uhlemann EM, Schmid R, Burkovski A. Mapping and identification of Corynebacterium glutamicum proteins by two-dimensional gel electrophoresis and microsequencing. Electrophoresis 1998; 19:3217-21. [PMID: 9932818 DOI: 10.1002/elps.1150191827] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
As a prerequisite for proteome analyses of Corynebacterium glutamicum separation of the cytoplasm and the membrane fraction was optimized and two-dimensional (2-D) gel electrophoresis was established. The resulting 2-D protein maps revealed over 1000 silver-stained protein spots separated by isoelectric point and molecular mass for cytoplasmic proteins and approximately 700 silver-stained spots for proteins of the membrane fraction. Proposing a mean size of 1 kbp per gene the complete C. glutamicum genome of 3 Mbp encodes 3000 different proteins; more than half of these can be located using the maps which are presently available. In this study 10 proteins were identified by N-terminal microsequencing, namely the 35 kDa antigen, antigen 84, ATP synthase subunits alpha, gamma and delta, cysteine synthase, elongation factor G and Ts, enolase, and rotamase. For seven sequences, corresponding proteins could not be identified. Additionally, two proteins were specifically detected by immunoblotting, a corynebacterial porin and the cytoplasmic protein threonine dehydratase. The methods and 2-D maps established in this study will be the basis for comparative studies of protein expression and a detailed proteome analysis of C. glutamicum.
Collapse
Affiliation(s)
- T Hermann
- Institut für Biochemie, Universität zu Köln, Germany
| | | | | | | | | |
Collapse
|