1
|
Zhang Y, Xia X, Wan L, Han BP, Liu H, Jing H. Microbial Communities Are Shaped by Different Ecological Processes in Subtropical Reservoirs of Different Trophic States. MICROBIAL ECOLOGY 2023; 86:2073-2085. [PMID: 37042985 DOI: 10.1007/s00248-023-02216-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/27/2023] [Indexed: 06/19/2023]
Abstract
Understanding microbial community structure and the underlying control mechanisms are fundamental purposes of aquatic ecology. However, little is known about the seasonality and how trophic conditions regulate plankton community in subtropical reservoirs. In this study, we study the prokaryotic and picoeukaryotic communities and their interactions during wet and dry seasons in two subtropical reservoirs: one at oligotrophic state and another at mesotrophic state. Distinct microbial community compositions (prokaryotes and picoeukaryotes) and seasonal variation pattern were detected in the oligotrophic and mesotrophic reservoirs. The interactions between prokaryotic and picoeukaryotic communities were more prevalent in the oligotrophic reservoir, suggesting enhanced top-down control of small eukaryotic grazers on the prokaryotic communities. On the other hand, the microbial community in the mesotrophic reservoir was more influenced by physico-chemical parameters and showed a stronger seasonal variation, which may be the result of distinct nutrient levels in wet and dry seasons, indicating the importance of bottom-up control. Our study contributes to new understandings of the environmental and biological processes that shape the structure and dynamics of the planktonic microbial communities in reservoirs of different trophic states.
Collapse
Affiliation(s)
- Yue Zhang
- CAS Key Laboratory for Experimental Study under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Xiaomin Xia
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510220, China
| | - Linglin Wan
- Department of Ecology, Jinan University, Guangzhou, China
| | - Bo-Ping Han
- Department of Ecology, Jinan University, Guangzhou, China
| | - Hongbin Liu
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, SAR, China.
- HKUST-CAS Sanya Joint Laboratory of Marine Science Research, Chinese Academy of Sciences, Sanya, China.
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China.
| | - Hongmei Jing
- CAS Key Laboratory for Experimental Study under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.
- HKUST-CAS Sanya Joint Laboratory of Marine Science Research, Chinese Academy of Sciences, Sanya, China.
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China.
| |
Collapse
|
2
|
Jeilu O, Gessesse A, Simachew A, Johansson E, Alexandersson E. Prokaryotic and eukaryotic microbial diversity from three soda lakes in the East African Rift Valley determined by amplicon sequencing. Front Microbiol 2022; 13:999876. [PMID: 36569062 PMCID: PMC9772273 DOI: 10.3389/fmicb.2022.999876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022] Open
Abstract
Soda lakes are unique poly-extreme environments with high alkalinity and salinity that support diverse microbial communities despite their extreme nature. In this study, prokaryotic and eukaryotic microbial diversity in samples of the three soda lakes, Lake Abijata, Lake Chitu and Lake Shala in the East African Rift Valley, were determined using amplicon sequencing. Culture-independent analysis showed higher diversity of prokaryotic and eukaryotic microbial communities in all three soda lakes than previously reported. A total of 3,603 prokaryotic and 898 eukaryotic operational taxonomic units (OTUs) were found through culture-independent amplicon sequencing, whereas only 134 bacterial OTUs, which correspond to 3%, were obtained by enrichment cultures. This shows that only a fraction of the microorganisms from these habitats can be cultured under laboratory conditions. Of the three soda lakes, samples from Lake Chitu showed the highest prokaryotic diversity, while samples from Lake Shala showed the lowest diversity. Pseudomonadota (Halomonas), Bacillota (Bacillus, Clostridia), Bacteroidota (Bacteroides), Euryarchaeota (Thermoplasmata, Thermococci, Methanomicrobia, Halobacter), and Nanoarchaeota (Woesearchaeia) were the most common prokaryotic microbes in the three soda lakes. A high diversity of eukaryotic organisms were identified, primarily represented by Ascomycota and Basidiomycota. Compared to the other two lakes, a higher number of eukaryotic OTUs were found in Lake Abijata. The present study showed that these unique habitats harbour diverse microbial genetic resources with possible use in biotechnological applications, which should be further investigated by functional metagenomics.
Collapse
Affiliation(s)
- Oliyad Jeilu
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia,Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden,*Correspondence: Oliyad Jeilu,
| | - Amare Gessesse
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia,Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana
| | - Addis Simachew
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Eva Johansson
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Erik Alexandersson
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Lomma, Sweden
| |
Collapse
|
3
|
Yue Y, Wang F, Pan J, Chen XP, Tang Y, Yang Z, Ma J, Li M, Yang M. Spatiotemporal dynamics, community assembly and functional potential of sedimentary archaea in reservoirs: coaction of stochasticity and nutrient load. FEMS Microbiol Ecol 2022; 98:6701916. [PMID: 36111740 DOI: 10.1093/femsec/fiac109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/16/2022] [Accepted: 09/14/2022] [Indexed: 01/21/2023] Open
Abstract
Archaea participate in biogeochemical cycles in aquatic ecosystems, and deciphering their community dynamics and assembly mechanisms is key to understanding their ecological functions. Here, sediments from 12 selected reservoirs from the Wujiang and Pearl River basins in southwest China were investigated using 16S rRNA Illumina sequencing and quantitative PCR for archaeal abundance and richness in all seasons. Generally, archaeal abundance and α-diversity were significantly correlated with temperature; however, β-diversity analysis showed that community structures varied greatly among locations rather than seasons, indicating a distance-decay pattern with geographical variation. The null model revealed the major contribution of stochasticity to archaeal community assembly, which was further confirmed by the neutral community model that could explain 71.7% and 90.2% of the variance in archaeal assembly in the Wujiang and Pearl River basins, respectively. Moreover, sediment total nitrogen and organic carbon levels were significantly correlated with archaeal abundance and α-diversity. Interestingly, these nutrient levels were positively and negatively correlated, respectively, with the abundance of methanogenic and ammonia-oxidized archaea: the dominant sedimentary archaea in these reservoirs. Taken together, this work systematically characterized archaeal community profiles in reservoir sediments and demonstrated the combined action of stochastic processes and nutrient load in shaping archaeal communities in reservoir ecosystems.
Collapse
Affiliation(s)
- Yihong Yue
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Fushun Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Jie Pan
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, 518060, China.,Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Xue-Ping Chen
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Yi Tang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Zhihong Yang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Jing Ma
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Meng Li
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, 518060, China.,Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Ming Yang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
4
|
de Diego GA, Penas-Steinhardt A, Ferro JP, Palacio MJ, Ossana NA, Eissa BL, Belforte F. Impact of exposure to arsenic on the bacterial microbiota associated with river biofilms in the Pampas region. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 252:106319. [PMID: 36252326 DOI: 10.1016/j.aquatox.2022.106319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 09/10/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Freshwater contamination by arsenic (As) is a worldwide problem. It may be found in Pampean streams of Argentina at concentrations higher than those recommended by international organizations and stipulated by national regulations. Exposure to high As concentrations causes serious consequences to both human health and the environment. The general objective of this work was to evaluate the effect of As on the biofilm microbiota structure from Naveira stream, Luján, Province of Buenos Aires (Coordinates: 34º34'02″ S 59º03'51″ W). The biofilm collected was cultivated in glass aquaria at different As III concentrations (0, 0.2 and 20 mg / L), inside incubation chambers under controlled conditions (16 h light: 8 h dark and 24 ± 1 °C) and constant aeration for 31 d, with partial water renewal every 9 d. We amplified the hypervariable regions V3 and V4 of the bacterial 16S rRNA gene from biofilm bacterial community samples to determine the diversity and abundance of the different taxa. The taxonomic composition of each sample, the alpha diversity of each treatment and the main metabolic pathways were analyzed. Principal Component Analysis of the present phyla and a Linear Discriminant Analysis of the metabolic pathways was also performed. Significant changes were observed in relation to the taxonomic composition of the bacterial community after exposure to the metalloid. However, this effect was not observed at the low concentration used (0.2 mg / L), which is the one that corresponds to ecologically relevant levels. The significantly affected phyla were Verrucomicrobiota, Acidobacteriota, Patescibacteria, Hydrogenedentes and WPS-2. The relative abundances of the Verrucomicrobiota, WPS-2 and Patescibacteria groups were notably decreased in the treatment with high As, while the Acidobacteria group was increased in both treatments with As. The stream samples showed greater bacterial diversity than those grown in the laboratory without As. Finally, it was possible to characterize the metabolic profile of the biofilm developed under natural conditions in the leaves of the aquatic plant Elodea canadensis in the Naveira stream. In addition, results showed that biosynthesis-related pathways were more abundant at the high As concentration treatment (20 mg / L).
Collapse
Affiliation(s)
- G A de Diego
- Programa de Ecofisiología Aplicada (PRODEA), Departamento de Ciencias Básicas, Universidad Nacional de Luján, P.O. Box 221, B6700ZBA Luján, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina; Instituto de Ecología y Desarrollo Sustentable (INEDES), Universidad Nacional de Luján - CONICET, P.O. Box 221, B6700ZBA Luján, Argentina.
| | - A Penas-Steinhardt
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina; Laboratorio de Genómica Computacional (GEC-UNLu), Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján, Argentina
| | - J P Ferro
- Programa de Ecofisiología Aplicada (PRODEA), Departamento de Ciencias Básicas, Universidad Nacional de Luján, P.O. Box 221, B6700ZBA Luján, Argentina; Instituto de Ecología y Desarrollo Sustentable (INEDES), Universidad Nacional de Luján - CONICET, P.O. Box 221, B6700ZBA Luján, Argentina
| | - M J Palacio
- Programa de Ecofisiología Aplicada (PRODEA), Departamento de Ciencias Básicas, Universidad Nacional de Luján, P.O. Box 221, B6700ZBA Luján, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina; Instituto de Ecología y Desarrollo Sustentable (INEDES), Universidad Nacional de Luján - CONICET, P.O. Box 221, B6700ZBA Luján, Argentina
| | - N A Ossana
- Programa de Ecofisiología Aplicada (PRODEA), Departamento de Ciencias Básicas, Universidad Nacional de Luján, P.O. Box 221, B6700ZBA Luján, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina; Instituto de Ecología y Desarrollo Sustentable (INEDES), Universidad Nacional de Luján - CONICET, P.O. Box 221, B6700ZBA Luján, Argentina
| | - B L Eissa
- Programa de Ecofisiología Aplicada (PRODEA), Departamento de Ciencias Básicas, Universidad Nacional de Luján, P.O. Box 221, B6700ZBA Luján, Argentina; Instituto de Ecología y Desarrollo Sustentable (INEDES), Universidad Nacional de Luján - CONICET, P.O. Box 221, B6700ZBA Luján, Argentina
| | - F Belforte
- Instituto de Ecología y Desarrollo Sustentable (INEDES), Universidad Nacional de Luján - CONICET, P.O. Box 221, B6700ZBA Luján, Argentina; Laboratorio de Genómica Computacional (GEC-UNLu), Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján, Argentina; Laboratorio de Inmunología, Instituto de Ecología y Desarrollo Sustentable (INEDES) CONICET-UNLu, Departamento de Ciencias Básicas- Universidad Nacional de Luján. Av. Constitución y Ruta Nac. N° 5, B6700ZBA Luján, Buenos Aires
| |
Collapse
|
5
|
Wang Z, Liu F, Li E, Yuan Y, Yang Y, Xu M, Qiu R. Network analysis reveals microbe-mediated impacts of aeration on deep sediment layer microbial communities. Front Microbiol 2022; 13:931585. [PMID: 36246296 PMCID: PMC9561788 DOI: 10.3389/fmicb.2022.931585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/08/2022] [Indexed: 11/24/2022] Open
Abstract
Over-aeration is a common remediation strategy for black and odorous water bodies, in which oxygen is introduced to impact aquatic microbial communities as an electron acceptor of high redox potential. In this study, black-odorous freshwater sediments were cultured for 9 weeks under aeration to investigate microbial covariations at different depths and time points. Based on community 16S rRNA gene sequencing, the microbial covariations were visualized using phylogenetic microbial ecological networks (pMENs). In the spatial scale, we identified smaller and more compact pMENs across all layers compared with the anaerobic control sediments, in terms of network size, average node connectivity, and modularity. The aerated middle layer had the most connectors, the least module hubs, a network hub, shorter average path length, and predominantly positive covariations. In addition, a significant sulfate accumulation in the aerated middle layer indicated the most intense sulfide oxidation, possibly because aeration prompted sediment surface Desulfobulbaceae, known as cable bacteria, to reach the middle layer. In the time scale, similarly, aeration led to smaller pMEN sizes and higher portions of positive covariations. Therefore, we conclude that elevated dissolved oxygen at the water-sediment interface may impact not only the surface sediment but also the subsurface and/or deep sediment microbial communities mediated by microorganisms, particularly by Desulfobulbaceae.
Collapse
Affiliation(s)
- Zhenyu Wang
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Feifei Liu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Enze Li
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Yongqiang Yuan
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, College of Resources and Environmental Engineering, Guizhou University, Guiyang, China
| | - Yonggang Yang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Meiying Xu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Meiying Xu
| | - Rongliang Qiu
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- *Correspondence: Rongliang Qiu
| |
Collapse
|
6
|
Zhao B, Song P, Yang W, Mai Y, Li H, Liu Q, Zeng Y, Gao Y, Du W, Wang C. Bacterioplankton community indicators for seasonal variation in a fragmented subtropical river. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:458. [PMID: 35614274 DOI: 10.1007/s10661-022-10101-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
In this study, spatiotemporal investigations were conducted along five cascade dams in the main channel of the North River of China during 2019 to explore bacterioplankton community indicators of water environments in a fragmented, highly regulated river. Bacterioplankton communities were good bioindicators of temporal variation in river environments, especially when considering the bacterial class level. Specifically, the most dominant bacterial classes (Gammaproteobacteria, Oxyphotobacteria, and Actinobacteria) and sub-dominant bacterial classes (Bacteroidia, Betaproteobacteria, and Acidimicrobiia) exhibited obvious temporal variation. Rainfall, water temperature (WT), water transparency (SD), and pH were all highly associated with temporal variation. In contrast, bacterioplankton indicators of spatial variation were limited to individual dominant bacterial classes for individual study periods, while rainfall, total phosphorus (TP), and pH were also associated with spatial variation. Clustering of bacterioplankton community compositions revealed that temporal differences were much stronger than spatial differences, which is consistent with most environmental parameters exhibiting obvious temporal differences, but minimal spatial differences. A possible reason for these observations could be that river fragmentation caused by cascade dams weakened spatial differences in communities, with WT, rainfall, and river runoff playing key roles in these patterns. In conclusion, bacterioplankton communities were good bioindicators of water environments in the fragmented river ecosystem of this study and their temporal variation was more apparent than their spatial variation.
Collapse
Affiliation(s)
- Biao Zhao
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
- College of Agriculture, Henan University of Science and Technology, Luoyang, 471000, China
| | - Peng Song
- College of Agriculture, Henan University of Science and Technology, Luoyang, 471000, China
| | - Wanling Yang
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
- Fishery Ecological Environment Monitoring Center of Pearl River Basin, Ministry of Agriculture and Rural Affairs, Guangzhou, 510380, China
- Guangzhou Scientific Observing and Experimental Station of National Fisheries Resources and Environment, Guangzhou, 510380, China
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Guangzhou, 510380, China
| | - Yongzhan Mai
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
- Fishery Ecological Environment Monitoring Center of Pearl River Basin, Ministry of Agriculture and Rural Affairs, Guangzhou, 510380, China
- Guangzhou Scientific Observing and Experimental Station of National Fisheries Resources and Environment, Guangzhou, 510380, China
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Guangzhou, 510380, China
| | - Haiyan Li
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
- Fishery Ecological Environment Monitoring Center of Pearl River Basin, Ministry of Agriculture and Rural Affairs, Guangzhou, 510380, China
- Guangzhou Scientific Observing and Experimental Station of National Fisheries Resources and Environment, Guangzhou, 510380, China
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Guangzhou, 510380, China
| | - Qianfu Liu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
- Fishery Ecological Environment Monitoring Center of Pearl River Basin, Ministry of Agriculture and Rural Affairs, Guangzhou, 510380, China
- Guangzhou Scientific Observing and Experimental Station of National Fisheries Resources and Environment, Guangzhou, 510380, China
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Guangzhou, 510380, China
| | - Yanyi Zeng
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
- Fishery Ecological Environment Monitoring Center of Pearl River Basin, Ministry of Agriculture and Rural Affairs, Guangzhou, 510380, China
- Guangzhou Scientific Observing and Experimental Station of National Fisheries Resources and Environment, Guangzhou, 510380, China
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Guangzhou, 510380, China
| | - Yuan Gao
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
- Fishery Ecological Environment Monitoring Center of Pearl River Basin, Ministry of Agriculture and Rural Affairs, Guangzhou, 510380, China
- Guangzhou Scientific Observing and Experimental Station of National Fisheries Resources and Environment, Guangzhou, 510380, China
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Guangzhou, 510380, China
| | - Wanlin Du
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Chao Wang
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China.
- Fishery Ecological Environment Monitoring Center of Pearl River Basin, Ministry of Agriculture and Rural Affairs, Guangzhou, 510380, China.
- Guangzhou Scientific Observing and Experimental Station of National Fisheries Resources and Environment, Guangzhou, 510380, China.
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Guangzhou, 510380, China.
| |
Collapse
|
7
|
Pierangeli GMF, Domingues MR, Choueri RB, Hanisch WS, Gregoracci GB, Benassi RF. Spatial Variation and Environmental Parameters Affecting the Abundant and Rare Communities of Bacteria and Archaea in the Sediments of Tropical Urban Reservoirs. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02047-z. [PMID: 35610383 DOI: 10.1007/s00248-022-02047-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Microbial communities in freshwater sediments play an important role in organic matter remineralization, contributing to biogeochemical cycles, nutrient release, and greenhouse gases emissions. Bacterial and archaeal communities might show spatial or seasonal patterns and were shown to be influenced by distinct environmental parameters and anthropogenic activities, including pollution and damming. Here, we determined the spatial variation and the environmental variables influencing the abundant and rare bacterial and archaeal communities in the sediments of eutrophic-hypereutrophic reservoirs from a tropical urban area in Brazil. The most abundant microbes included mainly Anaerolineae and Deltaproteobacteria genera from the Bacteria domain, and Methanomicrobia genera from the Archaea domain. Microbial communities differed spatially in each reservoir, reflecting the establishment of specific environmental conditions. Locations with better or worst water quality, or close to a dam, showed more distinct microbial communities. Besides the water column depth, microbial communities were affected by some pollution indicators, including total phosphorus, orthophosphate, electrical conductivity, and biochemical oxygen demand. Distinct proportions of variation were explained by spatial and environmental parameters for each microbial community. Furthermore, spatial variations in environmental parameters affecting these communities, especially the most distinct ones, contributed to microbial variations mediated by spatial and environmental properties together. Finally, our study showed that different pressures in each reservoir affected the sediment microbiota, promoting different responses and possible adaptations of abundant and rare bacterial and archaeal communities.
Collapse
Affiliation(s)
- Gabrielle Maria Fonseca Pierangeli
- Marine Biotechnology Lab (Room 505), Institute of Marine Sciences, Federal University of São Paulo, Campus Baixada Santista, Rua Dr. Carvalho de Mendonça, 144 - Vila Belmiro, Santos, SP, 11070-100, Brazil
| | - Mercia Regina Domingues
- Center of Engineering, Modeling and Applied Social Sciences, Federal University of ABC, Santo André, SP, Brazil
| | - Rodrigo Brasil Choueri
- Marine Biotechnology Lab (Room 505), Institute of Marine Sciences, Federal University of São Paulo, Campus Baixada Santista, Rua Dr. Carvalho de Mendonça, 144 - Vila Belmiro, Santos, SP, 11070-100, Brazil
| | | | - Gustavo Bueno Gregoracci
- Marine Biotechnology Lab (Room 505), Institute of Marine Sciences, Federal University of São Paulo, Campus Baixada Santista, Rua Dr. Carvalho de Mendonça, 144 - Vila Belmiro, Santos, SP, 11070-100, Brazil.
| | - Roseli Frederigi Benassi
- Center of Engineering, Modeling and Applied Social Sciences, Federal University of ABC, Santo André, SP, Brazil
| |
Collapse
|
8
|
Bacterial communities in peat swamps reflect changes associated with catchment urbanisation. Urban Ecosyst 2022. [DOI: 10.1007/s11252-022-01238-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
AbstractLike many peat wetlands around the world, Temperate Highland Peat Swamps on Sandstone (THPSS), located in the Sydney Basin, Australia, have been impacted by urban development. In this paper, we used Illumina 16S rRNA DNA amplicon sequencing to characterise and compare the bacterial communities of surface (top 0–2 cm) and deep (50 cm) sediments in peat swamps that occur in both urbanised and non-urbanised catchments. Proteobacteria (32.2% of reads), Acidobacteria (23.6%) and Chloroflexi (10.7%) were the most common phyla of the dataset. There were significant differences in the bacterial community structure between catchment types and depths apparent at the phyla level. Proteobacteria, Bacteroidetes, Actinobacteria and Verrucomicrobia made up a greater proportion of the reads in the surface sediments than the deeper sediments, while Chloroflexi and Nitrospirae were relatively more common in the deeper than the surface sediment. By catchment type, Acidobacteria were more common in swamps occurring in non-urbanised catchments, while Nitrospirae, Bacteroidetes and Actinobacteria were more common in those in urbanised catchments. Microbial community structure was significantly correlated with sediment pH, as was the relative abundance of several phyla, including Acidobacteria (negative correlation) and Bacteroidetes (positive correlation). As an indicator of trophic shift from oligotrophic to copiotrophic conditions associated with urbanised catchment, we found significant differences ratios of β-Proteobacteria to Acidobacteria and Bacteriodetes to Acidobacteria between the catchment types. Based on SIMPER results we suggest the relative abundance of Nitrosomonadaceae family as a potential indicator of urban degradation. As the first study to analyse the bacterial community structure of THPSS using sequencing of 16S rDNA, we reveal the utility of such analyses and show that urbanisation in the Blue Mountains is impacting the microbial ecology of these important peatland ecosystems.
Collapse
|
9
|
Sauer HM, Hamilton TL, Anderson RE, Umbanhowar CE, Heathcote AJ. Diversity and distribution of sediment bacteria across an ecological and trophic gradient. PLoS One 2022; 17:e0258079. [PMID: 35312685 PMCID: PMC8936460 DOI: 10.1371/journal.pone.0258079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 03/04/2022] [Indexed: 11/18/2022] Open
Abstract
The microbial communities of lake sediments have the potential to serve as valuable bioindicators and integrators of watershed land-use and water quality; however, the relative sensitivity of these communities to physio-chemical and geographical parameters must be demonstrated at taxonomic resolutions that are feasible by current sequencing and bioinformatic approaches. The geologically diverse and lake-rich state of Minnesota (USA) is uniquely situated to address this potential because of its variability in ecological region, lake type, and watershed land-use. In this study, we selected twenty lakes with varying physio-chemical properties across four ecological regions of Minnesota. Our objectives were to (i) evaluate the diversity and composition of the bacterial community at the sediment-water interface and (ii) determine how lake location and watershed land-use impact aqueous chemistry and influence bacterial community structure. Our 16S rRNA amplicon data from lake sediment cores, at two depth intervals, data indicate that sediment communities are more likely to cluster by ecological region rather than any individual lake properties (e.g., trophic status, total phosphorous concentration, lake depth). However, composition is tied to a given lake, wherein samples from the same core were more alike than samples collected at similar depths across lakes. Our results illustrate the diversity within lake sediment microbial communities and provide insight into relationships between taxonomy, physicochemical, and geographic properties of north temperate lakes.
Collapse
Affiliation(s)
- Hailey M. Sauer
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, United States of America
- St. Croix Watershed Research Station, Science Museum of Minnesota, Marine on St. Croix, Minnesota, United States of America
| | - Trinity L. Hamilton
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, United States of America
- The Biotechnology Institute, University of Minnesota, St. Paul, Minnesota, United States of America
- * E-mail:
| | - Rika E. Anderson
- Biology Department, Carleton College, Northfield, Minnesota, United States of America
| | - Charles E. Umbanhowar
- Department of Biology and Environmental Studies, St. Olaf College, Northfield, Minnesota, United States of America
| | - Adam J. Heathcote
- St. Croix Watershed Research Station, Science Museum of Minnesota, Marine on St. Croix, Minnesota, United States of America
| |
Collapse
|
10
|
Ni Z, Huang D, Xiao M, Liu X, Wang S. Molecular weight driving bioavailability and intrinsic degradation mechanisms of dissolved organic phosphorus in lake sediment. WATER RESEARCH 2022; 210:117951. [PMID: 34942525 DOI: 10.1016/j.watres.2021.117951] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/15/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
The sediment dissolved organic phosphorus (DOP) for the "internal phosphorus (P) loading" has raised intensive concern, but its bioavailability and intrinsic degradation mechanism have not been fully elucidated. In this work, multi-techniques were combined to construct the response of sediments DOP's bioavailability to molecular weight (MW) based on ten lakes of China, thereby elucidating the intrinsic degradation mechanism of sediment DOP. A high percentage (74.5% on average) and significantly positive correlations with respect to different MWs were observed, highlighting the importance of DOP to dissolved P in sediments. DOP is mainly composed of a low MW (LMW) portion (63.8%) and the substances are primarily derived from microbial sources. Bioavailable DOP species were closely related to MW, with labile monoester P and diester P decreased with decreasing MW. Analysis of environmental processes showed that microbial utilization capacity and the characteristics of dissolved organic matter (DOM) with different MWs were the dominant drivers in determining the bioavailability of DOP. That is, microorganisms exhibit high DOM utilization capacity in LMW portion, promoting the degradation and transformation of bioavailable DOP species. Furthermore, the increased humic and fulvic-like substances by microbial degradation might in turn inhibit the enzymatic hydrolysis of LMW-DOP. This pattern explains why the contents of LMW-DOP are very high, but it contains less bioavailable DOP. By studying the bioavailability of sediment DOPs with different MWs, it is found that, under natural conditions, labile monoester and diester P in LMW-DOP have a high tendency to degrade than those in HMW-DOP. The results further show that, microbial utilization and DOM characteristics, as well as their linkage with DOP's bioavailability and degradability, have important implications for assessing DOP's degradation potential. The insights from this study might shed light on more effective strategies for mitigating the risks of "internal P loading".
Collapse
Affiliation(s)
- Zhaokui Ni
- Guangdong-Hong Kong Joint Laboratory for Water Security, Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, 519087, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Dongling Huang
- College of Resource Environment and Tousism, Capital Normal University, Beijing 100048, China
| | - Mengqi Xiao
- Jiangxi Academy of Environmental Sciences, Nanchang 330039, China
| | - Xiaofei Liu
- Guangdong-Hong Kong Joint Laboratory for Water Security, Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, 519087, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Shengrui Wang
- Guangdong-Hong Kong Joint Laboratory for Water Security, Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, 519087, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing 100875, China; Yunnan Key Laboratory of Pollution Process and Management of Plateau Lake Watershed, Kunming 650034, China.
| |
Collapse
|
11
|
Lin D, Zheng X, Sanogo B, Ding T, Sun X, Wu Z. Bacterial composition of midgut and entire body of laboratory colonies of Aedes aegypti and Aedes albopictus from Southern China. Parasit Vectors 2021; 14:586. [PMID: 34838108 PMCID: PMC8626967 DOI: 10.1186/s13071-021-05050-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 10/01/2021] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Aedes aegypti and Aedes albopictus are invasive mosquito species and significantly impact human health in southern China. Microbiota are confirmed to affect the development and immunity of mosquitoes. However, scientists have focused more on midgut microbiota of female mosquitoes and bacterial differences between female and male Aedes mosquitoes. The relationship between the midgut and entire body microbiota of Aedes is unclear. In this study, we collected mosquito samples reared under the same laboratory conditions and compared the microbial composition of midgut and entire bodies of Aedes aegypti and Aedes albopictus using 16S rRNA gene sequencing. METHODS In this study, we collected mosquito samples reared under the same laboratory conditions and compared the microbial composition of midgut and entire bodies of Aedes aegypti and Aedes albopictus using 16S rRNA gene sequencing. RESULTS A total of 341 OTUs were identified, showing that Proteobacteria was the dominant phylum and Methylobacterium the dominant genus in both Aedes aegypti and Aedes albopictus. The bacterial diversity and community structures of the entire bodies were similar between males and females in both Aedes aegypti and Aedes albopictus. Conversely, the bacterial compositions of male and female Aedes aegypti and Aedes albopictus were significantly different. NMDS analysis, UPGMA analysis, diversity indices and OTU distribution demonstrated that compositions and structures in midgut microbiota were similar but significantly different in the entire bodies of Aedes aegypti and Aedes albopictus. Functional prediction analysis showed that metabolism and environmental information processing were the dominant KEGG pathways at level 1. Our study showed that there were significantly different level 2 and 3 KEGG pathways in the midgut microbiota (16 level 2 and 24 level 3) and the entire bodies (33 level 2 and 248 level 3) between female Aedes albopictus and Aedes Aegypti. CONCLUSIONS Our findings that Aedes aegypti and Aedes albopictus reared in the same laboratory harbor a similar gut bacterial microbiome but different entire body microbiota imply that the gut microbiota of adult mosquitoes is environmentally determined regardless of the host genotype, but the entire body microbiota is more genetically determined. Our findings improved the understanding of the microbiota in the entire and partial tissues of Aedes mosquitoes.
Collapse
Affiliation(s)
- Datao Lin
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Provincial Engineering Technology Research Center for Diseases-Vectors Control, Guangzhou, Guangdong, China.,Chinese Atomic Energy Agency Center of Excellence on Nuclear Technology Applications for Insect Control, Sun Yat-sen University, Guangzhou, China
| | - Xiaoying Zheng
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Provincial Engineering Technology Research Center for Diseases-Vectors Control, Guangzhou, Guangdong, China.,Chinese Atomic Energy Agency Center of Excellence on Nuclear Technology Applications for Insect Control, Sun Yat-sen University, Guangzhou, China
| | - Benjamin Sanogo
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Provincial Engineering Technology Research Center for Diseases-Vectors Control, Guangzhou, Guangdong, China
| | - Tao Ding
- Key Laboratory of Tropical Disease Control, Ministry of Education, Provincial Engineering Technology Research Center for Diseases-Vectors Control, Guangzhou, Guangdong, China
| | - Xi Sun
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China. .,Key Laboratory of Tropical Disease Control, Ministry of Education, Provincial Engineering Technology Research Center for Diseases-Vectors Control, Guangzhou, Guangdong, China.
| | - Zhongdao Wu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China. .,Key Laboratory of Tropical Disease Control, Ministry of Education, Provincial Engineering Technology Research Center for Diseases-Vectors Control, Guangzhou, Guangdong, China. .,Chinese Atomic Energy Agency Center of Excellence on Nuclear Technology Applications for Insect Control, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
12
|
Ding S, Liu Y, Dan SF, Jiao L. Historical changes of sedimentary P-binding forms and their ecological driving mechanism in a typical "grass-algae" eutrophic lake. WATER RESEARCH 2021; 204:117604. [PMID: 34517265 DOI: 10.1016/j.watres.2021.117604] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/21/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
With the transformation of lake ecosystem from "clear water" to "turbid water", the residual phosphorus (P) accumulated in sediments may slow down the process of aquatic ecological restoration, and the related mechanisms are complex and need to be better understood. In this study, high-resolution systematic investigation and analysis of P-binding forms in the sediments showed that Lake Dianchi, the largest plateau lake in Southwest China, was enriched with NaOH-rP, HCl-P and Res-P, but depleted in NH4Cl-P, BD-P and NaOH-nrP. The BD-P, NaOH-nrP and NaOH-rP were the main contributors to potential P release from sediments, while the release potential of NH4Cl-P was relatively weak (<1%). When the external P loading gradually decreased, the internal P loading of Lake Dianchi was estimated to be 522 mg P/(m2•a) in the past 30 years. The succession of "grass-algae" type in Lake Dianchi coincided with reduced absorption and transformation of potential mobile P and decreased accumulation of stable P, especially the Res-P. Meanwhile, the temporal variation of potential mobile P was a good predictor of ecological degradation and reduced ecosystem sustainability in Lake Dianchi.
Collapse
Affiliation(s)
- Shuai Ding
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Environmental Standard Institute, Ministry of Ecology and Environment of the People's Republic of China, Beijing 100012, China
| | - Yan Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Environmental Standard Institute, Ministry of Ecology and Environment of the People's Republic of China, Beijing 100012, China
| | - Solomon Felix Dan
- Guangxi Key Laboratory of Marine Disaster in the Beibu Gulf, Beibu Gulf University, Qinzhou 535011, China
| | - Lixin Jiao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Institute of Water Environment Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
13
|
Palomba E, Tirelli V, de Alteriis E, Parascandola P, Landi C, Mazzoleni S, Sanchez M. A cytofluorimetric analysis of a Saccharomyces cerevisiae population cultured in a fed-batch bioreactor. PLoS One 2021; 16:e0248382. [PMID: 34111115 PMCID: PMC8191950 DOI: 10.1371/journal.pone.0248382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/27/2021] [Indexed: 11/18/2022] Open
Abstract
The yeast Saccharomyces cerevisiae is a reference model system and one of the widely used microorganisms in many biotechnological processes. In industrial yeast applications, combined strategies aim to maximize biomass/product yield, with the fed-batch culture being one of the most frequently used. Flow cytometry (FCM) is widely applied in biotechnological processes and represents a key methodology to monitor cell population dynamics. We propose here an application of FCM in the analysis of yeast cell cycle along the time course of a typical S. cerevisiae fed-batch culture. We used two different dyes, SYTOX Green and SYBR Green, with the aim to better define each stage of cell cycle during S. cerevisiae fed-batch culture. The results provide novel insights in the use of FCM cell cycle analysis for the real-time monitoring of S. cerevisiae bioprocesses.
Collapse
Affiliation(s)
- Emanuela Palomba
- Department of Research Infrastructures for marine biological resources (RIMAR), Stazione Zoologica “Anton Dohrn”, Villa Comunale, Napoli, Italy
| | | | | | - Palma Parascandola
- Department of Industrial Engineering, University of Salerno, Salerno, Italy
| | - Carmine Landi
- Department of Industrial Engineering, University of Salerno, Salerno, Italy
| | - Stefano Mazzoleni
- Department of Agricultural Sciences, University of Naples “Federico II”, Naples, Italy
| | - Massimo Sanchez
- Istituto Superiore di Sanità (ISS) Core Facilities, Rome, Italy
| |
Collapse
|
14
|
Arefa N, Sarker AK, Rahman MA. Resistance-guided isolation and characterization of antibiotic-producing bacteria from river sediments. BMC Microbiol 2021; 21:116. [PMID: 33865329 PMCID: PMC8053276 DOI: 10.1186/s12866-021-02175-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 03/16/2021] [Indexed: 11/25/2022] Open
Abstract
Background To tackle the problem of antibiotic resistance, an extensive search for novel antibiotics is one of the top research priorities. Around 60% of the antibiotics used today were obtained from the genus Streptomyces. The river sediments of Bangladesh are still an unexplored source for antibiotic-producing bacteria (APB). This study aimed to isolate novel APB from Padma and Kapotakkho river sediments having the potential to produce antibacterial compounds with known scaffolds by manipulating their self-protection mechanisms. Results The antibiotic supplemented starch-casein-nitrate agar (SCNA) media were used to isolate antibiotic-resistant APB from the river sediments. The colonies having Streptomyces-like morphology were selectively purified and their antagonistic activity was screened against a range of test bacteria using the cross-streaking method. A notable decrease of the colony-forming units (CFUs) in the antibiotic supplemented SCNA plates compared to control plates (where added antibiotics were absent) was observed. A total of three azithromycin resistant (AZR) and nine meropenem resistant (MPR) isolates were purified and their antagonistic activity was investigated against a series of test bacteria including Shigella brodie, Escherichia coli, Pseudomonas sp., Proteus sp., Staphylococcus aureus, and Bacillus cereus. All the AZR isolates and all but two MPR isolates exhibited moderate to high broad-spectrum activity. Among the isolates, 16S rDNA sequencing of NAr5 and NAr6 were performed to identify them up to species level. The analyses of the sequences revealed that both belong to the genus Streptomyces. Conclusions The results from these studies suggest that manipulation of the self-resistance property of APB is an easy and quick method to search for novel APB having the potential to produce potentially novel antibacterial compounds with known scaffolds.
Collapse
Affiliation(s)
- Nowreen Arefa
- Department of Pharmacy, University of Rajshahi, Rajshahi, Bangladesh
| | - Ashish Kumar Sarker
- Department of Pharmacy, Pabna University of Science and Technology, Pabna, Bangladesh
| | - Md Ajijur Rahman
- Department of Pharmacy, University of Rajshahi, Rajshahi, Bangladesh.
| |
Collapse
|
15
|
Gomez-Alvarez V, Liu H, Pressman JG, Wahman DG. Metagenomic Profile of Microbial Communities in a Drinking Water Storage Tank Sediment after Sequential Exposure to Monochloramine, Free Chlorine, and Monochloramine. ACS ES&T WATER 2021; 1:1283-1294. [PMID: 34337601 PMCID: PMC8318090 DOI: 10.1021/acsestwater.1c00016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Sediment accumulation in drinking water storage facilities may lead to water quality degradation, including biological growth and disinfectant decay. The current research evaluated the microbiome present in a sediment after sequential exposure to monochloramine, free chlorine, and monochloramine. Chemical profiles within the sediment based on microelectrodes showed evidence of nitrification, and monochloramine slowly penetrated the sediment but was not measurable at lower depths. A metagenomic approach was used to characterize the microbial communities and functional potential of top (0-1 cm) and bottom (1-2 cm) layers in sediment cores. Differential abundance analysis revealed both an enrichment and depletion associated with depth of microbial populations. We assembled 30 metagenome-assembled genomes (MAGs) representing bacterial and archaeal microorganisms. Most metabolic functions were represented in both layers, suggesting the capability of the microbiomes to respond to environmental fluctuations. However, niche-specific abundance differences were identified in biotransformation processes (e.g., nitrogen). Metagenome-level analyses indicated that nitrification and denitrification can potentially occur simultaneously in the sediments, but the exact location of their occurrence within the sediment will depend on the localized physicochemical conditions. Even though monochloramine was maintained in the bulk water there was limited penetration into the sediment, and the microbial community remained functionally diverse and active.
Collapse
Affiliation(s)
- Vicente Gomez-Alvarez
- Center for Environmental Solutions & Emergency Response, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268, United States
| | - Hong Liu
- Oak Ridge Institute for Science and Education (ORISE), Post-Doctoral Fellow at U.S. Environmental Protection Agency, Cincinnati, Ohio 45268, United States
| | - Jonathan G Pressman
- Center for Environmental Solutions & Emergency Response, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268, United States
| | - David G Wahman
- Center for Environmental Solutions & Emergency Response, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268, United States
| |
Collapse
|
16
|
Gacitua M, Urrejola C, Carrasco J, Vicuña R, Srain BM, Pantoja-Gutiérrez S, Leech D, Antiochia R, Tasca F. Use of a Thermophile Desiccation-Tolerant Cyanobacterial Culture and Os Redox Polymer for the Preparation of Photocurrent Producing Anodes. Front Bioeng Biotechnol 2020; 8:900. [PMID: 32974292 PMCID: PMC7471869 DOI: 10.3389/fbioe.2020.00900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 07/13/2020] [Indexed: 12/25/2022] Open
Abstract
Oxygenic photosynthesis conducted by cyanobacteria has dramatically transformed the geochemistry of our planet. These organisms have colonized most habitats, including extreme environments such as the driest warm desert on Earth: the Atacama Desert. In particular, cyanobacteria highly tolerant to desiccation are of particular interest for clean energy production. These microorganisms are promising candidates for designing bioelectrodes for photocurrent generation owing to their ability to perform oxygenic photosynthesis and to withstand long periods of desiccation. Here, we present bioelectrochemical assays in which graphite electrodes were modified with the extremophile cyanobacterium Gloeocapsopsis sp. UTEXB3054 for photocurrent generation. Optimum working conditions for photocurrent generation were determined by modifying directly graphite electrode with the cyanobacterial culture (direct electron transfer), as well as using an Os polymer redox mediator (mediated electron transfer). Besides showing outstanding photocurrent production for Gloeocapsopsis sp. UTEXB3054, both in direct and mediated electron transfer, our results provide new insights into the metabolic basis of photocurrent generation and the potential applications of such an assisted bioelectrochemical system in a worldwide scenario in which clean energies are imperative for sustainable development.
Collapse
Affiliation(s)
- Manuel Gacitua
- Departamento de Química de los Materiales, Facultad de Quiìmica y Biologiìa, Universidad de Santiago de Chile, Santiago, Chile
| | - Catalina Urrejola
- Departamento Genética Molecular y Microbiología, Facultad Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Javiera Carrasco
- Departamento de Química de los Materiales, Facultad de Quiìmica y Biologiìa, Universidad de Santiago de Chile, Santiago, Chile
| | - Rafael Vicuña
- Departamento Genética Molecular y Microbiología, Facultad Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Benjamín M Srain
- Departamento de Oceanografía and Centro de Investigación Oceanográfica COPAS Sur-Austral, Universidad de Concepción, Concepción, Chile
| | - Silvio Pantoja-Gutiérrez
- Departamento de Oceanografía and Centro de Investigación Oceanográfica COPAS Sur-Austral, Universidad de Concepción, Concepción, Chile
| | - Donal Leech
- School of Chemistry and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Riccarda Antiochia
- Department of Chemistry and Drug Technologies, Sapienza University of Rome, Rome, Italy
| | - Federico Tasca
- Departamento de Química de los Materiales, Facultad de Quiìmica y Biologiìa, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
17
|
Shift of Sediments Bacterial Community in the Black-Odor Urban River during In Situ Remediation by Comprehensive Measures. WATER 2019. [DOI: 10.3390/w11102129] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The phenomenon of black-odor urban rivers with rapid urbanization has attracted extensive attention. In this study, we investigated the water quality and composition of sediment-associated bacteria communities in three remediation stages (before remediation, 30 days after remediation, and 90 days after remediation) based on the in situ remediation using comprehensive measures (physical, chemical, and biological measures). The results show that the overlying water quality was notably improved after in situ remediation, while the diversity and richness of sediment-associated bacterial communities decreased. A growing trend of some dominant genus was observed following the remediation of a black-odor river, such as Halomonas, Pseudomonas, Decarbonamis, Leptolina, Longilina, Caldiseericum, Smithella, Mesotoga, Truepera, and Ralstonia, which play an important role in the removal of nitrogen, organic pollutants and hydrogen sulfide (H2S) during the sediment remediation. Redundancy analysis (RDA) showed that the bacterial community succession may accelerate the transformation of organic pollutants into inorganic salts in the sediment after in situ remediation. In a word, the water quality of the black-odor river was obviously improved after in situ remediation, and the bacterial community in the sediment notably changed, which determines the nutrients environment in the sediment.
Collapse
|
18
|
Kori JA, Mahar RB, Vistro MR, Tariq H, Khan IA, Goel R. Metagenomic analysis of drinking water samples collected from treatment plants of Hyderabad City and Mehran University Employees Cooperative Housing Society. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:29052-29064. [PMID: 31392612 DOI: 10.1007/s11356-019-05859-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 06/27/2019] [Indexed: 06/10/2023]
Abstract
The quality assessment of water, supplied to the end user, is an essential part to assess the physical, chemical, and biological status of water, which impacts on human health. For the quality assessment of drinking water treatment plants and distribution systems of Hyderabad City and Mehran University of Engineering and Technology, Jamshoro, Pakistan, 13 surface drinking water samples were collected from three treatment plants, two of Hyderabad City, including WASA treatment plant and its distribution system (n = 5), Hala Nakka treatment plant and its distribution system (n = 6), and Mehran University Employees Cooperative Housing Society (MUECHS) treatment plant and its distribution system (n = 2). Physicochemical parameters of all drinking water samples were in the range compared to EPA and WHO guidelines, except in L-12 sample. Notably, no free-chlorine was detected in all samples. In metagenomics analysis, targeting V3-V4 hypervariable region of 16S rRNA gene, in QIIME2 environment, high bacterial prevalence was observed in all samples. On average, 348 OTUs were observed per sample. Among all samples, treated water sample from the Hala Nakka Treatment Plant (HNTR) was the most diverse sample in bacterial composition (Shannon 7.51 and Simpsons reciprocal indices 0.98). Overall, Proteobacteria, Bacteroidetes, Cyanobacteria, Verrucomicrobia, and Actinobacteria were the five most abundant phyla (relative abundances of 43.6, 37.9, 8.5, 2.5, and 2.4 percent, respectively). Notably, Cyanobacteria are well-known toxin producers which effect the human, and animal health. At genus level, Flavobacterium (4.86%) and Aquirestis (3.77%) were the most abundant genera. Functional predictions, based on 16S rRNA gene by PICRUSt, predicted 6909 KEGG orthologies, relating to 245 KEGG pathways. Among the predicted pathways of KEGG orthologies, pathways to human infections were also found. In conclusion, this study gave a deep insight into bacterial contamination in drinking water samples of Hyderabad City and MUECHS treatment plants and water quality status in Hyderabad and Mehran University of Engineering and Technology.
Collapse
Affiliation(s)
- Junaid Ahmed Kori
- U.S.-Pakistan Center for Advanced Studies in Water, Mehran University of Engineering and Technology, Jamshoro, 76062, Pakistan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Rasool Bux Mahar
- U.S.-Pakistan Center for Advanced Studies in Water, Mehran University of Engineering and Technology, Jamshoro, 76062, Pakistan.
| | - Muhammad Raffae Vistro
- U.S.-Pakistan Center for Advanced Studies in Water, Mehran University of Engineering and Technology, Jamshoro, 76062, Pakistan
| | - Huma Tariq
- U.S.-Pakistan Center for Advanced Studies in Water, Mehran University of Engineering and Technology, Jamshoro, 76062, Pakistan
| | - Ishtiaq Ahmad Khan
- Jamil-ur-Rahman Center for Genome Research, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Ramesh Goel
- Department of Civil and Environmental Engineering, University of Utah, Salt Lake City, 84112-0561, USA
| |
Collapse
|
19
|
Tu L, Jarosch KA, Schneider T, Grosjean M. Phosphorus fractions in sediments and their relevance for historical lake eutrophication in the Ponte Tresa basin (Lake Lugano, Switzerland) since 1959. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 685:806-817. [PMID: 31238284 DOI: 10.1016/j.scitotenv.2019.06.243] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/13/2019] [Accepted: 06/15/2019] [Indexed: 06/09/2023]
Abstract
Lake Lugano is one of several deep lakes in Switzerland that have not yet recovered from eutrophication after large reductions of external phosphorus (P) loadings. Persistent eutrophication has been attributed mainly to internal P loadings from sediments. To achieve the restoration goals, it is critically important to evaluate the sediment P availability and release risk in this lake. In this study, we combined sequential P extraction (four fractions) with enzyme hydrolysis to assess distribution characteristics of P forms and potential bioavailability of organic P in an anoxic sediment profile from the Ponte Tresa basin of Lake Lugano, southern Switzerland. Labile P forms, i.e. mostly redox-sensitive iron bound P and metal oxides bound P (Al/Fe-P), comprised ~70% of total P in the sediment profile (1959-2017 CE), suggesting a high potential for P release from the anoxic sediment. Potentially bioavailable organic P forms (determined by addition of substrate specific enzymes) were considerably higher in the surface sediments (top 5 cm), which is very likely to release P in the near future with early diagenesis. The net burial rates (NBR) of redox sensitive Fe-P fraction and total P in sediments both showed significant decreasing trends from 1959 to 2017 CE, when trophic levels of the lake increased from mesotrophic to hypertrophic status. We suggest that, in the Ponte Tresa basin, higher eutrophication conditions led to enhanced sediment P release (mainly from redox sensitive Fe-P fraction), thus reducing P-NBR in sediments. This study highlights the concern that in deep monomictic lakes, eutrophication restoration might be hindered by extensive internal P cycling and reduced capacity of sediment P-trapping.
Collapse
Affiliation(s)
- Luyao Tu
- Oeschger Centre for Climate Change Research, University of Bern, 3012 Bern, Switzerland; Institute of Geography, University of Bern, 3012 Bern, Switzerland.
| | - Klaus A Jarosch
- Institute of Geography, University of Bern, 3012 Bern, Switzerland
| | - Tobias Schneider
- Oeschger Centre for Climate Change Research, University of Bern, 3012 Bern, Switzerland; Institute of Geography, University of Bern, 3012 Bern, Switzerland
| | - Martin Grosjean
- Oeschger Centre for Climate Change Research, University of Bern, 3012 Bern, Switzerland; Institute of Geography, University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
20
|
Fang H, Huang K, Yu J, Ding C, Wang Z, Zhao C, Yuan H, Wang Z, Wang S, Hu J, Cui Y. Metagenomic analysis of bacterial communities and antibiotic resistance genes in the Eriocheir sinensis freshwater aquaculture environment. CHEMOSPHERE 2019; 224:202-211. [PMID: 30822726 DOI: 10.1016/j.chemosphere.2019.02.068] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 02/02/2019] [Accepted: 02/10/2019] [Indexed: 06/09/2023]
Abstract
Aquaculture has attracted significant attention as an environmental gateway to the development of antibiotic resistance. The industry of Chinese mitten crab Eriocheir sinensis contributes significantly to the freshwater aquaculture industry in China. However, the situation of antibiotic resistance in the E. sinensis aquaculture environment is not known. In this study, high-throughput sequencing based metagenomic approaches were used to comprehensively investigate the structure of bacterial communities, the abundance and diversity of antibiotic resistance genes (ARGs), as well as mobile genetic elements (MGEs) in three E. sinensis aquaculture ponds in Jiangsu Province, China. The dominant phyla were Proteobacteria, Actinobacteria, and Bacteroidetes in water samples and Proteobacteria, Chloroflexi, Verrucomicrobia, and Bacteroidetes in sediment samples. Bacitracin and multidrug were predominant ARG types in water and sediment samples, respectively. There was a significant correlation between MGEs and ARGs. In particular, plasmids were the most abundant MGEs and strongly correlated with ARGs. This is the first study of antibiotic resistome that uses metagenomic approaches in the E. sinensis aquaculture environment. The results indicate that the opportunistic pathogens may acquire ARGs via horizontal gene transfer, intensifying the potential risk to human health.
Collapse
Affiliation(s)
- Hao Fang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Kailong Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Junnan Yu
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Chengcheng Ding
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing, 210042, China
| | - Zhifeng Wang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Cheng Zhao
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Hezhong Yuan
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Zhuang Wang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Se Wang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Jianlin Hu
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Yibin Cui
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing, 210042, China.
| |
Collapse
|
21
|
Wörner S, Pester M. The Active Sulfate-Reducing Microbial Community in Littoral Sediment of Oligotrophic Lake Constance. Front Microbiol 2019; 10:247. [PMID: 30814991 PMCID: PMC6381063 DOI: 10.3389/fmicb.2019.00247] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 01/30/2019] [Indexed: 11/16/2022] Open
Abstract
Active sulfate-reducing microorganisms (SRM) in freshwater sediments are under-examined, despite the well-documented cryptic sulfur cycle occurring in these low-sulfate habitats. In Lake Constance sediment, sulfate reduction rates of up to 1,800 nmol cm-3 day-1 were previously measured. To characterize its SRM community, we used a tripartite amplicon sequencing approach based on 16S rRNA genes, 16S rRNA, and dsrB transcripts (encoding the beta subunit of dissimilatory sulfite reductase). We followed the respective amplicon dynamics in four anoxic microcosm setups supplemented either with (i) chitin and sulfate, (ii) sulfate only, (iii) chitin only, or (iv) no amendment. Chitin was used as a general substrate for the whole carbon degradation chain. Sulfate turnover in sulfate-supplemented microcosms ranged from 38 to 955 nmol day-1 (g sediment f. wt.)-1 and was paralleled by a decrease of 90–100% in methanogenesis as compared to the respective methanogenic controls. In the initial sediment, relative abundances of recognized SRM lineages accounted for 3.1 and 4.4% of all bacterial 16S rRNA gene and 16S rRNA sequences, respectively. When normalized against the 1.4 × 108 total prokaryotic 16S rRNA gene copies as determined by qPCR and taking multiple rrn operons per genome into account, this resulted in approximately 105–106 SRM cells (g sediment f. wt.)-1. The three amplicon approaches jointly identified Desulfobacteraceae and Syntrophobacteraceae as the numerically dominant and transcriptionally most active SRM in the initial sediment. This was corroborated in the time course analyses of sulfate-consuming sediment microcosms irrespective of chitin amendment. Uncultured dsrAB family-level lineages constituted in sum only 1.9% of all dsrB transcripts, with uncultured lineage 5 and 6 being transcriptionally most active. Our study is the first holistic molecular approach to quantify and characterize active SRM including uncultured dsrAB lineages not only in Lake Constance but for lake sediments in general.
Collapse
Affiliation(s)
- Susanne Wörner
- Department of Biology, University of Konstanz, Konstanz, Germany.,Leibniz Institute DSMZ - German Collection of Microorganisms and Cell cultures, Braunschweig, Germany
| | - Michael Pester
- Department of Biology, University of Konstanz, Konstanz, Germany.,Leibniz Institute DSMZ - German Collection of Microorganisms and Cell cultures, Braunschweig, Germany.,Institute for Microbiology, Technical University of Braunschweig, Braunschweig, Germany
| |
Collapse
|
22
|
The Effect of Organic Carbon Addition on the Community Structure and Kinetics of Microcystin-Degrading Bacterial Consortia. WATER 2018. [DOI: 10.3390/w10111523] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Microcystin (MC), a hepatotoxin that is associated with cyanobacterial blooms in freshwater lakes, threatens the quality of drinking water resources. Biodegradation of MC using biofiltration is emerging as a cost-effective solution for drinking water treatment. This study reports isolation of five MC-degrading microbial consortia and investigation of their community structure and kinetics in the presence or absence of a readily-bioavailable organic carbon source. The results indicated that the presence of a bioavailable organic carbon source caused: (1) the proliferation of community members previously unobserved in each consortium cultured without ethanol; (2) a shift in abundance of representative taxa; (3) a fluctuation in genera affiliated with MC-biodegradation; and, (4) a unique response in simulated diversity among consortia. These changes to each microbial consortium were paralleled by a significant decline in MC degradation kinetics. Overall, this study highlights the importance of integrating environmental conditions into the design and operation of biofiltration systems for MC biodegradation.
Collapse
|
23
|
Abia ALK, Alisoltani A, Keshri J, Ubomba-Jaswa E. Metagenomic analysis of the bacterial communities and their functional profiles in water and sediments of the Apies River, South Africa, as a function of land use. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 616-617:326-334. [PMID: 29126050 DOI: 10.1016/j.scitotenv.2017.10.322] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/30/2017] [Accepted: 10/30/2017] [Indexed: 05/25/2023]
Abstract
Water quality is an important public health issue given that the presence of pathogenic organisms in such waters can adversely affect human and animal health. Despite the numerous studies conducted to assess the quality of environmental waters in many countries, limited efforts have been put on investigating the microbial quality of the sediments in developing countries and how this relates to different land uses. The present study evaluated the bacterial diversity in water and sediments in a highly used South African river to find out how the different land uses influenced the bacterial diversity, and to verify the human diseases functional classes of the bacterial populations. Samples were collected on river stretches influenced by an informal, a peri-urban and a rural settlement. Genomic DNA was extracted from water and sediment samples and sequenced on an Illumina® MiSeq platform targeting the 16S rRNA gene variable region V3-V4 from the genomic DNA. Metagenomic data analysis revealed that there was a great diversity in the microbial populations associated with the different land uses, with the informal settlement having the most considerable influence on the bacterial diversity in the water and sediments of the Apies River. The Proteobacteria (69.8%), Cyanobacteria (4.3%), Bacteroidetes (2.7%), and Actinobacteria (2.7%) were the most abundant phyla; the Alphaproteobacteria, Betaproteobacteria and Anaerolineae were the most recorded classes. Also, the sediments had a greater diversity and abundance in bacterial population than the water column. The functional profiles of the bacterial populations revealed an association with many human diseases including cancer pathways. Further studies that would isolate these potentially pathogenic organisms in the aquatic environment are therefore needed as this would help in protecting the lives of communities using such rivers, especially against emerging bacterial pathogens.
Collapse
Affiliation(s)
- Akebe Luther King Abia
- AMBIO Environmental Management, Department of Biotechnology, Vaal University of Technology, Vanderbijlpark, South Africa.
| | - Arghavan Alisoltani
- Department of Biotechnology, Vaal University of Technology, Vanderbijlpark, South Africa
| | - Jitendra Keshri
- Department of Food Quality & Safety, Institute for Postharvest and Food Sciences, The Volcani Center, ARO, Israel
| | - Eunice Ubomba-Jaswa
- Department of Biotechnology, University of Johannesburg, Johannesburg, South Africa; Water Research Commission, Pretoria, South Africa.
| |
Collapse
|
24
|
Metagenomic Sequencing of Microbial Communities from Brackish Water of Pangong Lake of the Northwest Indian Himalayas. GENOME ANNOUNCEMENTS 2017; 5:5/40/e01029-17. [PMID: 28982995 PMCID: PMC5629052 DOI: 10.1128/genomea.01029-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pangong is a brackish water lake having environmental conditions that are hostile to supporting life. This is the first report unveiling the microbial diversity of sediment from Pangong Lake, Ladakh, India, using a high-throughput metagenomic approach. Metagenomic data analysis revealed a community structure of microbes in which functional genetic diversity facilitates their survival.
Collapse
|
25
|
Han I, Yoo K, Wee GN, No JH, Park J, Min SJ, Kim SH, Leea TK. Short-term Effects of Great Cormorant Droppings on Water Quality and Microbial Community of an Artificial Agricultural Reservoir. JOURNAL OF ENVIRONMENTAL QUALITY 2017; 46:470-476. [PMID: 28380549 DOI: 10.2134/jeq2016.11.0459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Agricultural reservoirs are established to improve the management of water resources. Waterbirds in protected waters have become a nuisance, however, as nutrients from fecal deposits transported by the waterbirds have served to severely deteriorate water quality. Despite the importance of clean water resources, the microecology of small agricultural reservoirs regularly colonized by transitory waterbirds are seldom reviewed. To improve our understanding of the influence of waterbirds on small bodies of water, a microcosm study was conducted using water and sediment from an agricultural reservoir inhabited by 300 to 500 great cormorants. Temporal changes in total nitrogen, total phosphorous, chemical oxygen demand, NH-N, PO-P, and chlorophyll-a concentrations, in addition to the microbial community, were evaluated for microcosms containing 0, 0.5, 1.0, and 5.0 g of feces collected from a great cormorant colony. Chemical analysis of the water microcosm revealed that all microcosms showed both immediate and prolonged increases in nutrients due to the addition of feces. Additionally, a mere 0.5 g of feces doubled the concentration of chlorophyll-a from 2.1 ± 0.99 to 5.2 ± 1.1 μg L within 1 mo. Nonmetric multidimensional scaling of the microbial community structure revealed disturbances in both water and sediment microcosms. Disturbances to the microbial community in the water microcosm were significant only when 5.0 g of feces was added; however, disturbances to sediment microbial communities were induced by a smaller mass of feces. These results confirm the short-term water quality impairment and shift in microbial community structure caused by waterbird droppings and bird colony surface runoff in an agricultural reservoir.
Collapse
|
26
|
Zhang L, Gao G, Tang X, Shao K, Gong Y. Pyrosequencing analysis of bacterial communities in Lake Bosten, a large brackish inland lake in the arid northwest of China. Can J Microbiol 2016; 62:455-63. [DOI: 10.1139/cjm-2015-0494] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The bacteria inhabiting brackish lake environments are poorly known, and there are few studies on the microbial diversity of these environments. Lake Bosten, a large brackish inland lake, is the largest lake in Xinjiang Province in northwestern China. Because sediments record past limnic changes, the analysis of sedimentary bacteria in Lake Bosten may help elucidate bacterial responses to environmental change. We employed 454 pyrosequencing to investigate the diversity and bacterial community composition in Lake Bosten. A total of 48 230 high-quality sequence reads with 16 314 operational taxonomic units were successfully obtained from the 4 selected samples, and they were numerically dominated by members of the Deltaproteobacteria (17.1%), Chloroflexi (16.1%), Betaproteobacteria (12.6%), Bacteroidetes (6.6%), and Firmicutes (5.7%) groups, accounting for more than 58.1% of the bacterial sequences. The sediment bacterial communities and diversity were consistently different along the 2 geographic environmental gradients: (i) freshwater–brackish water gradient and (ii) oligotrophic–mesotrophic habitat gradient. Deltaproteobacteria, Chloroflexi, and Betaproteobacteria were amplified throughout all of the sampling sites. More Bacteroidetes and Firmicutes were found near the Kaidu River estuary (site 14). Our investigation showed that Proteobacteria did not display any systematic change along the salinity gradient, and numerous 16S rRNA sequences could not be identified at the genus level. Our data will provide a better understanding of the diversity and distribution of bacteria in arid region brackish lakes.
Collapse
Affiliation(s)
- Lei Zhang
- School of Biology and Food Engineering, Chuzhou University, Chuzhou 239000, People’s Republic of China
| | - Guang Gao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, People’s Republic of China
| | - Xiangming Tang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, People’s Republic of China
| | - Keqiang Shao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, People’s Republic of China
| | - Yi Gong
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, People’s Republic of China
| |
Collapse
|
27
|
Jokanović S, Huter A, Orlić S. Bacterial Diversity of the Boka Kotorska Bay. THE HANDBOOK OF ENVIRONMENTAL CHEMISTRY 2016. [DOI: 10.1007/698_2016_32] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
28
|
Tian C, Wang C, Tian Y, Wu X, Xiao B. Vertical distribution of Fe and Fe(III)-reducing bacteria in the sediments of Lake Donghu, China. Can J Microbiol 2015; 61:575-83. [PMID: 26156094 DOI: 10.1139/cjm-2015-0129] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In lake sediments, iron (Fe) is the most versatile element, and the redox cycling of Fe has a wide influence on the biogeochemical cycling of organic and inorganic substances. The aim of the present study was to analyze the vertical distribution of Fe and Fe(III)-reducing bacteria (FeRB) in the surface sediment (30 cm) of Lake Donghu, China. At the 3 sites we surveyed, FeRB and Fe(II)-oxidizing bacteria (FeOB) coexisted in anoxic sediments. Geobacter-related FeRB accounted for 5%-31% of the total Bacteria, while Gallionella-related FeOB accounted for only 0.1%-1.3%. A significant correlation between the relative abundance of poorly crystalline Fe and Geobacter spp. suggested that poorly crystalline Fe favored microbial Fe(III) reduction. Poorly crystalline Fe and Geobacter spp. were significantly associated with solid-phase Fe(II) and total inorganic phosphorus levels. Pore water Fe(II) concentrations negatively correlated with NO3(-) at all sites. We concluded that Geobacter spp. were abundant in the sediments of Lake Donghu, and the redox of Fe might participate in the cycling of nitrogen and phosphorus in sediments. These observations provided insight into the roles of microbial Fe cycling in lake sediments.
Collapse
Affiliation(s)
- Cuicui Tian
- a Key Laboratory of Algal Biology of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, People's Republic of China.,b University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Chunbo Wang
- a Key Laboratory of Algal Biology of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, People's Republic of China.,b University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yingying Tian
- a Key Laboratory of Algal Biology of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, People's Republic of China.,b University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xingqiang Wu
- a Key Laboratory of Algal Biology of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, People's Republic of China
| | - Bangding Xiao
- a Key Laboratory of Algal Biology of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, People's Republic of China
| |
Collapse
|
29
|
Zhao J, Guo L, Liu C, Bai L, Han C, Li J, Xiang W, Wang X. Streptomyces tyrosinilyticus sp. nov., a novel actinomycete isolated from river sediment. Int J Syst Evol Microbiol 2015; 65:3091-3096. [PMID: 26297662 DOI: 10.1099/ijs.0.000385] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel actinomycete, designated strain NEAU-Jh3-20(T), was isolated from river sediment collected from South river in Jilin Province, north China and characterized using a polyphasic approach. Phylogenetic analysis, based on 16S rRNA gene sequences, indicated that strain NEAU-Jh3-20(T) should be assigned to the genus Streptomyces and forms a distinct branch with its closest neighbour Streptomyces vitaminophilus DSM 41686(T)(97.09%). Moreover, key morphological and chemotaxonomic properties also confirmed the affiliation of strain NEAU-Jh3-20(T) to the genus Streptomyces. The cell wall contained ll-diaminopimelic acid and the whole-cell hydrolysates were glucose and ribose. The phospholipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol, phosphatidylinositol mannosides and an unidentified phospholipid. The predominant menaquinones were MK-9(H8) and MK-9(H6). The major fatty acids were C16 : 0, C18 : 0, anteiso-C15 : 0 and anteiso-C17 : 0. The DNA G+C content was 72.2 mol%. A combination of DNA-DNA hybridization results and some phenotypic characteristics demonstrated that strain NEAU-Jh3-20(T) could be distinguished from its closest phylogenetic relative. Therefore, it is proposed that strain NEAU-Jh3-20(T) represents a novel species of the genus Streptomyces, for which the name Streptomyces tyrosinilyticus sp. nov. is proposed. The type strain is NEAU-Jh3-20(T) ( = CGMCC 4.7201(T)= DSM 42170(T)).
Collapse
Affiliation(s)
- Junwei Zhao
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin 150030, PR China
| | - Lifeng Guo
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin 150030, PR China
| | - Chongxi Liu
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin 150030, PR China
| | - Lu Bai
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin 150030, PR China
| | - Chuanyu Han
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin 150030, PR China
| | - Jiansong Li
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin 150030, PR China
| | - Wensheng Xiang
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin 150030, PR China.,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Xiangjing Wang
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin 150030, PR China
| |
Collapse
|
30
|
Zhang HH, Huang TL, Chen SN, Yang X, Lv K, Sekar R. Abundance and diversity of bacteria in oxygen minimum drinking water reservoir sediments studied by quantitative PCR and pyrosequencing. MICROBIAL ECOLOGY 2015; 69:618-629. [PMID: 25502074 DOI: 10.1007/s00248-014-0539-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 11/19/2014] [Indexed: 06/04/2023]
Abstract
Reservoir sediment is one of the most stressful environments for microorganisms due to periodically oxygen minimum conditions. In this study, the abundance and composition of bacteria associated with sediments from three drinking water reservoirs (Zhoucun, ZCR; Shibianyu, SBYR; and Jinpen, JPR) were investigated by quantitative polymerase chain reaction and 16S rRNA-based 454 pyrosequencing. The results of physico-chemical analysis of sediments showed that the organic matter and total nitrogen were significantly higher in ZCR as compared to JPR (P < 0.01). The bacterial abundance was 9.13 × 10(6), 1.14 × 10(7), and 6.35 × 10(6) copies/ng DNA in sediments of SBYR, ZCR, and JPR, respectively (P < 0.01). The pyrosequencing revealed a total of 9,673 operational taxonomic units, which were affiliated with 17 phyla. The dominant phylum was Firmicutes (56.83%) in JPR; whereas, the dominance of Proteobacteria was observed in SBYR with 40.38% and ZCR with 39.56%. The Shannon-Wiener diversity (H') was high in ZCR; whereas, Chao 1 richness was high in SBYR. The dominant genera were Clostridium with 42.15% and Bacillus with 20.44% in JPR. Meanwhile, Dechloromonas with 14.80% and Smithella with 7.20% were dominated in ZCR, and Bacillus with 45.45% and Acinetobacter with 5.15% in SBYR. The heat map profiles and redundancy analysis indicated substantial differences in sediment bacterial community composition among three reservoirs. Moreover, it appears from the results that physico-chemical variables of sediments including pH, organic matter, total nitrogen, and available phosphorous played key roles in shaping the bacterial community diversity. The results obtained from this study will broaden our understanding on the bacterial community structure of sediments in oxygen minimum and stressful freshwater environments.
Collapse
Affiliation(s)
- Hai-han Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, Shaanxi Province, China
| | | | | | | | | | | |
Collapse
|
31
|
Arroyo P, Sáenz de Miera LE, Ansola G. Influence of environmental variables on the structure and composition of soil bacterial communities in natural and constructed wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 506-507:380-90. [PMID: 25460973 DOI: 10.1016/j.scitotenv.2014.11.039] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/24/2014] [Accepted: 11/11/2014] [Indexed: 05/20/2023]
Abstract
Bacteria are key players in wetland ecosystems, however many essential aspects regarding the ecology of wetland bacterial communities remain unknown. The present study characterizes soil bacterial communities from natural and constructed wetlands through the pyrosequencing of 16S rDNA genes in order to evaluate the influence of wetland variables on bacterial community composition and structure. The results show that the composition of soil bacterial communities was significantly associated with the wetland type (natural or constructed wetland), the type of environment (lagoon, Typha or Salix) and three continuous parameters (SOM, COD and TKN). However, no clear associations were observed with soil pH. Bacterial diversity values were significantly lower in the constructed wetland with the highest inlet nutrient concentrations. The abundances of particular metabolic groups were also related to wetland characteristics.
Collapse
Affiliation(s)
- Paula Arroyo
- Instituto de Medio Ambiente, Recursos Naturales y Biodiversidad, Universidad de León, Calle La Serna, no. 56, CP 24071, León, Spain.
| | - Luis E Sáenz de Miera
- Departamento de Biología Molecular, Universidad de León, Campus de Vegazana s/n, CP 24071, León, Spain.
| | - Gemma Ansola
- Departamento de Biodiversidad y Gestión Ambiental, Universidad de León, Campus de Vegazana s/n, CP 24071, León, Spain.
| |
Collapse
|
32
|
Lu XM, Lu PZ. Effects of farmhouse hotel and paper mill effluents on bacterial community structures in sediment and surface water of Nanxi River, China. MICROBIAL ECOLOGY 2014; 68:773-784. [PMID: 25008983 DOI: 10.1007/s00248-014-0456-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 06/25/2014] [Indexed: 06/03/2023]
Abstract
The pyrosequencing technique was used to evaluate bacterial community structures in sediment and surface water samples taken from Nanxi River receiving effluents from a paper mill and a farmhouse hotel, respectively. For each sample, 4,610 effective bacterial sequences were selected and used to do the analysis of diversity and abundance, respectively. Bacterial phylotype richness in the sediment sample without effluent input was higher than the other samples, and the surface water sample with addition of effluent from the paper mill contained the least richness. Effluents from both the paper mill and farmhouse hotel have a potential to reduce the bacterial diversity and abundance in the sediment and surface water, especially it is more significant in the sediment. The effect of the paper mill effluent on the sediment and surface water bacterial communities was more serious than that of the farmhouse hotel effluent. Characterization of microbial community structures in the sediment and surface water from two tributaries of the downstream river indicated that various effluents from the paper mill and farmhouse hotel have the similar potential to decrease the natural variability in riverine microbial ecosystems.
Collapse
Affiliation(s)
- Xiao-Ming Lu
- Institute for Eco-Environmental Sciences, Wenzhou Vocational College of Science and Technology, Wenzhou, 325006, China,
| | | |
Collapse
|
33
|
Diversity, abundance, and spatial distribution of riverine microbial communities response to effluents from swine farm versus farmhouse restaurant. Appl Microbiol Biotechnol 2014; 98:7597-608. [DOI: 10.1007/s00253-014-5772-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 04/06/2014] [Accepted: 04/10/2014] [Indexed: 10/25/2022]
|
34
|
Alves PDD, Siqueira FDF, Facchin S, Horta CCR, Victória JMN, Kalapothakis E. Survey of microbial enzymes in soil, water, and plant microenvironments. Open Microbiol J 2014; 8:25-31. [PMID: 24847390 PMCID: PMC4021205 DOI: 10.2174/1874285801408010025] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 01/07/2014] [Accepted: 02/04/2014] [Indexed: 11/22/2022] Open
Abstract
Detection of microbial enzymes in natural environments is important to understand biochemical activities and to verify the biotechnological potential of the microorganisms. In the present report, 346 isolates from soil, water, and plants were screened for enzyme production (caseinase, gelatinase, amylase, carboxymethyl cellulase, and esterase). Our results showed that 89.6% of isolates produced at least one tested enzyme. A predominance of amylase in soil samples, carboxymethyl cellulase in plants, as well as esterase and gelatinase in water was observed. Interesting enzymatic profiles were found in some microenvironments, suggesting specificity of available nutrients and/or natural selection. This study revealed the potential of microorganisms present in water, soil, and plant to produce important enzymes for biotechnological exploration. A predominance of certain enzymes was found, depending on the type of environmental sample. The distribution of microbial enzymes in soil, water and plants has been little exploited in previous reports.
Collapse
Affiliation(s)
| | | | - Susanne Facchin
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Carolina Campolina Rebello Horta
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia e Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Evanguedes Kalapothakis
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
35
|
Lu XM, Lu PZ. Characterization of bacterial communities in sediments receiving various wastewater effluents with high-throughput sequencing analysis. MICROBIAL ECOLOGY 2014; 67:612-623. [PMID: 24477925 DOI: 10.1007/s00248-014-0370-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Accepted: 01/13/2014] [Indexed: 06/03/2023]
Abstract
454 Pyrosequencing was applied to examine bacterial communities in sediment samples collected from a river receiving effluent discharge from rural domestic sewage (RDS) and various factories, including a tannery (TNS), clothing plant (CTS), and button factory (BTS), respectively. For each sample, 4,510 effective sequences were selected and utilized to do the bacterial diversity and abundance analysis, respectively. In total, 1,288, 2,036, 1,800, and 2,150 operational taxonomic units were obtained at 3% distance cutoff in TNS, CTS, BTS, and RDS, respectively. Bacterial phylotype richness in RDS was higher than the other samples, and TNS had the least richness. The most predominant class in the TNS, CTS, and BTS samples is Betaproteobacteria. Cyanobacteria (no_rank) is the most predominant one in the RDS sample. Circa 31% sequences in TNS were affiliated with the Rhodocyclales order. In the four samples, Aeromonas, Arcobacter, Clostridium, Legionella, Leptospira, Mycobacterium, Pseudomonas, and Treponema genera containing pathogenic bacteria were detected. Characterization of bacterial communities in sediments from various downstream branches indicated that distinct wastewater effluents have similar potential to reduce the natural variability in river ecosystems and contribute to the river biotic homogenization.
Collapse
Affiliation(s)
- Xiao-Ming Lu
- Institute for Eco-environmental Sciences, Wenzhou Vocational College of Science & Technology, Wenzhou, 325006, People's Republic of China,
| | | |
Collapse
|
36
|
Luglia M, Criquet S, Sarrazin M, Ziarelli F, Guiral D. Functional patterns of microbial communities of rhizospheric soils across the development stages of a young mangrove in French Guiana. MICROBIAL ECOLOGY 2014; 67:302-317. [PMID: 24141938 DOI: 10.1007/s00248-013-0298-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 09/17/2013] [Indexed: 06/02/2023]
Abstract
The functional patterns of microbial communities (microbial respiration, enzyme activities, functional diversity) and the relevant physico-chemical characteristics of rhizospheric soils were studied during the process of mudflat colonization by mangrove. The study site is a fringe mangrove stand located in Montabo Bay at Cayenne (French Guiana). It is characterized by different vegetation development stages dominated by an assemblage of Avicennia germinans and Laguncularia racemosa. Rhizospheric and surface soils were collected from three stations based on successional stages of mangrove colonization: pioneer (P), coppice (C), and young forest (F). The microbial functional patterns showed significant progressive shifts along the mangrove vegetation profile. The P stages, those most influenced by tide currents, were macroscopically characterized by hydro-sedimentary instability and micro-phytobenthic colonization of mudflat. This stage, characterized by low total organic carbon (TOC) content and quality, showed the lowest extracellular enzymatic activities and the highest functional metabolic diversities. TOC quality analyses by (13)C CPMAS NMR provided evidence of progressive TOC enrichment and an increasing imprint of aboveground vegetation on C quality as succession occurs. These differences in the origin, amount, and quality of soil organic matter (SOM) of older stages exerted both a quantitative and qualitative control over microbial functional responses. This indicated the enhancement of aboveground-belowground functional linkages, leading to the expression of high decomposition activities and a functional loss and specialization of rhizospheric microbial communities.
Collapse
Affiliation(s)
- Mathieu Luglia
- Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale (IMBE), Aix-Marseille Université, UMR CNRS IRD Avignon Université, Faculté de St-Jérôme, 13397, Marseille Cedex 20, France,
| | | | | | | | | |
Collapse
|
37
|
Wang L, Liu L, Zheng B, Zhu Y, Wang X. Analysis of the bacterial community in the two typical intertidal sediments of Bohai Bay, China by pyrosequencing. MARINE POLLUTION BULLETIN 2013; 72:181-187. [PMID: 23660440 DOI: 10.1016/j.marpolbul.2013.04.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 04/03/2013] [Accepted: 04/05/2013] [Indexed: 06/02/2023]
Abstract
For full understanding of the bacterial community in the intertidal zones of Bohai Bay, China, we used pyrosequencing-based approach to analyze the 16S rRNA gene of bacteria in the sediments from the two typically intertidal zones - Qikou (Qi) and Gaoshaling (Ga). Results showed that, at a 0.03 distance, the sequences from the Qi sediment were assigned to 3252 operational taxonomic units (OTUs) which belong to 34 phyla, 69 classes and 119 genera, while the 3740 OTUs from the Ga sediment were affiliated with 33 phyla, 66 classes and 146 genera. Comparing the bacterial communities inhabiting in the two intertidal sediments, we observed significant difference in the dominant composition and distribution at phylum, class and genus levels. Canonical correspondence analysis (CCA) showed that the median grain size and DO were the most important factors regulating the bacterial abundance and diversity, while the other environmental factors have effects with different degree.
Collapse
Affiliation(s)
- Liping Wang
- State Environmental Protection Key Laboratory of Estuary and Coastal Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| | | | | | | | | |
Collapse
|
38
|
Ren L, He D, Zeng J, Wu QL. Bacterioplankton communities turn unstable and become small under increased temperature and nutrient-enriched conditions. FEMS Microbiol Ecol 2013; 84:614-24. [PMID: 23398612 DOI: 10.1111/1574-6941.12089] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 01/24/2013] [Accepted: 02/04/2013] [Indexed: 11/28/2022] Open
Abstract
The stability of microbial community composition under different environmental conditions is an important part of microbial ecology, but has not been investigated in such depth before. In this study, we investigated the composition of the bacterioplankton community composition (BCC) and its stability under different temperatures (15, 25 and 35 °C, respectively) and nutrient conditions (control vs. nitrogen- and phosphorus-enriched) in aquatic microcosms. The BCC was analysed using denaturing gradient gel electrophoresis of the bacterial 16S rRNA gene, followed by cloning and sequence analysis. BCC in the microcosms significantly changed under different temperature and nutrient conditions. Based on the results from clone libraries, ecological diversification were observed within two ubiquitous and dominant genera, Methylophilus and Polynucleobacter, under different temperature and nutrient conditions. Putative ultramicrobacteria, which included Actinobacteria, Polynucleobacter sp., LD12 and LD28 clusters and bacteria affiliated with subcluster I of Methylophilus, were found to dominate in bacterioplankton communities at higher temperatures (25 and 35 °C), regardless of nutrient conditions. We also observed that the rate of BCC change increased at higher temperatures and this increase was more pronounced in nutrient-enriched microcosms. These results indicated that bacterioplankton communities become unstable and decrease in size with increased temperature and in nutrient-enriched conditions.
Collapse
Affiliation(s)
- Lijuan Ren
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | | | | | | |
Collapse
|
39
|
The phylogenetic structure of microbial biofilms and free-living bacteria in a small stream. Folia Microbiol (Praha) 2012; 58:235-43. [DOI: 10.1007/s12223-012-0201-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 10/05/2012] [Indexed: 10/27/2022]
|
40
|
Lenin Babu M, Venkata Mohan S. Influence of graphite flake addition to sediment on electrogenesis in a sediment-type fuel cell. BIORESOURCE TECHNOLOGY 2012; 110:206-213. [PMID: 22336743 DOI: 10.1016/j.biortech.2012.01.064] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 01/06/2012] [Accepted: 01/13/2012] [Indexed: 05/31/2023]
Abstract
Graphite flakes at levels of 5%, 15%, 20% and 40% (weight per sediment volume) were added to lake bed sediment and electrogenesis in a sediment-type fuel cell was evaluated. Addition of graphite flakes by 20% to the sediment showed higher electrogenic activity of the fuel cell (578mV; 0.37mW) compared to control (304mV; 0.26mW). Further increment in the graphite loading showed a negative influence on the fuel cell behavior. A higher energy and capacitance were recorded with 20% addition of graphite flakes compared to the control. Increase in the exchange current density and decrease in the Tafel slope and electron transfer coefficient was observed with addition of graphite flakes. Apparent surface coverage analysis also supported the higher performance upon addition of 20% graphite flakes. The relative increase in the conductivity of bed due to addition of graphite flakes might be the reason for observed electrogenic activity. Marginal variation in the substrate utilization ( [Formula: see text] 50-55%) was observed with the addition of graphite flakes. By adding an optimum level of graphite flakes to sediment influences the fuel cell performance.
Collapse
Affiliation(s)
- M Lenin Babu
- Bioengineering and Environmental Centre (BEEC), CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad 500 607, India
| | | |
Collapse
|
41
|
Röske K, Sachse R, Scheerer C, Röske I. Microbial diversity and composition of the sediment in the drinking water reservoir Saidenbach (Saxonia, Germany). Syst Appl Microbiol 2011; 35:35-44. [PMID: 22154008 DOI: 10.1016/j.syapm.2011.09.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 09/16/2011] [Accepted: 09/19/2011] [Indexed: 11/28/2022]
Abstract
Sediments contain a huge number and diversity of microorganisms that are important for the flux of material and are pivotal to all major biogeochemical cycles. Sediments of reservoirs are affected by a wide spectrum of allochthous and autochthonous influences providing versatile environments along the flow of water within the reservoir. Here we report on the microbial diversity in sediments of the mesotrophic drinking water reservoir Saidenbach, Germany, featuring a pronounced longitudinal gradient in sediment composition in the reservoir system. Three sampling sites were selected along the gradient, and the microbial communities in two sediment depths were characterized using catalysed reporter deposition fluorescence in situ hybridization (CARD-FISH) and a bar-coded pyrosequencing approach. Multivariate statistic was used to reveal relationships between sequence diversity and the environmental conditions. The microbial communities were tremendously diverse with a Shannon index of diversity (H') ranging from 6.7 to 7.1. 18,986 sequences could be classified into 37 phyla including candidate divisions, but the full extent of genetic diversity was not captured. While CARD-FISH gave an overview about the community composition, more detailed information was gained by pyrosequencing. Bacteria were more abundant than Archaea. The dominating phylum in all samples was Proteobacteria, especially Betaproteobacteria and Deltaproteobacteria. Furthermore, sequences of Bacteroidetes, Verrucomicrobia, Acidobacteria, Chlorobi, Nitrospira, Spirochaetes, Gammaproteobacteria, Alphaproteobacteria, Chloroflexi, and Gemmatimonadetes were found. The site ammonium concentration, water content and organic matter content revealed to be strongest environmental predictors explaining the observed significant differences in the community composition between sampling sites.
Collapse
Affiliation(s)
- Kerstin Röske
- Saxonian Academy of Sciences Leipzig, Karl Tauchnitz-Str.1, D-04107 Leipzig, Germany.
| | | | | | | |
Collapse
|
42
|
Leon C, Campos V, Urrutia R, Mondaca MA. Metabolic and molecular characterization of bacterial community associated to Patagonian Chilean oligotrophic-lakes of quaternary glacial origin. World J Microbiol Biotechnol 2011; 28:1511-21. [PMID: 22805933 DOI: 10.1007/s11274-011-0953-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 11/11/2011] [Indexed: 11/27/2022]
Abstract
The Patagonian Lakes have particular environmental conditions with or without intermittent disturbances. The study of the microorganisms present in aquatic ecosystems has increased notably because they can be used as micro-scale bioindicators of, among others, anthropogenic pollution and climatic change. The aim of the work was to compare the composition of the bacterial communities associated with sediments of three Patagonian Lakes with different geomorphologic patterns and disturbances. The lake sediments were characterized by molecular techniques, physiology profiles and physico-chemical analyses. The metabolic and physiological profiles of the microbial community demonstrated that non-impacted Tranquilo Lake is statistically different to impacted Bertrand and Plomo Lakes. Similar results were detected by DGGE profiles. FISH results demonstrated that betaproteobacteria showed the highest count in the Tranquilo Lake while gammaproteobacteria showed the highest counts in the Bertrand and Plomo Lakes, indicating that their sediments are highly dystrophic. The results demonstrate differences in the metabolic activity and structural and functional composition of bacterial communities of the studied lakes, which have different geomorphological patterns due to disturbances such as volcanic activity and the climatic change.
Collapse
Affiliation(s)
- Carla Leon
- Microbiology Department, Biological Science Faculty, University of Concepción, P.O. Box 160-C, Correo 3, Concepción, Chile
| | | | | | | |
Collapse
|
43
|
Thevenon F, Graham ND, Herbez A, Wildi W, Poté J. Spatio-temporal distribution of organic and inorganic pollutants from Lake Geneva (Switzerland) reveals strong interacting effects of sewage treatment plant and eutrophication on microbial abundance. CHEMOSPHERE 2011; 84:609-617. [PMID: 21507454 DOI: 10.1016/j.chemosphere.2011.03.051] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 03/18/2011] [Accepted: 03/24/2011] [Indexed: 05/30/2023]
Abstract
Variation with depth and time of organic matter (carbon, nitrogen, phosphorus), inorganic pollutant (mercury), as well as bacterial abundance and activity, were investigated for the first time in sediment profiles of different parts of Lake Geneva (Switzerland) over the last decades. The highest organic contents (about 32%), mercury concentration (27 mg kg(-1)), bacterial abundance (in order of 9×10(9) cell g(-1) dry sediment), and bacterial activity (1299 Relative Light Units (RLU)) were found in the highly polluted sediments contaminated by the waste water treatment plant (WWTP) discharge, which deposited during the period of cultural eutrophication. Such data, which contrast with the other sampled sites from deeper and more remote parts of the lake, prove that the organic matter and nutrients released from the municipal WWTP have considerable effects on bacterial abundance and activities in freshwater sediments. In fact, the relatively unpolluted deepwater sites and the coastal polluted site show large synchronous increases in bacterial densities linked to the anoxic conditions in the 1970s (lake eutrophication caused by external nutrient input) that subsequently increased the nutrient loading fluxes. These results show that the microbial activities response to natural or human-induced changing limnological conditions (e.g., nutrient supply, oxygen availability, redox conditions) constitutes a threat to the security of water resources, which in turn poses concerns for the world's freshwater resources in the context of global warming and the degradation of water quality (oxygen depletion in the bottom water due to reduced deep waters mixing). Moreover, the accumulation of inorganic pollutants such as high mercury (methyl-mercury) concentration may represent a significant source of toxicity for sediment dwelling organisms.
Collapse
|
44
|
Martins G, Terada A, Ribeiro DC, Corral AM, Brito AG, Smets BF, Nogueira R. Structure and activity of lacustrine sediment bacteria involved in nutrient and iron cycles. FEMS Microbiol Ecol 2011; 77:666-79. [PMID: 21635276 DOI: 10.1111/j.1574-6941.2011.01145.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Knowledge of the bacterial community structure in sediments is essential to better design restoration strategies for eutrophied lakes. In this regard, the aim of this study was to quantify the abundance and activity of bacteria involved in nutrient and iron cycling in sediments from four Azorean lakes with distinct trophic states (Verde, Azul, Furnas and Fogo). Inferred from quantitative PCR, bacteria performing anaerobic ammonia oxidation were the most abundant in the eutrophic lakes Verde, Azul and Furnas (4.5-16.6%), followed by nitrifying bacteria (0.8-13.0%), denitrifying bacteria (DNB) (0.5-6.8%), iron-reducing bacteria (0.2-1.4%) and phosphorus-accumulating organisms (<0.3%). In contrast, DNB dominated sediments from the oligo-mesotrophic lake Fogo (8.8%). Activity assays suggested that bacteria performing ammonia oxidation (aerobic and anaerobic), nitrite oxidation, heterothrophic nitrate reduction, iron reduction and biological phosphorus storage/release were present and active in all Azorean lake sediments. The present work also suggested that the activity of DNB might contribute to the release of phosphorus from sediments.
Collapse
Affiliation(s)
- Gilberto Martins
- IBB - Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
| | | | | | | | | | | | | |
Collapse
|
45
|
Ji G, Tong J, Tan Y. Wastewater treatment efficiency of a multi-media biological aerated filter (MBAF) containing clinoptilolite and bioceramsite in a brick-wall embedded design. BIORESOURCE TECHNOLOGY 2011; 102:550-557. [PMID: 20797854 DOI: 10.1016/j.biortech.2010.07.075] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Revised: 07/12/2010] [Accepted: 07/18/2010] [Indexed: 05/29/2023]
Abstract
A multi-media biological aerated filter (MBAF) with clinoptilolite media was used to treat synthetic wastewater. Coal ash bioceramsite with supplemental metallic iron was added to the clinoptilolite media of MBAFs in a brick-wall embedded design. Performance parameters, such as hydraulic, organic, N and P loading capacity and microbial community composition were studied for different quantity of supplemental metallic iron contained in three MBAFs. The MBAFs with more metallic iron were found to have superior hydraulic and organic loading, and higher N and P capacities. COD, NH3-N and TP removal dropped by 7-10%, 6-7% and 4-5%, respectively, with when hydraulic loading was raised from 2.8 to 7.5 m3 m(-2) d(-1). NH3-N removal also decreased 8-9% when ammonia loading was elevated from 0.078 to 0.156 kg NH3-N m(-3) d(-1). Real-time PCR revealed a relatively stable bacterial community composed primarily of eubacteria that formed after an initial 120 d operational period. Doubling the amount of metallic iron in the bioceramsite media resulted in a twofold increase of eubacteria in the MBAF, but a decrease in the ratio of anaerobic ammonia-oxidizing bacteria to total bacteria.
Collapse
Affiliation(s)
- Guodong Ji
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China.
| | | | | |
Collapse
|
46
|
Dong X, Reddy GB. Nutrient removal and bacterial communities in swine wastewater lagoon and constructed wetlands. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2010; 45:1526-1535. [PMID: 20700852 DOI: 10.1080/10934529.2010.506109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Surface constructed wetlands, including marsh-pond-marsh (MPM) and continuous marsh (CtM) were used to treat swine wastewater in this study. The objectives of this research were to evaluate the surface constructed wetland effects on swine wastewater treatment, and to investigate bacterial distribution shifts along treatment flows. Water quality parameters and bacterial community diversity were analyzed in each section of the entire wastewater treatment system, which was from the anaerobic lagoons (La1 and La2), through the wetlands, to the storage lagoon (La3) receiving wetland effluent. The results of water quality parameters demonstrated that the concentration of TKN, NH4+, o-PO4(3-), and COD decreased significantly (P<0.05) from La1 to La3. If ammonia volatilization is integrated for N removal in MPM wetland cell, then there was no difference between MPM and CtM cells. The total bacterial community in each section of the system was examined by using PCR-DGGE (polymerase chain reaction-denaturing gradient gel electrophoresis) technique. Our finding disclosed that the bacterial communities in different sections of the wastewater treatment system showed high diversities. The bacterial community compositions shifted gradually with the wastewater treatment procedure. Principal component analysis (PCA) and redundancy analysis (RDA) confirmed that the bacterium species distribution was strongly related to the COD, o-PO4(3-), and TKN concentrations, whereas moderately related to the NH4+ concentration. Flavobacterium sp. and Methylomonas sp. were detected according to partial 16S rRNA gene sequences.
Collapse
MESH Headings
- Agriculture/standards
- Animals
- Bacteria, Aerobic/classification
- Bacteria, Aerobic/growth & development
- Bacteria, Aerobic/isolation & purification
- Bacteria, Anaerobic/classification
- Bacteria, Anaerobic/growth & development
- Bacteria, Anaerobic/isolation & purification
- DNA, Bacterial/genetics
- Denaturing Gradient Gel Electrophoresis
- Nitrogen/analysis
- Phosphorus/analysis
- Phylogeny
- Polymerase Chain Reaction
- Principal Component Analysis
- RNA, Bacterial/genetics
- RNA, Ribosomal, 16S/genetics
- Suspensions
- Swine/growth & development
- Water Microbiology
- Water Movements
- Water Pollutants, Chemical/analysis
- Water Purification/methods
- Wetlands
Collapse
Affiliation(s)
- Xiuli Dong
- Department of Natural Resources and Environmental Design, North Carolina Agricultural & Technical State University, Greensboro, North Carolina 27411, USA
| | | |
Collapse
|
47
|
Changes in the structure and function of microbial communities in drinking water treatment bioreactors upon addition of phosphorus. Appl Environ Microbiol 2010; 76:7473-81. [PMID: 20889793 DOI: 10.1128/aem.01232-10] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phosphorus was added as a nutrient to bench-scale and pilot-scale biologically active carbon (BAC) reactors operated for perchlorate and nitrate removal from contaminated groundwater. The two bioreactors responded similarly to phosphorus addition in terms of microbial community function (i.e., reactor performance), while drastically different responses in microbial community structure were detected. Improvement in reactor performance with respect to perchlorate and nitrate removal started within a few days after phosphorus addition for both reactors. Microbial community structures were evaluated using molecular techniques targeting 16S rRNA genes. Clone library results showed that the relative abundance of perchlorate-reducing bacteria (PRB) Dechloromonas and Azospira in the bench-scale reactor increased from 15.2% and 0.6% to 54.2% and 11.7% after phosphorus addition, respectively. Real-time quantitative PCR (qPCR) experiments revealed that these increases started within a few days after phosphorus addition. In contrast, after phosphorus addition, the relative abundance of Dechloromonas in the pilot-scale reactor decreased from 7.1 to 0.6%, while Zoogloea increased from 17.9 to 52.0%. The results of this study demonstrated that similar operating conditions for bench-scale and pilot-scale reactors resulted in similar contaminant removal performances, despite dramatically different responses from microbial communities. These findings suggest that it is important to evaluate the microbial community compositions inside bioreactors used for drinking water treatment, as they determine the microbial composition in the effluent and impact downstream treatment requirements for drinking water production. This information could be particularly relevant to drinking water safety, if pathogens or disinfectant-resistant bacteria are detected in the bioreactors.
Collapse
|
48
|
Marxsen J, Zoppini A, Wilczek S. Microbial communities in streambed sediments recovering from desiccation. FEMS Microbiol Ecol 2010; 71:374-86. [DOI: 10.1111/j.1574-6941.2009.00819.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
49
|
Kormas KA, Vardaka E, Moustaka-Gouni M, Kontoyanni V, Petridou E, Gkelis S, Neofitou C. Molecular detection of potentially toxic cyanobacteria and their associated bacteria in lake water column and sediment. World J Microbiol Biotechnol 2010. [DOI: 10.1007/s11274-010-0322-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
50
|
Importance of Extracellular Enzymes for Biogeochemical Processes in Temporary River Sediments during Fluctuating Dry–Wet Conditions. SOIL ENZYMOLOGY 2010. [DOI: 10.1007/978-3-642-14225-3_6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|