1
|
Chen Y, Chu R, Ma K, Jiang L, Yang Q, Li Z, Hu M, Guo Q, Lu F, Wei Y, Zhang Y, Tong Y. Study of sulfoglycolysis in Enterococcus gilvus reveals a widespread bifurcated pathway for dihydroxypropanesulfonate degradation. iScience 2024; 27:111010. [PMID: 39429772 PMCID: PMC11489063 DOI: 10.1016/j.isci.2024.111010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/30/2024] [Accepted: 09/18/2024] [Indexed: 10/22/2024] Open
Abstract
Sulfoquinovose (SQ), the polar head group of sulfolipids essential for photosynthesis, is naturally abundant. Anaerobic Firmicutes degrade SQ through a transaldolase-dependent (sulfo-TAL) pathway, producing dihydroxypropanesulfonate (DHPS). Some bacteria extend this pathway by the sequential action of HpfG and HpfD converting DHPS to 3-hydroxypropanesulfonate (3-HPS) via 3-sulfopropionaldehyde (3-SPA). Here, we report a variant sulfo-TAL pathway in Enterococcus gilvus, involving additional enzymes, a NAD+-dependent 3-SPA dehydrogenase HpfX, and a 3-sulfopropionyl-CoA synthetase HpfYZ, which oxidize 3-SPA to 3-sulfopropionate (3-SP) coupled with ATP formation. E. gilvus grown on SQ or DHPS produced a mixture of 3-HPS and 3-SP, indicating the bifurcated pathway. Similar genes are found in various Firmicutes, including gut bacteria. Importantly, 3-SP, but not 3-HPS, can serve as a respiratory terminal electron acceptor for Bilophila wadsworthia, a common intestinal pathobiont, resulting in the production of toxic H2S. This research expands our understanding of sulfonate metabolism and reveals cross-feeding in the anaerobic microbiome.
Collapse
Affiliation(s)
- Yiwei Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruoxing Chu
- New Cornerstone Science Laboratory, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Kailiang Ma
- New Cornerstone Science Laboratory, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Li Jiang
- New Cornerstone Science Laboratory, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Qiaoyu Yang
- New Cornerstone Science Laboratory, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Zhi Li
- New Cornerstone Science Laboratory, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Min Hu
- New Cornerstone Science Laboratory, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Qiuyi Guo
- New Cornerstone Science Laboratory, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Fengxia Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yifeng Wei
- Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A∗STAR), Singapore 138669, Singapore
| | - Yan Zhang
- New Cornerstone Science Laboratory, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Carbon-Negative Synthetic Biology for Biomaterial Production from CO2 (CNSB), Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore 138602, Singapore
| | - Yang Tong
- New Cornerstone Science Laboratory, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
2
|
Morimoto Y, Uesaka K, Fujita Y, Yamamoto H. A nitrogenase-like enzyme is involved in the novel anaerobic assimilation pathway of a sulfonate, isethionate, in the photosynthetic bacterium Rhodobacter capsulatus. mSphere 2024; 9:e0049824. [PMID: 39191391 PMCID: PMC11423573 DOI: 10.1128/msphere.00498-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 07/09/2024] [Indexed: 08/29/2024] Open
Abstract
Prokaryotes contribute to the global sulfur cycle by using diverse sulfur compounds as sulfur sources or electron acceptors. In this study, we report that a nitrogenase-like enzyme (NFL) and a radical SAM enzyme (RSE) are involved in the novel anaerobic assimilation pathway of a sulfonate, isethionate, in the photosynthetic bacterium Rhodobacter capsulatus. The nflHDK genes for NFL are localized at a locus containing genes for known sulfonate metabolism in the genome. A gene nflB encoding an RSE is present just upstream of nflH, forming a small gene cluster nflBHDK. Mutants lacking any nflBHDK genes are incapable of growing with isethionate as the sole sulfur source under anaerobic photosynthetic conditions, indicating that all four NflBHDK proteins are essential for the isethionate assimilation pathway. Heterologous expression of the islAB genes encoding a known isethionate lyase that degrades isethionate to sulfite and acetaldehyde restored the isethionate-dependent growth of a mutant lacking nflDK, indicating that the enzyme encoding nflBHDK is involved in an isethionate assimilation reaction to release sulfite. Furthermore, the heterologous expression of nflBHDK and ssuCAB encoding an isethionate transporter in the closely related species R. sphaeroides, which does not have nflBHDK and cannot grow with isethionate as the sole sulfur source, conferred isethionate-dependent growth ability to this species. We propose to rename nflBHDK as isrBHDK (isethionate reductase). The isrBHDK genes are widely distributed among various prokaryote phyla. Discovery of the isethionate assimilation pathway by IsrBHDK provides a missing piece for the anaerobic sulfur cycle and for understanding the evolution of ancient sulfur metabolism.IMPORTANCENitrogenase is an important enzyme found in prokaryotes that reduces atmospheric nitrogen to ammonia and plays a fundamental role in the global nitrogen cycle. It has been noted that nitrogenase-like enzymes (NFLs), which share an evolutionary origin with nitrogenase, have evolved to catalyze diverse reactions such as chlorophyll biosynthesis (photosynthesis), coenzyme F430 biosynthesis (methanogenesis), and methionine biosynthesis. In this study, we discovered that an NFL with unknown function in the photosynthetic bacterium Rhodobacter capsulatus is a novel isethionate reductase (Isr), which catalyzes the assimilatory degradation of isethionate, a sulfonate, releasing sulfite used as the sulfur source under anaerobic conditions. Isr is widely distributed among various bacterial phyla, including intestinal bacteria, and is presumed to play an important role in sulfur metabolism in anaerobic environments such as animal guts and microbial mats. This finding provides a clue for understanding ancient metabolism that evolved under anaerobic environments at the dawn of life.
Collapse
Affiliation(s)
- Yoshiki Morimoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Kazuma Uesaka
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Yuichi Fujita
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Haruki Yamamoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
3
|
Krysenko S, Wohlleben W. Role of Carbon, Nitrogen, Phosphate and Sulfur Metabolism in Secondary Metabolism Precursor Supply in Streptomyces spp. Microorganisms 2024; 12:1571. [PMID: 39203413 PMCID: PMC11356490 DOI: 10.3390/microorganisms12081571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 09/03/2024] Open
Abstract
The natural soil environment of Streptomyces is characterized by variations in the availability of nitrogen, carbon, phosphate and sulfur, leading to complex primary and secondary metabolisms. Their remarkable ability to adapt to fluctuating nutrient conditions is possible through the utilization of a large amount of substrates by diverse intracellular and extracellular enzymes. Thus, Streptomyces fulfill an important ecological role in soil environments, metabolizing the remains of other organisms. In order to survive under changing conditions in their natural habitats, they have the possibility to fall back on specialized enzymes to utilize diverse nutrients and supply compounds from primary metabolism as precursors for secondary metabolite production. We aimed to summarize the knowledge on the C-, N-, P- and S-metabolisms in the genus Streptomyces as a source of building blocks for the production of antibiotics and other relevant compounds.
Collapse
Affiliation(s)
- Sergii Krysenko
- Department of Microbiology/Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany;
- Cluster of Excellence ‘Controlling Microbes to Fight Infections’, University of Tübingen, 72076 Tübingen, Germany
| | - Wolfgang Wohlleben
- Department of Microbiology/Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany;
- Cluster of Excellence ‘Controlling Microbes to Fight Infections’, University of Tübingen, 72076 Tübingen, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
4
|
Hu M, Scott C. Toward the development of a molecular toolkit for the microbial remediation of per-and polyfluoroalkyl substances. Appl Environ Microbiol 2024; 90:e0015724. [PMID: 38477530 PMCID: PMC11022551 DOI: 10.1128/aem.00157-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) are highly fluorinated synthetic organic compounds that have been used extensively in various industries owing to their unique properties. The PFAS family encompasses diverse classes, with only a fraction being commercially relevant. These substances are found in the environment, including in water sources, soil, and wildlife, leading to human exposure and fueling concerns about potential human health impacts. Although PFAS degradation is challenging, biodegradation offers a promising, eco-friendly solution. Biodegradation has been effective for a variety of organic contaminants but is yet to be successful for PFAS due to a paucity of identified microbial species capable of transforming these compounds. Recent studies have investigated PFAS biotransformation and fluoride release; however, the number of specific microorganisms and enzymes with demonstrable activity with PFAS remains limited. This review discusses enzymes that could be used in PFAS metabolism, including haloacid dehalogenases, reductive dehalogenases, cytochromes P450, alkane and butane monooxygenases, peroxidases, laccases, desulfonases, and the mechanisms of microbial resistance to intracellular fluoride. Finally, we emphasize the potential of enzyme and microbial engineering to advance PFAS degradation strategies and provide insights for future research in this field.
Collapse
Affiliation(s)
- Miao Hu
- CSIRO Environment, Black Mountain Science and Innovation Park, Canberra, ACT, Australia
| | - Colin Scott
- CSIRO Environment, Black Mountain Science and Innovation Park, Canberra, ACT, Australia
| |
Collapse
|
5
|
Williams TJ, Allen MA, Ray AE, Benaud N, Chelliah DS, Albanese D, Donati C, Selbmann L, Coleine C, Ferrari BC. Novel endolithic bacteria of phylum Chloroflexota reveal a myriad of potential survival strategies in the Antarctic desert. Appl Environ Microbiol 2024; 90:e0226423. [PMID: 38372512 PMCID: PMC10952385 DOI: 10.1128/aem.02264-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/02/2024] [Indexed: 02/20/2024] Open
Abstract
The ice-free McMurdo Dry Valleys of Antarctica are dominated by nutrient-poor mineral soil and rocky outcrops. The principal habitat for microorganisms is within rocks (endolithic). In this environment, microorganisms are provided with protection against sub-zero temperatures, rapid thermal fluctuations, extreme dryness, and ultraviolet and solar radiation. Endolithic communities include lichen, algae, fungi, and a diverse array of bacteria. Chloroflexota is among the most abundant bacterial phyla present in these communities. Among the Chloroflexota are four novel classes of bacteria, here named Candidatus Spiritibacteria class. nov. (=UBA5177), Candidatus Martimicrobia class. nov. (=UBA4733), Candidatus Tarhunnaeia class. nov. (=UBA6077), and Candidatus Uliximicrobia class. nov. (=UBA2235). We retrieved 17 high-quality metagenome-assembled genomes (MAGs) that represent these four classes. Based on genome predictions, all these bacteria are inferred to be aerobic heterotrophs that encode enzymes for the catabolism of diverse sugars. These and other organic substrates are likely derived from lichen, algae, and fungi, as metabolites (including photosynthate), cell wall components, and extracellular matrix components. The majority of MAGs encode the capacity for trace gas oxidation using high-affinity uptake hydrogenases, which could provide energy and metabolic water required for survival and persistence. Furthermore, some MAGs encode the capacity to couple the energy generated from H2 and CO oxidation to support carbon fixation (atmospheric chemosynthesis). All encode mechanisms for the detoxification and efflux of heavy metals. Certain MAGs encode features that indicate possible interactions with other organisms, such as Tc-type toxin complexes, hemolysins, and macroglobulins.IMPORTANCEThe ice-free McMurdo Dry Valleys of Antarctica are the coldest and most hyperarid desert on Earth. It is, therefore, the closest analog to the surface of the planet Mars. Bacteria and other microorganisms survive by inhabiting airspaces within rocks (endolithic). We identify four novel classes of phylum Chloroflexota, and, based on interrogation of 17 metagenome-assembled genomes, we predict specific metabolic and physiological adaptations that facilitate the survival of these bacteria in this harsh environment-including oxidation of trace gases and the utilization of nutrients (including sugars) derived from lichen, algae, and fungi. We propose that such adaptations allow these endolithic bacteria to eke out an existence in this cold and extremely dry habitat.
Collapse
Affiliation(s)
- Timothy J Williams
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - Michelle A Allen
- School of Biological, Earth and Environmental Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - Angelique E Ray
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - Nicole Benaud
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - Devan S Chelliah
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - Davide Albanese
- Research and Innovation Center, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Claudio Donati
- Research and Innovation Center, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Laura Selbmann
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell'Università, Viterbo, Italy
- Mycological Section, Italian Antarctic National Museum (MNA), Genova, Italy
| | - Claudia Coleine
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell'Università, Viterbo, Italy
| | - Belinda C Ferrari
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
6
|
McGachy L, Sedlak DL. From Theory to Practice: Leveraging Chemical Principles To Improve the Performance of Peroxydisulfate-Based In Situ Chemical Oxidation of Organic Contaminants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17-32. [PMID: 38110187 PMCID: PMC10785823 DOI: 10.1021/acs.est.3c07409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/20/2023]
Abstract
In situ chemical oxidation (ISCO) using peroxydisulfate has become more popular in the remediation of soils and shallow groundwater contaminated with organic chemicals. Researchers have studied the chemistry of peroxydisulfate and the oxidative species produced upon its decomposition (i.e., sulfate radical and hydroxyl radical) for over five decades, describing reaction kinetics, mechanisms, and product formation in great detail. However, if this information is to be useful to practitioners seeking to optimize the use of peroxydisulfate in the remediation of hazardous waste sites, the relevant conditions of high oxidant concentrations and the presence of minerals and solutes that affect radical chain reactions must be considered. The objectives of this Review are to provide insights into the chemistry of peroxydisulfate-based ISCO that can enable more efficient operation of these systems and to identify research needed to improve understanding of system performance. By gaining a deeper understanding of the underlying chemistry of these complex systems, it may be possible to improve the design and operation of peroxydisulfate-based ISCO remediation systems.
Collapse
Affiliation(s)
- Lenka McGachy
- Department
of Environmental Chemistry, University of
Chemistry and Technology Prague, Technická 5, 16628 Prague, Czech
Republic
| | - David L. Sedlak
- Department
of Civil and Environmental Engineering, University of California, Berkeley, California 94720, United States
| |
Collapse
|
7
|
Zhang N, Jin CZ, Zhuo Y, Li T, Jin FJ, Lee HG, Jin L. Genetic diversity into a novel free-living species of Bradyrhizobium from contaminated freshwater sediment. Front Microbiol 2023; 14:1295854. [PMID: 38075887 PMCID: PMC10708946 DOI: 10.3389/fmicb.2023.1295854] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 10/30/2023] [Indexed: 10/10/2024] Open
Abstract
A free-living Bradyrhizobium strain isolated from a contaminated sediment sample collected at a water depth of 4 m from the Hongze Lake in China was characterized. Phylogenetic investigation of the 16S rRNA gene, concatenated housekeeping gene sequences, and phylogenomic analysis placed this strain in a lineage distinct from all previously described Bradyrhizobium species. The sequence similarities of the concatenated housekeeping genes support its distinctiveness with the type strains of the named species. The complete genome of strain S12-14-2 consists of a single chromosome of size 7.3M. The strain lacks both a symbiosis island and important nodulation genes. Based on the data presented here, the strain represents a new species, for which the name Bradyrhizobium roseus sp. nov. is proposed for the type strain S12-14-2T. Several functional differences between the isolate and other published genomes indicate that the genus Bradyrhizobium is extremely heterogeneous and has functions within the community, such as non-symbiotic nitrogen fixation. Functional denitrification and nitrogen fixation genes were identified on the genomes of strain S12-14-2T. Genes encoding proteins for sulfur oxidation, sulfonate transport, phosphonate degradation, and phosphonate production were also identified. Lastly, the B. roseus genome contained genes encoding ribulose 1,5-bisphosphate carboxylase/oxygenase, a trait that presumably enables autotrophic flexibility under varying environmental conditions. This study provides insights into the dynamics of a genome that could enhance our understanding of the metabolism and evolutionary characteristics of the genus Bradyrhizobium and a new genetic framework for future research.
Collapse
Affiliation(s)
- Naxue Zhang
- College of Ecology and Environment, Nanjing Forestry University, Nanjing, China
| | - Chun-Zhi Jin
- Cell Factory Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Ye Zhuo
- Cell Factory Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Taihua Li
- College of Ecology and Environment, Nanjing Forestry University, Nanjing, China
| | - Feng-Jie Jin
- College of Ecology and Environment, Nanjing Forestry University, Nanjing, China
| | - Hyung-Gwan Lee
- Cell Factory Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Long Jin
- College of Ecology and Environment, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
8
|
Ye Z, Wei Y, Jiang L, Zhang Y. Oxygenolytic sulfoquinovose degradation by an iron-dependent alkanesulfonate dioxygenase. iScience 2023; 26:107803. [PMID: 37731605 PMCID: PMC10507154 DOI: 10.1016/j.isci.2023.107803] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/05/2023] [Accepted: 08/29/2023] [Indexed: 09/22/2023] Open
Abstract
Sulfoquinovose (6-deoxy-6-sulfo-D-glucose, SQ), the polar head group of sulfolipids in plants, is abundant in nature. Many bacteria degrade SQ through pathways termed sulfoglycolysis producing C3 or C2 sulfonates, while certain bacteria degrade SQ through direct oxygenolytic cleavage of the SQ C-S bond, catalyzed by a flavin-dependent alkanesulfonate monooxygenase (sulfo-ASMO pathway). Here we report bioinformatics and biochemical studies revealing an alternative mechanism for oxygenolytic cleavage of the SQ C-S bond, catalyzed by an iron and α-ketoglutarate-dependent alkanesulfonate dioxygenase (SqoD, sulfo-ASDO pathway). In both the ASMO and ASDO pathways, the product 6-dehydroglucose is reduced to glucose by NAD(P)H-dependent SquF. Marinomonas ushuaiensis, a marine bacterium, which harbors the sulfo-ASDO gene cluster is shown utilizing SQ as a carbon source for growth, accompanied by increased transcription of SqoD. The sulfo-ASDO pathway highlights the range of microbial strategies for degradation of this ubiquitous sulfo-sugar, with potential implications for sulfur recycling in different biological environments.
Collapse
Affiliation(s)
- Zonghua Ye
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Department of Chemistry, Tianjin University, Tianjin 300072, P.R.China
| | - Yifeng Wei
- Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Li Jiang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Department of Chemistry, Tianjin University, Tianjin 300072, P.R.China
| | - Yan Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Department of Chemistry, Tianjin University, Tianjin 300072, P.R.China
| |
Collapse
|
9
|
Aloh CH, Zeczycki TN, Ellis HR. Oligomeric Changes Regulate Flavin Transfer in Two-Component FMN Reductases Involved in Sulfur Metabolism. Biochemistry 2023; 62:2751-2762. [PMID: 37651343 DOI: 10.1021/acs.biochem.3c00361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
The FMN reductases (SsuE and MsuE of the alkanesulfonate monooxygenase systems) supply reduced flavin to their partner monooxygenases for the desulfonation of alkanesulfonates. Flavin reductases that comprise two-component systems must be able to regulate both flavin reduction and transfer. One mechanism to control these distinct processes is through changes in the oligomeric state of the enzymes. Despite their similar overall structures, SsuE and MsuE showed clear differences in their oligomeric states in the presence of substrates. The oligomeric state of SsuE was converted from a tetramer to a dimer/tetramer equilibrium in the presence of FMN or NADPH in analytical ultracentrifugation studies. Conversely, MsuE shifted from a dimer to a single tetrameric state with FMN, and the NADPH substrate did not induce a similar oligomeric shift. There was a fast tetramer to dimer equilibrium shift occurring at the dimer/dimer interface in H/D-X investigations with apo SsuE. Formation of the SsuE/FMN complex slowed the tetramer/dimer conversion, leading to a slower exchange along the dimer/dimer interface. The oligomeric shift of the MsuE/FMN complex from a dimer to a distinct tetramer showed a decrease in H/D-X in the region around the π-helices at the dimer/dimer interface. Both SsuE and MsuE showed a comparable and significant increase in the melting temperature with the addition of FMN, indicating the conformers formed by each FMN-bound enzyme had increased stability. A mechanism that supports the different structural shifts is rationalized by the different roles these enzymes play in providing reduced flavin to single or multiple monooxygenase enzymes.
Collapse
Affiliation(s)
- Chioma H Aloh
- Department of Biochemistry and Molecular Biology, Brody School of Medicine at East Carolina University, Greenville, North Carolina 27834, United States
| | - Tonya N Zeczycki
- Department of Biochemistry and Molecular Biology, Brody School of Medicine at East Carolina University, Greenville, North Carolina 27834, United States
| | - Holly R Ellis
- Department of Biochemistry and Molecular Biology, Brody School of Medicine at East Carolina University, Greenville, North Carolina 27834, United States
| |
Collapse
|
10
|
Chu R, Wei Y, Liu J, Li B, Zhang J, Zhou Y, Du Y, Zhang Y. A Variant of the Sulfoglycolytic Transketolase Pathway for the Degradation of Sulfoquinovose into Sulfoacetate. Appl Environ Microbiol 2023; 89:e0061723. [PMID: 37404184 PMCID: PMC10370302 DOI: 10.1128/aem.00617-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/12/2023] [Indexed: 07/06/2023] Open
Abstract
Sulfoquinovose (SQ, 6-deoxy-6-sulfo-glucose) constitutes the polar head group of plant sulfolipids and is one of the most abundantly produced organosulfur compounds in nature. Degradation of SQ by bacterial communities contributes to sulfur recycling in many environments. Bacteria have evolved at least four mechanisms for glycolytic degradation of SQ, termed sulfoglycolysis, producing C3 sulfonate (dihydroxypropanesulfonate and sulfolactate) and C2 sulfonate (isethionate) by-products. These sulfonates are further degraded by other bacteria, leading to the mineralization of the sulfonate sulfur. The C2 sulfonate sulfoacetate is widespread in the environment and is also thought to be a product of sulfoglycolysis, although the mechanistic details are yet unknown. Here, we describe a gene cluster in an Acholeplasma sp., from a metagenome derived from deeply circulating subsurface aquifer fluids (GenBank accession no. QZKD01000037), encoding a variant of the recently discovered sulfoglycolytic transketolase (sulfo-TK) pathway that produces sulfoacetate instead of isethionate as a by-product. We report the biochemical characterization of a coenzyme A (CoA)-acylating sulfoacetaldehyde dehydrogenase (SqwD) and an ADP-forming sulfoacetate-CoA ligase (SqwKL), which collectively catalyze the oxidation of the transketolase product sulfoacetaldehyde into sulfoacetate, coupled with ATP formation. A bioinformatics study revealed the presence of this sulfo-TK variant in phylogenetically diverse bacteria, adding to the variety of mechanisms by which bacteria metabolize this ubiquitous sulfo-sugar. IMPORTANCE Many bacteria utilize environmentally widespread C2 sulfonate sulfoacetate as a sulfur source, and the disease-linked human gut sulfate- and sulfite-reducing bacteria can use it as a terminal electron receptor for anaerobic respiration generating toxic H2S. However, the mechanism of sulfoacetate formation is unknown, although it has been proposed that sulfoacetate originates from bacterial degradation of sulfoquinovose (SQ), the polar head group of sulfolipids present in all green plants. Here, we describe a variant of the recently discovered sulfoglycolytic transketolase (sulfo-TK) pathway. Unlike the regular sulfo-TK pathway that produces isethionate, our biochemical assays with recombinant proteins demonstrated that a CoA-acylating sulfoacetaldehyde dehydrogenase (SqwD) and an ADP-forming sulfoacetate-CoA ligase (SqwKL) in this variant pathway collectively catalyze the oxidation of the transketolase product sulfoacetaldehyde into sulfoacetate, coupled with ATP formation. A bioinformatics study revealed the presence of this sulfo-TK variant in phylogenetically diverse bacteria and interpreted the widespread existence of sulfoacetate.
Collapse
Affiliation(s)
- Ruoxing Chu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Department of Chemistry, Tianjin University, Tianjin, China
| | - Yifeng Wei
- Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Jiayi Liu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Boran Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Jianing Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Yan Zhou
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Yunfei Du
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Yan Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Department of Chemistry, Tianjin University, Tianjin, China
| |
Collapse
|
11
|
Advancing Desulfurization in the Model Biocatalyst Rhodococcus qingshengii IGTS8 via an In Locus Combinatorial Approach. Appl Environ Microbiol 2023; 89:e0197022. [PMID: 36688659 PMCID: PMC9973023 DOI: 10.1128/aem.01970-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Biodesulfurization poses as an ideal replacement to the high cost hydrodesulfurization of the recalcitrant heterocyclic sulfur compounds, such as dibenzothiophene (DBT) and its derivatives. The increasingly stringent limits on fuel sulfur content intensify the need for improved desulfurization biocatalysts, without sacrificing the calorific value of the fuel. Selective sulfur removal in a wide range of biodesulfurization strains, as well as in the model biocatalyst Rhodococcus qingshengii IGTS8, occurs via the 4S metabolic pathway that involves the dszABC operon, which encodes enzymes that catalyze the generation of 2-hydroxybiphenyl and sulfite from DBT. Here, using a homologous recombination process, we generate two recombinant IGTS8 biocatalysts, harboring native or rearranged, nonrepressible desulfurization operons, within the native dsz locus. The alleviation of sulfate-, methionine-, and cysteine-mediated dsz repression is achieved through the exchange of the native promoter Pdsz, with the nonrepressible Pkap1 promoter. The Dsz-mediated desulfurization from DBT was monitored at three growth phases, through HPLC analysis of end product levels. Notably, an 86-fold enhancement of desulfurization activity was documented in the presence of selected repressive sulfur sources for the recombinant biocatalyst harboring a combination of three targeted genetic modifications, namely, a dsz operon rearrangement, a native promoter exchange, and a dszA-dszB overlap removal. In addition, transcript level comparison highlighted the diverse effects of our genetic engineering approaches on dsz mRNA ratios and revealed a gene-specific differential increase in mRNA levels. IMPORTANCE Rhodococcus is perhaps the most promising biodesulfurization genus and is able to withstand the harsh process conditions of a biphasic biodesulfurization process. In the present work, we constructed an advanced biocatalyst harboring a combination of three genetic modifications, namely, an operon rearrangement, a promoter exchange, and a gene overlap removal. Our homologous recombination approach generated stable biocatalysts that do not require antibiotic addition, while harboring nonrepressible desulfurization operons that present very high biodesulfurization activities and are produced in simple and low-cost media. In addition, transcript level quantification validated the effects of our genetic engineering approaches on recombinant strains' dsz mRNA ratios and revealed a gene-specific differential increase in mRNA levels. Based on these findings, the present work can pave the way for further strain and process optimization studies that could eventually lead to an economically viable biodesulfurization process.
Collapse
|
12
|
Somai S, Yue K, Acevedo O, Ellis HR. Shorter Alkanesulfonate Carbon Chains Destabilize the Active Site Architecture of SsuD for Desulfonation. Biochemistry 2023; 62:85-94. [PMID: 36534405 DOI: 10.1021/acs.biochem.2c00586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Bacteria have evolved to utilize alternative organosulfur sources when sulfur is limiting. The SsuE/SsuD and MsuE/MsuD enzymes expressed when sulfur sources are restricted, are responsible for providing specific bacteria with sulfur in the form of alkanesulfonates. In this study, we evaluated why two structurally and functionally similar FMNH2-dependent monooxygenase enzymes (MsuD and SsuD) are needed for the acquisition of alkanesulfonates in some bacteria. In desulfonation assays, MsuD was able to utilize the entire range of alkanesulfonates (C1-C10). However, SsuD was not able to utilize smaller alkanesulfonate substrates. Interestingly, SsuD had a similar binding affinity for methanesulfonate (MES) (15 ± 1 μM) as MsuD (12 ± 1 μM) even though SsuD was not able to catalyze the desulfonation of the MES substrate. SsuD and MsuD showed decreased proteolytic susceptibility in the presence of FMNH2 with MES and octanesulfonate (OCS). Tighter loop closure was observed for the MsuD/FMNH2 complex with MES and OCS compared to SsuD under comparable conditions. Analysis of the SsuD/FMNH2/MES structure using accelerated molecular dynamics simulations found three different conformations for MES, demonstrating the instability of the bound structure. Even when MES was bound in a similar fashion to OCS within the active site, the smaller alkane chain resulted in a shift of FMNH2 so that it was no longer in a position to catalyze the desulfonation of MES. The active site of SsuD requires a longer alkane chain to maintain the appropriate architecture for desulfonation.
Collapse
Affiliation(s)
- Shruti Somai
- Department of Biochemistry and Molecular Biology, Brody School of Medicine at East Carolina University, Greenville, North Carolina27834, United States
| | - Kun Yue
- Department of Chemistry, University of Miami, Coral Gables, Florida33146, United States
| | - Orlando Acevedo
- Department of Chemistry, University of Miami, Coral Gables, Florida33146, United States
| | - Holly R Ellis
- Department of Biochemistry and Molecular Biology, Brody School of Medicine at East Carolina University, Greenville, North Carolina27834, United States
| |
Collapse
|
13
|
Metabolic Mechanism and Physiological Role of Glycerol 3-Phosphate in Pseudomonas aeruginosa PAO1. mBio 2022; 13:e0262422. [PMID: 36218368 PMCID: PMC9765544 DOI: 10.1128/mbio.02624-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa is an important opportunistic pathogen that is lethal to cystic fibrosis (CF) patients. Glycerol generated during the degradation of phosphatidylcholine, the major lung surfactant in CF patients, could be utilized by P. aeruginosa. Previous studies have indicated that metabolism of glycerol by this bacterium contributes to its adaptation to and persistence in the CF lung environment. Here, we investigated the metabolic mechanisms of glycerol and its important metabolic intermediate glycerol 3-phosphate (G3P) in P. aeruginosa PAO1. We found that G3P homeostasis plays an important role in the growth and virulence factor production of P. aeruginosa PAO1. The G3P accumulation caused by the mutation of G3P dehydrogenase (GlpD) and exogenous glycerol led to impaired growth and reductions in pyocyanin synthesis, motilities, tolerance to oxidative stress, and resistance to kanamycin. Transcriptomic analysis indicates that the growth retardation caused by G3P stress is associated with reduced glycolysis and adenosine triphosphate (ATP) generation. Furthermore, two haloacid dehalogenase-like phosphatases (PA0562 and PA3172) that play roles in the dephosphorylation of G3P in strain PAO1 were identified, and their enzymatic properties were characterized. Our findings reveal the importance of G3P homeostasis and indicate that GlpD, the key enzyme for G3P catabolism, is a potential therapeutic target for the prevention and treatment of infections by this pathogen. IMPORTANCE In view of the intrinsic resistance of Pseudomonas aeruginosa to antibiotics and its potential to acquire resistance to current antibiotics, there is an urgent need to develop novel therapeutic options for the treatment of infections caused by this bacterium. Bacterial metabolic pathways have recently become a focus of interest as potential targets for the development of new antibiotics. In this study, we describe the mechanism of glycerol utilization in P. aeruginosa PAO1, which is an available carbon source in the lung environment. Our results reveal that the homeostasis of glycerol 3-phosphate (G3P), a pivotal intermediate in glycerol catabolism, is important for the growth and virulence factor production of P. aeruginosa PAO1. The mutation of G3P dehydrogenase (GlpD) and the addition of glycerol were found to reduce the tolerance of P. aeruginosa PAO1 to oxidative stress and to kanamycin. The findings highlight the importance of G3P homeostasis and suggest that GlpD is a potential drug target for the treatment of P. aeruginosa infections.
Collapse
|
14
|
Gahan J, O’Sullivan O, Cotter PD, Schmalenberger A. Arbuscular Mycorrhiza Support Plant Sulfur Supply through Organosulfur Mobilizing Bacteria in the Hypho- and Rhizosphere. PLANTS (BASEL, SWITZERLAND) 2022; 11:3050. [PMID: 36432779 PMCID: PMC9694294 DOI: 10.3390/plants11223050] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
This study aimed to elucidate the role of bacteria colonising mycorrhizal hyphae in organically bound sulfur mobilisation, the dominant soil sulfur source that is not directly plant available. The effect of an intact mycorrhizal symbiosis with access to stable isotope organo-34S enriched soils encased in 35 µm mesh cores was tested in microcosms with Agrostis stolonifera and Plantago lanceolata. Hyphae and associated soil were sampled from static mesh cores with mycorrhizal ingrowth and rotating mesh cores that exclude mycorrhizal ingrowth as well as corresponding rhizosphere soil, while plant shoots were analysed for 34S uptake. Static cores increased uptake of 34S at early stages of plant growth when sulfur demand appeared to be high and harboured significantly larger populations of sulfonate mobilising bacteria. Bacterial and fungal communities were significantly different in the hyphospheres of static cores when compared to rotating cores, not associated with plant hosts. Shifts in bacterial and fungal communities occurred not only in rotated cores but also in the rhizosphere. Arylsulfatase activity was significantly higher in the rhizosphere when cores stayed static, while atsA and asfA gene diversity was distinct in the microcosms with static and rotating cores. This study demonstrated that AM symbioses can promote organo-S mobilization and plant uptake through interactions with hyphospheric bacteria, enabling AM fungal ingrowth into static cores creating a positive feedback-loop, detectable in the microbial rhizosphere communities.
Collapse
Affiliation(s)
- Jacinta Gahan
- Department of Biological Sciences, School of Natural Sciences, University of Limerick, V94 T9PX Limerick, Ireland
| | - Orla O’Sullivan
- Teagasc Food Research Centre, Moorepark, Fermoy, and APC Microbiome Ireland, P61 C996 Cork, Ireland
| | - Paul D. Cotter
- Teagasc Food Research Centre, Moorepark, Fermoy, and APC Microbiome Ireland, P61 C996 Cork, Ireland
| | - Achim Schmalenberger
- Department of Biological Sciences, School of Natural Sciences, University of Limerick, V94 T9PX Limerick, Ireland
| |
Collapse
|
15
|
Liu X, Wang Z, Xiao J, Zhou X, Xu Y. Osmotic stress tolerance and transcriptome analysis of Gluconobacter oxydans to extra-high titers of glucose. Front Microbiol 2022; 13:977024. [PMID: 36033857 PMCID: PMC9412170 DOI: 10.3389/fmicb.2022.977024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
Gluconobacter oxydans has been widely acknowledged as an ideal strain for industrial bio-oxidations with fantastic yield and productivity. Even 600 g/L xylose can be catalyzed efficiently in a sealed and compressed oxygen-supplying bioreactor. Therefore, the present study seeks to explore the osmotic stress tolerance against extra-high titer of representative lignocellulosic sugars like glucose. Gluconobacter oxydans can well adapted and fermented with initial 600 g/L glucose, exhibiting the highest bio-tolerance in prokaryotic strains and the comparability to the eukaryotic strain of Saccharomyces cerevisiae. 1,432 differentially expressed genes corresponding to osmotic pressure are detected through transcriptome analysis, involving several genes related to the probable compatible solutes (trehalose and arginine). Gluconobacter oxydans obtains more energy by enhancing the substrate-level phosphorylation, resulting in the increased glucose consumption rate after fermentation adaption phase. This study will provide insights into further investigation of biological tolerance and response to extra-high titers of glucose of G. oxydans.
Collapse
Affiliation(s)
- Xinlu Liu
- Key Laboratory of Forestry Genetics and Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing, China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
- Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing, China
| | - Zhiwei Wang
- Key Laboratory of Forestry Genetics and Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing, China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
- Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing, China
| | - Jianjian Xiao
- Key Laboratory of Forestry Genetics and Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing, China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
- Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing, China
| | - Xin Zhou
- Key Laboratory of Forestry Genetics and Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing, China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
- Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing, China
| | - Yong Xu
- Key Laboratory of Forestry Genetics and Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing, China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
- Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing, China
- *Correspondence: Yong Xu,
| |
Collapse
|
16
|
Yan Q, Huang H, Zhang X. In Vitro Reconstitution of a Bacterial Ergothioneine Sulfonate Catabolic Pathway. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Qiongxiang Yan
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Ecological Science, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Hua Huang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Ecological Science, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Xinshuai Zhang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Ecological Science, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
17
|
Singh SK, Wu X, Shao C, Zhang H. Microbial enhancement of plant nutrient acquisition. STRESS BIOLOGY 2022; 2:3. [PMID: 37676341 PMCID: PMC10441942 DOI: 10.1007/s44154-021-00027-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/10/2021] [Indexed: 09/08/2023]
Abstract
Nutrient availability is a determining factor for crop yield and quality. While fertilization is a major approach for improving plant nutrition, its efficacy can be limited and the production and application of fertilizers frequently bring problems to the environment. A large number of soil microbes are capable of enhancing plant nutrient acquisition and thereby offer environmentally benign solutions to meet the requirements of plant nutrition. Herein we provide summations of how beneficial microbes enhance plant acquisition of macronutrients and micronutrients. We also review recent studies on nutrition-dependent plant-microbe interactions, which highlight the plant's initiative in establishing or deterring the plant-microbe association. By dissecting complex signaling interactions between microbes within the root microbiome, a greater understanding of microbe-enhanced plant nutrition under specific biotic and abiotic stresses will be possible.
Collapse
Affiliation(s)
- Sunil K Singh
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Xiaoxuan Wu
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chuyang Shao
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huiming Zhang
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China.
| |
Collapse
|
18
|
Qi Q, Angermayr SA, Bollenbach T. Uncovering Key Metabolic Determinants of the Drug Interactions Between Trimethoprim and Erythromycin in Escherichia coli. Front Microbiol 2021; 12:760017. [PMID: 34745067 PMCID: PMC8564399 DOI: 10.3389/fmicb.2021.760017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/30/2021] [Indexed: 11/16/2022] Open
Abstract
Understanding interactions between antibiotics used in combination is an important theme in microbiology. Using the interactions between the antifolate drug trimethoprim and the ribosome-targeting antibiotic erythromycin in Escherichia coli as a model, we applied a transcriptomic approach for dissecting interactions between two antibiotics with different modes of action. When trimethoprim and erythromycin were combined, the transcriptional response of genes from the sulfate reduction pathway deviated from the dominant effect of trimethoprim on the transcriptome. We successfully altered the drug interaction from additivity to suppression by increasing the sulfate level in the growth environment and identified sulfate reduction as an important metabolic determinant that shapes the interaction between the two drugs. Our work highlights the potential of using prioritization of gene expression patterns as a tool for identifying key metabolic determinants that shape drug-drug interactions. We further demonstrated that the sigma factor-binding protein gene crl shapes the interactions between the two antibiotics, which provides a rare example of how naturally occurring variations between strains of the same bacterial species can sometimes generate very different drug interactions.
Collapse
Affiliation(s)
- Qin Qi
- Institute of Science and Technology Austria, Klosterneuburg, Austria.,Institute for Biological Physics, University of Cologne, Cologne, Germany
| | | | - Tobias Bollenbach
- Institute for Biological Physics, University of Cologne, Cologne, Germany.,Center for Data and Simulation Science, University of Cologne, Cologne, Germany
| |
Collapse
|
19
|
Flieder M, Buongiorno J, Herbold CW, Hausmann B, Rattei T, Lloyd KG, Loy A, Wasmund K. Novel taxa of Acidobacteriota implicated in seafloor sulfur cycling. THE ISME JOURNAL 2021; 15:3159-3180. [PMID: 33981000 PMCID: PMC8528874 DOI: 10.1038/s41396-021-00992-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 04/05/2021] [Accepted: 04/15/2021] [Indexed: 02/03/2023]
Abstract
Acidobacteriota are widespread and often abundant in marine sediments, yet their metabolic and ecological properties are poorly understood. Here, we examined metabolisms and distributions of Acidobacteriota in marine sediments of Svalbard by functional predictions from metagenome-assembled genomes (MAGs), amplicon sequencing of 16S rRNA and dissimilatory sulfite reductase (dsrB) genes and transcripts, and gene expression analyses of tetrathionate-amended microcosms. Acidobacteriota were the second most abundant dsrB-harboring (averaging 13%) phylum after Desulfobacterota in Svalbard sediments, and represented 4% of dsrB transcripts on average. Meta-analysis of dsrAB datasets also showed Acidobacteriota dsrAB sequences are prominent in marine sediments worldwide, averaging 15% of all sequences analysed, and represent most of the previously unclassified dsrAB in marine sediments. We propose two new Acidobacteriota genera, Candidatus Sulfomarinibacter (class Thermoanaerobaculia, "subdivision 23") and Ca. Polarisedimenticola ("subdivision 22"), with distinct genetic properties that may explain their distributions in biogeochemically distinct sediments. Ca. Sulfomarinibacter encode flexible respiratory routes, with potential for oxygen, nitrous oxide, metal-oxide, tetrathionate, sulfur and sulfite/sulfate respiration, and possibly sulfur disproportionation. Potential nutrients and energy include cellulose, proteins, cyanophycin, hydrogen, and acetate. A Ca. Polarisedimenticola MAG encodes various enzymes to degrade proteins, and to reduce oxygen, nitrate, sulfur/polysulfide and metal-oxides. 16S rRNA gene and transcript profiling of Svalbard sediments showed Ca. Sulfomarinibacter members were relatively abundant and transcriptionally active in sulfidic fjord sediments, while Ca. Polarisedimenticola members were more relatively abundant in metal-rich fjord sediments. Overall, we reveal various physiological features of uncultured marine Acidobacteriota that indicate fundamental roles in seafloor biogeochemical cycling.
Collapse
Affiliation(s)
- Mathias Flieder
- grid.10420.370000 0001 2286 1424Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Joy Buongiorno
- grid.411461.70000 0001 2315 1184Department of Microbiology, University of Tennessee, Knoxville, TN USA ,grid.421147.50000 0000 8528 5498Present Address: Division of Natural Sciences, Maryville College, Maryville, TN USA
| | - Craig W. Herbold
- grid.10420.370000 0001 2286 1424Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Bela Hausmann
- grid.10420.370000 0001 2286 1424Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria ,grid.10420.370000 0001 2286 1424Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria ,grid.22937.3d0000 0000 9259 8492Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Thomas Rattei
- grid.10420.370000 0001 2286 1424Division of Computational Systems Biology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Karen G. Lloyd
- grid.411461.70000 0001 2315 1184Department of Microbiology, University of Tennessee, Knoxville, TN USA
| | - Alexander Loy
- grid.10420.370000 0001 2286 1424Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria ,grid.10420.370000 0001 2286 1424Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria ,grid.465498.2Austrian Polar Research Institute, Vienna, Austria
| | - Kenneth Wasmund
- grid.10420.370000 0001 2286 1424Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria ,grid.465498.2Austrian Polar Research Institute, Vienna, Austria ,grid.5117.20000 0001 0742 471XCenter for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| |
Collapse
|
20
|
Zhang Y, Liu Z, Tang Y, Ma X, Tang H, Li H, Liu Z. Cbl upregulates cysH for hydrogen sulfide production in Aeromonas veronii. PeerJ 2021; 9:e12058. [PMID: 34589297 PMCID: PMC8435198 DOI: 10.7717/peerj.12058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/04/2021] [Indexed: 11/20/2022] Open
Abstract
Endogenous hydrogen sulfide (H2S) is generated in many metabolism pathways, and has been recognized as a second messenger against antibiotics and reactive oxygen species (ROS). In Aeromonas veronii, Small Protein B (SmpB) plays an important role in resisting stress. The absence of smpB could trigger sulfate assimilation pathway to adapt the nutrient deficiency, of which was mediated by up-regulation of cbl and cys genes and followed with enhancing H2S production. To figure out the mutual regulations of cbl and cys genes, a series of experiments were performed. Compared with the wild type, cysH was down-regulated significantly in cbl deletion by qRT-PCR. The fluorescence analysis further manifested that Cbl had a positive regulatory effect on the promoter of cysJIH. Bacterial one-hybrid analysis and electrophoretic mobility shift assay (EMSA) verified that Cbl bound with the promoter of cysJIH. Collectively, the tolerance to adversity could be maintained by the production of H2S when SmpB was malfunctioned, of which the activity of cysJIH promoter was positively regulated by upstream Cbl protein. The outcomes also suggested the enormous potentials of Aeromonas veronii in environmental adaptability.
Collapse
Affiliation(s)
| | | | | | - Xiang Ma
- Hainan University, Haikou, China
| | | | - Hong Li
- Hainan University, Haikou, China
| | - Zhu Liu
- Hainan University, Haikou, China
| |
Collapse
|
21
|
Van Buren J, Cuthbertson AA, Ocasio D, Sedlak DL. Ubiquitous Production of Organosulfates During Treatment of Organic Contaminants with Sulfate Radicals. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2021; 8:574-580. [PMID: 34485590 PMCID: PMC8409489 DOI: 10.1021/acs.estlett.1c00316] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Oxidation of organic contaminants by sulfate radical (SO4 •-) is becoming more popular for the treatment of hazardous waste sites by in situ chemical oxidation (ISCO) and industrial wastewater by advanced oxidation processes (AOPs). It is well documented that SO4 •- can produce similar oxygen-containing transformation products as hydroxyl radical-based treatment processes, but SO4 •- also has the potential to produce organosulfates by radical addition. Experiments conducted with a suite of 23 aromatic and 5 aliphatic compounds, including several contaminants typically detected at hazardous waste sites, demonstrated the formation of at least one stable sulfate-containing product for 25 of the compounds. These compounds likely exhibit higher mobility in the subsurface due to a lower affinity for surfaces (e.g., aquifer solids, activated carbon) than most other transformation products. Although the health risks associated with organosulfates are still uncertain, some aromatic organosulfates produced in this study (i.e. phenyl sulfate and p-cresyl sulfate) are known to be harmful uremic toxins. Further study of organosulfate formation, fate, and toxicity is needed before SO4 •--based treatment processes are more widely employed.
Collapse
Affiliation(s)
- Jean Van Buren
- Department of Chemistry, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Amy A. Cuthbertson
- Department of Civil and Environmental Engineering, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Daniel Ocasio
- Department of Civil and Environmental Engineering, University of California at Berkeley, Berkeley, CA 94720, USA
| | - David L. Sedlak
- Department of Civil and Environmental Engineering, University of California at Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
22
|
Suleiman M, Choffat Y, Daugaard U, Petchey OL. Large and interacting effects of temperature and nutrient addition on stratified microbial ecosystems in a small, replicated, and liquid-dominated Winogradsky column approach. Microbiologyopen 2021; 10:e1189. [PMID: 34180595 PMCID: PMC8123916 DOI: 10.1002/mbo3.1189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 01/04/2023] Open
Abstract
Aquatic ecosystems are often stratified, with cyanobacteria in oxic layers and phototrophic sulfur bacteria in anoxic zones. Changes in stratification caused by the global environmental change are an ongoing concern. Increasing understanding of how such aerobic and anaerobic microbial communities, and associated abiotic conditions, respond to multifarious environmental changes is an important endeavor in microbial ecology. Insights can come from observational and experimental studies of naturally occurring stratified aquatic ecosystems, theoretical models of ecological processes, and experimental studies of replicated microbial communities in the laboratory. Here, we demonstrate a laboratory-based approach with small, replicated, and liquid-dominated Winogradsky columns, with distinct oxic/anoxic strata in a highly replicable manner. Our objective was to apply simultaneous global change scenarios (temperature, nutrient addition) on this micro-ecosystem to report how the microbial communities (full-length 16S rRNA gene seq.) and the abiotic conditions (O2 , H2 S, TOC) of the oxic/anoxic layer responded to these environmental changes. The composition of the strongly stratified microbial communities was greatly affected by temperature and by the interaction of temperature and nutrient addition, demonstrating the need of investigating global change treatments simultaneously. Especially phototrophic sulfur bacteria dominated the water column at higher temperatures and may indicate the presence of alternative stable states. We show that the establishment of such a micro-ecosystem has the potential to test global change scenarios in stratified eutrophic limnic systems.
Collapse
Affiliation(s)
- Marcel Suleiman
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
| | - Yves Choffat
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
| | - Uriah Daugaard
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
| | - Owen L. Petchey
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
| |
Collapse
|
23
|
Yang CY, Li SW, Chin CY, Hsu CW, Lee CC, Yeh YM, Wu KA. Association of exacerbation phenotype with the sputum microbiome in chronic obstructive pulmonary disease patients during the clinically stable state. J Transl Med 2021; 19:121. [PMID: 33757530 PMCID: PMC7988976 DOI: 10.1186/s12967-021-02788-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 03/15/2021] [Indexed: 01/04/2023] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) is a progressive, life-threatening lung disease with increasing prevalence and incidence worldwide. Increasing evidence suggests that lung microbiomes might play a physiological role in acute exacerbations of COPD. The objective of this study was to characterize the association of the microbiota and exacerbation risk or airflow limitation in stable COPD patients. Methods The sputum microbiota from 78 COPD outpatients during periods of clinical stability was investigated using 16S rRNA V3-V4 amplicon sequencing. The microbiome profiles were compared between patients with different risks of exacerbation, i.e., the low risk exacerbator (LRE) or high risk exacerbator (HRE) groups, and with different airflow limitation severity, i.e., mild to moderate (FEV1 ≥ 50; PFT I) or severe to very severe (FEV1 < 50; PFT II). Results The bacterial diversity (Chao1 and observed OTUs) was significantly decreased in the HRE group compared to that in the LRE group. The top 3 dominant phyla in sputum were Firmicutes, Actinobacteria, and Proteobacteria, which were similar in the HRE and LRE groups. At the genus level, compared to that in the LRE group (41.24%), the proportion of Streptococcus was slightly decreased in the HRE group (28.68%) (p = 0.007). However, the bacterial diversity and the proportion of dominant bacteria at the phylum and genus levels were similar between the PFT I and PFT II groups. Furthermore, the relative abundances of Gemella morbillorum, Prevotella histicola, and Streptococcus gordonii were decreased in the HRE group compared to those in the LRE group according to linear discriminant analysis effect size (LEfSe). Microbiome network analysis suggested altered bacterial cooperative regulation in different exacerbation phenotypes. The proportions of Proteobacteria and Neisseria were negatively correlated with the FEV1/FVC value. According to functional prediction of sputum bacterial communities through Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) analysis, genes involved in lipopolysaccharide biosynthesis and energy metabolism were enriched in the HRE group. Conclusion The present study revealed that the sputum microbiome changed in COPD patients with different risks of exacerbation. Additionally, the bacterial cooperative networks were altered in the HRE patients and may contribute to disease exacerbation. Our results provide evidence that sputum microbiome community dysbiosis is associated with different COPD phenotypes, and we hope that by understanding the lung microbiome, a potentially modifiable clinical factor, further targets for improved COPD therapies during the clinically stable state may be elucidated. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-02788-4.
Collapse
Affiliation(s)
- Chia-Yu Yang
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Otolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Shiao-Wen Li
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Chia-Yin Chin
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Chia-Wei Hsu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan.,Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Chi-Ching Lee
- Department and Graduate Institute of Computer Science and Information Engineering, Chang Gung University, Taoyuan, Taiwan
| | - Yuan-Ming Yeh
- Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Kuo-An Wu
- Department of Internal Medicine, Taoyuan Armed Forces General Hospital, No. 168, Zhongxing Rd., Longtan District, Taoyuan, 32551, Taiwan (R.O.C.). .,School of Medicine, Fu Jen Catholic University, New Taipei City, 24205, Taiwan.
| |
Collapse
|
24
|
Pimenta AI, Bernardes N, Alves MM, Mil-Homens D, Fialho AM. Burkholderia cenocepacia transcriptome during the early contacts with giant plasma membrane vesicles derived from live bronchial epithelial cells. Sci Rep 2021; 11:5624. [PMID: 33707642 PMCID: PMC7970998 DOI: 10.1038/s41598-021-85222-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 02/22/2021] [Indexed: 01/31/2023] Open
Abstract
Burkholderia cenocepacia is known for its capacity of adherence and interaction with the host, causing severe opportunistic lung infections in cystic fibrosis patients. In this work we produced Giant Plasma Membrane Vesicles (GPMVs) from a bronchial epithelial cell line and validated their use as a cell-like alternative to investigate the steps involved in the adhesion process of B. cenocepacia. RNA-sequencing was performed and the analysis of the B. cenocepacia K56-2 transcriptome after the first contacts with the surface of host cells allowed the recognition of genes implicated in bacterial adaptation and virulence-associated functions. The sensing of host membranes led to a transcriptional shift that caused a cascade of metabolic and physiological adaptations to the host specific environment. Many of the differentially expressed genes encode proteins related with central metabolic pathways, transport systems, cellular processes, and virulence traits. The understanding of the changes in gene expression that occur in the early steps of infection can uncover new proteins implicated in B. cenocepacia-host cell adhesion, against which new blocking agents could be designed to control the progression of the infectious process.
Collapse
Affiliation(s)
- Andreia I. Pimenta
- iBB-Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
| | - Nuno Bernardes
- iBB-Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
| | - Marta M. Alves
- grid.9983.b0000 0001 2181 4263CQE Instituto Superior Técnico, Departamento de Engenharia Química, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Dalila Mil-Homens
- iBB-Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
| | - Arsenio M. Fialho
- iBB-Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal ,grid.9983.b0000 0001 2181 4263Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
25
|
Formation of Thiophene under Simulated Volcanic Hydrothermal Conditions on Earth-Implications for Early Life on Extraterrestrial Planets? Life (Basel) 2021; 11:life11020149. [PMID: 33669362 PMCID: PMC7920246 DOI: 10.3390/life11020149] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 11/17/2022] Open
Abstract
Thiophene was detected on Mars during the Curiosity mission in 2018. The compound was even suggested as a biomarker due to its possible origin from diagenesis or pyrolysis of biological material. In the laboratory, thiophene can be synthesized at 400 °C by reacting acetylene and hydrogen sulfide on alumina. We here show that thiophene and thiophene derivatives are also formed abiotically from acetylene and transition metal sulfides such as NiS, CoS and FeS under simulated volcanic, hydrothermal conditions on Early Earth. Exactly the same conditions were reported earlier to have yielded a plethora of organic molecules including fatty acids and other components of extant metabolism. It is therefore tempting to suggest that thiophenes from abiotic formation could indicate sites and conditions well-suited for the evolution of metabolism and potentially for the origin-of-life on extraterrestrial planets.
Collapse
|
26
|
Gallardo-Benavente C, Campo-Giraldo JL, Castro-Severyn J, Quiroz A, Pérez-Donoso JM. Genomics Insights into Pseudomonas sp. CG01: An Antarctic Cadmium-Resistant Strain Capable of Biosynthesizing CdS Nanoparticles Using Methionine as S-Source. Genes (Basel) 2021; 12:187. [PMID: 33514061 PMCID: PMC7912247 DOI: 10.3390/genes12020187] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 12/23/2022] Open
Abstract
Here, we present the draft genome sequence of Pseudomonas sp. GC01, a cadmium-resistant Antarctic bacterium capable of biosynthesizing CdS fluorescent nanoparticles (quantum dots, QDs) employing a unique mechanism involving the production of methanethiol (MeSH) from methionine (Met). To explore the molecular/metabolic components involved in QDs biosynthesis, we conducted a comparative genomic analysis, searching for the genes related to cadmium resistance and sulfur metabolic pathways. The genome of Pseudomonas sp. GC01 has a 4,706,645 bp size with a 58.61% G+C content. Pseudomonas sp. GC01 possesses five genes related to cadmium transport/resistance, with three P-type ATPases (cadA, zntA, and pbrA) involved in Cd-secretion that could contribute to the extracellular biosynthesis of CdS QDs. Furthermore, it exhibits genes involved in sulfate assimilation, cysteine/methionine synthesis, and volatile sulfur compounds catabolic pathways. Regarding MeSH production from Met, Pseudomonas sp. GC01 lacks the genes E4.4.1.11 and megL for MeSH generation. Interestingly, despite the absence of these genes, Pseudomonas sp. GC01 produces high levels of MeSH. This is probably associated with the metC gene that also produces MeSH from Met in bacteria. This work is the first report of the potential genes involved in Cd resistance, sulfur metabolism, and the process of MeSH-dependent CdS QDs bioproduction in Pseudomonas spp. strains.
Collapse
Affiliation(s)
- Carla Gallardo-Benavente
- Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, 4780000 Temuco, Chile;
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, 4780000 Temuco, Chile
| | - Jessica L. Campo-Giraldo
- BioNanotechnology and Microbiology Lab, Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andres Bello, 8320000 Santiago, Chile;
| | - Juan Castro-Severyn
- Laboratorio de Microbiología Aplicada y Extremófilos, Facultad de Ingeniería y Ciencias Geológicas, Universidad Católica del Norte, 1240000 Antofagasta, Chile;
| | - Andrés Quiroz
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, 4780000 Temuco, Chile
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, 4780000 Temuco, Chile
| | - José M. Pérez-Donoso
- BioNanotechnology and Microbiology Lab, Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andres Bello, 8320000 Santiago, Chile;
| |
Collapse
|
27
|
Kato H, Ogawa T, Ohta H, Katayama Y. Enumeration of Chemoorganotrophic Carbonyl Sulfide (COS)-degrading Microorganisms by the Most Probable Number Method. Microbes Environ 2020; 35. [PMID: 32350165 PMCID: PMC7308577 DOI: 10.1264/jsme2.me19139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Carbonyl sulfide (COS) is the most abundant sulfur compound in the atmosphere, and, thus, is important in the global sulfur cycle. Soil is a major sink of atmospheric COS and the numerical distribution of soil microorganisms that degrade COS is indispensable for estimating the COS-degrading potential of soil. However, difficulties are associated with counting COS-degrading microorganisms using culture-dependent approaches, such as the most probable number (MPN) method, because of the chemical hydrolysis of COS by water. We herein developed a two-step MPN method for COS-degrading microorganisms: the first step for chemoorganotrophic growth that supported a sufficient number of cells for COS degradation in the second step. Our new MPN analysis of various environmental samples revealed that the cell density of COS-degrading microorganisms in forest soils ranged between 106 and 108 MPN (g dry soil)–1, which was markedly higher than those in volcanic deposit and water samples, and strongly correlated with the rate of COS degradation in environmental samples. Numerically dominant COS degraders that were isolated from the MPN-positive culture were related to bacteria in the orders Bacillales and Actinomycetales. The present results provide numerical evidence for the ubiquity of COS-degrading microbes in natural environments.
Collapse
Affiliation(s)
- Hiromi Kato
- Graduate School of Life Sciences, Tohoku University
| | - Takahiro Ogawa
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology.,Present address: Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology
| | - Hiroyuki Ohta
- Department of Bioresource Science, Ibaraki University College of Agriculture
| | - Yoko Katayama
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology.,Independent Administrative Institution, Tokyo National Research Institute for Cultural Properties
| |
Collapse
|
28
|
Mobilization of Iron Stored in Bacterioferritin Is Required for Metabolic Homeostasis in Pseudomonas aeruginosa. Pathogens 2020; 9:pathogens9120980. [PMID: 33255203 PMCID: PMC7760384 DOI: 10.3390/pathogens9120980] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022] Open
Abstract
Iron homeostasis offers a significant bacterial vulnerability because pathogens obtain essential iron from their mammalian hosts, but host-defenses maintain vanishingly low levels of free iron. Although pathogens have evolved mechanisms to procure host-iron, these depend on well-regulated iron homeostasis. To disrupt iron homeostasis, our work has targeted iron mobilization from the iron storage protein bacterioferritin (BfrB) by blocking a required interaction with its cognate ferredoxin partner (Bfd). The blockade of the BfrB–Bfd complex by deletion of the bfd gene (Δbfd) causes iron to irreversibly accumulate in BfrB. In this study we used mass spectrometry and NMR spectroscopy to compare the proteomic response and the levels of key intracellular metabolites between wild type (wt) and isogenic ΔbfdP. aeruginosa strains. We find that the irreversible accumulation of unusable iron in BfrB leads to acute intracellular iron limitation, even if the culture media is iron-sufficient. Importantly, the iron limitation and concomitant iron metabolism dysregulation trigger a cascade of events that lead to broader metabolic homeostasis disruption, which includes sulfur limitation, phenazine-mediated oxidative stress, suboptimal amino acid synthesis and altered carbon metabolism.
Collapse
|
29
|
Bottos EM, Al-Shabib EY, Shaw DMJ, McAmmond BM, Sharma A, Suchan DM, Cameron ADS, Van Hamme JD. Transcriptomic response of Gordonia sp. strain NB4-1Y when provided with 6:2 fluorotelomer sulfonamidoalkyl betaine or 6:2 fluorotelomer sulfonate as sole sulfur source. Biodegradation 2020; 31:407-422. [PMID: 33150552 PMCID: PMC7661421 DOI: 10.1007/s10532-020-09917-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023]
Abstract
Abstract Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are environmental contaminants of concern. We previously described biodegradation of two PFAS that represent components and transformation products of aqueous film-forming foams (AFFF), 6:2 fluorotelomer sulfonamidoalkyl betaine (6:2 FTAB) and 6:2 fluorotelomer sulfonate (6:2 FTSA), by Gordonia sp. strain NB4-1Y. To identify genes involved in the breakdown of these compounds, the transcriptomic response of NB4-1Y was examined when grown on 6:2 FTAB, 6:2 FTSA, a non-fluorinated analog of 6:2 FTSA (1-octanesulfonate), or MgSO4, as sole sulfur source. Differentially expressed genes were identified as those with ± 1.5 log2-fold-differences (± 1.5 log2FD) in transcript abundances in pairwise comparisons. Transcriptomes of cells grown on 6:2 FTAB and 6:2 FTSA were most similar (7.9% of genes expressed ± 1.5 log2FD); however, several genes that were expressed in greater abundance in 6:2 FTAB treated cells compared to 6:2 FTSA treated cells were noted for their potential role in carbon–nitrogen bond cleavage in 6:2 FTAB. Responses to sulfur limitation were observed in 6:2 FTAB, 6:2 FTSA, and 1-octanesulfonate treatments, as 20 genes relating to global sulfate stress response were more highly expressed under these conditions compared to the MgSO4 treatment. More highly expressed oxygenase genes in 6:2 FTAB, 6:2 FTSA, and 1-octanesulfonate treatments were found to code for proteins with lower percent sulfur-containing amino acids compared to both the total proteome and to oxygenases showing decreased expression. This work identifies genetic targets for further characterization and will inform studies aimed at evaluating the biodegradation potential of environmental samples through applied genomics. Graphic Abstract ![]()
Electronic supplementary material The online version of this article (10.1007/s10532-020-09917-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Eric M Bottos
- Department of Biological Sciences, Thompson Rivers University, Kamloops, BC, V2C 0C8, Canada
| | - Ebtihal Y Al-Shabib
- Department of Biology, University of Regina, Regina, SK, S4S 0A2, Canada
- Faculty of Science, Institute for Microbial Systems and Society, University of Regina, Regina, SK, S4S 0A2, Canada
| | - Dayton M J Shaw
- Department of Biological Sciences, Thompson Rivers University, Kamloops, BC, V2C 0C8, Canada
| | - Breanne M McAmmond
- Department of Biological Sciences, Thompson Rivers University, Kamloops, BC, V2C 0C8, Canada
| | - Aditi Sharma
- Department of Biology, University of Regina, Regina, SK, S4S 0A2, Canada
- Faculty of Science, Institute for Microbial Systems and Society, University of Regina, Regina, SK, S4S 0A2, Canada
| | - Danae M Suchan
- Department of Biology, University of Regina, Regina, SK, S4S 0A2, Canada
- Faculty of Science, Institute for Microbial Systems and Society, University of Regina, Regina, SK, S4S 0A2, Canada
| | - Andrew D S Cameron
- Department of Biology, University of Regina, Regina, SK, S4S 0A2, Canada
- Faculty of Science, Institute for Microbial Systems and Society, University of Regina, Regina, SK, S4S 0A2, Canada
| | - Jonathan D Van Hamme
- Department of Biological Sciences, Thompson Rivers University, Kamloops, BC, V2C 0C8, Canada.
| |
Collapse
|
30
|
Baena-Baldiris D, Montes-Robledo A, Baldiris-Avila R. Franconibacter sp., 1MS: A New Strain in Decolorization and Degradation of Azo Dyes Ponceau S Red and Methyl Orange. ACS OMEGA 2020; 5:28146-28157. [PMID: 33163797 PMCID: PMC7643201 DOI: 10.1021/acsomega.0c03786] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/05/2020] [Indexed: 05/15/2023]
Abstract
The aim of the present study is focused on the decolorization and degradation of azo dyes Ponceau S Red and Methyl Orange by a bacterial strain isolated from the gold mining district of San Martin de Loba, South of Bolivar (Colombia) sediment samples and identified as Franconibacter sp. 1MS (GenBank: MT568543) based on phenotypic and genotypic methods. A higher percentage of decolorization at 100 mg/L concentration, 37 °C, and pH 7 was recorded at 120 h of incubation period for both dyes. The UV-vis, Fourier transform infrared spectroscopy, and gas chromatography-mass spectrometry analysis of the original dyes and their degraded metabolites confirmed that the decolorization was due to degradation. The proposed metabolic pathways for biodegradation of both dyes have been elucidated, which showed the formation of five intermediate metabolites, namely, N,N-dimethylbenzyl-1,4-diamine, sulfonamide, 1,4-diaminobenzene, 2,5-diaminobenzenesulfonic acid, and 1-amino-2-naphthol, which are not only highly toxic but also be able to be converted through metabolic activation into mutagenic, carcinogenic, and/or teratogenic species. The phytotoxicity studies of the original dye and degraded metabolites were tested on Phaseolus vulgaris and divulged that the degraded metabolites have toxic effects. An effective phytostimulation was observed in Ponceau S Red, which could be attributed to its capacity for enrichment of the culture medium with essential nutrients, a favorable environment for the growth of the plant.
Collapse
Affiliation(s)
- Dayana Baena-Baldiris
- Clinical
and Environmental Microbiology Group. Faculty of Natural and Exact
Sciences, San Pablo Campus, University of
Cartagena, Cartagena 130005, Colombia
| | - Alfredo Montes-Robledo
- Clinical
and Environmental Microbiology Group. Faculty of Natural and Exact
Sciences, San Pablo Campus, University of
Cartagena, Cartagena 130005, Colombia
| | - Rosa Baldiris-Avila
- Clinical
and Environmental Microbiology Group. Faculty of Natural and Exact
Sciences, San Pablo Campus, University of
Cartagena, Cartagena 130005, Colombia
- CIPTEC
Group. Faculty of Engineering, Comfenalco
Technological University Foundation, Cartagena 130015, Colombia
| |
Collapse
|
31
|
Jatoi AS, Aziz S, Soomro SA. Biological assisted organic sulfur removal from low rank indigenous coal using airlift bioreactor. Bioprocess Biosyst Eng 2020; 44:417-427. [PMID: 33034739 DOI: 10.1007/s00449-020-02453-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/24/2020] [Indexed: 10/23/2022]
Abstract
Combustion of coal create many harmful gases which effect on human health as well as on environment. The sulfur in coal limits its own use, and bio-desulfurization (BDS) shows enormous development potential and the prospects for the application of coal desulfurization. Present study highlights the bioprocess strategies for reduction of sulfur content from coal before combustion. The bioprocess involved the use of Airlift Bioreactor along with Rhodococcus sp. ATCC55309 as biocatalyst. Different nutritional and operational parameters involved to promote sulfur reduction at maximum level. The parameters were investigated are different carbon source, temperature, pH, Agitation speed, and pulp density. The impact of these parameters shows that sulfur removal can be enhanced though optimized conditions. The amount of total sulfur and organic sulfur present in coal were reduced by 33 ± 1.7% and 71 ± 1.5%, respectively, compared to untreated coal at controlled condition of various parameters are 20% (w/v) pulp density, 30 °C, 170 rpm, glucose as carbon source and pH 7. Whereas organic sulfur degrades from coal using Rhodococcus sp. ATCC55309 about 0.36 mM DBT (Di-benzothiophene) within 8 days via 4S-pathway. The maximum conversion of DBT compound into 2-HBP(2-hydroxybiphenyl) by utilizing 30 °C, 170 rpm, 20 pulp density and glucose as carbon source.
Collapse
Affiliation(s)
- Abdul Sattar Jatoi
- Department of Chemical Engineering, Mehran University of Engineering and Technology, Jamshoro, 76062, Sindh, Pakistan. .,Department of Chemical Engineering Dawood, University of Engineering and Technology, Karachi, Sindh, Pakistan.
| | - Shaheen Aziz
- Department of Chemical Engineering, Mehran University of Engineering and Technology, Jamshoro, 76062, Sindh, Pakistan
| | - Suhail Ahmed Soomro
- Department of Chemical Engineering, Mehran University of Engineering and Technology, Jamshoro, 76062, Sindh, Pakistan
| |
Collapse
|
32
|
Ervin SM, Simpson JB, Gibbs ME, Creekmore BC, Lim L, Walton WG, Gharaibeh RZ, Redinbo MR. Structural Insights into Endobiotic Reactivation by Human Gut Microbiome-Encoded Sulfatases. Biochemistry 2020; 59:3939-3950. [PMID: 32993284 DOI: 10.1021/acs.biochem.0c00711] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Phase II drug metabolism inactivates xenobiotics and endobiotics through the addition of either a glucuronic acid or sulfate moiety prior to excretion, often via the gastrointestinal tract. While the human gut microbial β-glucuronidase enzymes that reactivate glucuronide conjugates in the intestines are becoming well characterized and even controlled by targeted inhibitors, the sulfatases encoded by the human gut microbiome have not been comprehensively examined. Gut microbial sulfatases are poised to reactivate xenobiotics and endobiotics, which are then capable of undergoing enterohepatic recirculation or exerting local effects on the gut epithelium. Here, using protein structure-guided methods, we identify 728 distinct microbiome-encoded sulfatase proteins from the 4.8 million unique proteins present in the Human Microbiome Project Stool Sample database and 1766 gut microbial sulfatases from the 9.9 million sequences in the Integrated Gene Catalogue. We purify a representative set of these sulfatases, elucidate crystal structures, and pinpoint unique structural motifs essential to endobiotic sulfate processing. Gut microbial sulfatases differentially process sulfated forms of the neurotransmitters serotonin and dopamine, and the hormones melatonin, estrone, dehydroepiandrosterone, and thyroxine in a manner dependent both on variabilities in active site architecture and on markedly distinct oligomeric states. Taken together, these data provide initial insights into the structural and functional diversity of gut microbial sulfatases, providing a path toward defining the roles these enzymes play in health and disease.
Collapse
Affiliation(s)
- Samantha M Ervin
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Joshua B Simpson
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Morgan E Gibbs
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Benjamin C Creekmore
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Lauren Lim
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - William G Walton
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Raad Z Gharaibeh
- Department of Medicine, University of Florida, Gainesville, Florida 32603, United States
| | - Matthew R Redinbo
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.,Integrated Program for Biological and Genome Sciences and Departments of Biochemistry and Microbiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
33
|
Thakur A, Somai S, Yue K, Ippolito N, Pagan D, Xiong J, Ellis HR, Acevedo O. Substrate-Dependent Mobile Loop Conformational Changes in Alkanesulfonate Monooxygenase from Accelerated Molecular Dynamics. Biochemistry 2020; 59:3582-3593. [PMID: 32881481 DOI: 10.1021/acs.biochem.0c00633] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Abhishek Thakur
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Shruti Somai
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Kun Yue
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Nicole Ippolito
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Dianne Pagan
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Jingyuan Xiong
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Holly R. Ellis
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Orlando Acevedo
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| |
Collapse
|
34
|
A Sulfoglycolytic Entner-Doudoroff Pathway in Rhizobium leguminosarum bv. trifolii SRDI565. Appl Environ Microbiol 2020; 86:AEM.00750-20. [PMID: 32444469 DOI: 10.1128/aem.00750-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/14/2020] [Indexed: 01/05/2023] Open
Abstract
Rhizobia are nitrogen-fixing bacteria that engage in symbiotic relationships with plant hosts but can also persist as free-living bacteria in the soil and rhizosphere. Here, we show that free-living Rhizobium leguminosarum SRDI565 can grow on the sulfosugar sulfoquinovose (SQ) or the related glycoside SQ-glycerol using a sulfoglycolytic Entner-Doudoroff (sulfo-ED) pathway, resulting in production of sulfolactate (SL) as the major metabolic end product. Comparative proteomics supports the involvement of a sulfo-ED operon encoding an ABC transporter, sulfo-ED enzymes, and an SL exporter. Consistent with an oligotrophic lifestyle, proteomics data revealed little change in expression of the sulfo-ED proteins during growth on SQ versus mannitol, a result confirmed through biochemical assay of sulfoquinovosidase activity in cell lysates. Metabolomics analysis showed that growth on SQ involves gluconeogenesis to satisfy metabolic requirements for glucose-6-phosphate and fructose-6-phosphate. Metabolomics analysis also revealed the unexpected production of small amounts of sulfofructose and 2,3-dihydroxypropanesulfonate, which are proposed to arise from promiscuous activities of the glycolytic enzyme phosphoglucose isomerase and a nonspecific aldehyde reductase, respectively. The discovery of a rhizobium isolate with the ability to degrade SQ builds our knowledge of how these important symbiotic bacteria persist within soil.IMPORTANCE Sulfonate sulfur is a major form of organic sulfur in soils but requires biomineralization before it can be utilized by plants. Very little is known about the biochemical processes used to mobilize sulfonate sulfur. We show that a rhizobial isolate from soil, Rhizobium leguminosarum SRDI565, possesses the ability to degrade the abundant phototroph-derived carbohydrate sulfonate SQ through a sulfoglycolytic Entner-Doudoroff pathway. Proteomics and metabolomics demonstrated the utilization of this pathway during growth on SQ and provided evidence for gluconeogenesis. Unexpectedly, off-cycle sulfoglycolytic species were also detected, pointing to the complexity of metabolic processes within cells under conditions of sulfoglycolysis. Thus, rhizobial metabolism of the abundant sulfosugar SQ may contribute to persistence of the bacteria in the soil and to mobilization of sulfur in the pedosphere.
Collapse
|
35
|
Protective Role of Bacterial Alkanesulfonate Monooxygenase under Oxidative Stress. Appl Environ Microbiol 2020; 86:AEM.00692-20. [PMID: 32503904 DOI: 10.1128/aem.00692-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 05/26/2020] [Indexed: 01/05/2023] Open
Abstract
Bacterial alkane metabolism is associated with a number of cellular stresses, including membrane stress and oxidative stress, and the limited uptake of charged ions such as sulfate. In the present study, the genes ssuD and tauD in Acinetobacter oleivorans DR1 cells, which encode an alkanesulfonate monooxygenase and a taurine dioxygenase, respectively, were found to be responsible for hexadecanesulfonate (C16SO3H) and taurine metabolism, and Cbl was experimentally identified as a potential regulator of ssuD and tauD expression. The expression of ssuD and tauD occurred under sulfate-limited conditions generated during n-hexadecane degradation. Interestingly, expression analysis and knockout experiments suggested that both genes are required to protect cells against oxidative stress, including that generated by n-hexadecane degradation and H2O2 exposure. Measurable levels of intracellular hexadecanesulfonate were also produced during n-hexadecane degradation. Phylogenetic analysis suggested that ssuD and tauD are mainly present in soil-dwelling aerobes within the Betaproteobacteria and Gammaproteobacteria classes, which suggests that they function as controllers of the sulfur cycle and play a protective role against oxidative stress in sulfur-limited conditions.IMPORTANCE ssuD and tauD, which play a role in the degradation of organosulfonate, were expressed during n-hexadecane metabolism and oxidative stress conditions in A. oleivorans DR1. Our study confirmed that hexadecanesulfonate was accidentally generated during bacterial n-hexadecane degradation in sulfate-limited conditions. Removal of this by-product by SsuD and TauD must be necessary for bacterial survival under oxidative stress generated during n-hexadecane degradation.
Collapse
|
36
|
Jasniewski AJ, Lee CC, Ribbe MW, Hu Y. Reactivity, Mechanism, and Assembly of the Alternative Nitrogenases. Chem Rev 2020; 120:5107-5157. [PMID: 32129988 PMCID: PMC7491575 DOI: 10.1021/acs.chemrev.9b00704] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Biological nitrogen fixation is catalyzed by the enzyme nitrogenase, which facilitates the cleavage of the relatively inert triple bond of N2. Nitrogenase is most commonly associated with the molybdenum-iron cofactor called FeMoco or the M-cluster, and it has been the subject of extensive structural and spectroscopic characterization over the past 60 years. In the late 1980s and early 1990s, two "alternative nitrogenase" systems were discovered, isolated, and found to incorporate V or Fe in place of Mo. These systems are regulated by separate gene clusters; however, there is a high degree of structural and functional similarity between each nitrogenase. Limited studies with the V- and Fe-nitrogenases initially demonstrated that these enzymes were analogously active as the Mo-nitrogenase, but more recent investigations have found capabilities that are unique to the alternative systems. In this review, we will discuss the reactivity, biosynthetic, and mechanistic proposals for the alternative nitrogenases as well as their electronic and structural properties in comparison to the well-characterized Mo-dependent system. Studies over the past 10 years have been particularly fruitful, though key aspects about V- and Fe-nitrogenases remain unexplored.
Collapse
Affiliation(s)
- Andrew J Jasniewski
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3900, United States
| | - Chi Chung Lee
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3900, United States
| | - Markus W Ribbe
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3900, United States
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Yilin Hu
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3900, United States
| |
Collapse
|
37
|
Dedysh SN, Kulichevskaya IS, Beletsky AV, Ivanova AA, Rijpstra WIC, Damsté JSS, Mardanov AV, Ravin NV. Lacipirellula parvula gen. nov., sp. nov., representing a lineage of planctomycetes widespread in low-oxygen habitats, description of the family Lacipirellulaceae fam. nov. and proposal of the orders Pirellulales ord. nov., Gemmatales ord. nov. and Isosphaerales ord. nov. Syst Appl Microbiol 2019; 43:126050. [PMID: 31882205 PMCID: PMC6995999 DOI: 10.1016/j.syapm.2019.126050] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 11/07/2022]
Abstract
Pirellula-like planctomycetes are ubiquitous aquatic bacteria, which are often detected in anoxic or micro-oxic habitats. By contrast, the taxonomically described representatives of these bacteria, with very few exceptions, are strict aerobes. Here, we report the isolation and characterization of the facultatively anaerobic planctomycete, strain PX69T, which was isolated from a boreal lake. Its 16S rRNA gene sequence is affiliated with the Pirellula-related Pir4 clade, which is dominated by environmental sequences retrieved from a variety of low-oxygen habitats. Strain PX69T was represented by ellipsoidal cells that multiplied by budding and grew on sugars, some polysaccharides and glycerol. Anaerobic growth occurred by means of fermentation. Strain PX69T grew at pH 5.5–7.5 and at temperatures between 10 and 30 °C. The major fatty acids were C18:1ω9c, C16:0 and C16:1ω7c; the major intact polar lipid was dimethylphosphatidylethanolamine. The complete genome of strain PX69T was 6.92 Mb in size; DNA G + C content was 61.7 mol%. Among characterized planctomycetes, the highest 16S rRNA gene similarity (90.4%) was observed with ‘Bythopirellula goksoyri’ Pr1d, a planctomycete from deep-sea sediments. We propose to classify PX69T as a novel genus and species, Lacipirellula parvula gen. nov., sp. nov.; the type strain is strain PX69T (=KCTC 72398T = CECT 9826T = VKM B-3335T). This genus is placed in a novel family, Lacipirellulaceae fam. nov., which belongs to the order Pirellulales ord. nov. Based on the results of comparative genome analysis, we also suggest establishment of the orders Gemmatales ord. nov. and Isosphaerales ord. nov. as well as an emendation of the order Planctomycetales.
Collapse
Affiliation(s)
- Svetlana N Dedysh
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia.
| | - Irina S Kulichevskaya
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia
| | - Alexey V Beletsky
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia
| | - Anastasia A Ivanova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia
| | - W Irene C Rijpstra
- NIOZ Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, and Utrecht University, P.O. Box 59, 1790 AB Den Burg, The Netherlands
| | - Jaap S Sinninghe Damsté
- NIOZ Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, and Utrecht University, P.O. Box 59, 1790 AB Den Burg, The Netherlands; Utrecht University, Faculty of Geosciences, Department of Earth Sciences, Geochemistry, Utrecht, The Netherlands
| | - Andrey V Mardanov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia
| | - Nikolai V Ravin
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia
| |
Collapse
|
38
|
Speck JJ, James EK, Sugawara M, Sadowsky MJ, Gyaneshwar P. An Alkane Sulfonate Monooxygenase Is Required for Symbiotic Nitrogen Fixation by Bradyrhizobium diazoefficiens (syn. Bradyrhizobium japonicum) USDA110 T. Appl Environ Microbiol 2019; 85:e01552-19. [PMID: 31562172 PMCID: PMC6881790 DOI: 10.1128/aem.01552-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 09/25/2019] [Indexed: 01/18/2023] Open
Abstract
Sulfur (S)-containing molecules play an important role in symbiotic nitrogen fixation and are critical components of nitrogenase and other iron-S proteins. S deficiency inhibits symbiotic nitrogen fixation by rhizobia. However, despite its importance, little is known about the sources of S that rhizobia utilize during symbiosis. We previously showed that Bradyrhizobium diazoefficiens USDA110T can assimilate both inorganic and organic S and that genes involved in organic S utilization are expressed during symbiosis. Here, we show that a B. diazoefficiens USDA110T mutant with a sulfonate monooxygenase (ssuD) insertion is defective in nitrogen fixation. Microscopy analyses revealed that the ΔssuD mutant was defective in root hair infection and that ΔssuD mutant bacteroids showed degradation compared to the wild-type strain. Moreover, the ΔssuD mutant was significantly more sensitive to hydrogen peroxide-mediated oxidative stress than the wild-type strain. Taken together, these results show that the ability of rhizobia to utilize organic S plays an important role in symbiotic nitrogen fixation. Since nodules have been reported to be an important source of reduced S used during symbiosis and nitrogen fixation, further research will be needed to determine the mechanisms involved in the regulation of S assimilation by rhizobia.IMPORTANCE Rhizobia form symbiotic associations with legumes that lead to the formation of nitrogen-fixing nodules. Sulfur-containing molecules play a crucial role in nitrogen fixation; thus, the rhizobia inside nodules require large amounts of sulfur. Rhizobia can assimilate both inorganic (sulfate) and organic (sulfonates) sources of sulfur. However, very little is known about rhizobial sulfur metabolism during symbiosis. In this report, we show that sulfonate utilization by Bradyrhizobium diazoefficiens is important for symbiotic nitrogen fixation in both soybean and cowpea. The symbiotic defect is probably due to increased sensitivity to oxidative stress from sulfur deficiency in the mutant strain defective for sulfonate utilization. The results of this study can be extended to other rhizobium-legume symbioses, as sulfonate utilization genes are widespread in these bacteria.
Collapse
Affiliation(s)
- Justin J Speck
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | | | - Masayuki Sugawara
- Biotechnology Institute, Department of Soil, Water & Climate, University of Minnesota, Saint Paul, Minnesota, USA
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
- Biotechnology Institute, Department of Plant & Microbial Biology, University of Minnesota, Saint Paul, Minnesota, USA
| | - Michael J Sadowsky
- Biotechnology Institute, Department of Soil, Water & Climate, University of Minnesota, Saint Paul, Minnesota, USA
- Biotechnology Institute, Department of Plant & Microbial Biology, University of Minnesota, Saint Paul, Minnesota, USA
| | - Prasad Gyaneshwar
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| |
Collapse
|
39
|
Singh MP, Saxena M, Saimbi CS, Siddiqui MH, Roy R. Post-periodontal surgery propounds early repair salivary biomarkers by 1H NMR based metabolomics. Metabolomics 2019; 15:141. [PMID: 31612356 DOI: 10.1007/s11306-019-1593-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 09/25/2019] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Oral microflora is a well-orchestrated and acts as a sequential defense mechanism for any infection related to oral disease. Chronic periodontitis is a disease of a microbial challenge to symbiosis and homeostasis. Periodontal surgery is the most promising cure with repair process during periodontal regeneration. It has an encouraging outcome in terms of early recovery biomarkers. OBJECTIVE Saliva of periodontal surgery subjects with the chronic periodontitis have been evaluated by 1H NMR spectroscopy in search of possible early metabolic differences that could be obtained in order to see the eradication of disease which favours the symbiotic condition. METHOD The study employed 1H NMR spectroscopy on 176 human saliva samples in search of distinctive differences and their spectral data were further subjected to multivariate and quantitative analysis. RESULT The 1H NMR study of periodontal surgery samples shows clear demarcation and profound metabolic differences when compared with the diseased condition. Several metabolites such as lactate, ethanol, succinate, and glutamate were found to be of higher significance in periodontal surgery in contrast to chronic periodontitis subjects. The PLS-DA model of the studied group resulted in R2 of 0.83 and Q2 of 0.70. CONCLUSION Significant metabolites could be considered as early repair markers for chronic periodontitis disease as they are being restored to achieve symbiosis. The study, therefore, concluded the early recovery process of the diseased subjects with the restoration of possible metabolomic profile similar to the healthy controls.
Collapse
Affiliation(s)
- Manvendra Pratap Singh
- Centre of Biomedical Research, formerly Centre of Biomedical Magnetic Resonance (CBMR), Sanjay Gandhi Postgraduate Institute of Medical Sciences Campus, Rae Bareli Road, Lucknow, 226014, India
| | - Mona Saxena
- Department of Periodontics, Career Post Graduate Institute of Dental Sciences and Hospital, Lucknow, 226020, India
- Department of Biochemistry, Saraswati Medical College, Unnao, India
| | - Charanjit S Saimbi
- Department of Periodontics, Career Post Graduate Institute of Dental Sciences and Hospital, Lucknow, 226020, India.
| | | | - Raja Roy
- Centre of Biomedical Research, formerly Centre of Biomedical Magnetic Resonance (CBMR), Sanjay Gandhi Postgraduate Institute of Medical Sciences Campus, Rae Bareli Road, Lucknow, 226014, India.
| |
Collapse
|
40
|
Taxonomic and functional characterization of a microbial community from a volcanic englacial ecosystem in Deception Island, Antarctica. Sci Rep 2019; 9:12158. [PMID: 31434915 PMCID: PMC6704131 DOI: 10.1038/s41598-019-47994-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 07/24/2019] [Indexed: 12/22/2022] Open
Abstract
Glaciers are populated by a large number of microorganisms including bacteria, archaea and microeukaryotes. Several factors such as solar radiation, nutrient availability and water content greatly determine the diversity and abundance of these microbial populations, the type of metabolism and the biogeochemical cycles. Three ecosystems can be differentiated in glaciers: supraglacial, subglacial and englacial ecosystems. Firstly, the supraglacial ecosystem, sunlit and oxygenated, is predominantly populated by photoautotrophic microorganisms. Secondly, the subglacial ecosystem contains a majority of chemoautotrophs that are fed on the mineral salts of the rocks and basal soil. Lastly, the englacial ecosystem is the least studied and the one that contains the smallest number of microorganisms. However, these unknown englacial microorganisms establish a food web and appear to have an active metabolism. In order to study their metabolic potentials, samples of englacial ice were taken from an Antarctic glacier. Microorganisms were analyzed by a polyphasic approach that combines a set of -omic techniques: 16S rRNA sequencing, culturomics and metaproteomics. This combination provides key information about diversity and functions of microbial populations, especially in rare habitats. Several whole essential proteins and enzymes related to metabolism and energy production, recombination and translation were found that demonstrate the existence of cellular activity at subzero temperatures. In this way it is shown that the englacial microorganisms are not quiescent, but that they maintain an active metabolism and play an important role in the glacial microbial community.
Collapse
|
41
|
Gallardo-Benavente C, Carrión O, Todd JD, Pieretti JC, Seabra AB, Durán N, Rubilar O, Pérez-Donoso JM, Quiroz A. Biosynthesis of CdS Quantum Dots Mediated by Volatile Sulfur Compounds Released by Antarctic Pseudomonas fragi. Front Microbiol 2019; 10:1866. [PMID: 31456780 PMCID: PMC6700389 DOI: 10.3389/fmicb.2019.01866] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 07/29/2019] [Indexed: 12/13/2022] Open
Abstract
Previously we reported the biosynthesis of intracellular cadmium sulfide quantum dots (CdS QDs) at low temperatures by the Antarctic strain Pseudomonas fragi GC01. Here we studied the role of volatile sulfur compounds (VSCs) in the biosynthesis of CdS QDs by P. fragi GC01. The biosynthesis of nanoparticles was evaluated in the presence of sulfate, sulfite, thiosulfate, sulfide, cysteine and methionine as sole sulfur sources. Intracellular biosynthesis occurred with all sulfur sources tested. However, extracellular biosynthesis was observed only in cultures amended with cysteine (Cys) and methionine (Met). Extracellular nanoparticles were characterized by dynamic light scattering, absorption and emission spectra, energy dispersive X-ray, atomic force microscopy, transmission electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. Purified QDs correspond to cubic nanocrystals of CdS with sizes between 2 and 16 nm. The analysis of VSCs revealed that P. fragi GC01 produced hydrogen sulfide (H2S), methanethiol (MeSH) and dimethyl sulfide (DMS) in the presence of sulfate, Met or Cys. Dimethyl disulfide (DMDS) was only detected in the presence of Met. Interestingly, MeSH was the main VSC produced in this condition. In addition, MeSH was the only VSC for which the concentration decreased in the presence of cadmium (Cd) of all the sulfur sources tested, suggesting that this gas interacts with Cd to form nanoparticles. The role of MeSH and DMS on Cds QDs biosynthesis was evaluated in two mutants of the Antarctic strain Pseudomonas deceptionensis M1T: megL - (unable to produce MeSH from Met) and mddA - (unable to generate DMS from MeSH). No biosynthesis of QDs was observed in the megL - strain, confirming the importance of MeSH in QD biosynthesis. In addition, the production of QDs in the mddA - strain was not affected, indicating that DMS is not a substrate for the biosynthesis of nanoparticles. Here, we confirm a link between MeSH production and CdS QDs biosynthesis when Met is used as sole sulfur source. This work represents the first report that directly associates the production of MeSH with the bacterial synthesis of QDs, thus revealing the importance of different VSCs in the biological generation of metal sulfide nanostructures.
Collapse
Affiliation(s)
- Carla Gallardo-Benavente
- Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Temuco, Chile
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| | - Ornella Carrión
- School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom
| | - Jonathan D. Todd
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Joana C. Pieretti
- Centro de Ciencias Naturais e Humanas, Universidade Federal do ABC, Santo André, Brazil
| | - Amedea B. Seabra
- Centro de Ciencias Naturais e Humanas, Universidade Federal do ABC, Santo André, Brazil
| | - Nelson Durán
- Centro de Ciencias Naturais e Humanas, Universidade Federal do ABC, Santo André, Brazil
- Institute of Biology, Universidade Estadual de Campinas, Campinas, Brazil
| | - Olga Rubilar
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
- Departamento de Ingeniería Química, Universidad de La Frontera, Temuco, Chile
| | - José M. Pérez-Donoso
- BioNanotechnology and Microbiology Lab, Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Andrés Quiroz
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
42
|
Clifford EL, Varela MM, De Corte D, Bode A, Ortiz V, Herndl GJ, Sintes E. Taurine Is a Major Carbon and Energy Source for Marine Prokaryotes in the North Atlantic Ocean off the Iberian Peninsula. MICROBIAL ECOLOGY 2019; 78:299-312. [PMID: 30666368 PMCID: PMC6647121 DOI: 10.1007/s00248-019-01320-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 01/03/2019] [Indexed: 05/31/2023]
Abstract
Taurine, an amino acid-like compound, acts as an osmostress protectant in many marine metazoans and algae and is released via various processes into the oceanic dissolved organic matter pool. Taurine transporters are widespread among members of the marine prokaryotic community, tentatively indicating that taurine might be an important substrate for prokaryotes in the ocean. In this study, we determined prokaryotic taurine assimilation and respiration throughout the water column along two transects in the North Atlantic off the Iberian Peninsula. Taurine assimilation efficiency decreased from the epipelagic waters from 55 ± 14% to 27 ± 20% in the bathypelagic layers (means of both transects). Members of the ubiquitous alphaproteobacterial SAR11 clade accounted for a large fraction of cells taking up taurine, especially in surface waters. Archaea (Thaumarchaeota + Euryarchaeota) were also able to take up taurine in the upper water column, but to a lower extent than Bacteria. The contribution of taurine assimilation to the heterotrophic prokaryotic carbon biomass production ranged from 21% in the epipelagic layer to 16% in the bathypelagic layer. Hence, we conclude that dissolved free taurine is a significant carbon and energy source for prokaryotes throughout the oceanic water column being utilized with similar efficiencies as dissolved free amino acids.
Collapse
Affiliation(s)
- Elisabeth L Clifford
- Department of Limnology and Bio-Oceanography, Center of Functional Ecology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Marta M Varela
- Instituto Español de Oceanografía (IEO), Centro Oceanográfico de A Coruña, Apdo 130, 15080, A Coruña, Spain
| | - Daniele De Corte
- Research and Development Center for Marine Biosciences, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Natushima 2-15, Yokosuka, Kanagawa, 237-0061, Japan
| | - Antonio Bode
- Instituto Español de Oceanografía (IEO), Centro Oceanográfico de A Coruña, Apdo 130, 15080, A Coruña, Spain
| | - Victor Ortiz
- Department of Limnology and Bio-Oceanography, Center of Functional Ecology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Gerhard J Herndl
- Department of Limnology and Bio-Oceanography, Center of Functional Ecology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
- Royal Netherlands Institute for Sea Research (NIOZ), Department of Marine Microbiology and Biogeochemistry, Utrecht University, PO Box 59, 1790 AB, Den Burg, The Netherlands
| | - Eva Sintes
- Department of Limnology and Bio-Oceanography, Center of Functional Ecology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria.
- Instituto Español de Oceanografía (IEO), Centro Oceanográfico de Baleares, Moll de Ponent s/n, 07015, Palma de Mallorca, Spain.
| |
Collapse
|
43
|
Vigneron A, Lovejoy C, Cruaud P, Kalenitchenko D, Culley A, Vincent WF. Contrasting Winter Versus Summer Microbial Communities and Metabolic Functions in a Permafrost Thaw Lake. Front Microbiol 2019; 10:1656. [PMID: 31379798 PMCID: PMC6646835 DOI: 10.3389/fmicb.2019.01656] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 07/04/2019] [Indexed: 11/13/2022] Open
Abstract
Permafrost thawing results in the formation of thermokarst lakes, which are biogeochemical hotspots in northern landscapes and strong emitters of greenhouse gasses to the atmosphere. Most studies of thermokarst lakes have been in summer, despite the predominance of winter and ice-cover over much of the year, and the microbial ecology of these waters under ice remains poorly understood. Here we first compared the summer versus winter microbiomes of a subarctic thermokarst lake using DNA- and RNA-based 16S rRNA amplicon sequencing and qPCR. We then applied comparative metagenomics and used genomic bin reconstruction to compare the two seasons for changes in potential metabolic functions in the thermokarst lake microbiome. In summer, the microbial community was dominated by Actinobacteria and Betaproteobacteria, with phototrophic and aerobic pathways consistent with the utilization of labile and photodegraded substrates. The microbial community was strikingly different in winter, with dominance of methanogens, Planctomycetes, Chloroflexi and Deltaproteobacteria, along with various taxa of the Patescibacteria/Candidate Phyla Radiation (Parcubacteria, Microgenomates, Omnitrophica, Aminicenantes). The latter group was underestimated or absent in the amplicon survey, but accounted for about a third of the metagenomic reads. The winter lineages were associated with multiple reductive metabolic processes, fermentations and pathways for the mobilization and degradation of complex organic matter, along with a strong potential for syntrophy or cross-feeding. The results imply that the summer community represents a transient stage of the annual cycle, and that carbon dioxide and methane production continue through the prolonged season of ice cover via a taxonomically distinct winter community and diverse mechanisms of permafrost carbon transformation.
Collapse
Affiliation(s)
- Adrien Vigneron
- Département de Biologie, Université Laval, Quebec, QC, Canada.,Centre d'Études Nordiques, Takuvik Joint International Laboratory, Université Laval, Quebec, QC, Canada.,Institut de Biologie Intégrative et des Systèmes, Université Laval, Quebec, QC, Canada
| | - Connie Lovejoy
- Département de Biologie, Université Laval, Quebec, QC, Canada.,Centre d'Études Nordiques, Takuvik Joint International Laboratory, Université Laval, Quebec, QC, Canada.,Institut de Biologie Intégrative et des Systèmes, Université Laval, Quebec, QC, Canada.,Québec Océan, Université Laval, Quebec, QC, Canada
| | - Perrine Cruaud
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Quebec, QC, Canada.,Département de Biochimie, de Microbiologie et de Bio-Informatique, Université Laval, Quebec, QC, Canada
| | - Dimitri Kalenitchenko
- Département de Biologie, Université Laval, Quebec, QC, Canada.,Institut de Biologie Intégrative et des Systèmes, Université Laval, Quebec, QC, Canada.,Québec Océan, Université Laval, Quebec, QC, Canada
| | - Alexander Culley
- Centre d'Études Nordiques, Takuvik Joint International Laboratory, Université Laval, Quebec, QC, Canada.,Institut de Biologie Intégrative et des Systèmes, Université Laval, Quebec, QC, Canada.,Département de Biochimie, de Microbiologie et de Bio-Informatique, Université Laval, Quebec, QC, Canada
| | - Warwick F Vincent
- Département de Biologie, Université Laval, Quebec, QC, Canada.,Centre d'Études Nordiques, Takuvik Joint International Laboratory, Université Laval, Quebec, QC, Canada.,Institut de Biologie Intégrative et des Systèmes, Université Laval, Quebec, QC, Canada
| |
Collapse
|
44
|
Chemotaxis Towards Aromatic Compounds: Insights from Comamonas testosteroni. Int J Mol Sci 2019; 20:ijms20112701. [PMID: 31159416 PMCID: PMC6600141 DOI: 10.3390/ijms20112701] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 05/28/2019] [Accepted: 05/30/2019] [Indexed: 02/07/2023] Open
Abstract
Chemotaxis is an important physiological adaptation that allows many motile bacteria to orientate themselves for better niche adaptation. Chemotaxis is best understood in Escherichia coli. Other representative bacteria, such as Rhodobacter sphaeroides, Pseudomonas species, Helicobacter pylori, and Bacillus subtilis, also have been deeply studied and systemically summarized. These bacteria belong to α-, γ-, ε-Proteobacteria, or Firmicutes. However, β-Proteobacteria, of which many members have been identified as holding chemotactic pathways, lack a summary of chemotaxis. Comamonas testosteroni, belonging to β-Proteobacteria, grows with and chemotactically responds to a range of aromatic compounds. This paper summarizes the latest research on chemotaxis towards aromatic compounds, mainly from investigations of C. testosteroni and other Comamonas species.
Collapse
|
45
|
Wang S, Guan J, Zhang Q, Chen X, Li F. Identification and Signature Sequences of Bacterial Δ 4,5Hexuronate-2- O-Sulfatases. Front Microbiol 2019; 10:704. [PMID: 31024490 PMCID: PMC6460246 DOI: 10.3389/fmicb.2019.00704] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 03/20/2019] [Indexed: 11/13/2022] Open
Abstract
Glycosaminoglycan (GAG) sulfatases, which catalyze the hydrolysis of sulfate esters from GAGs, belong to a large and conserved sulfatase family. Bacterial GAG sulfatases are essential in the process of sulfur cycling and are useful for the structural analysis of GAGs. Only a few GAG-specific sulfatases have been studied in detail and reported to date. Herein, the GAG-degrading Photobacterium sp. FC615 was isolated from marine sediment, and a novel Δ4,5hexuronate-2-O-sulfatase (PB2SF) was identified from this bacterium. PB2SF specifically removed 2-O-sulfate from the unsaturated hexuronate residue located at the non-reducing end of GAG oligosaccharides produced by GAG lyases. A structural model of PB2SF was constructed through a homology-modeling method. Six conserved amino acids around the active site were chosen for further analysis using site-directed mutagenesis. N113A, K141A, K141H, H143A, H143K, H205A, and H205K mutants exhibited only feeble activity, while the H310A, H310K, and D52A mutants were totally inactive, indicating that these conserved residues, particularly Asp52 and His310, were essential in the catalytic mechanism. Furthermore, bioinformatic analysis revealed that GAG sulfatases with specific degradative properties clustered together in the neighbor-joining phylogenetic tree. Based on this finding, 60 Δ4,5hexuronate-2-O-sulfatases were predicted in the NCBI protein database, and one with relatively low identity to PB2SF was characterized to confirm our prediction. Moreover, the signature sequences of bacterial Δ4,5hexuronate-2-O-sulfatases were identified. With the reported signature motifs, the sulfatase sequence of the Δ4,5hexuronate-2-O-sulfatase family could be simply identified before cloning. Taken together, the results of this study should aid in the identification and further application of novel GAG sulfatases.
Collapse
Affiliation(s)
- Shumin Wang
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| | - Jingwen Guan
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| | - Qingdong Zhang
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| | - Xiangxue Chen
- Dongying Tiandong Pharmaceutical, Co., Ltd., Dongying, China
| | - Fuchuan Li
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| |
Collapse
|
46
|
Xing M, Wei Y, Zhou Y, Zhang J, Lin L, Hu Y, Hua G, N Nanjaraj Urs A, Liu D, Wang F, Guo C, Tong Y, Li M, Liu Y, Ang EL, Zhao H, Yuchi Z, Zhang Y. Radical-mediated C-S bond cleavage in C2 sulfonate degradation by anaerobic bacteria. Nat Commun 2019; 10:1609. [PMID: 30962433 PMCID: PMC6453916 DOI: 10.1038/s41467-019-09618-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 03/21/2019] [Indexed: 12/18/2022] Open
Abstract
Bacterial degradation of organosulfonates plays an important role in sulfur recycling, and has been extensively studied. However, this process in anaerobic bacteria especially gut bacteria is little known despite of its potential significant impact on human health with the production of toxic H2S. Here, we describe the structural and biochemical characterization of an oxygen-sensitive enzyme that catalyzes the radical-mediated C-S bond cleavage of isethionate to form sulfite and acetaldehyde. We demonstrate its involvement in pathways that enables C2 sulfonates to be used as terminal electron acceptors for anaerobic respiration in sulfate- and sulfite-reducing bacteria. Furthermore, it plays a key role in converting bile salt-derived taurine into H2S in the disease-associated gut bacterium Bilophila wadsworthia. The enzymes and transporters in these anaerobic pathways expand our understanding of microbial sulfur metabolism, and help deciphering the complex web of microbial pathways involved in the transformation of sulfur compounds in the gut. The C2 sulfonates taurine and isethionate are also present in the anaerobic mammalian gut, where they are converted into toxic H2S by sulfate and sulfite-reducing bacteria. Here the authors characterise the O2-sensitive enzyme IseG that catalyzes the C-S bond cleavage of isethionate and show that IseG also plays a key role in converting taurine into H2S in Bilophila wadsworthia.
Collapse
Affiliation(s)
- Meining Xing
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, China
| | - Yifeng Wei
- Metabolic Engineering Research Laboratory, Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, 138669, Singapore
| | - Yan Zhou
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, China
| | - Jun Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, China
| | - Lianyun Lin
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, China
| | - Yiling Hu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, China
| | - Gaoqun Hua
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, China
| | - Ankanahalli N Nanjaraj Urs
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, China
| | - Dazhi Liu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, China
| | - Feifei Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, China
| | - Cuixia Guo
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, China
| | - Yang Tong
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, China
| | - Mengya Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, China
| | - Yanhong Liu
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Ee Lui Ang
- Metabolic Engineering Research Laboratory, Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, 138669, Singapore
| | - Huimin Zhao
- Metabolic Engineering Research Laboratory, Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, 138669, Singapore. .,Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL, 61801, USA.
| | - Zhiguang Yuchi
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, China.
| | - Yan Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, China.
| |
Collapse
|
47
|
Identification and Characterization of a Dominant Sulfolane-Degrading Rhodoferax sp. via Stable Isotope Probing Combined with Metagenomics. Sci Rep 2019; 9:3121. [PMID: 30816276 PMCID: PMC6395730 DOI: 10.1038/s41598-019-40000-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 02/05/2019] [Indexed: 01/06/2023] Open
Abstract
Sulfolane is an industrial solvent and emerging organic contaminant affecting groundwater around the world, but little is known about microbes capable of biodegrading sulfolane or the pathways involved. We combined DNA-based stable isotope probing (SIP) with genome-resolved metagenomics to identify microorganisms associated with sulfolane biodegradation in a contaminated subarctic aquifer. In addition to 16S rRNA gene amplicon sequencing, we performed shotgun metagenomics on the 13C-labeled DNA to obtain functional and taxonomic information about the active sulfolane-degrading community. We identified the primary sulfolane degrader, comprising ~85% of the labeled community in the amplicon sequencing dataset, as closely related to Rhodoferax ferrireducens strain T118. We obtained a 99.8%-complete metagenome-assembled genome for this strain, allowing us to identify putative pathways of sulfolane biodegradation. Although the 4S dibenzothiophene desulfurization pathway has been proposed as an analog for sulfolane biodegradation, we found only a subset of the required genes, suggesting a novel pathway specific to sulfolane. DszA, the enzyme likely responsible for opening the sulfolane ring structure, was encoded on both the chromosome and a plasmid. This study demonstrates the power of integrating DNA-SIP with metagenomics to characterize emerging organic contaminant degraders without culture bias and expands the known taxonomic distribution of sulfolane biodegradation.
Collapse
|
48
|
A glycyl radical enzyme enables hydrogen sulfide production by the human intestinal bacterium Bilophila wadsworthia. Proc Natl Acad Sci U S A 2019; 116:3171-3176. [PMID: 30718429 PMCID: PMC6386719 DOI: 10.1073/pnas.1815661116] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
This paper describes a pathway for anaerobic bacterial metabolism of taurine (2-aminoethanesulfonate), an abundant substrate in the human intestinal microbiota, by the intestinal bacterium and opportunistic pathogen, Bilophila wadsworthia. This metabolism converts taurine to the toxic metabolite hydrogen sulfide (H2S), an activity associated with inflammatory bowel disease and colorectal cancer. A critical enzyme in this pathway is isethionate sulfite-lyase, a member of the glycyl radical enzyme family. This enzyme catalyzes a novel, radical-based C-S bond-cleavage reaction to convert isethionate (2-hydroxyethanesulfonate) to sulfite and acetaldehyde. This discovery improves our understanding of H2S production in the human body and may also offer new approaches for controlling intestinal H2S production and B. wadsworthia infections. Hydrogen sulfide (H2S) production in the intestinal microbiota has many contributions to human health and disease. An important source of H2S in the human gut is anaerobic respiration of sulfite released from the abundant dietary and host-derived organic sulfonate substrate in the gut, taurine (2-aminoethanesulfonate). However, the enzymes that allow intestinal bacteria to access sulfite from taurine have not yet been identified. Here we decipher the complete taurine desulfonation pathway in Bilophila wadsworthia 3.1.6 using differential proteomics, in vitro reconstruction with heterologously produced enzymes, and identification of critical intermediates. An initial deamination of taurine to sulfoacetaldehyde by a known taurine:pyruvate aminotransferase is followed, unexpectedly, by reduction of sulfoacetaldehyde to isethionate (2-hydroxyethanesulfonate) by an NADH-dependent reductase. Isethionate is then cleaved to sulfite and acetaldehyde by a previously uncharacterized glycyl radical enzyme (GRE), isethionate sulfite-lyase (IslA). The acetaldehyde produced is oxidized to acetyl-CoA by a dehydrogenase, and the sulfite is reduced to H2S by dissimilatory sulfite reductase. This unique GRE is also found in Desulfovibrio desulfuricans DSM642 and Desulfovibrio alaskensis G20, which use isethionate but not taurine; corresponding knockout mutants of D. alaskensis G20 did not grow with isethionate as the terminal electron acceptor. In conclusion, the novel radical-based C-S bond-cleavage reaction catalyzed by IslA diversifies the known repertoire of GRE superfamily enzymes and enables the energy metabolism of B. wadsworthia. This GRE is widely distributed in gut bacterial genomes and may represent a novel target for control of intestinal H2S production.
Collapse
|
49
|
SfnR2 Regulates Dimethyl Sulfide-Related Utilization in Pseudomonas aeruginosa PAO1. J Bacteriol 2019; 201:JB.00606-18. [PMID: 30478084 DOI: 10.1128/jb.00606-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 11/20/2018] [Indexed: 12/14/2022] Open
Abstract
Dimethyl sulfide (DMS) is a volatile sulfur compound produced mainly from the degradation of dimethylsulfoniopropionate (DMSP) in marine environments. DMS undergoes oxidation to form dimethyl sulfoxide (DMSO), dimethyl sulfone (DMSO2), and methanesulfonate (MSA), all of which occur in terrestrial environments and are accessible for consumption by various microorganisms. The purpose of the present study was to determine how the enhancer-binding proteins SfnR1 and SfnR2 contribute to the utilization of DMS and its derivatives in Pseudomonas aeruginosa PAO1. First, results from cell growth experiments showed that deletion of either sfnR2 or sfnG, a gene encoding a DMSO2-monooxygenase, significantly inhibits the ability of P. aeruginosa PAO1 to use DMSP, DMS, DMSO, and DMSO2 as sulfur sources. Deletion of the sfnR1 or msuEDC genes, which encode a MSA desulfurization pathway, did not abolish the growth of P. aeruginosa PAO1 on any sulfur compound tested. Second, data collected from β-galactosidase assays revealed that the msuEDC-sfnR1 operon and the sfnG gene are induced in response to sulfur limitation or nonpreferred sulfur sources, such as DMSP, DMS, and DMSO, etc. Importantly, SfnR2 (and not SfnR1) is essential for this induction. Expression of sfnR2 is induced under sulfur limitation but independently of SfnR1 or SfnR2. Finally, the results of this study suggest that the main function of SfnR2 is to direct the initial activation of the msuEDC-sfnR1 operon in response to sulfur limitation or nonpreferred sulfur sources. Once expressed, SfnR1 contributes to the expression of msuEDC-sfnR1, sfnG, and other target genes involved in DMS-related metabolism in P. aeruginosa PAO1.IMPORTANCE Dimethyl sulfide (DMS) is an important environmental source of sulfur, carbon, and/or energy for microorganisms. For various bacteria, including Pseudomonas, Xanthomonas, and Azotobacter, DMS utilization is thought to be controlled by the transcriptional regulator SfnR. Adding more complexity, some bacteria, such as Acinetobacter baumannii, Enterobacter cloacae, and Pseudomonas aeruginosa, possess two, nonidentical SfnR proteins. In this study, we demonstrate that SfnR2 and not SfnR1 is the principal regulator of DMS metabolism in P. aeruginosa PAO1. Results suggest that SfnR1 has a supportive but nonessential role in the positive regulation of genes required for DMS utilization. This study not only enhances our understanding of SfnR regulation but, importantly, also provides a framework for addressing gene regulation through dual SfnR proteins in other bacteria.
Collapse
|
50
|
Jaiswal D, Sengupta A, Sohoni S, Sengupta S, Phadnavis AG, Pakrasi HB, Wangikar PP. Genome Features and Biochemical Characteristics of a Robust, Fast Growing and Naturally Transformable Cyanobacterium Synechococcus elongatus PCC 11801 Isolated from India. Sci Rep 2018; 8:16632. [PMID: 30413737 PMCID: PMC6226537 DOI: 10.1038/s41598-018-34872-z] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 10/26/2018] [Indexed: 01/09/2023] Open
Abstract
Cyanobacteria provide an interesting platform for biotechnological applications due to their efficient photoautotrophic growth, amenability to genetic engineering and the ability to grow on non-arable land. An ideal industrial strain of cyanobacteria would need to be fast growing and tolerant to high levels of temperature, light, carbon dioxide, salt and be naturally transformable. In this study, we report Synechococcus elongatus PCC 11801, a strain isolated from India that fulfills these requirements. The physiological and biochemical characteristics of PCC 11801 under carbon and light-limiting conditions were investigated. PCC 11801 shows a doubling time of 2.3 h, that is the fastest growth for any cyanobacteria reported so far under ambient CO2 conditions. Genome sequence of PCC 11801 shows genome identity of ~83% with its closest neighbors Synechococcus elongatus PCC 7942 and Synechococcus elongatus UTEX 2973. The unique attributes of PCC 11801 genome are discussed in light of the physiological characteristics that are needed in an industrial strain. The genome of PCC 11801 shows several genes that do not have homologs in neighbor strains PCC 7942 and UTEX 2973, some of which may be responsible for adaptation to various abiotic stresses. The remarkably fast growth rate of PCC 11801 coupled with its robustness and ease of genetic transformation makes it an ideal candidate for the photosynthetic production of fuels and chemicals.
Collapse
Affiliation(s)
- Damini Jaiswal
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Annesha Sengupta
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Sujata Sohoni
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Shinjinee Sengupta
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India.,DBT-PAN IIT Centre for Bioenergy, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Ambarish G Phadnavis
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Himadri B Pakrasi
- Department of Biology, Washington University, St. Louis, MO, 63130, USA.,Department of Energy, Environmental and Chemical Engineering, Washington University, St. Louis, MO, 63130, USA
| | - Pramod P Wangikar
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India. .,DBT-PAN IIT Centre for Bioenergy, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India. .,Wadhwani Research Centre for Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India.
| |
Collapse
|