1
|
Ellis JR, Bull JJ, Rowley PA. Fungal Glycoside Hydrolases Display Unique Specificities for Polysaccharides and Staphylococcus aureus Biofilms. Microorganisms 2023; 11:microorganisms11020293. [PMID: 36838258 PMCID: PMC9964650 DOI: 10.3390/microorganisms11020293] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 01/26/2023] Open
Abstract
Commercially available cellulases and amylases can disperse the pathogenic bacteria embedded in biofilms. This suggests that polysaccharide-degrading enzymes would be useful as antibacterial therapies to aid the treatment of biofilm-associated bacteria, e.g., in chronic wounds. Using a published enzyme library, we explored the capacity of 76 diverse recombinant glycoside hydrolases to disperse Staphylococcus aureus biofilms. Four of the 76 recombinant glycoside hydrolases digested purified cellulose, amylose, or pectin. However, these enzymes did not disperse biofilms, indicating that anti-biofilm activity is not general to all glycoside hydrolases and that biofilm activity cannot be predicted from the activity on pure substrates. Only one of the 76 recombinant enzymes was detectably active in biofilm dispersion, an α-xylosidase from Aspergillus nidulans. An α-xylosidase cloned subsequently from Aspergillus thermomutatus likewise demonstrated antibiofilm activity, suggesting that α-xylosidases, in general, can disperse Staphylococcus biofilms. Surprisingly, neither of the two β-xylosidases in the library degraded biofilms. Commercial preparations of amylase and cellulase that are known to be effective in the dispersion of Staphylococcus biofilms were also analyzed. The commercial cellulase contained contaminating proteins with multiple enzymes exhibiting biofilm-dispersing activity. Successfully prospecting for additional antibiofilm enzymes may thus require large libraries and may benefit from purified enzymes. The complexity of biofilms and the diversity of glycoside hydrolases continue to make it difficult to predict or understand the enzymes that could have future therapeutic applications.
Collapse
Affiliation(s)
- Jeremy R. Ellis
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
- The Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - James J. Bull
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Paul A. Rowley
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
- Correspondence:
| |
Collapse
|
2
|
A Comparison of the Transglycosylation Capacity between the Guar GH27 Aga27A and Bacteroides GH36 BoGal36A α-Galactosidases. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12105123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The transglycosylation behavior and capacity of two clan GH-D α-galactosidases, BoGal36A from the gut bacterium Bacteroides ovatus and Aga27A from the guar plant, was investigated and compared. The enzymes were screened for the ability to use para-nitrophenyl-α-galactoside (pNP-Gal), raffinose and locust bean gum (LBG) galactomannan as glycosyl donors with the glycosyl acceptors methanol, propanol, allyl alcohol, propargyl alcohol and glycerol using mass spectrometry. Aga27A was, in general, more stable in the presence of the acceptors. HPLC analysis was developed and used as a second screening method for reactions using raffinose or LBG as a donor substrate with methanol, propanol and glycerol as acceptors. Time-resolved reactions were set up with raffinose and methanol as the donor and acceptor, respectively, in order to develop an insight into the basic transglycosylation properties, including the ratio between the rate of transglycosylation (methyl galactoside synthesis) and rate of hydrolysis. BoGal36A had a somewhat higher ratio (0.99 compared to 0.71 for Aga27A) at early time points but was indicated to be more prone to secondary (product) hydrolysis in prolonged incubations. The methyl galactoside yield was higher when using raffinose (48% for BoGal36A and 38% for Aga27A) compared to LBG (27% for BoGal36A and 30% for Aga27A).
Collapse
|
3
|
Sun D, Zhang J, Li C, Wang TF, Qin HM. Biochemical and structural characterization of a novel thermophilic and acidophilic β-mannanase from Aspergillus calidoustus. Enzyme Microb Technol 2021; 150:109891. [PMID: 34489044 DOI: 10.1016/j.enzmictec.2021.109891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/31/2021] [Accepted: 08/02/2021] [Indexed: 01/09/2023]
Abstract
β-Mannanases hydrolyze lignocellulosic biomass with the release of mannan oligosaccharides, which are considered as renewable resource in higher plants. Here, we cloned, expressed and characterized a novel endo-β-mannanase (ManAC) from Aspergillus calidoustus. Homology alignment analysis indicated that ManAC belonged to glycosyl hydrolase (GH) 5 family members. The analysis of structural homologous model revealed that five residues, Arg116, Asn231, His305, Tyr307, and Trp370, constituted the active site of ManAC. Glu232 and Glu340, proton donor and nucleophile, formed the catalytic residues of ManAC. The recombinant ManAC exhibited maximal activity at pH 2.5 and 70 °C, and it was acid tolerant at a pH range of 2.0-6.0 and thermostable under 60 °C. Meanwhile, the activity of ManAC was not significantly affected by various metal ions, except for Mg2+ and Ag2+. The recombinant ManAC exhibited the highest β-mannanase activity towards locust bean gum (669.7 U/mg) with the Km and Vmax values of 3.4 mg/mL and 982.4 μmol/min/mg, respectively. These thermophilic and acidophilicc characteristics is better than most extreme β-mannanase. As the first reported mannanse from Aspergillus calidoustus (ManAC), these excellent properties of ManAC strongly promote the synthesis of mannooligosaccharides which have potential for food and feed industrial applications.
Collapse
Affiliation(s)
- Dengyue Sun
- State Key Laboratory of Biobased Material and Green Papermaking, College of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250100, PR China
| | - Jie Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, College of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250100, PR China
| | - Chao Li
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Teng-Fei Wang
- State Key Laboratory of Biobased Material and Green Papermaking, College of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250100, PR China.
| | - Hui-Min Qin
- State Key Laboratory of Biobased Material and Green Papermaking, College of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250100, PR China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, PR China.
| |
Collapse
|
4
|
Mohapatra BR. Characterization of β-mannanase extracted from a novel Streptomyces species Alg-S25 immobilized on chitosan nanoparticles. BIOTECHNOL BIOTEC EQ 2020. [DOI: 10.1080/13102818.2020.1858158] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Bidyut Ranjan Mohapatra
- Department of Biological and Chemical Sciences, The University of the West Indies, Bridgetown, Barbados
| |
Collapse
|
5
|
Liu Z, Ning C, Yuan M, Fu X, Yang S, Wei X, Xiao M, Mou H, Zhu C. High-efficiency expression of a superior β-mannanase engineered by cooperative substitution method in Pichia pastoris and its application in preparation of prebiotic mannooligosaccharides. BIORESOURCE TECHNOLOGY 2020; 311:123482. [PMID: 32416491 DOI: 10.1016/j.biortech.2020.123482] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/02/2020] [Accepted: 05/04/2020] [Indexed: 06/11/2023]
Abstract
β-mannanase with high specific activity is a prerequisite for the industrial preparation of prebiotic mannooligosaccharides. Three mutants, namely MEI, MER, and MEIR, were constructed by cooperative substitution based on three predominant single-point site mutations (K291E, L211I, and Q112R, respectively). Heterologous expression was facilitated in Pichia pastoris and the recombinase was characterized completely. The specific activities of MER (7481.9 U mg-1) and MEIR (9003.1 U mg-1) increased by 1.07- and 1.29-fold from the initial activity of ME (6970.2U mg-1), respectively. MEIR was used for high-cell-density fermentation to further improve enzyme activity, and the expression levels achieved in the 10-L fermenter were significantly high (105,836 U mL-1). The prebiotic mannooligosaccharides (<2000 Da) were prepared by hydrolyzing konjac gum and locust bean gum with MEIR, with 100% and 76.40% hydrolysis rates, respectively. These characteristics make MEIR highly attractive for prebiotic development in food and related industries.
Collapse
Affiliation(s)
- Zhemin Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003 China
| | - Chen Ning
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003 China
| | - Mingxue Yuan
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003 China
| | - Xiaodan Fu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003 China
| | - Suxiao Yang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003 China
| | - Xinyi Wei
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003 China
| | - Mengshi Xiao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003 China
| | - Haijin Mou
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003 China.
| | - Changliang Zhu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003 China.
| |
Collapse
|
6
|
Enhancement of β-Mannanase Production by Bacillus subtilis ATCC11774 through Optimization of Medium Composition. Molecules 2020; 25:molecules25153516. [PMID: 32752106 PMCID: PMC7435724 DOI: 10.3390/molecules25153516] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 11/23/2022] Open
Abstract
Palm kernel cake (PKC) has been largely produced in Malaysia as one of the cheap and abundant agro-waste by-products from the palm oil industry and it contains high fiber (mannan) content. The present study aimed to produce β-mannanase by Bacillus subtilis ATCC11774 via optimization of the medium composition using palm kernel cake as substrate in semi-solid fermentation. The fermentation nutrients such as PKC, peptone, yeast extract, sodium chloride, magnesium sulphate (MgSO2), initial culture pH and temperature were screened using a Plackett-Burman design. The three most significant factors identified, PKC, peptone and NaCl, were further optimized using central composite design (CCD), a response surface methodology (RSM) approach, where yeast extract and MgSO2 were fixed as a constant factor. The maximum β-mannanase activity predicted by CCD under the optimum medium composition of 16.50 g/L PKC, 19.59 g/L peptone, 3.00 g/L yeast extract, 2.72 g/L NaCl and 0.2 g/L MgSO2 was 799 U/mL. The validated β-mannanase activity was 805.12 U/mL, which was close to the predicted β-mannanas activity. As a comparison, commercial media such as nutrient broth, M9 and Luria bertani were used for the production of β-mannanase with activities achieved at 204.16 ± 9.21 U/mL, 50.32 U/mL and 88.90 U/mL, respectively. The optimized PKC fermentation medium was four times higher than nutrient broth. Hence, it could be a potential fermentation substrate for the production of β-mannanase activity by Bacillus subtilis ATCC11774.
Collapse
|
7
|
Identification and Biochemical Characterization of Major β-Mannanase in Talaromyces cellulolyticus Mannanolytic System. Appl Biochem Biotechnol 2020; 192:616-631. [DOI: 10.1007/s12010-020-03350-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/22/2020] [Indexed: 01/06/2023]
|
8
|
Fabà L, Litjens R, Allaart J, van den Hil PR. Feed additive blends fed to nursery pigs challenged with Salmonella. J Anim Sci 2020; 98:5682637. [PMID: 31863091 PMCID: PMC6978908 DOI: 10.1093/jas/skz382] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 12/18/2019] [Indexed: 12/14/2022] Open
Abstract
Salmonella in pigs is a concern for human foodborne salmonellosis. Dietary fungal fermented products, coated butyrate, and organic acids (OAs) may be promising control strategies. The objectives of this study were (i) to evaluate in vitro binding affinity of Salmonella enterica serovar Typhimurium (S. Typh) and Enteritidis (S. Ent), and enterotoxigenic Escherichia coli (ETEC) F4 or F18 to mannan-rich hydrolyzed copra meal (MCM) and fermented rye (FR) with Agaricus subrufescens; and (ii) to assess MCM and FR efficacy to control in vivo S. Typh shedding when combined with OAs and compared with coated butyrate strategy. A 31-d study included 32 pigs [6.29 ± 0.76 kg BW] individually housed and distributed into four dietary treatments: control diet; OA.BU, 4 kg/t OA plus 6 kg/t coated butyrate; OA.MCM, 4 kg/t OA plus 1 kg/t MCM; and OA.FR, 4 kg/t OA plus 2 kg/t FR. All pigs were challenged for 7 d with 1 mL S. Typh (109 colony forming units daily) at 10 d postweaning. Temperature and fecal samples were collected before and after challenge, and fecal Salmonella shedding quantified. Diarrhea scores were monitored daily and growth performance was evaluated weekly. In vitro, culture with MCM and FR showed significant (P < 0.01) binding affinity for both S. Typh and S. Ent, but not for ETEC F4 and F18. In vivo, pigs fed OA.MCM and OA.FR had lower (P < 0.05) shedding and day 3 peak shedding of S. Typh after infections than pigs fed control and OA.BU diets. Pigs fed OA.FR diet tended to have an 18% increase (P = 0.068) in BW on day 14 post first inoculation compared with control and OA.BU, and 19% increased (P = 0.093) final BW at day 21 compared with control. Diarrhea frequency post infection was overall lower (P = 0.006) for OA.FR (18.9%) than OA.BU (44.8%) and OA.MCM (41.7%) while control (28.7%) was not different. In conclusion, FR and MCM show in vitro-binding affinity to Salmonella enterica serovars Typh and Ent. Feeding FR or MCM combined with OA to nursery pigs reduces the peak and averages S. Typh shedding compared with control. Fermented rye with OA tends to improve pig performance after S. Typh challenge.
Collapse
Affiliation(s)
- Lluís Fabà
- Trouw Nutrition R&D, Amersfoort MH, The Netherlands
- Corresponding author:
| | | | - Janneke Allaart
- Faculty of Veterinary Medicine, Utrecht University, Utrecht CS, The Netherlands
| | | |
Collapse
|
9
|
Nopvichai C, Pongkorpsakol P, Wongkrasant P, Wangpaiboon K, Charoenwongpaiboon T, Ito K, Muanprasat C, Pichyangkura R. Galactomannan Pentasaccharide Produced from Copra Meal Enhances Tight Junction Integration of Epithelial Tissue through Activation of AMPK. Biomedicines 2019; 7:biomedicines7040081. [PMID: 31614968 PMCID: PMC6966651 DOI: 10.3390/biomedicines7040081] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/09/2019] [Accepted: 10/11/2019] [Indexed: 12/24/2022] Open
Abstract
Mannan oligosaccharide (MOS) is well-known as an effective fed supplement for livestock to increase their nutrients absorption and health status. Pentasaccharide of mannan (MOS5) was reported as a molecule that possesses the ability to increase tight junction of epithelial tissue, but the structure and mechanism of action remains undetermined. In this study, the mechanism of action and structure of MOS5 were investigated. T84 cells were cultured and treated with MOS5 compared with vehicle and compound C, a 5′-adenosine monophosphate-activated protein kinase (AMPK) inhibitor. The results demonstrated that the ability of MOS5 to increase tight junction integration was inhibited in the presence of dorsomorphine (compound C). Phosphorylation level of AMPK was elevated in MOS5 treated group as determined by Western blot analysis. Determination of MOS5 structure was performed using enzymatic mapping together with 1H, 13C NMR, and 2D-NMR analysis. The results demonstrated that the structure of MOS5 is a β-(1,4)-mannotetraose with α-(1,6)-galactose attached at the second mannose unit from non-reducing end.
Collapse
Affiliation(s)
- Chatchai Nopvichai
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Pawin Pongkorpsakol
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| | - Preedajit Wongkrasant
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| | - Karan Wangpaiboon
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | | | - Kazuo Ito
- Graduate School of Science, Osaka City University, Osaka 558-8585, Japan.
| | - Chatchai Muanprasat
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
- Division of Preclinical Sciences, Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10540, Thailand.
| | - Rath Pichyangkura
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
10
|
Hassan N, Rafiq M, Rehman M, Sajjad W, Hasan F, Abdullah S. Fungi in acidic fire: A potential source of industrially important enzymes. FUNGAL BIOL REV 2019. [DOI: 10.1016/j.fbr.2018.08.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Mannans: An overview of properties and application in food products. Int J Biol Macromol 2018; 119:79-95. [PMID: 30048723 DOI: 10.1016/j.ijbiomac.2018.07.130] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/19/2018] [Accepted: 07/20/2018] [Indexed: 12/11/2022]
Abstract
This review aims to emphasize the occurrence and abundant presence of mannans in nature, their classification, structural differences and significance in food and feed industry. With rising demand from the consumers' end for novel natural foods, usage of galactomannan and glucomannan has also increased alternatively. Non toxicity of mannans permits their usage in the pharmaceutical, biomedical, cosmetics, and textile industries. In the food industry, mannans have various applications such as edible films/coating, gel formation, stiffeners, viscosity modifiers, stabilizers, texture improvers, water absorbants, as prebiotics in dairy products and bakery, seasonings, diet foods, coffee whiteners etc. Applications and functions of these commonly used commercially available mannans have therefore, been highlighted. Mannans improve the texture and appeal of food products and provide numerous health benefits like controlling obesity and body weight control, prebiotic benefits, constipation alleviaton, prevent occurrence of diarrhea, check inflammation due to gut related diseases, management of diverticular disease management, balance intestinal microbiota, immune system modulator, reduced risk of colorectal cancer etc. Mannan degrading enzymes are the key enzymes involved in degradation and are useful in various industrial processes such as fruit juice clarification, viscosity reduction of coffee extracts etc. besides facilitating the process steps and improving process quality.
Collapse
|
12
|
Kaewkrod A, Niamsiri N, Likitwattanasade T, Lertsiri S. Activities of macerating enzymes are useful for selection of soy sauce koji. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2017.11.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Rahmani N, Kashiwagi N, Lee J, Niimi-Nakamura S, Matsumoto H, Kahar P, Lisdiyanti P, Yopi, Prasetya B, Ogino C, Kondo A. Mannan endo-1,4-β-mannosidase from Kitasatospora sp. isolated in Indonesia and its potential for production of mannooligosaccharides from mannan polymers. AMB Express 2017; 7:100. [PMID: 28532122 PMCID: PMC5438323 DOI: 10.1186/s13568-017-0401-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 05/10/2017] [Indexed: 11/10/2022] Open
Abstract
Mannan endo-1,4-β-mannosidase (commonly known as β-mannanase) catalyzes a random cleavage of the β-D-1,4-mannopyranosyl linkage in mannan polymers. The enzyme has been utilized in biofuel production from lignocellulose biomass, as well as in production of mannooligosaccharides (MOS) for applications in feed and food industries. We aimed to obtain a β-mannanase, for such mannan polymer utilization, from actinomycetes strains isolated in Indonesia. Strains exhibiting high mannanase activity were screened, and one strain belonging to the genus Kitasatospora was selected. We obtained a β-mannanase from this strain, and an amino acid sequence of this Kitasatospora β-mannanase showed a 58-71% similarity with the amino acid sequences of Streptomyces β-mannanases. The Kitasatospora β-mannanase showed a significant level of activity (944 U/mg) against locust bean gum (0.5% w/v) and a potential for oligosaccharide production from various mannan polymers. The β-mannanase might be beneficial particularly in the enzymatic production of MOS for applications of mannan utilization.
Collapse
|
14
|
Regmi S, Yoo HY, Choi YH, Choi YS, Yoo JC, Kim SW. Prospects for Bio-Industrial Application of an Extremely Alkaline Mannanase FromBacillus subtilissubsp.inaquosorumCSB31. Biotechnol J 2017; 12. [DOI: 10.1002/biot.201700113] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 08/22/2017] [Indexed: 11/12/2022]
Affiliation(s)
- Sudip Regmi
- Department of Pharmacy, Chosun University; 309, Pilmun-daero Dong-Gu Gwangju 61452 Republic of Korea
| | - Hah Y. Yoo
- Department of Biotechnology, Sangmyung University; 20, Hongjimun 2-Gil Jongno-Gu Seoul 03016 Republic of Korea
| | - Yun H. Choi
- Department of Pharmacy, Chosun University; 309, Pilmun-daero Dong-Gu Gwangju 61452 Republic of Korea
| | - Yoon S. Choi
- Department of Pharmacy, Chosun University; 309, Pilmun-daero Dong-Gu Gwangju 61452 Republic of Korea
| | - Jin C. Yoo
- Department of Pharmacy, Chosun University; 309, Pilmun-daero Dong-Gu Gwangju 61452 Republic of Korea
| | - Seung W. Kim
- Department of Chemical and Biological Engineering, Korea University; 145, Anam-Ro Seongbuk-Gu Seoul 02841 Republic of Korea
| |
Collapse
|
15
|
Wang M, Li W, Li P, Yan S, Zhang Y. An alternative parameter to characterize biogas materials: Available carbon-nitrogen ratio. WASTE MANAGEMENT (NEW YORK, N.Y.) 2017; 62:76-83. [PMID: 28259537 DOI: 10.1016/j.wasman.2017.02.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 02/20/2017] [Accepted: 02/20/2017] [Indexed: 06/06/2023]
Abstract
Available carbon-nitrogen ratio (AC/N) was proposed as an alternative parameter for evaluating the potential of biogas materials in this paper. In the calculation of AC/N ratio, only the carbon that could be effectively utilized in anaerobic digestion (AD) process is included. Compared with total C/N, AC/N is particularly more suitable for the characterization of biogas materials rich in recalcitrant components. Nine common biogas materials were selected and a series of semi-continuous tests for up to 110days were carried out to investigate the source of available carbon and the relationship between AC/N and the stability of AD process. The results showed that only the carbon existing in proteins, sugars, fat and hemicelluose should be considered as available carbon for anaerobic microbes. Besides, the optimal AC/N for semi-continuous AD process was preliminarily determined to be 11-15. Taken together, our results demonstrate that AC/N is more effective than total C/N in the evaluation of the potential performance of AD process.
Collapse
Affiliation(s)
- Ming Wang
- Department of Agriculture Biological Environment and Energy Engineering, College of Engineering, Huazhong Agriculture University, No. 1 Shizishan Street, Hongshan District, Wuhan 430070, PR China; Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, PR China.
| | - Wenzhe Li
- Department of Agriculture Biological Environment and Energy Engineering, School of Engineering, Northeast Agriculture University, No. 59 Mucai Street, Xiangfang District, Harbin 150030, PR China.
| | - Pengfei Li
- Department of Agriculture Biological Environment and Energy Engineering, School of Engineering, Northeast Agriculture University, No. 59 Mucai Street, Xiangfang District, Harbin 150030, PR China
| | - Shuiping Yan
- Department of Agriculture Biological Environment and Energy Engineering, College of Engineering, Huazhong Agriculture University, No. 1 Shizishan Street, Hongshan District, Wuhan 430070, PR China; Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, PR China
| | - Yanlin Zhang
- Department of Agriculture Biological Environment and Energy Engineering, College of Engineering, Huazhong Agriculture University, No. 1 Shizishan Street, Hongshan District, Wuhan 430070, PR China; Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, PR China
| |
Collapse
|
16
|
Kongklom N, Shi Z, Chisti Y, Sirisansaneeyakul S. Enhanced Production of Poly-γ-glutamic Acid by Bacillus licheniformis TISTR 1010 with Environmental Controls. Appl Biochem Biotechnol 2016; 182:990-999. [DOI: 10.1007/s12010-016-2376-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 12/13/2016] [Indexed: 11/30/2022]
|
17
|
Purification and characterization of β-mannanase from Aspergillus terreus and its applicability in depolymerization of mannans and saccharification of lignocellulosic biomass. 3 Biotech 2016; 6:136. [PMID: 28330208 PMCID: PMC4912962 DOI: 10.1007/s13205-016-0454-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 06/03/2016] [Indexed: 12/30/2022] Open
Abstract
Aspergillus terreus FBCC 1369 was grown in solid-state culture under statistically optimized conditions. β-Mannanase was purified to apparent homogeneity by ultrafiltration, anion exchange and gel filtration chromatography. A purification factor of 10.3-fold was achieved, with the purified enzyme exhibiting specific activity of 53 U/mg protein. The purified β-mannanase was optimally active at pH 7.0 and 70 °C and displayed stability over a broad pH range of 4.0–8.0 and a 30 min half-life at 80 °C. The molecular weight of β-mannanase was calculated as ~49 kDa by SDS-PAGE. The enzyme exhibited Km and Vmax values of 5.9 mg/ml and 39.42 µmol/ml/min, respectively. β-Mannanase activity was stimulated by β-mercaptoethanol and strongly inhibited by Hg2+. The β-Mannanase did not hydrolyze mannobiose and mannotriose, but only mannotetraose liberating mannose and mannotriose. This indicated that at least four mannose residues were required for catalytic activity. Oligosaccharide with a degree of polymerization (DP) three was the predominant product in the case of locust bean gum (16.5 %) and guar gum (15.8 %) hydrolysis. However, the enzyme liberated DP4 oligosaccharide (24 %) exclusively from konjac gum. This property can be exploited in oligosaccharides production with DP 3–4. β-Mannanase hydrolyzed pretreated lignocelluloses and liberated reducing sugars (% theoretical yield) from copra meal (30 %). This property is an important factor for the bioconversion of the biomass.
Collapse
|
18
|
Zhang JX, Chen ZT, Meng XL, Mu GY, Hu WB, Zhao J, Nie GX. Gene cloning, expression, and characterization of a novel β
-mannanase from the endophyte Paenibacillus
sp. CH-3. Biotechnol Appl Biochem 2016; 64:471-481. [DOI: 10.1002/bab.1510] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Accepted: 05/13/2016] [Indexed: 01/17/2023]
Affiliation(s)
- Jian-Xin Zhang
- College of Fisheries; Henan Normal University; Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation; Engineering Lab of Henan Province for Aquatic Animal Disease Control; Xinxiang People's Republic of China
| | - Ze-Tian Chen
- College of Fisheries; Henan Normal University; Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation; Engineering Lab of Henan Province for Aquatic Animal Disease Control; Xinxiang People's Republic of China
| | - Xiao-Lin Meng
- College of Fisheries; Henan Normal University; Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation; Engineering Lab of Henan Province for Aquatic Animal Disease Control; Xinxiang People's Republic of China
| | - Guang-Ya Mu
- College of Fisheries; Henan Normal University; Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation; Engineering Lab of Henan Province for Aquatic Animal Disease Control; Xinxiang People's Republic of China
| | - Wen-Bo Hu
- College of Fisheries; Henan Normal University; Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation; Engineering Lab of Henan Province for Aquatic Animal Disease Control; Xinxiang People's Republic of China
| | - Jie Zhao
- College of Fisheries; Henan Normal University; Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation; Engineering Lab of Henan Province for Aquatic Animal Disease Control; Xinxiang People's Republic of China
| | - Guo-Xing Nie
- College of Fisheries; Henan Normal University; Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation; Engineering Lab of Henan Province for Aquatic Animal Disease Control; Xinxiang People's Republic of China
| |
Collapse
|
19
|
Nadaroglu H, Adiguzel G, Adiguzel A, Sonmez Z. A thermostable-endo-β-(1,4)-mannanase from Pediococcus acidilactici (M17): purification, characterization and its application in fruit juice clarification. Eur Food Res Technol 2016. [DOI: 10.1007/s00217-016-2735-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
20
|
A multi-tolerant low molecular weight mannanase from Bacillus sp. CSB39 and its compatibility as an industrial biocatalyst. Enzyme Microb Technol 2016; 92:76-85. [PMID: 27542747 DOI: 10.1016/j.enzmictec.2016.06.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 05/17/2016] [Accepted: 06/28/2016] [Indexed: 11/22/2022]
Abstract
Bacillus sp. CSB39, isolated from popular traditional Korean food (Kimchi), produced a low molecular weight, thermostable mannanase (MnCSB39); 571.14U/mL using locust bean gum galactomannan as a major substrate. It was purified to homogeneity using a simple and effective two-step purification strategy, Sepharose CL-6B and DEAE Sepharose Fast Flow, which resulted in 25.47% yield and 19.32-fold purity. The surfactant-, NaCl-, urea-, and protease-tolerant monomeric protein had a mass of ∼30kDa as analyzed by SDS-PAGE and galactomannan zymography. MnCSB39 was found to have optimal activity at pH 7.5 and temperature of 70°C. The enzyme showed ˃55% activity at 5.0-15% (w/v) NaCl, and ˃93% of the initial activity after incubation at 37°C for 60min. Trypsin and proteinase K had no effect on MnCBS39. The enzyme showed ˃80% activity in up to 3M urea. The N-terminal amino acid sequence, ALKGDGX, did not show identity with reported mannanases, which suggests the novelty of our enzyme. Activation energy for galactomannan hydrolysis was 26.85kJmol(-1) with a Kcat of 142.58×10(4)s(-1). MnCSB39 had Km and Vmax values of 0.082mg/mL and 1099±1.0Umg(-1), respectively. Thermodynamic parameters such as ΔH, ΔG, ΔS, Q10, ΔGE-S, and ΔGE-T supported the spontaneous formation of products and the high hydrolytic efficiency and feasibility of the enzymatic reaction, which strengthen its novelty. MnCSB39 activity was affected by metal ions, modulators, chelators, and detergents. Mannobiose was the principal end-product of hydrolysis. Bacillus subtilis CSB39 produced a maximum of 1524.44U mannanase from solid state fermentation of 1g wheat bran. MnCSB39 was simple to purify, was active at a wide pH and temperature range, multi-stress tolerant and catalyzes a thermodynamically possible reaction, characteristics that suggests its suitability for application as an industrial biocatalyst.
Collapse
|
21
|
Adiguzel G, Sonmez Z, Adiguzel A, Nadaroglu H. Purification and characterization of a thermostable endo-beta-1,4 mannanase from Weissella viridescens LB37 and its application in fruit juice clarification. Eur Food Res Technol 2015. [DOI: 10.1007/s00217-015-2584-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
22
|
Mycoremediation with mycotoxin producers: a critical perspective. Appl Microbiol Biotechnol 2015; 100:17-29. [DOI: 10.1007/s00253-015-7032-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 09/08/2015] [Accepted: 09/10/2015] [Indexed: 12/18/2022]
|
23
|
Adiguzel A, Nadaroglu H, Adiguzel G. Purification and characterization of [Formula: see text]-mannanase from Bacillus pumilus (M27) and its applications in some fruit juices. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2015; 52:5292-5298. [PMID: 26243955 PMCID: PMC4519521 DOI: 10.1007/s13197-014-1609-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 09/08/2014] [Accepted: 10/13/2014] [Indexed: 10/24/2022]
Abstract
Thermo alkaline mannanase was purified from the bacteria of Bacillus pumilus (M27) using the techniques of ammonium sulphate precipitation, DEAE-Sephadex ion exchange chromatography and Sephacryl S200 gel filtration chromatography with 111-fold and 36 % yield. It was determined that the enzyme had 2 sub-units including 35 kDa and 55 kDa in gel filtration chromatography and SDS-PAGE electrophoresis systems. The optimum pH and temperature was determined as 8 and 60 °C, respectively. It was also noticed that the enzyme did not lose its activity at a wide interval such as pH 3-11 and at high temperatures such as 90 °C. Additionally, the effects of some metal ions on the mannanase enzyme activity. Moreover, the clarifying efficiency of purified mannanase enzyme with some fruit juices such as orange, apricot, grape and apple was also investigated. Enzymatic treatment was carried out with 1 mL L(-1) of purified mannanase for 1 h at 60 °C. It was determined that the highest pure enzyme was efficient upon clarifying the apple juice at 154 % rate.
Collapse
Affiliation(s)
- Ahmet Adiguzel
- />Faculty of Science, Department of Molecular Biology and Genetic, Ataturk University, 25240 Erzurum, Turkey
| | - Hayrunnisa Nadaroglu
- />Department of Food Technology, Erzurum Vocational Training School, Ataturk University, 25240 Erzurum, Turkey
| | - Gulsah Adiguzel
- />Department of Food Hygiene and Technology, Faculty of Veterinary, Ataturk University, 25240 Erzurum, Turkey
| |
Collapse
|
24
|
|
25
|
Inoue H, Yano S, Sawayama S. Effect of β-Mannanase and β-Mannosidase Supplementation on the Total Hydrolysis of Softwood Polysaccharides by the Talaromyces cellulolyticus Cellulase System. Appl Biochem Biotechnol 2015; 176:1673-86. [DOI: 10.1007/s12010-015-1669-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 05/12/2015] [Indexed: 10/23/2022]
|
26
|
Fåk F, Jakobsdottir G, Kulcinskaja E, Marungruang N, Matziouridou C, Nilsson U, Stålbrand H, Nyman M. The physico-chemical properties of dietary fibre determine metabolic responses, short-chain Fatty Acid profiles and gut microbiota composition in rats fed low- and high-fat diets. PLoS One 2015; 10:e0127252. [PMID: 25973610 PMCID: PMC4431822 DOI: 10.1371/journal.pone.0127252] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 04/13/2015] [Indexed: 12/29/2022] Open
Abstract
The aim of this study was to investigate how physico-chemical properties of two dietary fibres, guar gum and pectin, affected weight gain, adiposity, lipid metabolism, short-chain fatty acid (SCFA) profiles and the gut microbiota in male Wistar rats fed either low- or high-fat diets for three weeks. Both pectin and guar gum reduced weight gain, adiposity, liver fat and blood glucose levels in rats fed a high-fat diet. Methoxylation degree of pectin (low, LM and high (HM)) and viscosity of guar gum (low, medium or high) resulted in different effects in the rats, where total blood and caecal amounts of SCFA were increased with guar gum (all viscosities) and with high methoxylated (HM) pectin. However, only guar gum with medium and high viscosity increased the levels of butyric acid in caecum and blood. Both pectin and guar gum reduced cholesterol, liver steatosis and blood glucose levels, but to varying extent depending on the degree of methoxylation and viscosity of the fibres. The medium viscosity guar gum was the most effective preparation for prevention of diet-induced hyperlipidaemia and liver steatosis. Caecal abundance of Akkermansia was increased with high-fat feeding and with HM pectin and guar gum of all viscosities tested. Moreover, guar gum had distinct bifidogenic effects independent of viscosity, increasing the caecal abundance of Bifidobacterium ten-fold. In conclusion, by tailoring the viscosity and possibly also the degree of methoxylation of dietary fibre, metabolic effects may be optimized, through a targeted modulation of the gut microbiota and its metabolites.
Collapse
Affiliation(s)
- Frida Fåk
- Food for Health Science Centre, Lund University, Lund, Sweden
- * E-mail:
| | | | - Evelina Kulcinskaja
- Department of Biochemistry and Structural Biology, Lund University, Lund, Sweden
| | | | | | - Ulf Nilsson
- Food for Health Science Centre, Lund University, Lund, Sweden
| | - Henrik Stålbrand
- Department of Biochemistry and Structural Biology, Lund University, Lund, Sweden
| | - Margareta Nyman
- Food for Health Science Centre, Lund University, Lund, Sweden
| |
Collapse
|
27
|
ARIANDI, YOPI, MERYANDINI ANJA. Enzymatic Hydrolysis of Copra Meal by Mannanase from Streptomyces sp. BF3.1 for The Production of Mannooligosaccharides. HAYATI JOURNAL OF BIOSCIENCES 2015. [DOI: 10.4308/hjb.22.2.79] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
28
|
|
29
|
van den Brink J, Maitan-Alfenas GP, Zou G, Wang C, Zhou Z, Guimarães VM, de Vries RP. Synergistic effect ofAspergillus nigerandTrichoderma reeseienzyme sets on the saccharification of wheat straw and sugarcane bagasse. Biotechnol J 2014; 9:1329-38. [DOI: 10.1002/biot.201400317] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 07/09/2014] [Accepted: 08/12/2014] [Indexed: 01/06/2023]
|
30
|
Characterization of a β-1,4-mannanase from a newly isolated strain of Pholiota adiposa and its application for biomass pretreatment. Bioprocess Biosyst Eng 2014; 37:1817-24. [PMID: 24590240 DOI: 10.1007/s00449-014-1156-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Accepted: 02/12/2014] [Indexed: 10/25/2022]
Abstract
A highly efficient β-1,4-mannanase-secreting strain, Pholiota adiposa SKU0714, was isolated and identified on the basis of its morphological features and sequence analysis of internal transcribed spacer rDNA. P. adiposa β-1,4-mannanase was purified to homogeneity from P. adiposa culture supernatants by one-step chromatography on a Sephacryl gel filtration column. P. adiposa β-1,4-mannanase showed the highest activity toward locust bean gum (V max = 1,990 U/mg protein, K m = 0.12 mg/mL) ever reported. Its internal amino acid sequence showed homology with hydrolases from the glycoside hydrolase family 5 (GH5), indicating that the enzyme is a member of the GH5 family. The saccharification of commercial mannanase and P. adiposa β-1,4-mannanase-pretreated rice straw by Celluclast 1.5L (Novozymes) was compared. In comparison with the commercial Novo Mannaway(®) (113 mg/g-substrate), P. adiposa β-1,4-mannanase-pretreated rice straw released more reducing sugars (141 mg/g-substrate). These properties make P. adiposa β-1,4-mannanase a good candidate as a new commercial β-1,4-mannanase to improve biomass pretreatment.
Collapse
|
31
|
Hu K, Li CX, Pan J, Ni Y, Zhang XY, Xu JH. Performance of a new thermostable mannanase in breaking guar-based fracturing fluids at high temperatures with little premature degradation. Appl Biochem Biotechnol 2013; 172:1215-26. [PMID: 24150905 DOI: 10.1007/s12010-013-0484-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 08/26/2013] [Indexed: 11/26/2022]
Abstract
A new thermostable β-1,4-mannanase (DtManB) cloned from Dictyoglomus thermophilum CGMCC 7283 showed the maximum activity towards hydroxypropyl guar gum at 80 °C, with a half-life of 46 h. DtManB exhibited good compatibility with various additives of fracturing fluid, retaining more than 50 % activity in all the cases tested. More importantly, premature degradation could be alleviated significantly when using DtManB as breaker, because at 27 and 50 °C it displayed merely 3.7 and 18.5 % activities compared to those at 80 °C. In a static test, 0.48 mg DtManB could break 200 mL borax cross-linked fracturing fluid dramatically at 80 °C, and merely 18 mPa s of the viscosity was detected even after the broken fluid was cooled down and only 161.4 mg L(-1) of the residue was left after the enzymatic reaction. All these positive features demonstrate the great potential of this mannanase as a new enzyme breaker for application in enhanced recovery of petroleum oil.
Collapse
Affiliation(s)
- Ke Hu
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | | | | | | | | | | |
Collapse
|
32
|
Aguilera-Gálvez C, Vásquez-Ospina JJ, Gutiérrez-Sanchez P, Acuña-Zornosa R. Cloning and biochemical characterization of an endo-1,4-β-mannanase from the coffee berry borer Hypothenemus hampei. BMC Res Notes 2013; 6:333. [PMID: 23965285 PMCID: PMC3765340 DOI: 10.1186/1756-0500-6-333] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 08/19/2013] [Indexed: 11/30/2022] Open
Abstract
Background The study of coffee polysaccharides-degrading enzymes from the coffee berry borer Hypothenemus hampei, has become an important alternative in the identification for enzymatic inhibitors that can be used as an alternative control of this dangerous insect. We report the cloning, expression and biochemical characterization of a mannanase gene that was identified in the midgut of the coffee berry borer and is responsible for the degradation of the most abundant polysaccharide in the coffee bean. Methods The amino acid sequence of HhMan was analyzed by multiple sequence alignment comparisons with BLAST (Basic Local Alignment Search Tool) and CLUSTALW. A Pichia pastoris expression system was used to express the recombinant form of the enzyme. The mannanase activity was quantified by the 3,5-dinitrosalicylic (DNS) and the hydrolitic properties were detected by TLC. Results An endo-1,4-β-mannanase from the digestive tract of the insect Hypothenemus hampei was cloned and expressed as a recombinant protein in the Pichia pastoris system. This enzyme is 56% identical to the sequence of an endo-β-mannanase from Bacillus circulans that belongs to the glycosyl hydrolase 5 (GH5) family. The purified recombinant protein (rHhMan) exhibited a single band (35.5 kDa) by SDS-PAGE, and its activity was confirmed by zymography. rHhMan displays optimal activity levels at pH 5.5 and 30°C and can hydrolyze galactomannans of varying mannose:galactose ratios, suggesting that the enzymatic activity is independent of the presence of side chains such as galactose residues. The enzyme cannot hydrolyze manno-oligosaccharides such as mannobiose and mannotriose; however, it can degrade mannotetraose, likely through a transglycosylation reaction. The Km and kcat values of this enzyme on guar gum were 2.074 mg ml-1 and 50.87 s-1, respectively, which is similar to other mannanases. Conclusion This work is the first study of an endo-1,4-β-mannanase from an insect using this expression system. Due to this enzyme’s importance in the digestive processes of the coffee berry borer, this study may enable the design of inhibitors against endo-1,4-β-mannanase to decrease the economic losses stemming from this insect.
Collapse
Affiliation(s)
- Carolina Aguilera-Gálvez
- Disciplina de Mejoramiento Genético, Centro Nacional de Investigaciones de Café (CENICAFE), Planalto, Km 4 vía antigua, Chinchiná-Manizales, Colombia
| | | | | | | |
Collapse
|
33
|
|
34
|
Vijayalaxmi S, Prakash P, Jayalakshmi SK, Mulimani VH, Sreeramulu K. Production of extremely alkaliphilic, halotolerent, detergent, and thermostable mannanase by the free and immobilized cells of Bacillus halodurans PPKS-2. Purification and characterization. Appl Biochem Biotechnol 2013; 171:382-95. [PMID: 23839508 DOI: 10.1007/s12010-013-0333-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 06/17/2013] [Indexed: 10/26/2022]
Abstract
The alkaliphilic Bacillus halodurans strain PPKS-2 was shown to produce extracellular extreme alkaliphilic, halotolerent, detergent, and thermostable mannanase activity. The cultural conditions for the maximum enzyme production were optimized with respect to pH, temperature, NaCl, and inexpensive agro wastes as substrates. Mannanase production was enhanced more than 4-fold in the presence of 1 % defatted copra meal and 0.5 % peptone or feather hydrolysate at pH 11 and 40 °C. Mannanase was purified to 10.3-fold with 34.6 % yield by ion exchange and gel filtration chromatography methods. Its molecular mass was estimated to be 22 kDa by SDS-PAGE. The mannanase had maximal activity at pH 11 and 70 °C. This enzyme was active over a broad range of NaCl (0-16 %) and thermostable retaining 100 % of the original activity at 70 °C for 3 h. Immobilization of whole cells proved to be effective for continuous production of mannanase. Since the strain PPKS-2 grows on cheaper agro wastes such as defatted copra meal, corn husk, jowar bagasse, and wheat bran, these can be exploited for mannanase production on an industrial scale.
Collapse
Affiliation(s)
- S Vijayalaxmi
- Department of Biochemistry, Gulbarga University, Gulbarga 585106, Karnataka, India
| | | | | | | | | |
Collapse
|
35
|
Enzymatic production and characterization of manno-oligosaccharides from Gleditsia sinensis galactomannan gum. Int J Biol Macromol 2013; 55:282-8. [DOI: 10.1016/j.ijbiomac.2013.01.025] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 12/02/2012] [Accepted: 01/19/2013] [Indexed: 11/21/2022]
|
36
|
Gomez del Pulgar EM, Saadeddin A. The cellulolytic system ofThermobifida fusca. Crit Rev Microbiol 2013; 40:236-47. [DOI: 10.3109/1040841x.2013.776512] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
37
|
Katrolia P, Yan Q, Zhang P, Zhou P, Yang S, Jiang Z. Gene cloning and enzymatic characterization of an alkali-tolerant endo-1,4-β-mannanase from Rhizomucor miehei. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:394-401. [PMID: 23252695 DOI: 10.1021/jf303319h] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
An endo-1,4-β-mannanase gene (RmMan5A) was cloned from the thermophilic fungus Rhizomucor miehei for the first time and expressed in Escherichia coli . The gene had an open reading frame of 1330 bp encoding 378 amino acids and contained four introns. It displayed the highest amino acid sequence identity (42%) with the endo-1,4-β-mannanases from glycoside hydrolase family 5. The purified enzyme was a monomer of 43 kDa. RmMan5A displayed maximum activity at 55 °C and an optimal pH of 7.0. It was thermostable up to 55 °C and alkali-tolerant, displaying excellent stability over a broad pH range of 4.0-10.0, when incubated for 30 min without substrate. The enzyme displayed the highest specificity for locust bean gum (K(m) = 3.78 mg mL⁻¹), followed by guar gum (K(m) = 7.75 mg mL⁻¹) and konjac powder (K(m) = 22.7 mg mL⁻¹). RmMan5A hydrolyzed locust bean gum and konjac powder yielding mannobiose, mannotriose, and a mixture of various mannose-linked oligosaccharides. It was confirmed to be a true endo-acting β-1,4-mannanase, which showed requirement of four mannose residues for hydrolysis, and was also capable of catalyzing transglycosylation reactions. These properties make RmMan5A highly useful in the food/feed, paper and pulp, and detergent industries.
Collapse
Affiliation(s)
- Priti Katrolia
- Department of Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, People's Republic of China
| | | | | | | | | | | |
Collapse
|
38
|
Huang JL, Bao LX, Zou HY, Che SG, Wang GX. High-level production of a cold-active B-mannanase from Bacillus subtilis Bs5 and its molecular cloning and expression. MOLECULAR GENETICS MICROBIOLOGY AND VIROLOGY 2012. [DOI: 10.3103/s0891416812040039] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
39
|
Dionísio M, Grenha A. Locust bean gum: Exploring its potential for biopharmaceutical applications. J Pharm Bioallied Sci 2012; 4:175-85. [PMID: 22923958 PMCID: PMC3425165 DOI: 10.4103/0975-7406.99013] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 03/21/2012] [Accepted: 04/24/2012] [Indexed: 12/21/2022] Open
Abstract
Polysaccharides have been finding, in the last decades, very interesting and useful applications in the biomedical and, specifically, in the biopharmaceutical field. Locust bean gum is a polysaccharide belonging to the group of galactomannans, being extracted from the seeds of the carob tree (Ceratonia siliqua). This polymer displays a number of appealing characteristics for biopharmaceutical applications, among which its high gelling capacity should be highlighted. In this review, we describe critical aspects of locust bean gum, contributing for its role in biopharmaceutical applications. Physicochemical properties, as well as strong and effective synergies with other biomaterials are described. The potential for in vivo biodegradation is explored and the specific biopharmaceutical applications are discussed.
Collapse
Affiliation(s)
- Marita Dionísio
- CBME - Centre for Molecular and Structural Biomedicine/IBB - Institute for Biotechnology and Bioengineering, Faculty of Sciences and Technology, University of Algarve, Campus de Gambelas, Faro, Portugal
| | | |
Collapse
|
40
|
Zhao SG, Wu MC, Tang CD, Gao SJ, Zhang HM, Li JF. Cloning and bioinformatic analysis of an acidophilic β-mannanase gene, Anman5A, from Aspergillus niger LW-1. APPL BIOCHEM MICRO+ 2012. [DOI: 10.1134/s000368381205016x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
41
|
Andersen MR, Giese M, de Vries RP, Nielsen J. Mapping the polysaccharide degradation potential of Aspergillus niger. BMC Genomics 2012; 13:313. [PMID: 22799883 PMCID: PMC3542576 DOI: 10.1186/1471-2164-13-313] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 06/08/2012] [Indexed: 11/10/2022] Open
Abstract
Background The degradation of plant materials by enzymes is an industry of increasing importance. For sustainable production of second generation biofuels and other products of industrial biotechnology, efficient degradation of non-edible plant polysaccharides such as hemicellulose is required. For each type of hemicellulose, a complex mixture of enzymes is required for complete conversion to fermentable monosaccharides. In plant-biomass degrading fungi, these enzymes are regulated and released by complex regulatory structures. In this study, we present a methodology for evaluating the potential of a given fungus for polysaccharide degradation. Results Through the compilation of information from 203 articles, we have systematized knowledge on the structure and degradation of 16 major types of plant polysaccharides to form a graphical overview. As a case example, we have combined this with a list of 188 genes coding for carbohydrate-active enzymes from Aspergillus niger, thus forming an analysis framework, which can be queried. Combination of this information network with gene expression analysis on mono- and polysaccharide substrates has allowed elucidation of concerted gene expression from this organism. One such example is the identification of a full set of extracellular polysaccharide-acting genes for the degradation of oat spelt xylan. Conclusions The mapping of plant polysaccharide structures along with the corresponding enzymatic activities is a powerful framework for expression analysis of carbohydrate-active enzymes. Applying this network-based approach, we provide the first genome-scale characterization of all genes coding for carbohydrate-active enzymes identified in A. niger.
Collapse
Affiliation(s)
- Mikael R Andersen
- Department of Systems Biology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | | | | | |
Collapse
|
42
|
Yin LJ, Tai HM, Jiang ST. Characterization of mannanase from a novel mannanase-producing bacterium. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:6425-6431. [PMID: 22694324 DOI: 10.1021/jf301944e] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Locust bean gum (LBG) was employed to screen mannanase-producing bacteria. The bacterium with highest mannanase ability was identified as Paenibacillus cookii. It revealed highest activity (6.67 U/mL) when cultivated in 0.1% LBG with 1.5% soytone and 0.5% tryptone after 4 days incubation at 27 °C. Its mannanase was purified to electrophoretical homogeneity after DEAE-Sepharose and Sephacryl S-100 separation. The purified mannanase, with an N-terminus of GLFGINAY, had pH and temperature optimum at 5.0 and 50 °C, respectively, and was stable at pH 5.0-7.0, ≤ 50 °C. It was strongly activated by β-mercaptoethanol, dithiothreitol, cysteine, and glutathione, but inhibited by Hg(2+), Cu(2+), Zn(2+), Fe(3+), PMSF, iodoacetic acid, and EDTA. According to substrate specificity study, the purified mannanase had high specificity to LBG and konjac.
Collapse
Affiliation(s)
- Li-Jung Yin
- Department of Sea Food Science, National Kaohsiung Marine University, No. 142 Hai-Chuan Road, Nan-Tzu, Kaohsiung 81143, Taiwan
| | | | | |
Collapse
|
43
|
Chauhan PS, Puri N, Sharma P, Gupta N. Mannanases: microbial sources, production, properties and potential biotechnological applications. Appl Microbiol Biotechnol 2012; 93:1817-30. [DOI: 10.1007/s00253-012-3887-5] [Citation(s) in RCA: 210] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 01/03/2012] [Accepted: 01/04/2012] [Indexed: 11/28/2022]
|
44
|
Li JF, Zhao SG, Tang CD, Wang JQ, Wu MC. Cloning and functional expression of an acidophilic β-mannanase gene (Anman5A) from Aspergillus niger LW-1 in Pichia pastoris. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:765-773. [PMID: 22225502 DOI: 10.1021/jf2041565] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A cDNA fragment of the Anman5A, a gene that encodes an acidophilic β-mannanase of Aspergillus niger LW-1 (abbreviated as AnMan5A), was cloned and functionally expressed in Pichia pastoris . Homology alignment of amino acid sequences verified that the AnMan5A belongs to the glycoside hydrolase (GH) family 5. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) assay demonstrated that the recombinant AnMan5A (reAnMan5A), a N-glycosylated protein with an apparent molecular weight of 52.0 kDa, was secreted into the medium. The highest reAnMan5A activity expressed by one P. pastoris transformant, labeled as GSAnMan4-12, reached 29.0 units/mL. The purified reAnMan5A displayed the highest activity at pH 3.5 and 70 °C. It was stable at a pH range of 3.0-7.0 and at a temperature of 60 °C or below. Its activity was not significantly affected by an array of metal ions and ethylenediaminetetraacetic acid (EDTA). The K(m) and V(max) of the reAnMan5A, toward locust bean gum, were 1.10 mg/mL and 266.7 units/mg, respectively.
Collapse
Affiliation(s)
- Jian-Fang Li
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | | | | | | | | |
Collapse
|
45
|
Santhanam N, Badri DV, Decker SR, Manter DK, Reardon KF, Vivanco JM. Lignocellulose Decomposition by Microbial Secretions. SIGNALING AND COMMUNICATION IN PLANTS 2012. [DOI: 10.1007/978-3-642-23047-9_7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
46
|
High level expression of a novel β-mannanase from Chaetomium sp. exhibiting efficient mannan hydrolysis. Carbohydr Polym 2012; 87:480-490. [DOI: 10.1016/j.carbpol.2011.08.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 07/29/2011] [Accepted: 08/04/2011] [Indexed: 11/23/2022]
|
47
|
Agrawal P, Verma D, Daniell H. Expression of Trichoderma reesei β-mannanase in tobacco chloroplasts and its utilization in lignocellulosic woody biomass hydrolysis. PLoS One 2011; 6:e29302. [PMID: 22216240 PMCID: PMC3247253 DOI: 10.1371/journal.pone.0029302] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2011] [Accepted: 11/23/2011] [Indexed: 11/26/2022] Open
Abstract
Lignocellulosic ethanol offers a promising alternative to conventional fossil fuels. One among the major limitations in the lignocellulosic biomass hydrolysis is unavailability of efficient and environmentally biomass degrading technologies. Plant-based production of these enzymes on large scale offers a cost-effective solution. Cellulases, hemicellulases including mannanases and other accessory enzymes are required for conversion of lignocellulosic biomass into fermentable sugars. β-mannanase catalyzes endo-hydrolysis of the mannan backbone, a major constituent of woody biomass. In this study, the man1 gene encoding β-mannanase was isolated from Trichoderma reesei and expressed via the chloroplast genome. PCR and Southern hybridization analysis confirmed site-specific transgene integration into the tobacco chloroplast genomes and homoplasmy. Transplastomic plants were fertile and set viable seeds. Germination of seeds in the selection medium showed inheritance of transgenes into the progeny without any Mendelian segregation. Expression of endo-β-mannanase for the first time in plants facilitated its characterization for use in enhanced lignocellulosic biomass hydrolysis. Gel diffusion assay for endo-β-mannanase showed the zone of clearance confirming functionality of chloroplast-derived mannanase. Endo-β-mannanase expression levels reached up to 25 units per gram of leaf (fresh weight). Chloroplast-derived mannanase had higher temperature stability (40 °C to 70 °C) and wider pH optima (pH 3.0 to 7.0) than E.coli enzyme extracts. Plant crude extracts showed 6-7 fold higher enzyme activity than E.coli extracts due to the formation of disulfide bonds in chloroplasts, thereby facilitating their direct utilization in enzyme cocktails without any purification. Chloroplast-derived mannanase when added to the enzyme cocktail containing a combination of different plant-derived enzymes yielded 20% more glucose equivalents from pinewood than the cocktail without mannanase. Our results demonstrate that chloroplast-derived mannanase is an important component of enzymatic cocktail for woody biomass hydrolysis and should provide a cost-effective solution for its diverse applications in the biofuel, paper, oil, pharmaceutical, coffee and detergent industries.
Collapse
Affiliation(s)
- Pankaj Agrawal
- Department of Molecular Biology and Microbiology, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, United States of America
| | - Dheeraj Verma
- Department of Molecular Biology and Microbiology, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, United States of America
| | - Henry Daniell
- Department of Molecular Biology and Microbiology, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, United States of America
| |
Collapse
|
48
|
Acidic β-mannanase from Penicillium pinophilum C1: Cloning, characterization and assessment of its potential for animal feed application. J Biosci Bioeng 2011; 112:551-7. [PMID: 22036533 DOI: 10.1016/j.jbiosc.2011.08.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Revised: 07/15/2011] [Accepted: 08/21/2011] [Indexed: 11/21/2022]
Abstract
The β-mannanase gene, man5C1, was cloned from Penicillium pinophilum C1, a strain isolated from the acidic wastewater of a tin mine in Yunnan, China, and expressed in Pichia pastoris. The sequence analysis displayed the gene consists of a 1221-bp open reading frame encoding a protein of 406 amino acids (Man5C1). The deduced amino acid sequence of Man5C1 showed the highest homology of 57.8% (identity) with a characterized β-mannanase from Aspergillus aculeatus belonging to glycoside hydrolase family 5. The purified rMan5C1 had a high specific activity of 1035U mg(-1) towards locust bean gum (LBG) and showed highest activity at pH 4.0 and 70°C. rMan5C1 was adaptable to a wide range of acidity, retaining >60% of its maximum activity at pH 3.0-7.0. The enzyme was stable over a broad pH range (3.0 to 10.0) and exhibited good thermostability at 50°C. The K(m) and V(max) values were 5.6 and 4.8mgmL(-1), and 2785 and 1608μmolmin(-1)mg(-1), respectively, when LBG and konjac flour were used as substrates. The enzyme had strong resistance to most metal ions and proteases (pepsin and trypsin), and released 8.96mgg(-1) reducing sugars from LBG in the simulated gastric fluid. All these favorable properties make rMan5C1 a promising candidate for use in animal feed.
Collapse
|
49
|
Blibech M, Ellouz Ghorbel R, Chaari F, Dammak I, Bhiri F, Neifar M, Ellouz Chaabouni S. Improved Mannanase Production from Penicillium occitanis by Fed-Batch Fermentation Using Acacia Seeds. ISRN MICROBIOLOGY 2011; 2011:938347. [PMID: 23724314 PMCID: PMC3658641 DOI: 10.5402/2011/938347] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2011] [Accepted: 08/08/2011] [Indexed: 11/23/2022]
Abstract
By applying a fed-batch strategy, production of Penicillium occitanis mannanases could be almost doubled as compared to a batch cultivation on acacia seeds (76 versus 41 U/mL). Also, a 10-fold increase of enzyme activities was observed from shake flask fermentation to the fed-batch fermentation. These production levels were 3-fold higher than those obtained on coconut meal. The high mannanase production using acacia seeds powder as inducer substrate showed the suitability of this culture process for industrial-scale development.
Collapse
Affiliation(s)
- Monia Blibech
- Unité Enzymes et Bioconversion, Ecole National d'ingénieurs de Sfax, Université de Sfax, Route de Soukra 3038, Sfax, Tunisia
| | - Raoudha Ellouz Ghorbel
- Unité Enzymes et Bioconversion, Ecole National d'ingénieurs de Sfax, Université de Sfax, Route de Soukra 3038, Sfax, Tunisia
- Unité de Service Commun Bioréacteur Couplé à un Ultrafiltre, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Route de Soukra 3038, Sfax, Tunisia
| | - Fatma Chaari
- Unité Enzymes et Bioconversion, Ecole National d'ingénieurs de Sfax, Université de Sfax, Route de Soukra 3038, Sfax, Tunisia
| | - Ilyes Dammak
- Unité Enzymes et Bioconversion, Ecole National d'ingénieurs de Sfax, Université de Sfax, Route de Soukra 3038, Sfax, Tunisia
| | - Fatma Bhiri
- Unité Enzymes et Bioconversion, Ecole National d'ingénieurs de Sfax, Université de Sfax, Route de Soukra 3038, Sfax, Tunisia
| | - Mohamed Neifar
- Unité Enzymes et Bioconversion, Ecole National d'ingénieurs de Sfax, Université de Sfax, Route de Soukra 3038, Sfax, Tunisia
| | - Semia Ellouz Chaabouni
- Unité Enzymes et Bioconversion, Ecole National d'ingénieurs de Sfax, Université de Sfax, Route de Soukra 3038, Sfax, Tunisia
- Unité de Service Commun Bioréacteur Couplé à un Ultrafiltre, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Route de Soukra 3038, Sfax, Tunisia
| |
Collapse
|
50
|
MOU HAIJIN, ZHOU FANG, JIANG XIAOLU, LIU ZHIHONG. PRODUCTION, PURIFICATION AND PROPERTIES OF β-MANNANASE FROM SOIL BACTERIUM BACILLUS CIRCULANS M-21. J Food Biochem 2011. [DOI: 10.1111/j.1745-4514.2010.00466.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|