1
|
Fang C, Fu W, Liu N, Zhao H, Zhao C, Yu K, Liu C, Yin Z, Xu L, Xia N, Wang W, Cheng T. Investigating the virulence of coxsackievirus B6 strains and antiviral treatments in a neonatal murine model. Antiviral Res 2024; 221:105781. [PMID: 38097049 DOI: 10.1016/j.antiviral.2023.105781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
Coxsackievirus B6 (CVB6), a member of the human enterovirus family, is associated with severe diseases such as myocarditis in children. However, to date, only a limited number of CVB6 strains have been identified, and their characterization in animal models has been lacking. To address this gap, in this study, a neonatal murine model of CVB6 infection was established to compare the replication and virulence of three infectious-clone-derived CVB6 strains in vivo. The results showed that following challenge with a lethal dose of CVB6 strains, the neonatal mice rapidly exhibited a series of clinical signs, such as weight loss, limb paralysis, and death. For the two high-virulence CVB6 strains, histological examination revealed myocyte necrosis in skeletal and cardiac muscle, and immunohistochemistry confirmed the expression of CVB6 viral protein in these tissues. Real-time PCR assay also revealed higher viral loads in the skeletal and cardiac muscle than in other tissues at different time points post infection. Furthermore, the protective effect of passive immunization with antisera and a neutralizing monoclonal antibody against CVB6 infection was evaluated in the neonatal mouse model. This study should provide insights into the pathogenesis of CVB6 and facilitate further research in the development of vaccines and antivirals against CVBs.
Collapse
Affiliation(s)
- Changjian Fang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102, PR China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, PR China
| | - Wenkun Fu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102, PR China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, PR China
| | - Nanyi Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102, PR China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, PR China
| | - Huan Zhao
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102, PR China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, PR China
| | - Canyang Zhao
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102, PR China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, PR China
| | - Kang Yu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102, PR China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, PR China
| | - Che Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102, PR China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, PR China
| | - Zhichao Yin
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102, PR China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, PR China
| | - Longfa Xu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102, PR China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, PR China
| | - Ningshao Xia
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102, PR China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, PR China
| | - Wei Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102, PR China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, PR China.
| | - Tong Cheng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102, PR China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, PR China.
| |
Collapse
|
2
|
Choi WS, Oh S, Antigua KJC, Jeong JH, Kim BK, Yun YS, Kang DH, Min SC, Lim BK, Kim WS, Lee JH, Kim EG, Choi YK, Baek YH, Song MS. Development of a Universal Cloning System for Reverse Genetics of Human Enteroviruses. Microbiol Spectr 2023; 11:e0316722. [PMID: 36651758 PMCID: PMC9927166 DOI: 10.1128/spectrum.03167-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/13/2022] [Indexed: 01/19/2023] Open
Abstract
Enteroviruses (EVs) have been associated with several human diseases. Due to their continuous emergence and divergence, EV species have generated more than 100 types and recombinant strains, increasing the public health threat caused by them. Hence, an efficient and universal cloning system for reverse genetics (RG) of highly divergent viruses is needed to understand the molecular mechanisms of viral pathology and evolution. In this study, we generated a versatile human EV whole-genome cDNA template by enhancing the template-switching method and designing universal primers capable of simultaneous cloning and rapid amplification of cDNA ends (RACE)-PCR of EVs. Moreover, by devising strategies to overcome limitations of previous cloning methods, we simplified significant cloning steps to be completed within a day. Of note, we successfully verified our efficient universal cloning system enabling RG of a broad range of human EVs, including EV-A (EV-A71), EV-B (CV-B5, ECHO6, and ECHO30), EV-C (CV-A24), and EV-D (EV-D68), with viral titers and phenotypes comparable to those of their wild types. This rapid and straightforward universal EV cloning strategy will help us elucidate molecular characteristics, pathogenesis, and applications of a broad range of EV serotypes for further development of genetic vaccines and delivery tools using various replication systems. IMPORTANCE Due to the broad spread, incidence, and genetic divergence of enteroviruses (EVs), it has been challenging to deal with this virus that causes severe human diseases, including aseptic meningitis, myocarditis, encephalitis, and poliomyelitis. Therefore, an efficient and universal cloning system for the reverse genetics of highly divergent EVs contributes to an understanding of the viral pathology and molecular mechanisms of evolution. We have simplified the important cloning steps, hereby enhancing the template-switching method and designing universal primers, which enable the important cloning steps to be completed in a day. We have also successfully demonstrated recovery of a broad range of human EVs, including EV-A to -D types, using this advanced universal cloning system. This rapid and robust universal EV cloning strategy will aid in elucidating the molecular characteristics, pathogenesis, and applications of a wide range of EVs for further development of genetic vaccines and antiviral screening using various replication systems.
Collapse
Affiliation(s)
- Won-Suk Choi
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Chungbuk, Republic of Korea
- Microuni Co., Ltd., Cheongju, Chungbuk, Republic of Korea
| | - Sol Oh
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Chungbuk, Republic of Korea
| | - Khristine Joy C. Antigua
- Animal Health and Welfare Division, Bureau of Animal Industry (BAI), Department of Agriculture (DA), Quezon City, Philippines
| | - Ju Hwan Jeong
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Chungbuk, Republic of Korea
| | - Beom Kyu Kim
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Chungbuk, Republic of Korea
| | - Yu Soo Yun
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Chungbuk, Republic of Korea
| | - Da Hyeon Kang
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Chungbuk, Republic of Korea
| | - Seong Cheol Min
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Chungbuk, Republic of Korea
| | - Byung-Kwan Lim
- Department of Biomedical Science, Jungwon University, Goesan-gun, Chungbuk, Republic of Korea
| | - Won Seop Kim
- Department of Pediatrics, College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Ji-Hyuk Lee
- Department of Pediatrics, College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Eung-Gook Kim
- Department of Biochemistry, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Chungbuk, Republic of Korea
| | - Young Ki Choi
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Chungbuk, Republic of Korea
- Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Yun Hee Baek
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Chungbuk, Republic of Korea
| | - Min-Suk Song
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Chungbuk, Republic of Korea
- Microuni Co., Ltd., Cheongju, Chungbuk, Republic of Korea
| |
Collapse
|
3
|
Lu B, Tang Q, Wang Q, Liu X, Peng H, Zhu B, Xie L, Li Z, Wang H, Zheng Z, Wang L, Li B. Recovery Infectious Enterovirus 71 by Bac-to-Bac Expression System in vitro and in vivo. Front Microbiol 2022; 13:825111. [PMID: 35356523 PMCID: PMC8959925 DOI: 10.3389/fmicb.2022.825111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
Enterovirus 71 (EV71) is one of the most important etiological agents for hand-foot-mouth disease. Compared with coxsackievirus A16 infection, EV71 infection is often associated with severe central nervous system complications, such as encephalitis, encephalomyelitis, and acute flaccid paralysis in infants and young children. In this study, we constructed a recombinant baculovirus with T7 ribonucleic acid polymerase under the control of a cytomegalovirus promoter and simultaneously engineered the T7 promoter upstream of a full-length EV71 complementary deoxyribonucleic acid. After transduction into mammalian cells, typical cytopathic effects (CPEs) and VP1 signals were detected in cells transfected with recombinant baculovirus. Additionally, viral particles located in the cytoplasm of human rhabdomyosarcoma cells (Rd) and Vero cells were observed by electron microscope, indicating that EV71 was recovered using a Bac-to-Bac expression system in vitro. After four passages, the rescued virus had a growth curve and plaque morphology similar to those of the parental virus. Furthermore, the Vp1 gene and the protein from the mouse brain were detected by reverse transcription polymerase chain reaction and immunohistochemistry after intracerebral injection of purified recombinant baculovirus. Typical CPEs were observed after inoculation of the supernatant from mouse brain to Rd cells, revealing a reconstruction of EV71 in vivo. Thus, we established a new approach to rescue EV71 based on a baculovirus expression system in vitro and in vivo, which may provide a safe and convenient platform for fundamental research and a strategy to rescue viruses that currently lack suitable cell culture and animal models.
Collapse
Affiliation(s)
- Baojing Lu
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, The Key Laboratory of Zoonoses of High Institutions in Anhui, Department of Microbiology and Parasitology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
| | - Qi Tang
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, The Key Laboratory of Zoonoses of High Institutions in Anhui, Department of Microbiology and Parasitology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Qianyun Wang
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, The Key Laboratory of Zoonoses of High Institutions in Anhui, Department of Microbiology and Parasitology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Xuejuan Liu
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, The Key Laboratory of Zoonoses of High Institutions in Anhui, Department of Microbiology and Parasitology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Hui Peng
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, The Key Laboratory of Zoonoses of High Institutions in Anhui, Department of Microbiology and Parasitology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Binbin Zhu
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, The Key Laboratory of Zoonoses of High Institutions in Anhui, Department of Microbiology and Parasitology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Li Xie
- Department of Tuberculosis Prevention, Shenzhen Center for Chronic Disease Control, Shenzhen, China
| | - Zeng Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
| | - Hanzhong Wang
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Zhenhua Zheng
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Linding Wang
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, The Key Laboratory of Zoonoses of High Institutions in Anhui, Department of Microbiology and Parasitology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Bao Li
- The Comprehensive Lab, School of Basic Medical Science, Anhui Medical University, Hefei, China
| |
Collapse
|
4
|
Hou W, Yang L, Li S, Yu H, Xu L, He D, Chen M, He S, Ye X, Que Y, Shih JWK, Cheng T, Xia N. Construction and characterization of an infectious cDNA clone of Echovirus 25. Virus Res 2015; 205:41-4. [PMID: 26004198 DOI: 10.1016/j.virusres.2015.05.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 05/05/2015] [Accepted: 05/12/2015] [Indexed: 12/28/2022]
Abstract
Echovirus 25 (E-25) is a member of the enterovirus family and a common pathogen that induces hand, foot, and mouth disease (HFMD), meningitis, skin rash, and respiratory illnesses. In this study, we constructed and characterized an infectious full-length E-25 cDNA clone derived from the XM0297 strain, which was the first subgenotype D6 strain isolated in Xiamen, China. The 5'-Untranslated Regions (5'-UTR), P3 (3A-3B, 3D) and P3 (3C) regions of this E-25 (XM0297) strain were highly similar to EV-B77, E-16 and E-13, respectively. Our data demonstrate that the rescued E-25 viruses exhibited similar growth kinetics to the prototype virus strain XM0297. We observed the rescued viral particles using transmission electron microscope (TEM) and found them to possess an icosahedral structure, with a diameter of approximately 30 nm. The cross neutralization test demonstrated that the E-25 (XM0297) strain immune serum could not neutralize EV-A71, CV-A16 or CV-B3; likewise, the EV-A71 and CV-A16 immune serum could not neutralize E-25 (XM0297). The availability of this infectious clone will greatly enhance future virological investigations and possible vaccine development against E-25.
Collapse
Affiliation(s)
- Wangheng Hou
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University, Xiamen 361102, PR China
| | - Lisheng Yang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University, Xiamen 361102, PR China
| | - Shuxuan Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University, Xiamen 361102, PR China
| | - Hai Yu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University, Xiamen 361102, PR China
| | - Longfa Xu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University, Xiamen 361102, PR China
| | - Delei He
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University, Xiamen 361102, PR China
| | - Mengyuan Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University, Xiamen 361102, PR China
| | - Shuizhen He
- Xiamen Center for Disease Control and Prevention, Fujian, China
| | - Xiangzhong Ye
- Beijing Wantai Biological Pharmacy Enterprise Co., Ltd., Beijing 102206, PR China
| | - Yuqiong Que
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University, Xiamen 361102, PR China
| | - James Wai Kuo Shih
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University, Xiamen 361102, PR China
| | - Tong Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University, Xiamen 361102, PR China.
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University, Xiamen 361102, PR China.
| |
Collapse
|
5
|
Drescher KM, von Herrath M, Tracy S. Enteroviruses, hygiene and type 1 diabetes: toward a preventive vaccine. Rev Med Virol 2014; 25:19-32. [PMID: 25430610 DOI: 10.1002/rmv.1815] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/26/2014] [Accepted: 10/02/2014] [Indexed: 12/24/2022]
Abstract
Enteroviruses and humans have long co-existed. Although recognized in ancient times, poliomyelitis and type 1 diabetes (T1D) were exceptionally rare and not epidemic, due in large part to poor sanitation and personal hygiene which resulted in repeated exposure to fecal-oral transmitted viruses and other infectious agents and viruses and the generation of a broad protective immunity. As a function of a growing acceptance of the benefits of hygienic practices and microbiologically clean(er) water supplies, the likelihood of exposure to diverse infectious agents and viruses declined. The effort to vaccinate against poliomyelitis demonstrated that enteroviral diseases are preventable by vaccination and led to understanding how to successfully attenuate enteroviruses. Type 1 diabetes onset has been convincingly linked to infection by numerous enteroviruses including the group B coxsackieviruses (CVB), while studies of CVB infections in NOD mice have demonstrated not only a clear link between disease onset but an ability to reduce the incidence of T1D as well: CVB infections can suppress naturally occurring autoimmune T1D. We propose here that if we can harness and develop the capacity to use attenuated enteroviral strains to induce regulatory T cell populations in the host through vaccination, then a vaccine could be considered that should function to protect against both autoimmune as well as virus-triggered T1D. Such a vaccine would not only specifically protect from certain enterovirus types but more importantly, also reset the organism's regulatory rheostat making the further development of pathogenic autoimmunity less likely.
Collapse
Affiliation(s)
- Kristen M Drescher
- Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, Omaha, NE, USA
| | | | | |
Collapse
|
6
|
Pabbaraju K, Wong S, Chan ENY, Tellier R. Genetic characterization of a Coxsackie A9 virus associated with aseptic meningitis in Alberta, Canada in 2010. Virol J 2013; 10:93. [PMID: 23521862 PMCID: PMC3620579 DOI: 10.1186/1743-422x-10-93] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 03/05/2013] [Indexed: 11/18/2022] Open
Abstract
Background An unusually high incidence of aseptic meningitis caused by enteroviruses was noted in Alberta, Canada between March and October 2010. Sequence based typing was performed on the enterovirus positive samples to gain a better understanding of the molecular characteristics of the Coxsackie A9 (CVA-9) strain responsible for most cases in this outbreak. Methods Molecular typing was performed by amplification and sequencing of the VP2 region. The genomic sequence of one of the 2010 outbreak isolates was compared to a CVA-9 isolate from 2003 and the prototype sequence to study genetic drift and recombination. Results Of the 4323 samples tested, 213 were positive for enteroviruses (4.93%). The majority of the positives were detected in CSF samples (n = 157, 73.71%) and 81.94% of the sequenced isolates were typed as CVA-9. The sequenced CVA-9 positives were predominantly (94.16%) detected in patients ranging in age from 15 to 29 years and the peak months for detection were between March and October. Full genome sequence comparisons revealed that the CVA-9 viruses isolated in Alberta in 2003 and 2010 were highly homologous to the prototype CVA-9 in the structural VP1, VP2 and VP3 regions but divergent in the VP4, non-structural and non-coding regions. Conclusion The increase in cases of aseptic meningitis was associated with enterovirus CVA-9. Sequence divergence between the prototype strain of CVA-9 and the Alberta isolates suggests genetic drifting and/or recombination events, however the sequence was conserved in the antigenic regions determined by the VP1, VP2 and VP3 genes. These results suggest that the increase in CVA-9 cases likely did not result from the emergence of a radically different immune escape mutant.
Collapse
Affiliation(s)
- Kanti Pabbaraju
- Provincial Laboratory for Public Health, Calgary, Alberta, T2N 4W4, Canada
| | | | | | | |
Collapse
|
7
|
Liu F, Liu Q, Cai Y, Leng Q, Huang Z. Construction and characterization of an infectious clone of coxsackievirus A16. Virol J 2011; 8:534. [PMID: 22165961 PMCID: PMC3283524 DOI: 10.1186/1743-422x-8-534] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2011] [Accepted: 12/13/2011] [Indexed: 11/23/2022] Open
Abstract
Background Coxsackievirus A16 (CVA16) is a member of the Enterovirus genus of the Picornaviridae family and it is a major etiological agent of hand, foot, and mouth disease (HFMD), which is a common illness affecting children. CVA16 possesses a single-stranded positive-sense RNA genome containing approximately 7410 bases. Current understanding of the replication, structure and virulence determinants of CVA16 is very limited, partly due to difficulties in directly manipulating its RNA genome. Results Two overlapping cDNA fragments were amplified by RT-PCR from the genome of the shzh05-1 strain of CVA16, encompassing the nucleotide regions 1-4392 and 4381-7410, respectively. These two fragments were then joined via a native XbaI site to yield a full-length cDNA. A T7 promoter and poly(A) tail were added to the 5' and 3' ends, respectively, forming a full CVA16 cDNA clone. Transfection of RD cells in vitro with RNA transcribed directly from the cDNA clone allowed the recovery of infectious virus in culture. The CVA16 virus recovered from these cultures was functionally and genetically identical to its parent strain. Conclusions We report the first construction and characterization of an infectious cDNA clone of CVA16. The availability of this infectious clone will greatly enhance future virological investigations and vaccine development for CVA16.
Collapse
Affiliation(s)
- Fei Liu
- Key Laboratory of Molecular Virology & Immunology, Institute Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200025, China
| | | | | | | | | |
Collapse
|
8
|
Han JF, Cao RY, Tian X, Yu M, Qin ED, Qin CF. Producing infectious enterovirus type 71 in a rapid strategy. Virol J 2010; 7:116. [PMID: 20525351 PMCID: PMC2892457 DOI: 10.1186/1743-422x-7-116] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Accepted: 06/04/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Enterovirus 71 (EV71) is an etiologic agent of hand-foot-and-mouth disease (HFMD), and recent HFMD epidemics worldwide have been associated with a severe form of brainstem encephalitis associated with pulmonary edema and high case-fatality rates. EV71 contains a positive-sense single-stranded genome RNA of approximately 7400 bp in length which encodes a polyprotein with a single open reading frame (ORF), which is flanked by untranslated regions at both the 5' and 3' ends. RESULTS A long distance RT-PCR assay was developed to amplify the full length genome cDNA of EV71 by using specific primes carrying a SP6 promoter. Then the in vitro synthesized RNA transcripts from the RT-PCR amplicons were then transfected into RD cells to produce the rescued virus. The rescued virus was further characterized by RT-PCR and indirect fluorescent-antibody (IFA) assay in comparison with the wild type virus. The rescued viruses were infectious on RD cells and neurovirulent when intracerebrally injected into suckling mice. CONCLUSIONS Thus, we established a rapid method to produce the infectious full length cDNA of EV71 directly from RNA preparations and specific mutations can be easily engineered into the rescued enterovirus genome by this method.
Collapse
Affiliation(s)
- Jian-Feng Han
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | | | | | | | | | | |
Collapse
|
9
|
Bai X, Li P, Cao Y, Li D, Lu Z, Guo J, Sun D, Zheng H, Sun P, Liu X, Luo J, Liu Z. Engineering infectious foot-and-mouth disease virus in vivo from a full-length genomic cDNA clone of the A/AKT/58 strain. ACTA ACUST UNITED AC 2009; 52:155-62. [PMID: 19277527 DOI: 10.1007/s11427-009-0007-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Accepted: 06/16/2008] [Indexed: 10/21/2022]
Abstract
Two full-length genomic cDNA clones, pTA/FMDV and pCA/FMDV, were constructed that contained three point-mutants [A174G and A308G (not present in pTA/FMDV); T1029G] in the genome compared with the wild type A/AKT/58 strain of foot-and-mouth disease virus. These two viruses were rescued by co-transfection of pCA/FMDV with pCT7RNAP, which can express T7 RNA polymerase in BHK-21 cell-lines, or by transfection of the in vitro transcribed RNA. Their biological properties were analyzed for their antigenicity, virulence in suckling-mice (LD50) and growth kinetics in BHK-21 cells. The in vivo rescued viruses showed high pathogenicity for 3-day-old unweaned mice (LD50=10(-7.5)). However, the in vitro transcribed RNA derived from pTA/FMDV had lower pathogenicity for suckling-mice (LD50=10(-6)), and the in vivo transcribed RNA recovered from pCA/FMDV co-transfected with pCT7RNAP showed no significant differences from the wild type virus. These data showed that recovery of the infectious foot-and-mouth disease virus directly from the use of in vivo techniques was better than from in vitro methods. Furthermore, the reverse genetic procedure technique was simplified to a faster one-step procedure based on co-transfection with pCT7RNAP. These results suggest that in vivo RNA transcripts may be more valuable for engineering recombinant foot-and-mouth disease virus than in vitro RNA transcripts, and may contribute to further understanding of the biological properties, such as replication, maturation and quasispecies, of the foot-and-mouth disease virus.
Collapse
Affiliation(s)
- XingWen Bai
- Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Fan X, Xu Y, Di Bisceglie AM. Efficient amplification and cloning of near full-length hepatitis C virus genome from clinical samples. Biochem Biophys Res Commun 2006; 346:1163-72. [PMID: 16793008 PMCID: PMC7092855 DOI: 10.1016/j.bbrc.2006.06.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2006] [Accepted: 06/02/2006] [Indexed: 11/27/2022]
Abstract
Long RT-PCR (LRP) amplification of RNA templates is sometimes difficult compared to long PCR of DNA templates. Among RNA templates, hepatitis C virus (HCV) represents an excellent example to challenge the potential of LRP technology due to its extensive secondary structures and its difficulty to be readily cultured in vitro. The only source for viral genome amplification is clinical samples in which HCV is usually present at low titers. We have created a comprehensive optimization protocol that allows robust amplification of a 9.1 kb fragment of HCV, followed by efficient cloning into a novel vector. Detailed analyses indicate the lack of potential LRP-mediated recombination and the preservation of viral diversity. Thus, our LRP protocol could be applied for the amplification of other difficult RNA templates and may facilitate RNA virus research such as linked viral mutations and reverse genetics.
Collapse
Affiliation(s)
- Xiaofeng Fan
- Division of Gastroenterology and Hepatology, Saint Louis University Liver Center, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, MO 63110, USA.
| | | | | |
Collapse
|
11
|
Draker R, Roper RL, Petric M, Tellier R. The complete sequence of the bovine torovirus genome. Virus Res 2005; 115:56-68. [PMID: 16137782 PMCID: PMC7114287 DOI: 10.1016/j.virusres.2005.07.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2005] [Revised: 07/05/2005] [Accepted: 07/12/2005] [Indexed: 12/15/2022]
Abstract
Viruses in the family Coronaviridae have elicited new interest, with the outbreaks caused by SARS-HCoV in 2003 and the recent discovery of a new human coronavirus, HCoV-NL63. The genus Torovirus, within the family Coronaviridae, is less well characterized, in part because toroviruses cannot yet be grown in cell culture (except for the Berne virus). In this study, we determined the sequence of the complete genome of Breda-1 (BoTV-1), a bovine torovirus. This is the first complete torovirus genome sequence to be reported. BoTV-1 RNA was amplified using long RT-PCR and the amplicons sequenced. The genome has a length of 28.475 kb and consisted mainly of the replicase gene (∼20.2 kb) which contains two large overlapping ORFs, ORF1a and ORF1b, encoding polyproteins pp1a and pp1b, respectively. Sequence analysis identified conserved domains within the predicted sequences of pp1a and pp1b. Sequence alignments and protein secondary structure prediction data suggest the presence of a 3C-like serine protease domain with similarity to the arterivirus 3C-like serine protease and a single papain-like cysteine protease domain with similarity to the picornavirus leader protease. The ADRP (APPR-1″) domain – unique to the Coronaviridae – was also located in BoTV pp1a. In addition, several hydrophobic domains were identified that are typical of a nidovirus replicase. Within the pp1b sequence the polymerase and helicase domains were identified, as well as sequences predicted to be involved in ribosomal frameshifting, including the conserved slippery sequence UUUAAAC and two potential pseudoknot structures.
Collapse
Affiliation(s)
- Ryan Draker
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ont., Canada
| | - Rachel L. Roper
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, NC, USA
| | - Martin Petric
- British Columbia Center for Disease Control, Vancouver, BC, Canada
| | - Raymond Tellier
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ont., Canada
- Division of Microbiology, The Hospital for Sick Children, 555 University Avenue, Toronto, Ont., Canada M5G 1X8
- Corresponding author. Tel.: +1 416 813 6592; fax: +1 416 813 6257.
| |
Collapse
|
12
|
Andersson P, Alm S, Edman K, Lindberg AM. A novel and rapid method to quantify cytolytic replication of picornaviruses in cell culture. J Virol Methods 2005; 130:117-23. [PMID: 16102849 DOI: 10.1016/j.jviromet.2005.06.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2005] [Revised: 06/16/2005] [Accepted: 06/23/2005] [Indexed: 10/25/2022]
Abstract
Determining viral titers is a key issue in a wide variety of studies regarding different aspects of virology. The standard methods used for determining picornavirus titers are endpoint titration assay and plaque assay, both time consuming and laborious. The method described uses the tetrazolium salt MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium-bromide) that is reduced to formazane by cellular dehydrogenase, genes shown to be down-regulated during picornavirus infection. The amount formazane produced correlates with the viral titers obtained and can easily be measured using an ELISA plate reader. The colorimetric method has been evaluated using virus types from different genera of the Picornaviridae family. The MTT method reduces the time spent on determining the viral titers and still maintains a reliable accuracy.
Collapse
Affiliation(s)
- Per Andersson
- Department of Chemistry and Biomedical Sciences, University of Kalmar, Smalandsgatan 24, S-39182 Kalmar, Sweden
| | | | | | | |
Collapse
|
13
|
Lukashev AN, Lashkevich VA, Koroleva GA, Ilonen J, Hinkkanen AE. Recombination in uveitis-causing enterovirus strains. J Gen Virol 2004; 85:463-470. [PMID: 14769904 DOI: 10.1099/vir.0.19469-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The complete nucleotide sequences of three human echovirus (EV) 11 strains and one EV19 strain, all of which caused outbreaks of enterovirus uveitis (EU), a new infant disease first identified in 1980 in Siberia, were determined. One EV11 strain which caused an outbreak of sepsis-like disease in Hungary was also sequenced. All four EV11 strains were mosaic recombinants of the prototype EV11 strain Gregory, with their non-structural coding regions and 5′ NTRs being more similar to other prototype enteroviruses (EV1, EV9). However, this finding is probably a feature of all circulating enterovirus strains and may not be related to their altered virulence. A full genome sequence comparison of the three subtypes of EU-causing strains excludes the role of recent recombination in their emergence, and points to their independent emergence.
Collapse
Affiliation(s)
- A N Lukashev
- Department of Biochemistry and Pharmacy, Åbo Akademi University, PO Box 66, FIN-20521 Turku, Finland
- Institute of Poliomyelitis and Viral Encephalitides RAMS, Moscow 142782, Russia
| | - V A Lashkevich
- Institute of Poliomyelitis and Viral Encephalitides RAMS, Moscow 142782, Russia
| | - G A Koroleva
- Institute of Poliomyelitis and Viral Encephalitides RAMS, Moscow 142782, Russia
| | - J Ilonen
- Department of Virology, University of Turku, Kiinamyllynkatu 13, FIN-20520 Turku, Finland
| | - A E Hinkkanen
- Department of Biochemistry and Pharmacy, Åbo Akademi University, PO Box 66, FIN-20521 Turku, Finland
| |
Collapse
|
14
|
Lukashev AN, Lashkevich VA, Ivanova OE, Koroleva GA, Hinkkanen AE, Ilonen J. Recombination in circulating enteroviruses. J Virol 2003; 77:10423-31. [PMID: 12970427 PMCID: PMC228507 DOI: 10.1128/jvi.77.19.10423-10431.2003] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Recombination is a well-known phenomenon for enteroviruses. However, the actual extent of recombination in circulating nonpoliovirus enteroviruses is not known. We have analyzed the phylogenetic relationships in four genome regions, VP1, 2A, 3D, and the 5' nontranslated region (NTR), of 40 enterovirus B strains (coxsackie B viruses and echoviruses) representing 11 serotypes and isolated in 1981 to 2002 in the former Soviet Union states. In the VP1 region, strains of the same serotype expectedly grouped with their prototype strain. However, as early as the 2A region, phylogenetic grouping differed significantly from that in the VP1 region and indicated recombination within the 2A region. Moreover, in the 5' NTR and 3D region, only 1 strain of 40 grouped with its prototype strain. Instead, we observed a major group in both the 5' NTR and the 3D region that united most (in the 5' NTR) or all (in the 3D region) of the strains studied, regardless of the serotype. Subdivision within that major group in the 3D region correlated with the time of virus isolation but not with the serotype. Therefore, we conclude that a majority, if not all, circulating enterovirus B strains are recombinants relative to the prototype strains, isolated mostly in the 1950s. Moreover, the ubiquitous recombination has allowed different regions of the enterovirus genome to evolve independently. Thus, a novel model of enterovirus genetics is proposed: the enterovirus genome is a stable symbiosis of genes, and enterovirus species consist of a finite set of capsid genes responsible for different serotypes and a continuum of nonstructural protein genes that seem to evolve in a relatively independent manner.
Collapse
|
15
|
Martino TA, Petric M, Weingartl H, Bergelson JM, Opavsky MA, Richardson CD, Modlin JF, Finberg RW, Kain KC, Willis N, Gauntt CJ, Liu PP. The coxsackie-adenovirus receptor (CAR) is used by reference strains and clinical isolates representing all six serotypes of coxsackievirus group B and by swine vesicular disease virus. Virology 2000; 271:99-108. [PMID: 10814575 DOI: 10.1006/viro.2000.0324] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Group B coxsackieviruses are etiologically linked to many human diseases, and cell surface receptors are postulated to play an important role in mediating their pathogenesis. The coxsackievirus adenovirus receptor (CAR) has been shown to function as a receptor for selected strains of coxsackievirus group B (CVB) serotypes 3, 4, and 5 and is postulated to serve as a receptor for all six serotypes. In this study, we demonstrate that CAR can serve as a receptor for laboratory reference strains and clinical isolates of all six CVB serotypes. Infection of CHO cells expressing human CAR results in a 1000-fold increase in CVB progeny virus titer compared to mock transfected cells. CAR was shown to be a functional receptor for swine vesicular disease virus (SVDV), as CHO-CAR cells but not CHO mock transfected controls were susceptible to SVDV infection, produced progeny SVDV, and developed cytopathic effects. Moreover, SVDV infection could be specifically blocked by monoclonal antibody to CAR (RmcB). SVDV infection of HeLa cells was also inhibited by an anti-CD55 MAb, suggesting that this virus, like some CVB, may interact with CD55 (decay accelerating factor) in addition to CAR. Finally, pretreatment of CVB or SVDV with soluble CAR effectively blocks virus infection of HeLa cell monolayers.
Collapse
Affiliation(s)
- T A Martino
- Heart and Stroke/Richard Lewar Center of Excellence, University of Toronto, Toronto General Hospital, 200 Elizabeth Street, Toronto, Ontario, M5G 2C4, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|