1
|
Dhanasekaran S, Yang Q, Godana EA, Liu J, Li J, Zhang H. Trehalose supplementation enhanced the biocontrol efficiency of Sporidiobolus pararoseus Y16 through increased oxidative stress tolerance and altered transcriptome. PEST MANAGEMENT SCIENCE 2021; 77:4425-4436. [PMID: 33987938 DOI: 10.1002/ps.6477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND In the process of biological control, the antagonistic yeasts contend with various stresses that negatively influence yeasts' biocontrol efficiency. In the current study, we investigated the effect of trehalose supplementation on the biocontrol efficiency and oxidative stress tolerance of Sporidiobolus pararoseus Y16. RESULTS S. pararoseus Y16, an antagonistic yeast cultured in trehalose supplemented medium, exhibited better biocontrol efficiency against Penicillium expansum and Aspergillus tubingensis in table grapes. Trehalose-treated S. pararoseus Y16 cells showed good proliferation efficiency and oxidative stress tolerance than untreated cells. Increased β-1,3-glucanase, catalase, superoxide dismutase activity, and low protein carbonylation were observed in trehalose-amended S. pararoseus Y16 upon H2 O2 exposure. The RNA sequencing results indicated that trehalose significantly altered the transcriptome of S. pararoseus Y16. The GO, KEGG, and COG annotations revealed that the differentially regulated genes corresponded to the various biological process of the yeast. CONCLUSION Our findings suggested that trehalose use could enhance the biocontrol efficiency and oxidative stress tolerance of S. pararoseus Y16. Trehalose supplementation altered the transcriptome of S. pararoseus Y16, particularly the genes that correspond to amino acid metabolism, nucleotide metabolism, and protein modification. Thereby the oxidative stress tolerance and biological control efficiency of S. pararoseus Y16 was enhanced by trehalose. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Solairaj Dhanasekaran
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, People's Republic of China
| | - Qiya Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, People's Republic of China
| | - Esa A Godana
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, People's Republic of China
| | - Jizhan Liu
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, Jiangsu University, Zhenjiang, People's Republic of China
| | - Jun Li
- Analysis & Testing Center of Jiangsu University, Zhenjiang, People's Republic of China
| | - Hongyin Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, People's Republic of China
| |
Collapse
|
2
|
Yang JL, Li XL, Jiang FL, Gong T, Chen JJ, Chen TJ, Zhu P. High-level soluble expression of human Cu,Zn superoxide dismutase with high activity in Escherichia coli. World J Microbiol Biotechnol 2020; 36:106. [DOI: 10.1007/s11274-020-02883-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/29/2020] [Indexed: 12/12/2022]
|
3
|
Eiamphungporn W, Yainoy S, Prachayasittikul V. Enhancement of Solubility and Specific Activity of a Cu/Zn Superoxide Dismutase by Co-expression with a Copper Chaperone in Escherichia coli. IRANIAN JOURNAL OF BIOTECHNOLOGY 2016; 14:243-249. [PMID: 28959342 PMCID: PMC5434994 DOI: 10.15171/ijb.1465] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Human Cu/Zn superoxide dismutase (hSOD1) is an antioxidant enzyme with potential as a therapeutic agent. However, heterologous expression of hSOD1 has remained an issue due to Cu2+ insufficiency at protein active site, leading to low solubility and enzymatic activity. OBJECTIVES The effect of co-expressed human copper chaperone (hCCS) to enhance the solubility and enzymatic activity of hSOD1 in E. coli was investigated in the presence and absence of Cu2+. MATERIALS AND METHODS pETDuet-1-hSOD1 and pETDuet-1-hCCS-hSOD1 were constructed and individually transformed into E. coli strain BL21(DE3). The recombinant hSOD1 was expressed and purified using immobilized metal affinity chromatography. The yield and specific activity of hSOD1 in all conditions were studied. RESULTS Co-expression with hCCS increased hSOD1 solubility at 37°C, but this effect was not observed at 25°C. Notably, the specific activity of hSOD1 was enhanced by 1.5 fold and greater than 3 fold when co-expressed with hCCS at 25°C with and without Cu2+ supplement, respectively. However, the chaperone co-expression did not significantly increase the yield of hSOD1 comparable to the expression of hSOD1 alone. CONCLUSIONS This study is the first report demonstrating a potential use of hCCS for heterologous production of hSOD1 with high enzymatic activity.
Collapse
Affiliation(s)
- Warawan Eiamphungporn
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Sakda Yainoy
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand.,Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Virapong Prachayasittikul
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
4
|
Magrì A, Di Rosa MC, Tomasello MF, Guarino F, Reina S, Messina A, De Pinto V. Overexpression of human SOD1 in VDAC1-less yeast restores mitochondrial functionality modulating beta-barrel outer membrane protein genes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:789-98. [PMID: 26947057 DOI: 10.1016/j.bbabio.2016.03.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/20/2016] [Accepted: 03/01/2016] [Indexed: 12/12/2022]
Abstract
Cu/Zn Superoxide Dismutase (SOD1), the most important antioxidant defense against ROS in eukaryotic cells, localizes in cytosol and intermembrane space of mitochondria (IMS). Several evidences show a SOD1 intersection with both fermentative and respiratory metabolism. The Voltage Dependent Anion Channel (VDAC) is the main pore-forming protein in the mitochondrial outer membrane (MOM), and is considered the gatekeeper of mitochondrial metabolism. Saccharomyces cerevisiae lacking VDAC1 (Δpor1) is a very convenient model system, since it shows an impaired growth rate on non-fermentable carbon source. Transformation of Δpor1 yeast with human SOD1 completely restores the cell growth deficit in non-fermentative conditions and re-establishes the physiological levels of ROS, as well as the mitochondrial membrane potential. No similar result was found upon yeast SOD1 overexpression. A previous report highlighted the action of SOD1 as a transcription factor. Quantitative Real-Time PCR showed that β-barrel outer-membrane encoding-genes por2, tom40, sam50 are induced by hSOD1, but the same effect was not obtained in Δpor1Δpor2 yeast, indicating a crucial function for yVDAC2. Since the lack of VDAC1 in yeast can be considered a stress factor for the cell, hSOD1 could relieve it stimulating the expression of genes bringing to the recovery of the MOM function. Our results suggest a direct influence of SOD1 on VDAC.
Collapse
Affiliation(s)
- Andrea Magrì
- BIOMETEC, Department of Biomedical and Biotechnological Sciences, University of Catania, Italy; National Institute for Biostructures and Biosystems, Section of Catania, Italy
| | - Maria Carmela Di Rosa
- BIOMETEC, Department of Biomedical and Biotechnological Sciences, University of Catania, Italy; National Institute for Biostructures and Biosystems, Section of Catania, Italy
| | | | - Francesca Guarino
- BIOMETEC, Department of Biomedical and Biotechnological Sciences, University of Catania, Italy; National Institute for Biostructures and Biosystems, Section of Catania, Italy
| | - Simona Reina
- BIOMETEC, Department of Biomedical and Biotechnological Sciences, University of Catania, Italy; National Institute for Biostructures and Biosystems, Section of Catania, Italy
| | - Angela Messina
- Department of Biological, Geological and Environmental Sciences, Section of Molecular Biology, University of Catania, Italy; National Institute for Biostructures and Biosystems, Section of Catania, Italy.
| | - Vito De Pinto
- BIOMETEC, Department of Biomedical and Biotechnological Sciences, University of Catania, Italy; National Institute for Biostructures and Biosystems, Section of Catania, Italy.
| |
Collapse
|
5
|
Cloning and characterization of a new manganese superoxide dismutase from deep-sea thermophile Geobacillus sp. EPT3. World J Microbiol Biotechnol 2013; 30:1347-57. [DOI: 10.1007/s11274-013-1536-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 10/21/2013] [Indexed: 10/26/2022]
|
6
|
Paital B, Kumar S, Farmer R, Chainy GBN. In silico prediction of 3D structure of Mn superoxide dismutase of Scylla serrata and its binding properties with inhibitors. Interdiscip Sci 2013; 5:69-76. [PMID: 23605642 DOI: 10.1007/s12539-013-0150-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 01/04/2012] [Accepted: 02/03/2012] [Indexed: 12/28/2022]
Abstract
In the present study, we used computational methods to model crab and rat MnSOD using the crystal structure of MnSOD from Homo sapiens (PDB code: 1MSD) as template by comparative modeling approach. We performed molecular dynamics simulations to study dynamic behavior of the crab MnSOD. The modeled proteins were validated and subjected to molecular docking analyses. Molecular docking tool was used to elucidate a comparative binding mode of the crab and rat SOD with potent inhibitors of SOD such as hydrogen peroxide (H2O2), potassium cyanide (KCN) and sodium dodecyl sulphate (SDS). The predicted valid structure of crab MnSOD did not show any interaction with KCN but close interaction with H2O2 and SDS. A possible inhibitory mechanism of SDS and H2O2 due to their interaction with the amino acids present in the active site of the MnSOD of the above two animals are elucidated. This allowed us to predict the binding modes of the proteins to elucidate probable mode of action and sites of interference.
Collapse
|
7
|
Hadji Sfaxi I, Ezzine A, Coquet L, Cosette P, Jouenne T, Marzouki MN. Combined proteomic and molecular approaches for cloning and characterization of copper-zinc superoxide dismutase (Cu, Zn-SOD2) from garlic (Allium sativum). Mol Biotechnol 2013; 52:49-58. [PMID: 22161312 DOI: 10.1007/s12033-011-9473-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Superoxide dismutases (SODs; EC 1.15.1.1) are key enzymes in the cells protection against oxidant agents. Thus, SODs play a major role in the protection of aerobic organisms against oxygen-mediated damages. Three SOD isoforms were previously identified by zymogram staining from Allium sativum bulbs. The purified Cu, Zn-SOD2 shows an antagonist effect to an anticancer drug and alleviate cytotoxicity inside tumor cells lines B16F0 (mouse melanoma cells) and PAE (porcine aortic endothelial cells). To extend the characterization of Allium SODs and their corresponding genes, a proteomic approach was applied involving two-dimensional gel electrophoresis and LC-MS/MS analyses. From peptide sequence data obtained by mass spectrometry and sequences homologies, primers were defined and a cDNA fragment of 456 bp was amplified by RT-PCR. The cDNA nucleotide sequence analysis revealed an open reading frame coding for 152 residues. The deduced amino acid sequence showed high identity (82-87%) with sequences of Cu, Zn-SODs from other plant species. Molecular analysis was achieved by a protein 3D structural model.
Collapse
Affiliation(s)
- Imen Hadji Sfaxi
- Department of Bioengineering, National Institute of Applied Sciences and Technology, University of Carthage, 676-1080 Tunis Cedex, Tunisia.
| | | | | | | | | | | |
Collapse
|
8
|
Li RK, Fu CL, Chen P, Ng TB, Ye XY. High-level expression of a sika deer (Cervus nippon) Cu/Zn superoxide dismutase in Pichia pastoris and its characterization. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2013; 35:185-192. [PMID: 23328117 DOI: 10.1016/j.etap.2012.11.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 11/22/2012] [Accepted: 11/25/2012] [Indexed: 06/01/2023]
Abstract
Production of a sika deer Cu/Zn-SOD was achieved in Pichia pastoris after the reconstituted expression vector pPIC9K was transformed into the strain GS115. By employing Saccharomyces cerevisiae secretion signal peptide (α-factor) under the regulation of the methanol-inducible promoter of the gene of alcohol oxidase 1 (AOX1), sika deer Cu/Zn-SOD with a molecular mass of 16kDa was expressed while recombinant sika deer Cu/Zn-SOD with an activity of 3500U/mL was obtained from a 5L bioreactor. After two successive steps of chromatography on DEAE-650C and Superdex75, recombinant sika deer Cu/Zn-SOD was obtained with 13.8% yield, 14.5-fold purification, and a specific activity of 3447U/mg. Its optimum temperature and optimum pH were 40°C and 7.0, respectively.
Collapse
Affiliation(s)
- Ren-Kuan Li
- College of Biological Science and Technology, Fuzhou University, PR China
| | | | | | | | | |
Collapse
|
9
|
Expression of the laccase gene from a white rot fungus in Pichia pastoris can enhance the resistance of this yeast to H2O2-mediated oxidative stress by stimulating the glutathione-based antioxidative system. Appl Environ Microbiol 2012; 78:5845-54. [PMID: 22706050 DOI: 10.1128/aem.00218-12] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Laccase is a copper-containing polyphenol oxidase that has great potential in industrial and biotechnological applications. Previous research has suggested that fungal laccase may be involved in the defense against oxidative stress, but there is little direct evidence supporting this hypothesis, and the mechanism by which laccase protects cells from oxidative stress also remains unclear. Here, we report that the expression of the laccase gene from white rot fungus in Pichia pastoris can significantly enhance the resistance of yeast to H(2)O(2)-mediated oxidative stress. The expression of laccase in yeast was found to confer a strong ability to scavenge intracellular H(2)O(2) and to protect cells from lipid oxidative damage. The mechanism by which laccase gene expression increases resistance to oxidative stress was then investigated further. We found that laccase gene expression in Pichia pastoris could increase the level of glutathione-based antioxidative activity, including the intracellular glutathione levels and the enzymatic activity of glutathione peroxidase, glutathione reductase, and γ-glutamylcysteine synthetase. The transcription of the laccase gene in Pichia pastoris was found to be enhanced by the oxidative stress caused by exogenous H(2)O(2). The stimulation of laccase gene expression in response to exogenous H(2)O(2) stress further contributed to the transcriptional induction of the genes involved in the glutathione-dependent antioxidative system, including PpYAP1, PpGPX1, PpPMP20, PpGLR1, and PpGSH1. Taken together, these results suggest that the expression of the laccase gene in Pichia pastoris can enhance the resistance of yeast to H(2)O(2)-mediated oxidative stress by stimulating the glutathione-based antioxidative system to protect the cell from oxidative damage.
Collapse
|
10
|
Abstract
Obtaining diffraction quality crystals is frequently an iterative process which traditionally has involved screening large numbers of crystallization conditions. Due to advances in high-throughput gene engineering, recombinant expression, and purification, the protein of interest has now become one of the many variables routinely investigated during crystallization trials. As such, construct design is a critical step in the path toward successful crystallization. In this chapter will we address construct design strategies frequently employed to improve the solution and crystallization behavior of proteins. Topics covered include choosing a recombinant expression system and reducing disorder through truncations and surface mutagenesis. Also covered are strategies to reduce heterogeneity from posttranslational modifications, impurities, and aggregation.
Collapse
|
11
|
Using yeast models to probe the molecular basis of amyotrophic lateral sclerosis. Biochem Soc Trans 2011; 39:1482-7. [DOI: 10.1042/bst0391482] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
ALS (amyotrophic lateral sclerosis) is a fatal neurodegenerative disease attributable to the death of motor neurons. Associated with ALS are mutations in the genes encoding SOD1 (superoxide dismutase 1), FUS (fused in Sarcoma) protein and TDP-43 (TAR DNA-binding protein-43) each of which leads to aggregation of the respective protein. For example, the ALS-associated mutations in the hSOD1 (human SOD1) gene typically destabilize the native SOD homodimer, leading to misfolding, aggregation and degradation of SOD1. The ALS-associated pathology is not a consequence of the functional inactivation of SOD1 itself, but is rather due to a toxic gain-of-function triggered by mutant SOD1. Recently, the molecular basis of a number of human neurodegenerative diseases resulting from protein misfolding and aggregation, including fALS (familial ALS), was probed by using the baker's yeast, Saccharomyces cerevisiae, as a highly tractable model. Such studies have, for example, identified novel mutant SOD1-specific interactions and demonstrated that mutant SOD1 disrupts mitochondrial homoeostasis. Features of ALS associated with TDP-43 aggregation have also been recapitulated in S. cerevisiae including the identification of modulators of the toxicity of TDP-43. In this paper, we review recent studies of ALS pathogenesis using S. cerevisiae as a model organism and summarize the potential mechanisms involved in ALS progression.
Collapse
|
12
|
Expression of a novel thermostable Cu, Zn-superoxide dismutase from Chaetomium thermophilum in Pichia pastoris and its antioxidant properties. Biotechnol Lett 2011; 33:1127-32. [DOI: 10.1007/s10529-011-0543-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 01/20/2011] [Indexed: 01/23/2023]
|
13
|
Raimondi S, Uccelletti D, Amaretti A, Leonardi A, Palleschi C, Rossi M. Secretion of Kluyveromyces lactis Cu/Zn SOD: strategies for enhanced production. Appl Microbiol Biotechnol 2009; 86:871-8. [DOI: 10.1007/s00253-009-2353-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 10/16/2009] [Accepted: 11/09/2009] [Indexed: 11/28/2022]
|
14
|
Sánchez-Venegas JR, Navarrete A, Dinamarca J, Bravo Ramírez LA, Moraga AG, Gidekel M. Cloning and constitutive expression of Deschampsia antarctica Cu/Zn superoxide dismutase in Pichia pastoris. BMC Res Notes 2009; 2:207. [PMID: 19821975 PMCID: PMC2770473 DOI: 10.1186/1756-0500-2-207] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Accepted: 10/12/2009] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Deschampsia antarctica shows tolerance to extreme environmental factors such as low temperature, high light intensity and an increasing UV radiation as result of the Antarctic ozone layer thinning. It is very likely that the survival of this species is due to the expression of genes that enable it to tolerate high levels of oxidative stress. On that account, we planned to clone the D. antarctica Cu/ZnSOD gene into Pichia pastoris and to characterize the heterologous protein. FINDINGS The Copper/Zinc superoxide dismutase (Cu/ZnSOD) gene, SOD gene, was isolated from a D. antarctica by cDNA library screening. This SOD gene was cloned in the expression vector pGAPZalphaA and successfully integrated into the genome of the yeast P. pastoris SMD1168H. A constitutive expression system for the expression of the recombinant SOD protein was used. The recombinant protein was secreted into the YPD culture medium as a glycosylated protein with a 32 mg/l expression yield. The purified recombinant protein possesses a specific activity of 440 U/mg. CONCLUSION D. antarctica Cu/ZnSOD recombinant protein was expressed in a constitutive system, and purified in a single step by means of an affinity column. The recombinant SOD was secreted to the culture medium as a glycoprotein, corresponding to approximately 13% of the total secreted protein. The recombinant protein Cu/ZnSOD maintains 60% of its activity after incubation at 40 degrees C for 30 minutes and it is stable (80% of activity) between -20 degrees C and 20 degrees C. The recombinant SOD described in this study can be used in various biotechnological applications.
Collapse
Affiliation(s)
- Jaime R Sánchez-Venegas
- Laboratorio de Biología Molecular Aplicada, Instituto de Agroindustrias, Facultad de Ciencias Agropecuarias y Forestales, Universidad de La Frontera, Casilla 54-D, Temuco-Chile
| | - Alejandro Navarrete
- Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas Universidad de Concepción, Casilla 160-C, Concepción-Chile
| | - Jorge Dinamarca
- Laboratorio de Biología Molecular Aplicada, Instituto de Agroindustrias, Facultad de Ciencias Agropecuarias y Forestales, Universidad de La Frontera, Casilla 54-D, Temuco-Chile
| | - León A Bravo Ramírez
- Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas Universidad de Concepción, Casilla 160-C, Concepción-Chile
| | - Ana Gutiérrez Moraga
- Laboratorio de Biología Molecular Aplicada, Instituto de Agroindustrias, Facultad de Ciencias Agropecuarias y Forestales, Universidad de La Frontera, Casilla 54-D, Temuco-Chile
| | - Manuel Gidekel
- Laboratorio de Biología Molecular Aplicada, Instituto de Agroindustrias, Facultad de Ciencias Agropecuarias y Forestales, Universidad de La Frontera, Casilla 54-D, Temuco-Chile
- VentureLab, Escuela de Negocios, Universidad Adolfo Ibáñez, Av. Diagonal Las Torres 2700, Peñalolén, Santiago-Chile
| |
Collapse
|
15
|
Ahtoniemi T, Jaronen M, Keksa-Goldsteine V, Goldsteins G, Koistinaho J. Mutant SOD1 from spinal cord of G93A rats is destabilized and binds to inner mitochondrial membrane. Neurobiol Dis 2008; 32:479-85. [PMID: 18817872 DOI: 10.1016/j.nbd.2008.08.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Revised: 08/20/2008] [Accepted: 08/22/2008] [Indexed: 11/17/2022] Open
Abstract
Mutations in Cu/Zn superoxide dismutase (SOD1) cause amyotrophic lateral sclerosis (ALS). Mechanisms of mutant SOD1 toxicity are unknown, but increased SOD1 activity can boost production of reactive oxygen species (ROS) in the mitochondrial intermembrane space (IMS). Using non-reducing SDS-PAGE we found that in G93A-SOD1 rats the mutant SOD1 was prominently destabilized only in the diseased spinal cord, where this mutant enzyme was also up regulated in the IMS with increased ability to bind the inner membrane of isolated non-transgenic mitoplasts. These mitoplasts increased ROS production when exposed to mutant SOD1 from the spinal cord at the presymptomatic stage. The levels of disulfide-reduced SOD1 peaked at the end stage of the disease, whereas protein disulfide isomerase (PDI), a chaperone capable of rearranging disulfide bonds between cysteine residues of SOD1, was increased prior to the end stage. IMS binding and increased ROS production by destabilized SOD1 may contribute to mitochondrial damage in G93A-SOD1 rats.
Collapse
Affiliation(s)
- Toni Ahtoniemi
- Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, University of Kuopio, Kuopio, Finland
| | | | | | | | | |
Collapse
|
16
|
Goldsteins G, Keksa-Goldsteine V, Ahtoniemi T, Jaronen M, Arens E, Akerman K, Chan PH, Koistinaho J. Deleterious role of superoxide dismutase in the mitochondrial intermembrane space. J Biol Chem 2008; 283:8446-52. [PMID: 18171673 DOI: 10.1074/jbc.m706111200] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
This work demonstrates how increased activity of copper-zinc superoxide dismutase (SOD1) paradoxically boosts production of toxic reactive oxygen species (ROS) in the intermembrane space (IMS) of mitochondria. Even though SOD1 is a cytosolic enzyme, a fraction of it is found in the IMS, where it is thought to provide protection against oxidative damage. We found that SOD1 controls cytochrome c-catalyzed peroxidation in vitro when superoxide is available. The presence of SOD1 significantly increased the rate of ROS production in mitoplasts, which are devoid of outer membrane and IMS. In response to inhibition of respiration with antimycin A, isolated mouse wild-type mitochondria increased ROS production, but the mitochondria from mice lacking SOD1 (SOD1(-/-)) did not. Also, lymphocytes isolated from SOD1(-/-) mice produced significantly less ROS than did wild-type cells and were more resistant to apoptosis induced by inhibition of respiration. Moreover, an increased amount of the toxic mutant G93A SOD1 in the IMS increased ROS production. The mitochondrial dysfunction and cell damage paradoxically induced by SOD1-mediated ROS production may be implicated in chronic degenerative diseases.
Collapse
Affiliation(s)
- Gundars Goldsteins
- Department of Neurobiology, A I Virtanen Institute for Molecular Sciences, University of Kuopio, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Characterization of the superoxide dismutase SOD1 gene of Kluyveromyces marxianus L3 and improved production of SOD activity. Appl Microbiol Biotechnol 2008; 77:1269-77. [DOI: 10.1007/s00253-007-1270-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Revised: 10/30/2007] [Accepted: 10/31/2007] [Indexed: 10/22/2022]
|
18
|
Yu P. Enhancing survival of Escherichia coli by increasing the periplasmic expression of Cu,Zn superoxide dismutase from Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2007; 76:867-71. [PMID: 17628798 DOI: 10.1007/s00253-007-1068-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2007] [Revised: 05/28/2007] [Accepted: 05/30/2007] [Indexed: 11/26/2022]
Abstract
The gene for the Cu,Zn superoxide dismutase (Cu,ZnSOD) from Saccharomyces cerevisiae was cloned and expressed in Escherichia coli LMG194. The sod gene sequence obtained is 465 bp and encodes 154 amino acid residues. The sod gene sequence was cloned into the E. coli periplasmic expression vector pBAD/gIIIA, yielding pBAD-1. E. coli was transformed using the constructed plasmid pBAD-1 and induced by adding 0.02% L: -arabinose to express Cu,ZnSOD protein. The results indicated that Cu,ZnSOD enzyme activity in the periplasmic space was about fivefold to sixfold higher in the recombinant E. coli strains bearing the sod gene than in the control strains. The yields of Cu,ZnSOD were about threefold higher at 48 h than at 24 h in the recombinant E. coli cells. Significantly higher survival of strains was obtained in cells bearing the sod gene than in the control cells when the cells were treated by heat shock and superoxide-generating agents, such as paraquat and menadione.
Collapse
Affiliation(s)
- Ping Yu
- College of Food Science, Biotechnology and Environmental Engineering, Zhejiang Gongshang University, Hangzhou, 310035, People's Republic of China.
| |
Collapse
|
19
|
Ken CF, Lin CT, Wen YD, Wu JL. Replacement of buried cysteine from zebrafish Cu/Zn superoxide dismutase and enhancement of its stability via site-directed mutagenesis. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2007; 9:335-42. [PMID: 17549562 DOI: 10.1007/s10126-006-0143-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Accepted: 11/28/2006] [Indexed: 05/15/2023]
Abstract
Zebrafish Cu/Zn-superoxide dismutase (ZSOD1) has one free cysteine (Cys-7) in a first beta-strand with lower thermostability. We predicted the stability would be increased with single-point mutation at 70 degrees C via the I-Mutant 2.0 server, and generated a mutant SOD with replacement of the free Cys to Ala (ZSODC7A) by site-directed mutagenesis. The mutant was expressed and purified from the Escherichia coli strain AD494(DE3)pLysS and the yield was 2 mg from 0.4 L of culture. The ZSODC7A was heated at 90 degrees C. In a time-dependent assay, the time interval for 50% inactivation was 32 min, and its thermal inactivation rate constant K (d) was 2 x 10(-2) min(-1). The mutant was still activated in broad pH range (2.3-12), and had only a moderate effect under sodium dodecyl sulfate treatment. The calculated specific activity of the mutant was 3980 U/mg, twice that of wild-type ZSOD1. In addition, we soaked fish larva with equal enzyme units of either ZSOD1 or ZSODC7A for 2 h, and then stressed them with 100 ppm of paraquat to induce oxidative injury. The survival rate was significant.
Collapse
Affiliation(s)
- Chuian-Fu Ken
- Institute of Biotechnology, National Changhua University of Education, Changhua, Taiwan
| | | | | | | |
Collapse
|
20
|
Manfredini V, Duarte Martins V, Ruaro Peralba MDC, Silveira Benfato M. Adaptative response to enhanced basal oxidative damage in sod mutants from Saccharomyces cerevisiae. Mol Cell Biochem 2005; 276:175-81. [PMID: 16132699 DOI: 10.1007/s11010-005-4058-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2004] [Accepted: 03/18/2005] [Indexed: 10/25/2022]
Abstract
We investigated the adaptative response of S. cerevisiae in sod mutants (sod 1 Delta, sod 2 Delta and sod 1 Deltasod 2 Delta) after H(2)O(2) treatment in the stationary phase. sod 2 Delta and sod 1 Deltasod 2 Delta demonstrated the highest levels of GSH in the control, suggesting that pathways which include GSH protect these double mutants against oxidative stress. In addition, sod 1 Delta and sod 1 Deltasod 2 Delta had higher iron levels than the wild-type, independently of H(2)O(2) stress. Fe levels were increased in sod 2 Delta following H(2)O(2) In addition, the sod 2 Delta mutant was more sensitive to H(2)O(2) treatment than the wild-type. These results suggest that sod 2 Delta sensibility may be associated with *OH production by the Fenton reaction. This increased iron demand in the sod 2 Delta mutant may be a reflection of the cells' efforts to reconstitute proteins that are inactivated in conditions of excess superoxide. MDA levels were assayed by HPLC in these mutants. The highest MDA levels could be observed after 10mM H(2)O(2) treatment in the sod 1 Deltasod 2 Delta double mutant. After treatment with a GSH inhibitor, the MDA level was still higher in the same strain. Thus, both direct and indirect GSH pathways are involved in the protection of lipid membranes and proteins in these mutants and may constitute an adaptative response to enhanced basal oxidative damage produced by superoxide.
Collapse
Affiliation(s)
- Vanusa Manfredini
- Laboratório de Estresse Oxidativo, Departamento de Biofísica, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500 prédio 43431, Porto Alegre, RS, 91501-970, Brazil
| | | | | | | |
Collapse
|
21
|
Yoon HS, Lee IA, Lee H, Lee BH, Jo J. Overexpression of a eukaryotic glutathione reductase gene from Brassica campestris improved resistance to oxidative stress in Escherichia coli. Biochem Biophys Res Commun 2005; 326:618-23. [PMID: 15596144 DOI: 10.1016/j.bbrc.2004.11.095] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2004] [Indexed: 01/01/2023]
Abstract
Glutathione reductase (GR) plays an essential role in a cell's defense against reactive oxygen metabolites by sustaining the reduced status of an important antioxidant glutathione. We constructed a recombinant plasmid based on the expression vector pET-18a that overexpresses a eukaryotic GR from Brassica campestris (BcGR) in Escherichia coli. For comparative analyses, E. coli GR (EcGR) was also subcloned in the same manner. The transformed E. coli with the recombinant constructs accumulated a high level of GR transcripts upon IPTG induction. Also, Western blot analysis showed overproduction of the BcGR protein in a soluble fraction of the transformed E. coli extract. When treated with oxidative stress generating reagents such as paraquat, salicylic acid, and cadmium, the BcGR overproducing E. coli exhibited a higher level of growth and survival rate than the control E. coli strain, but it was not as high as the E. coli strain transformed with the inducible EcGR. The translated amino acid sequences of BcGR and EcGR share 37.3% identity but all the functionally known important residues are conserved. It appears that eukaryotic BcGR functions in a prokaryotic system by providing protection against oxidative damages in E. coli.
Collapse
Affiliation(s)
- Ho-Sung Yoon
- Institute of Agricultural Science and Technology, Kyungpook National University, Daegu 702-701, Republic of Korea
| | | | | | | | | |
Collapse
|
22
|
Martchenko M, Alarco AM, Harcus D, Whiteway M. Superoxide dismutases in Candida albicans: transcriptional regulation and functional characterization of the hyphal-induced SOD5 gene. Mol Biol Cell 2003; 15:456-67. [PMID: 14617819 PMCID: PMC329211 DOI: 10.1091/mbc.e03-03-0179] [Citation(s) in RCA: 203] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Superoxide dismutases (SOD) convert superoxide radicals into less damaging hydrogen peroxide. The opportunistic human pathogen Candida albicans is known to express CuZnSOD (SOD1) and MnSOD (SOD3) in the cytosol and MnSOD (SOD2) in the mitochondria. We identified three additional CuZn-containing superoxide dismutases, SOD4, SOD5, and SOD6, within the sequence of the C. albicans genome. The transcription of SOD5 was up-regulated during the yeast to hyphal transition of C. albicans, and SOD5 was induced when C. albicans cells were challenged with osmotic or with oxidative stresses. SOD5 transcription was also increased when cells were grown on nonfermentable substrates as the only carbon source. The Rim101p transcription factor was required for all inductions observed, whereas the Efg1p transcription factor was specifically needed for serum-modulated expression. Deletion of SOD5 produced a viable mutant strain that showed sensitivity to hydrogen peroxide when cells were grown in nutrient-limited conditions. Sod5p was found to be necessary for the virulence of C. albicans in a mouse model of infection. However, the sod5 mutant strain showed the same resistance to macrophage attack as its parental strain, suggesting that the loss of virulence in not due to an increased sensitivity to macrophage attack.
Collapse
Affiliation(s)
- Mikhail Martchenko
- Department of Biology, McGill University, Montreal, Quebec, Canada H3A 1B1
| | | | | | | |
Collapse
|
23
|
Goulielmos GN, Arhontaki K, Eliopoulos E, Tserpistali K, Tsakas S, Loukas M. Drosophila Cu,Zn superoxide dismutase gene confers resistance to paraquat in Escherichia coli. Biochem Biophys Res Commun 2003; 308:433-8. [PMID: 12914767 DOI: 10.1016/s0006-291x(03)01422-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Superoxide dismutase (SOD) is known to protect organisms from reactive oxygen metabolites. We tested the hypothesis that the Drosophila Cu,Zn SOD is capable of protecting Escherichia coli from oxidative damage caused by the herbicide paraquat. The Cu,Zn Sod gene of Drosophila sechellia was subcloned into pET-20b(+) expression vector. Transformation of E. coli with the constructed vector resulted in an overexpression of this eukaryotic superoxide dismutase, as evidenced by dramatically increased levels of the Cu,Zn SOD polypeptide in bacterial cytosolic extracts. As well, the E. coli transformants showed resistance to paraquat-mediated inhibition of growth and survival. Paraquat is known to promote formation of the superoxide radical anion inside cells and thus the data have been interpreted as indicating that the cloned superoxide dismutase provides protection in E. coli against damage attributable to free radicals.
Collapse
|
24
|
Park EY, Rho HM. The transcriptional activation of the human copper/zinc superoxide dismutase gene by 2,3,7,8-tetrachlorodibenzo-p-dioxin through two different regulator sites, the antioxidant responsive element and xenobiotic responsive element. Mol Cell Biochem 2002; 240:47-55. [PMID: 12487371 DOI: 10.1023/a:1020600509965] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cu/Zn superoxide dismutase (SOD1) catalyzes the dismutation of superoxide radicals produced during biological oxidations and environmental stress. The most toxic dioxin, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), induces SOD1 in human liver cells. Deletion analyses showed that the promoter region between -400 and -239 was responsible for the induction, in which two different characteristic regulatory elements, the antioxidant responsive element (ARE) and xenobiotic responsive element (XRE), are located. When the cells transfected with the plasmid containing those two cis-elements, the transactivation of SOD1 promoter was about 4-fold by TCDD, whereas mutation either on the ARE or XRE elevated the promoter activity by about 2-fold. Functional analyses of these two elements by deletion, mutation in the natural context, heterologous promoter assay, and gel mobility shift assay supported the notion that the activation of the SOD1 promoter was induced by TCDD through these two regulatory elements ARE and XRE. These results alongside our previous data indicate that the induction of SOD1 in response to TCDD is mediated by either Nrf2 protein or Ah receptor protein through ARE and XRE, respectively. These results also imply that the SOD1 can be induced by dioxin either in combination with or independently of these two regulatory elements to effectively defend cells from oxidative stress.
Collapse
Affiliation(s)
- Eun Young Park
- School of Biological Sciences, Seoul National University, Seoul, Korea
| | | |
Collapse
|
25
|
Liu W, Zhu RH, Li GP, Wang DC. cDNA cloning, high-level expression, purification, and characterization of an avian Cu,Zn superoxide dismutase from Peking duck. Protein Expr Purif 2002; 25:379-88. [PMID: 12182817 DOI: 10.1016/s1046-5928(02)00040-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
As a special species of avian, Peking duck is often used as a model for exploring effective factors against cardio-cerebrovascular diseases, and therefore investigations of antioxidant enzymes including superoxide dismutase are intriguing. By using 3(')-RACE with a gene-specific primer, a cDNA encoding duck Cu,Zn SOD was amplified from the total RNA extracted from Peking duck liver. Three free cysteine residues are found in the deduced amino acid sequence of duck SOD, among which Cys153 at the carbonyl-terminal is a distinctive feature. Production with a high yield of recombinant duck Cu,Zn SOD was achieved in Escherichia coli after the reconstituted expression vector pET-3a-dSOD was transformed into the bacterial strain BL21(DE3)pLysS. After two steps of anion exchange chromatography, a great quantity of the purified enzyme (100mg/L fermented culture) with an enzymatic activity comparable to that of native duck and bovine SOD was finally obtained. Duck SOD is a homodimer with 153 residues for each subunit. The molecular mass of the recombinant enzyme is 15,540.0Da measured by mass spectrum, which well coincides with the estimated size of the sequence but significantly differs from that of the native counterpart. Five charge isomers were observed on isoelectricfocusing (IEF). The most interesting observation is that the thermal stability of duck SOD is much lower than that of the bovine enzyme as revealed by irreversible heat inactivation at 70 degrees C. These properties are discussed in relation to the distinctive free Cys residues in duck Cu,Zn SOD.
Collapse
Affiliation(s)
- Wei Liu
- Center for Molecular Biology, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, People's Republic of China
| | | | | | | |
Collapse
|