1
|
Delgado CL, Núñez E, Yélamos B, Gómez-Gutiérrez J, Peterson DL, Gavilanes F. Study of the putative fusion regions of the preS domain of hepatitis B virus. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:895-906. [PMID: 25554595 DOI: 10.1016/j.bbamem.2014.12.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 12/01/2014] [Accepted: 12/22/2014] [Indexed: 02/09/2023]
Abstract
In a previous study, it was shown that purified preS domains of hepatitis B virus (HBV) could interact with acidic phospholipid vesicles and induce aggregation, lipid mixing and leakage of internal contents which could be indicative of their involvement in the fusion of the viral and cellular membranes (Núñez, E. et al. 2009. Interaction of preS domains of hepatitis B virus with phospholipid vesicles. Biochim. Biophys. Acta 17884:417-424). In order to locate the region responsible for the fusogenic properties of preS, five mutant proteins have been obtained from the preS1 domain of HBV, in which 40 amino acids have been deleted from the sequence, with the starting point of each deletion moving 20 residues along the sequence. These proteins have been characterized by fluorescence and circular dichroism spectroscopy, establishing that, in all cases, they retain their mostly non-ordered conformation with a high percentage of β structure typical of the full-length protein. All the mutants can insert into the lipid matrix of dimyristoylphosphatidylglycerol vesicles. Moreover, we have studied the interaction of the proteins with acidic phospholipid vesicles and each one produces, to a greater or lesser extent, the effects of destabilizing vesicles observed with the full-length preS domain. The ability of all mutants, which cover the complete sequence of preS1, to destabilize the phospholipid bilayers points to a three-dimensional structure and/or distribution of amino acids rather than to a particular amino acid sequence as being responsible for the membrane fusion process.
Collapse
Affiliation(s)
- Carmen L Delgado
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain
| | - Elena Núñez
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain
| | - Belén Yélamos
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain
| | - Julián Gómez-Gutiérrez
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain
| | - Darrell L Peterson
- Department of Biochemistry and Molecular Biology, Medical College of Virginia, Virginia Commonwealth University, Richmond, 23298 VA, USA
| | - Francisco Gavilanes
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain.
| |
Collapse
|
2
|
Sai LT, Yao YY, Guan YY, Shao LH, Ma RP, Ma LX. Hepatitis B virus infection and replication in a new cell culture system established by fusing HepG2 cells with primary human hepatocytes. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2014; 49:471-6. [PMID: 25442856 DOI: 10.1016/j.jmii.2014.08.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 07/20/2014] [Accepted: 08/26/2014] [Indexed: 12/30/2022]
Abstract
BACKGROUND Hepatitis B virus (HBV) infection is strictly species and tissue specific, therefore none of the cell models established previously can reproduce the natural infection process of HBV in vitro. The aim of this study was to establish a new cell line that is susceptible to HBV and can support the replication of HBV. METHODS A hybrid cell line was established by fusing primary human hepatocytes with HepG2 cells. The hybrid cells were incubated with HBV-positive serum for 12 hours. HBV DNA was detected by quantitative fluorescence polymerase chain reaction (QF-PCR). HBsAg (surface antigen) and HBeAg (extracellular form of core antigen) were observed by electrochemiluminescence (ECL). HBcAg (core antigen) was detected by the indirect immunofluorescence technique. HBV covalently closed circular DNA (cccDNA) was analyzed by Southern blot hybridization and quantified using real-time PCR. RESULTS A new cell line was established and named HepCHLine-7. The extracellular HBV DNA was observed from Day 2 and the levels ranged from 9.80 (± 0.32) × 10(2) copies/mL to 3.12 (± 0.03) × 10(4) copies/mL. Intracellular HBV DNA was detected at Day 2 after infection and the levels ranged from 7.92 (± 1.08) × 10(3) copies/mL to 5.63 (± 0.11) × 10(5) copies/mL. HBsAg in the culture medium was detected from Day 4 to Day 20. HBeAg secretion was positive from Day 5 to Day 20. HBcAg constantly showed positive signals in approximately 20% (± 0.82%) of hybrid cells. Intracellular HBV cccDNA could be detected as early as 2 days postinfection and the highest level was 15.76 (± 0.26) copies/cell. CONCLUSION HepCHLine-7 cells were susceptible to HBV and supported the replication of HBV. They are therefore suitable for studying the complete life cycle of HBV.
Collapse
Affiliation(s)
- Lin-Tao Sai
- Department of Infectious Diseases, Qilu Hospital, Shandong University, Wenhua Xi Road 107, Ji'nan 250012, Shandong Province, China
| | - Yong-Yuan Yao
- Department of Infectious Diseases, People's Hospital of Rizhao, Tai'an Road 126, Rizhao 276800, Shandong Province, China
| | - Yan-Yan Guan
- Department of Infectious Diseases, People's Hospital of Rizhao, Tai'an Road 126, Rizhao 276800, Shandong Province, China
| | - Li-Hua Shao
- Department of Laboratory Sciences, School of Public Health, Shandong University, Wenhua Xi Road 44, Ji'nan 250012, Shandong Province, China
| | - Rui-Ping Ma
- Department of Digestive Diseases, Qianfoshan Hospital, Jingshi Road 16766, Ji'nan 250012, Shandong Province, China
| | - Li-Xian Ma
- Department of Infectious Diseases, Qilu Hospital, Shandong University, Wenhua Xi Road 107, Ji'nan 250012, Shandong Province, China.
| |
Collapse
|
3
|
Delgado CL, Núñez E, Yélamos B, Gómez-Gutiérrez J, Peterson DL, Gavilanes F. Spectroscopic Characterization and Fusogenic Properties of PreS Domains of Duck Hepatitis B Virus. Biochemistry 2012; 51:8444-54. [DOI: 10.1021/bi3008406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Carmen L. Delgado
- Departamento de Bioquímica
y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense, Madrid 28040, Spain
| | - Elena Núñez
- Departamento de Bioquímica
y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense, Madrid 28040, Spain
| | - Belén Yélamos
- Departamento de Bioquímica
y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense, Madrid 28040, Spain
| | - Julián Gómez-Gutiérrez
- Departamento de Bioquímica
y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense, Madrid 28040, Spain
| | - Darrell L. Peterson
- Department of Biochemistry and
Molecular Biology, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia 23298, United
States
| | - Francisco Gavilanes
- Departamento de Bioquímica
y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense, Madrid 28040, Spain
| |
Collapse
|
4
|
Núñez E, Yélamos B, Delgado C, Gómez-Gutiérrez J, Peterson DL, Gavilanes F. Interaction of preS domains of hepatitis B virus with phospholipid vesicles. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:417-24. [DOI: 10.1016/j.bbamem.2008.10.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Revised: 09/24/2008] [Accepted: 10/22/2008] [Indexed: 12/16/2022]
|
5
|
Chojnacki J, Grgacic EVL. Enveloped viral fusion: insights into the fusion of hepatitis B viruses. Future Virol 2008. [DOI: 10.2217/17460794.3.6.543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Viral fusion, the mechanism by which viruses gain entry into the host cell, is a key step in the replication cycle and an important new target in antiviral therapy and vaccine strategies owing to the conservation of the envelope domains involved and their resistance to immune pressure. The fusion domains of HIV-1 have been studied intensively resulting in the potent antiviral agent T20 and the identification of broadly neutralizing antibody epitopes for vaccine development. Another chronic disease-causing virus, HBV, requires the identification of new antiviral agents to deal with the disease burden of 350 million chronically-infected individuals worldwide, 20% of whom will develop liver cancer. The aim of this review is to bring together basic knowledge on the envelope signatures, mechanisms and strategies for the study of viral fusion and how that knowledge has been applied to the study of hepadnaviral fusion.
Collapse
Affiliation(s)
- Jakub Chojnacki
- Abteilung Virologie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Elizabeth VL Grgacic
- Macfarlane Burnet Institute for Medical Research & Public Health, 85 Commercial Road, Melbourne, 3004, Australia
| |
Collapse
|
6
|
He YW, Guo CX, Pan YF, Peng C, Weng ZH. Inhibition of hepatitis B virus replication by pokeweed antiviral protein in vitro. World J Gastroenterol 2008; 14:1592-7. [PMID: 18330954 PMCID: PMC2693758 DOI: 10.3748/wjg.14.1592] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To explore the inhibitory effects of pokeweed antiviral protein seed (PAP-S) and PAP encoded by a eukaryotic expression plasmid on hepatitis B virus (HBV) replication in vitro.
METHODS: HepG2 2.2.15 cells in cultured medium were treated with different concentrations of PAP-S. HBsAg, HBeAg and HBV DNA in supernatants were determined by ELISA and fluorescent quantitative PCR respectively. MTT method was used to assay for cytotoxicity. HepG2 were cotransfected with various amounts of PAP encoded by a eukaryotic expression plasmid and replication competent wild-type HBV 1.3 fold over-length plasmid. On d 3 after transfection, HBsAg and HBeAg were determined by using ELISA. Levels of HBV core-associated DNA and RNA were detected by using Southern and Northern blot, respectively.
RESULTS: The inhibitory effects of PAP-S on HBsAg, HBeAg and HBV DNA were gradually enhanced with the increase of PAP concentration. When the concentration of PAP-S was 10 &mgr;g/mL, the inhibition rates of HBsAg, HBeAg and HBV DNA were 20.9%, 30.2% and 50%, respectively. After transfection of 1.0 &mgr;g and 2.0 &mgr;g plasmid pXF3H-PAP, the levels of HBV nucleocapside-associated DNA were reduced by 38.0% and 74.0% respectively, the levels of HBsAg in the media by 76.8% and 99.7% respectively, and the levels of HBeAg by 72.7% and 99.3% respectively as compared with controls. Transfection with 2 &mgr;g plasmid pXF3H-PAP reduced the levels of HBV nucleocapside-associated RNA by 69.0%.
CONCLUSION: Both PAP-S and PAP encoded by a eukaryotic expression plasmid could effectively inhibit HBV replication and antigen expression in vitro, and the inhibitory effects were dose-dependent.
Collapse
|
7
|
Abstract
Hepatitis B viruses are small enveloped DNA viruses referred to as Hepadnaviridae that cause transient or persistent (chronic) infections of the liver. This family is divided into two genera, orthohepadnavirus and avihepadnavirus, which infect mammals or birds as natural hosts, respectively. They possess a narrow host range determined by the initial steps of viral attachment and entry. Hepatitis B virus is the focus of biomedical research owing to its medical significance. Approximately 2 billion people have serological evidence of hepatitis B, and of these approximately 350 million people have chronic infections (World Health Organisation, Fact Sheet WHO/204, October 2000). Depending on viral and host factors, the outcomes of infection with hepatitis B virus vary between acute hepatitis, mild or severe chronic hepatitis or cirrhosis. Chronic infections are associated with an increased risk for the development of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Hans-Jürgen Netter
- Monash University, Department of Microbiology, Clayton Campus, Victoria 3800, Australia
| | - Shau-Feng Chang
- Industrial Technology Research Institute, Biomedical Engineering Laboratories, 300 Hsinchu, Taiwan
| | - Michael Bruns
- Heinrich-Pette-Institut für Experimentelle Virologie und Immunologie an der Universität Hamburg, 20251 Hamburg, Germany
| |
Collapse
|
8
|
Characterization of the Putative Membrane Fusion Peptides in the Envelope Proteins of Human Hepatitis B Virus. B KOREAN CHEM SOC 2007. [DOI: 10.5012/bkcs.2007.28.10.1756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Maenz C, Chang SF, Iwanski A, Bruns M. Entry of duck hepatitis B virus into primary duck liver and kidney cells after discovery of a fusogenic region within the large surface protein. J Virol 2007; 81:5014-23. [PMID: 17360753 PMCID: PMC1900202 DOI: 10.1128/jvi.02290-06] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Hepatitis B viruses exhibit a narrow host range specificity that is believed to be mediated by a domain of the large surface protein, designated L. For duck hepatitis B virus, it has been shown that the pre-S domain of L binds to carboxypeptidase D, a cellular receptor present in many species on a wide variety of cell types. Nonetheless, only hepatocytes become infected. It has remained vague which viral features determine host range specificity and organotropicity. By using chymotrypsin to treat duck hepatitis B virus, we addressed the question of whether a putative fusogenic region within the amino-terminal end of the small surface protein may participate in viral entry and possibly constitute one of the determinants of the host range of the virus. Addition of the enzyme to virions resulted in increased infectivity. Remarkably, even remnants of enzyme-treated subviral particles proved to be inhibitory to infection. A noninfectious deletion mutant devoid of the binding region for carboxypeptidase D could be rendered infectious for primary duck hepatocytes by treatment with chymotrypsin. Although because of the protease treatment mutant and wild-type viruses may have become infectious in an unspecific and receptor-independent manner, their host range specificity was not affected, as shown by the inability of the virus to replicate in different hepatoma cell lines, as well as primary chicken hepatocytes. Instead, the organotropicity of the virus could be reduced, which was demonstrated by infection of primary duck kidney cells.
Collapse
Affiliation(s)
- Claudia Maenz
- Heinrich-Pette-Institut für Experimentelle Virologie und Immunologie an der Universität Hamburg, Martinistrasse 52, D-20251 Hamburg, Germany
| | | | | | | |
Collapse
|
10
|
Huang KL, Lai YK, Lin CC, Chang JM. Inhibition of hepatitis B virus production by Boehmeria nivea root extract in HepG2 2.2.15 cells. World J Gastroenterol 2006; 12:5721-5. [PMID: 17007029 PMCID: PMC4088177 DOI: 10.3748/wjg.v12.i35.5721] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To explore the anti-hepatitis B virus (HBV) effects of Boehmeria nivea (B. nivea) root extract (BNE) by using the HepG2 2.2.15 cell model system.
METHODS: Hepatitis B surface antigen (HBsAg), hepatitis B virus e antigen (HBeAg), and HBV DNA were measured by using ELISA and real-time PCR, respectively. Viral DNA replication and RNA expression were determined by using Southern and Northern blot, respectively.
RESULTS: In HepG2 2.2.15 cells, HBeAg (60%, P < 0.01) and particle-associated HBV DNA (> 99%, P < 0.01) secretion into supernatant were significantly inhibited by BNE at a dose of 100 mg/L, whereas the HBsAg was not inhibited. With different doses of BNE, the reduced HBeAg was correlated with the inhibition of HBV DNA. The anti-HBV effect of BNE was not caused by its cytotoxicity to cells or inhibition of viral DNA replication and RNA expression.
CONCLUSION: BNE could effectively reduce the HBV production and its anti-HBV machinery might differ from the nucleoside analogues.
Collapse
MESH Headings
- Antiviral Agents/pharmacology
- Boehmeria/chemistry
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/virology
- Cell Line, Tumor
- Cytotoxins/pharmacology
- DNA Replication/drug effects
- DNA, Viral/genetics
- DNA, Viral/metabolism
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Expression Regulation, Viral/drug effects
- Hepatitis B Surface Antigens/genetics
- Hepatitis B Surface Antigens/metabolism
- Hepatitis B e Antigens/genetics
- Hepatitis B e Antigens/metabolism
- Hepatitis B virus/drug effects
- Hepatitis B virus/genetics
- Hepatitis B virus/immunology
- Hepatitis B virus/metabolism
- Humans
- Liver Neoplasms/drug therapy
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Liver Neoplasms/virology
- Plant Extracts/analysis
- Plant Extracts/pharmacology
- Plant Extracts/therapeutic use
- Plant Roots/chemistry
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Transcription, Genetic/drug effects
Collapse
Affiliation(s)
- Kai-Ling Huang
- Division of Research and Development, Development Center for Biotechnology, Xizhi City, Taipei County, Taiwan 221, China
| | | | | | | |
Collapse
|
11
|
Chojnacki J, Anderson DA, Grgacic EVL. A hydrophobic domain in the large envelope protein is essential for fusion of duck hepatitis B virus at the late endosome. J Virol 2006; 79:14945-55. [PMID: 16282493 PMCID: PMC1287569 DOI: 10.1128/jvi.79.23.14945-14955.2005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The duck hepatitis B virus (DHBV) envelope is comprised of two transmembrane (TM) proteins, the large (L) and the small (S), that assemble into virions and subviral particles. Secondary-structure predictions indicate that L and S have three alpha-helical, membrane-spanning domains, with TM1 predicted to act as the fusion peptide following endocytosis of DHBV into the hepatocyte. We used bafilomycin A1 during infection of primary duck hepatocytes to show that DHBV must be trafficked from the early to the late endosome for fusion to occur. Alanine substitution mutations in TM1 of L and S, which lowered TM1 hydrophobicity, were used to examine the role of TM1 in infectivity. The high hydrophobicity of the TM1 domain of L, but not of S, was shown to be essential for virus infection at a step downstream of receptor binding and virus internalization. Using wild-type and mutant synthetic peptides, we demonstrate that the hydrophobicity of this domain is required for the aggregation and the lipid mixing of phospholipid vesicles, supporting the role of TM1 as the fusion peptide. While lipid mixing occurred at pH 7, the kinetics of insertion of the fusion peptide was increased at pH 5, consistent with the location of DHBV in the late-endosome compartment and previous studies of the nonessential role of low pH for infectivity. Exchange of the TM1 of DHBV with that of hepatitis B virus yielded functional, infectious DHBV particles, suggesting that TM1 of all of the hepadnaviruses act similarly in the fusion mechanism.
Collapse
Affiliation(s)
- J Chojnacki
- Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Australia
| | | | | |
Collapse
|
12
|
Lu X, Weiss P, Block T. A phage with high affinity for hepatitis B surface antigen for the detection of HBsAg. J Virol Methods 2004; 119:51-4. [PMID: 15109821 DOI: 10.1016/j.jviromet.2004.02.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2003] [Revised: 01/28/2004] [Accepted: 02/17/2004] [Indexed: 11/28/2022]
Abstract
An M13 phage, called PHH2, with the ability to bind HBsAg was isolated from a coat protein III display library. The region of the HBsAg polypeptide to which PHH2 binds was determined. The HBsAg binding phage was used in an assay referred to as "PHALISA", an abbreviation for phage-linked immune-absorbent assay. This assay was at least 20-100 times more sensitive in the detection of HBV antigen than conventional enzyme-linked immune-absorbent assays (ELISA). The application of this method for screening and detection of specific protein is discussed.
Collapse
Affiliation(s)
- Xuanyong Lu
- Jefferson Center for Biomedical Research and Agricultural Medicine, Department of Biochemistry and Molecular Pharmacology, Thomas Jefferson University, 700 East Butler Avenue, Doylestown, PA 18901, USA.
| | | | | |
Collapse
|
13
|
Lu X, Block T. Study of the early steps of the Hepatitis B Virus life cycle. Int J Med Sci 2004; 1:21-33. [PMID: 15912187 PMCID: PMC1074507 DOI: 10.7150/ijms.1.21] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2004] [Accepted: 03/03/2004] [Indexed: 02/07/2023] Open
Abstract
Hepatitis B virus (HBV) is a human pathogen, causing the serious liver disease. Despite considerable advances in the understanding of the natural history of HBV disease, most of the early steps in the virus life cycle remain unclear. Virus attachment to permissive cells, fusion and penetration through cell membranes and subsequent genome release, are largely a mystery. Current knowledge on the early steps of HBV life cycle has mostly come from molecular cloning, expression of individual genes and studies of the infection of duck hepatitis B virus (DHBV) with duck primary duck hepatocytes. However, considering of the difference of the surface protein of HBV and DHBV both in the composition and sequence, the degree to which information from DHBV applies to human HBV attachment and entry may be limited. A major obstacle to the study HBV infection is the lack of a reliable and sensitive in vitro infection system. We have found that the digestion of HBV and woodchuck hepatitis virus (WHBV) by protease V8 led to the infection of HepG2 cell, a cell line generally is refractory for their infection [Lu et al. J Virol. 1996. 70. 2277-2285 . Lu et al. Virus Research. 2001. 73(1): 27-4].. Further studies showed that a serine protease inhibitor Kazal (SPIK) was over expressed in the HepG2 cells. Therefore, it is possible that to silence the over expressed SPIK and thus to reinstate the activity of indispensable cellular proteases can result in the restoration of the susceptibility of HepG2 cells for HBV infection. The establishing a stable cell line for study of the early steps of HBV life cycle by silencing of SPIK is discussed.
Collapse
|
14
|
Lu X, Tran T, Simsek E, Block TM. The alkylated imino sugar, n-(n-Nonyl)-deoxygalactonojirimycin, reduces the amount of hepatitis B virus nucleocapsid in tissue culture. J Virol 2003; 77:11933-40. [PMID: 14581530 PMCID: PMC254279 DOI: 10.1128/jvi.77.22.11933-11940.2003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
n-(n-Nonyl)-deoxygalactonojirimycin (n,n-DGJ), an alkylated imino sugar, reduces the amount of HBV DNA produced within the stably transfected HBV-producing HepG2.2.15 line in culture and is under consideration for development as a human therapeutic. n,n-DGJ does not appear to inhibit HBV DNA polymerase activity or envelop antigen production (A. Mehta, S. Carrouee, B. Conyers, R. Jordan, T. Butters, R. A. Dwek, and T. M. Block, Hepatology 33:1488-1495, 2001), and the mechanism of antiviral action is unknown. In this study, the step in the virus life cycle affected by n,n-DGJ was explored. Using Northern analysis and immunoprecipitation with anti-HBc antibody, we found that, under conditions in which cell viability was not affected but viral DNA production was substantially reduced, neither the amount of HBV transcription products nor the core polypeptide was detectably reduced. However, the pregenomic RNA, endogenous polymerase activity, and core polypeptide sedimenting in sucrose gradients with a density consistent with that of assembled nucleocapsids were significantly less in the HepG2.2.15 cells incubated with n,n-DGJ. These data suggest that n,n-DGJ either prevents the maturation of HBV nucleocapsids or destabilizes the formed nucleocapsids. Although the cellular and viral mediators of this inhibition are not known, depletion of nucleocapsid has been attributed to some other compounds as well as interferon's mechanism of anti-HBV action. The similarities and differences between this alkylated imino sugar and these other mediators are discussed.
Collapse
Affiliation(s)
- Xuanyong Lu
- Biochemistry and Molecular Pharmacology Department, Jefferson Center for Bio-Medical Research and Agricultural Medicine, Thomas Jefferson University, Doylestown, Pennsylvania 18901, USA.
| | | | | | | |
Collapse
|
15
|
Cooper A, Paran N, Shaul Y. The earliest steps in hepatitis B virus infection. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1614:89-96. [PMID: 12873769 DOI: 10.1016/s0005-2736(03)00166-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The early steps in hepatitis B virus (HBV) infection, a human hepadnavirus, initiates from cell attachment followed by entry and delivery of the genetic information to the nucleus. Despite the fact that these steps determine the virus-related pathogenesis, their molecular basis is poorly understood. Cumulative data suggest that this process can be divided to cell attachment, endocytosis, membrane fusion and post-fusion consecutive steps. These steps are likely to be regulated by the viral envelope proteins and by the cellular membrane, receptors and extracellular matrix. In the absence of animal model for HBV, the duck hepadnavirus DHBV turned out to be a fruitful animal model. Therefore data concerning the early, post-attachment steps in hepadnaviral entry are largely based on studies performed with DHBV in primary duck liver hepatocytes. These studies are now starting to illuminate the mechanisms of hepadnavirus route of cell entry and to provide some new insights on the molecular basis of the strict species specificity of hepadnavirus infection.
Collapse
Affiliation(s)
- Arik Cooper
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | |
Collapse
|