1
|
Luciani L, Pedrelli M, Parini P. Modification of lipoprotein metabolism and function driving atherogenesis in diabetes. Atherosclerosis 2024; 394:117545. [PMID: 38688749 DOI: 10.1016/j.atherosclerosis.2024.117545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/18/2024] [Accepted: 04/10/2024] [Indexed: 05/02/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease, characterized by raised blood glucose levels and impaired lipid metabolism resulting from insulin resistance and relative insulin deficiency. In diabetes, the peculiar plasma lipoprotein phenotype, consisting in higher levels of apolipoprotein B-containing lipoproteins, hypertriglyceridemia, low levels of HDL cholesterol, elevated number of small, dense LDL, and increased non-HDL cholesterol, results from an increased synthesis and impaired clearance of triglyceride rich lipoproteins. This condition accelerates the development of the atherosclerotic cardiovascular disease (ASCVD), the most common cause of death in T2DM patients. Here, we review the alteration of structure, functions, and distribution of circulating lipoproteins and the pathophysiological mechanisms that induce these modifications in T2DM. The review analyzes the influence of diabetes-associated metabolic imbalances throughout the entire process of the atherosclerotic plaque formation, from lipoprotein synthesis to potential plaque destabilization. Addressing the different pathophysiological mechanisms, we suggest improved approaches for assessing the risk of adverse cardiovascular events and clinical strategies to reduce cardiovascular risk in T2DM and cardiometabolic diseases.
Collapse
Affiliation(s)
- Lorenzo Luciani
- Cardio Metabolic Unit, Department of Laboratory Medicine, and Department of Medicine at Huddinge, Karolinska Institutet, Stockholm, Sweden; Interdisciplinary Center for Health Sciences, Sant'Anna School of Advanced Studies, Pisa, Italy
| | - Matteo Pedrelli
- Cardio Metabolic Unit, Department of Laboratory Medicine, and Department of Medicine at Huddinge, Karolinska Institutet, Stockholm, Sweden; Medicine Unit of Endocrinology, Theme Inflammation and Ageing, Karolinska University Hospital, Stockholm, Sweden
| | - Paolo Parini
- Cardio Metabolic Unit, Department of Laboratory Medicine, and Department of Medicine at Huddinge, Karolinska Institutet, Stockholm, Sweden; Medicine Unit of Endocrinology, Theme Inflammation and Ageing, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
2
|
Jayaraman S, Chavez OR, Pérez A, Miñambres I, Sánchez-Quesada JL, Gursky O. Binding to heparin triggers deleterious structural and biochemical changes in human low-density lipoprotein, which are amplified in hyperglycemia. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158712. [PMID: 32289504 DOI: 10.1016/j.bbalip.2020.158712] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/31/2020] [Accepted: 04/08/2020] [Indexed: 12/15/2022]
Abstract
Low-density lipoprotein (LDL) binding to arterial proteoglycans initiates LDL retention and modification in the arterial wall, triggering atherosclerosis. The details of this binding, its effectors, and its ramifications are incompletely understood. We combined heparin affinity chromatography with biochemical, spectroscopic and electron microscopic techniques to show that brief binding to heparin initiates irreversible pro-atherogenic remodeling of human LDL. This involved decreased structural stability of LDL and increased susceptibility to hydrolysis, oxidation and fusion. Furthermore, phospholipid hydrolysis, mild oxidation and/or glycation of LDL in vitro increase the proteolytic susceptibility of apoB and its heparin binding affinity, perhaps by unmasking additional heparin-binding sites. For LDL from hyperglycemic type-2 diabetic patients, heparin binding was particularly destabilizing and caused apoB fragmentation and LDL fusion. However, for similar patients whose glycemic control was restored upon therapy, LDL-heparin binding affinity was rectified and LDL structural stability was partially restored. These results complement previous studies of LDL binding to arterial proteoglycans and suggest that such interactions may produce a particularly pro-atherogenic subclass of electronegative LDL. In summary, binding to heparin alters apoB conformation, perhaps by partially peeling it off the lipid, and triggers pro-atherogenic LDL modifications including hydrolysis, oxidation, and destabilization. Furthermore, phospholipid lipolysis, mild oxidation and glycation of LDL in vitro strengthen its binding to heparin, which helps explain stronger binding observed in hyperglycemic LDL. Combined effects of hyperglycemia and heparin binding are especially deleterious but are largely rectified upon diabetes therapy. These findings help establish a mechanistic link between diabetes and atherosclerosis.
Collapse
Affiliation(s)
- Shobini Jayaraman
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, MA 02118, USA.
| | - Olivia R Chavez
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, MA 02118, USA
| | - Antonio Pérez
- Endocrinology Department of the Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; CIBER of Diabetes and Metabolic Diseases (CIBERDEM), Spain
| | - Inka Miñambres
- Endocrinology Department of the Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Jose Luis Sánchez-Quesada
- CIBER of Diabetes and Metabolic Diseases (CIBERDEM), Spain; Cardiovascular Biochemistry Group, Research Institute of the Hospital de Sant Pau, CIBERDEM, Barcelona, Spain
| | - Olga Gursky
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, MA 02118, USA; Amyloidosis Treatment and Research Center, Boston University School of Medicine, Boston MA, USA
| |
Collapse
|
3
|
Pennig J, Scherrer P, Gissler MC, Anto-Michel N, Hoppe N, Füner L, Härdtner C, Stachon P, Wolf D, Hilgendorf I, Mullick A, Bode C, Zirlik A, Goldberg IJ, Willecke F. Glucose lowering by SGLT2-inhibitor empagliflozin accelerates atherosclerosis regression in hyperglycemic STZ-diabetic mice. Sci Rep 2019; 9:17937. [PMID: 31784656 PMCID: PMC6884628 DOI: 10.1038/s41598-019-54224-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 10/26/2019] [Indexed: 12/12/2022] Open
Abstract
Diabetes worsens atherosclerosis progression and leads to a defect in repair of arteries after cholesterol reduction, a process termed regression. Empagliflozin reduces blood glucose levels via inhibition of the sodium glucose cotransporter 2 (SGLT-2) in the kidney and has been shown to lead to a marked reduction in cardiovascular events in humans. To determine whether glucose lowering by empagliflozin accelerates atherosclerosis regression in a mouse model, male C57BL/6J mice were treated intraperitoneally with LDLR- and SRB1- antisense oligonucleotides and fed a high cholesterol diet for 16 weeks to induce severe hypercholesterolemia and atherosclerosis progression. At week 14 all mice were rendered diabetic by streptozotocin (STZ) injections. At week 16 a baseline group was sacrificed and displayed substantial atherosclerosis of the aortic root. In the remaining mice, plasma cholesterol was lowered by switching to chow diet and treatment with LDLR sense oligonucleotides to induce atherosclerosis regression. These mice then received either empagliflozin or vehicle for three weeks. Atherosclerotic plaques in the empagliflozin treated mice were significantly smaller, showed decreased lipid and CD68+ macrophage content, as well as greater collagen content. Proliferation of plaque resident macrophages and leukocyte adhesion to the vascular wall were significantly decreased in empagliflozin-treated mice. In summary, plasma glucose lowering by empagliflozin improves plaque regression in diabetic mice.
Collapse
Affiliation(s)
- Jan Pennig
- University Heart Center Freiburg-Bad Krozingen, Cardiology and Angiology I, University of Freiburg, Freiburg, Germany
| | - Philipp Scherrer
- University Heart Center Freiburg-Bad Krozingen, Cardiology and Angiology I, University of Freiburg, Freiburg, Germany
| | - Mark Colin Gissler
- University Heart Center Freiburg-Bad Krozingen, Cardiology and Angiology I, University of Freiburg, Freiburg, Germany
| | - Nathaly Anto-Michel
- University Heart Center Freiburg-Bad Krozingen, Cardiology and Angiology I, University of Freiburg, Freiburg, Germany
| | - Natalie Hoppe
- University Heart Center Freiburg-Bad Krozingen, Cardiology and Angiology I, University of Freiburg, Freiburg, Germany
| | - Lisa Füner
- University Heart Center Freiburg-Bad Krozingen, Cardiology and Angiology I, University of Freiburg, Freiburg, Germany
| | - Carmen Härdtner
- University Heart Center Freiburg-Bad Krozingen, Cardiology and Angiology I, University of Freiburg, Freiburg, Germany
| | - Peter Stachon
- University Heart Center Freiburg-Bad Krozingen, Cardiology and Angiology I, University of Freiburg, Freiburg, Germany
| | - Dennis Wolf
- University Heart Center Freiburg-Bad Krozingen, Cardiology and Angiology I, University of Freiburg, Freiburg, Germany
| | - Ingo Hilgendorf
- University Heart Center Freiburg-Bad Krozingen, Cardiology and Angiology I, University of Freiburg, Freiburg, Germany
| | - Adam Mullick
- Ionis Pharmaceuticals, Carlsbad, California, USA
| | - Christoph Bode
- University Heart Center Freiburg-Bad Krozingen, Cardiology and Angiology I, University of Freiburg, Freiburg, Germany
| | - Andreas Zirlik
- University Heart Center Freiburg-Bad Krozingen, Cardiology and Angiology I, University of Freiburg, Freiburg, Germany.,Division of Cardiology, Medical University of Graz, Graz, Austria
| | - Ira J Goldberg
- Department of Medicine, New York University Langone Health, New York, NY, USA
| | - Florian Willecke
- University Heart Center Freiburg-Bad Krozingen, Cardiology and Angiology I, University of Freiburg, Freiburg, Germany. .,Klinik für Allgemeine und Interventionelle Kardiologie/Angiologie, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Bochum, Germany.
| |
Collapse
|
4
|
Increased retention of LDL from type 1 diabetic patients in atherosclerosis-prone areas of the murine arterial wall. Atherosclerosis 2019; 286:156-162. [PMID: 30871723 DOI: 10.1016/j.atherosclerosis.2019.02.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 02/27/2019] [Accepted: 02/27/2019] [Indexed: 11/20/2022]
Abstract
BACKGROUND AND AIMS Type 1 diabetes accelerates the development of atherosclerotic cardiovascular diseases. Retention of low-density lipoprotein (LDL) in the arterial wall is a causal step in atherogenesis, but it is unknown whether diabetes alters the propensity of LDL for retention. The present study investigated whether LDL from type 1 diabetic and healthy non-diabetic subjects differed in their ability to bind to the arterial wall in a type 1 diabetic mouse model. METHODS Fluorescently-labeled LDL obtained from type 1 diabetic patients or healthy controls was injected into mice with type 1 diabetes. The amount of retained LDL in the atherosclerosis-prone inner curvature of the aortic arch was quantified by fluorescence microscopy. Healthy control LDL was in vitro glycated, analyzed for protein glycation by LC-MS/MS, and tested for retention propensity. RESULTS Retention of LDL from type 1 diabetic patients was 4.35-fold higher compared to LDL from nondiabetic subjects. Nuclear magnetic resonance (NMR) spectroscopy analysis of LDL revealed no differences in the concentration of the atherogenic small dense LDL between type 1 diabetic and non-diabetic subjects. In vitro glycation of LDL from a non-diabetic subject increased retention compared to non-glycated LDL. LC-MS/MS revealed four new glycated spots in the protein sequence of ApoB of in vitro glycated LDL. CONCLUSIONS LDL from type 1 diabetic patients showed increased retention at atherosclerosis-prone sites in the arterial wall of diabetic mice. Glycation of LDL is one modification that may increase retention, but other, yet unknown, mechanisms are also likely to contribute.
Collapse
|
5
|
Type 1 diabetes increases retention of low-density lipoprotein in the atherosclerosis-prone area of the murine aorta. Atherosclerosis 2017; 263:7-14. [DOI: 10.1016/j.atherosclerosis.2017.05.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 05/02/2017] [Accepted: 05/17/2017] [Indexed: 02/02/2023]
|
6
|
Jarvie JL, Wang H, Kinney GL, Snell-Bergeon J, Hokanson JE, Eckel RH. Lipoprotein-associated phospholipase A2 distribution among lipoproteins differs in type 1 diabetes. J Clin Lipidol 2016; 10:577-86. [PMID: 27206945 DOI: 10.1016/j.jacl.2016.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Revised: 12/16/2015] [Accepted: 01/03/2016] [Indexed: 01/07/2023]
Abstract
BACKGROUND LpPLA2 mass and activity have been variably related to cardiovascular disease risk, and the distribution of LpPLA2 in patients with type 1 diabetes (T1D), wherein cardiovascular disease risk is high despite normal or higher levels of high-density lipoprotein (HDL) cholesterol, is unknown. OBJECTIVE To determine whether there are differences in the distribution of LpPLA2 mass and activity across lipoproteins and their association with coronary artery calcium (CAC) in patients with T1D. METHODS Men with T1D (n = 19) not on statins, with and without CAC progression, and men without diabetes matched for HDL cholesterol (n = 25) had lipoproteins separated by fast protein liquid chromatography. RESULTS Both LpPLA2 mass and activity were found within low-density lipoprotein (LDL) and HDL pools with more LpPLA2 mass being associated with HDL (54% vs 44%; P-value <.001) and more LpPLA2 activity being associated with LDL (56% vs 40%; P value = .02). In T1D, more LpPLA2 activity was associated with large- or less-dense LDL compared to those without diabetes. However, no difference in LpPLA2 activity or mass between lipoprotein subfractions was observed between all groups, and there was no relationship between LpPLA2 activity or mass and its distribution and CAC score progression in healthy or T1D men. CONCLUSION LpPLA2 is found in both LDL and HDL and is distributed differently in men with T1D without any relationship to CAC score progression.
Collapse
Affiliation(s)
- Jennifer L Jarvie
- Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Hong Wang
- Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Gregory L Kinney
- Barbara Davis Center for Childhood Diabetes, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Janet Snell-Bergeon
- Barbara Davis Center for Childhood Diabetes, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - John E Hokanson
- Department of Epidemiology, Colorado School of Public Health, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Robert H Eckel
- Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
7
|
Nichols TC, Merricks EP, Bellinger DA, Raymer RA, Yu J, Lam D, Koch GG, Busby WH, Clemmons DR. Oxidized LDL and Fructosamine Associated with Severity of Coronary Artery Atherosclerosis in Insulin Resistant Pigs Fed a High Fat/High NaCl Diet. PLoS One 2015; 10:e0132302. [PMID: 26147990 PMCID: PMC4492503 DOI: 10.1371/journal.pone.0132302] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 06/11/2015] [Indexed: 12/22/2022] Open
Abstract
Background Insulin-resistant subjects develop more severe and diffuse coronary artery atherosclerosis than insulin-sensitive controls but the mechanisms that mediate this atherosclerosis phenotype are unknown. Research Objective To determine the metabolic parameters that associate with the severity of coronary atherosclerosis in insulin resistant pigs fed a high fat/high NaCl diet. Key Methods The primary endpoint was severity of coronary atherosclerosis in adult pigs (Sus scrofa, n = 37) fed a high fat diet that also contained high NaCl (56% above recommended levels) for 1 year. Principal Findings Twenty pigs developed severe and diffuse distal coronary artery atherosclerosis (i.e., severe = intimal area as a percent medial area > 200% in at least 2 coronary artery cross sections and diffuse distal = intimal area as a percent medial area ≥ 150% over 3 sections separated by 2 cm in the distal half of the coronary artery). The other 17 pigs had substantially less coronary artery atherosclerosis. All 37 pigs had blood pressure in a range that would be considered hypertensive in humans and developed elevations in total and LDL and HDL cholesterol, weight gain, increased backfat, and increased insulin resistance (Bergman Si) without overt diabetes. Insulin resistance was not associated with atherosclerosis severity. Five additional pigs fed regular pig chow also developed increased insulin resistance but essentially no change in the other variables and little to no detectible coronary atherosclerosis. Most importantly, the 20 high fat/high NaCl diet -fed pigs with severe and diffuse distal coronary artery atherosclerosis had substantially greater increases (p< 0.05) in oxidized LDL (oxLDL) and fructosamine consistent with increased protein glycation. Conclusion In pigs fed a high fat/high NaCl diet, glycated proteins are induced in the absence of overt diabetes and this degree of increase is associated with the development of severe and diffuse distal coronary artery atherosclerosis.
Collapse
Affiliation(s)
- Timothy C. Nichols
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| | - Elizabeth P. Merricks
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Dwight A. Bellinger
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Robin A. Raymer
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jing Yu
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Diana Lam
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Gary G. Koch
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Walker H. Busby
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - David R. Clemmons
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
8
|
Gaudreault N, Kumar N, Olivas VR, Eberlé D, Stephens K, Raffai RL. Hyperglycemia impairs atherosclerosis regression in mice. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:1981-1992. [PMID: 24113453 DOI: 10.1016/j.ajpath.2013.08.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 07/23/2013] [Accepted: 08/12/2013] [Indexed: 02/01/2023]
Abstract
Diabetic patients are known to be more susceptible to atherosclerosis and its associated cardiovascular complications. However, the effects of hyperglycemia on atherosclerosis regression remain unclear. We hypothesized that hyperglycemia impairs atherosclerosis regression by modulating the biological function of lesional macrophages. HypoE (Apoe(h/h)Mx1-Cre) mice express low levels of apolipoprotein E (apoE) and develop atherosclerosis when fed a high-fat diet. Atherosclerosis regression occurs in these mice upon plasma lipid lowering induced by a change in diet and the restoration of apoE expression. We examined the morphological characteristics of regressed lesions and assessed the biological function of lesional macrophages isolated with laser-capture microdissection in euglycemic and hyperglycemic HypoE mice. Hyperglycemia induced by streptozotocin treatment impaired lesion size reduction (36% versus 14%) and lipid loss (38% versus 26%) after the reversal of hyperlipidemia. However, decreases in lesional macrophage content and remodeling in both groups of mice were similar. Gene expression analysis revealed that hyperglycemia impaired cholesterol transport by modulating ATP-binding cassette A1, ATP-binding cassette G1, scavenger receptor class B family member (CD36), scavenger receptor class B1, and wound healing pathways in lesional macrophages during atherosclerosis regression. Hyperglycemia impairs both reduction in size and loss of lipids from atherosclerotic lesions upon plasma lipid lowering without significantly affecting the remodeling of the vascular wall.
Collapse
Affiliation(s)
- Nathalie Gaudreault
- Surgical Service, VA Medical Center San Francisco, San Francisco, California; Division of Vascular and Endovascular Surgery, Department of Surgery, University of California San Francisco, San Francisco, California
| | - Nikit Kumar
- Surgical Service, VA Medical Center San Francisco, San Francisco, California; Division of Vascular and Endovascular Surgery, Department of Surgery, University of California San Francisco, San Francisco, California
| | - Victor R Olivas
- Surgical Service, VA Medical Center San Francisco, San Francisco, California; Division of Vascular and Endovascular Surgery, Department of Surgery, University of California San Francisco, San Francisco, California
| | - Delphine Eberlé
- Surgical Service, VA Medical Center San Francisco, San Francisco, California; Division of Vascular and Endovascular Surgery, Department of Surgery, University of California San Francisco, San Francisco, California
| | - Kyle Stephens
- Surgical Service, VA Medical Center San Francisco, San Francisco, California; Division of Vascular and Endovascular Surgery, Department of Surgery, University of California San Francisco, San Francisco, California
| | - Robert L Raffai
- Surgical Service, VA Medical Center San Francisco, San Francisco, California; Division of Vascular and Endovascular Surgery, Department of Surgery, University of California San Francisco, San Francisco, California.
| |
Collapse
|
9
|
Mohar DS, Barseghian A, Haider N, Domanski M, Narula J. Atherosclerosis in chronic kidney disease: lessons learned from glycation in diabetes. Med Clin North Am 2012; 96:57-65. [PMID: 22391251 DOI: 10.1016/j.mcna.2011.11.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In diabetes, glycation is a nonenzymatic posttranslational modification resulting from the bonding of a sugar molecule with a protein or lipid followed by oxidation, resulting in the development of advanced glycation end products (AGE). Like glycation, carbamylation is a posttranslational protein modification that is associated with AGE formation. Glycation of extracellular matrix proteins and low-density lipoprotein with subsequent deposition in the vessel wall could contribute to inflammatory response and atheroma formation. It is logical to extrapolate that carbamylation may result in modification of vessel wall proteins similar to glycation, and predispose to atherosclerosis.
Collapse
Affiliation(s)
- Dilbahar S Mohar
- Division of Cardiology, University of California-Irvine School of Medicine, Orange, CA 92868-3298, USA.
| | | | | | | | | |
Collapse
|
10
|
Cohen MP, Shea EA, Wu VY. Inhibiting low-density lipoprotein glycation ameliorates increased cholesteryl ester synthesis in macrophages and hypercholesterolemia and aortic lipid peroxidation in streptozotocin diabetic rats. Metabolism 2010; 59:658-63. [PMID: 19922964 PMCID: PMC2856719 DOI: 10.1016/j.metabol.2009.09.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 09/03/2009] [Accepted: 09/09/2009] [Indexed: 10/20/2022]
Abstract
Increased nonenzymatic glycation of apolipoprotein (apo) B-containing lipoproteins impairs uptake and metabolism by the high-affinity low-density lipoprotein receptor and is one of the postsecretory modifications contributory to accelerated atherosclerosis in diabetes. The present study evaluated in vitro and in vivo effects of 2,2-chlorophenylaminophenylacetate to probe the influence of glycated lipoprotein on cholesterol homeostasis. This compound prevented the increased formation of glycated products in low-density lipoprotein incubated with 200 mmol/L glucose and the increased cholesteryl ester synthesis in THP-1 macrophages induced by apo B-containing lipoproteins preincubated with high glucose concentration. The elevated circulating concentrations of glycated lipoprotein and cholesterol and higher vascular levels of lipid peroxidation products observed in streptozotocin diabetic rats compared with nondiabetic controls were significantly reduced in diabetic animals treated for 6 months with test compound. These results are the first to demonstrate that inhibiting nonenzymatic glycation of apo B-containing lipoproteins ameliorates abnormalities contributory to hypercholesterolemia and atherogenic risk in diabetes.
Collapse
|
11
|
Tannock LR, King VL. Proteoglycan mediated lipoprotein retention: a mechanism of diabetic atherosclerosis. Rev Endocr Metab Disord 2008; 9:289-300. [PMID: 18584330 DOI: 10.1007/s11154-008-9078-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Accepted: 05/29/2008] [Indexed: 12/25/2022]
Abstract
The response to retention hypothesis outlines the initial stages of atherosclerotic lesion formation. The central theme of the hypothesis is that proteoglycan mediated lipoprotein retention plays a critical step in the initiation of atherosclerosis development. Recent research using human arterial specimens, transgenic mouse models and molecular biology techniques have added to our understanding of atherosclerosis development, and provided experimental data in support of the response to retention hypothesis. In this review we summarize the recent data, in particular that which addresses mechanisms by which diabetes can accelerate atherosclerosis formation, with a focus on proteoglycan-mediated LDL retention.
Collapse
Affiliation(s)
- Lisa R Tannock
- Department of Veterans Affairs, Lexington, KY, 40511, USA.
| | | |
Collapse
|
12
|
Cohen MP, Ziyadeh FN, Chen S. Amadori-modified glycated serum proteins and accelerated atherosclerosis in diabetes: pathogenic and therapeutic implications. ACTA ACUST UNITED AC 2006; 147:211-9. [PMID: 16697768 PMCID: PMC1800931 DOI: 10.1016/j.lab.2005.12.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2005] [Revised: 12/21/2005] [Accepted: 12/21/2005] [Indexed: 10/24/2022]
Affiliation(s)
- Margo P Cohen
- University City Science Center, Philadelphia, Pennsylvania, USA.
| | | | | |
Collapse
|
13
|
Wagner JE, Kavanagh K, Ward GM, Auerbach BJ, Harwood HJ, Kaplan JR. Old World Nonhuman Primate Models of Type 2 Diabetes Mellitus. ILAR J 2006; 47:259-71. [PMID: 16804200 DOI: 10.1093/ilar.47.3.259] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Type 2 diabetes mellitus is a major health problem of increasing incidence. To better study the pathogenesis and potential therapeutic agents for this disease, appropriate animal models are needed. Old World nonhuman primates (NHPs) are a useful animal model of type 2 diabetes; like humans, the disease is most common in older, obese animals. Before developing overt diabetes, NHPs have a period of obesity-associated insulin resistance that is initially met with compensatory insulin secretion. When either a relative or absolute deficiency in pancreatic insulin production occurs, fasting glucose concentrations begin to increase and diabetic signs become apparent. Pathological changes in pancreatic islets are also similar to those seen in human diabetics. Initially there is hyperplasia of the islets with abundant insulin production typically followed by replacement of islets with islet-associated amyloid. Diabetic NHPs have detrimental changes in plasma lipid and lipoprotein concentrations, lipoprotein composition, and glycation, which may contribute to progression of atherosclerosis. As both the prediabetic condition (similar to metabolic syndrome in humans) and overt diabetes become better defined in monkeys, their use in pharmacological studies is increasing. Likely due to their genetic similarity to humans and the similar characteristics of the disease in NHPs, NHPs have been used to study recently developed agonists of the peroxisome proliferators-activated receptors. Importantly, agonists of the different receptor subclasses elicit similar responses in both humans and NHPs. Thus, Old World NHPs are a valuable animal model of type 2 diabetes to study disease progression, associated risk factors, and potential new treatments.
Collapse
Affiliation(s)
- Janice E Wagner
- Department of Pathology Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW Considerable evidence suggests that the subendothelial retention of atherogenic lipoproteins is a key early step in atherogenesis. In humans and experimental animals, elevated levels of plasma lipoproteins are associated with increased atherosclerosis, and lipoproteins with higher affinity for arterial proteoglycans are more atherogenic. Here we discuss the molecular mechanisms underlying lipoprotein retention in the arterial wall and how this interaction can be modulated. RECENT FINDINGS Functional proteoglycan binding sites in lipoproteins containing apolipoprotein B have been identified and shown to have atherogenic potential in vivo. In addition to apolipoprotein B, novel bridging molecules, those that can interact with both proteoglycans and lipoproteins, have been identified that mediate the retention of atherogenic particles in the vessel wall. The interaction between lipoproteins and proteoglycans can be enhanced by the modification of lipoproteins in the circulation and in the arterial wall, by alterations in the subendothelium, and by changes in proteoglycan synthesis that result in a more atherogenic profile. The retention of atherogenic lipoproteins is a potential target for therapies to reverse atherosclerosis, and in-vitro studies have identified compounds that decrease the affinity of proteoglycans for lipoproteins. SUMMARY Considerable progress has been made in understanding the association between lipoproteins and cardiovascular disease. This review highlights the importance of the interaction between lipoproteins and the arterial matrix.
Collapse
Affiliation(s)
- Maria Gustafsson
- Wallenberg Laboratory for Cardiovascular Research and the Cardiovascular Institute, The Sahlgrenska Academy at Göteborg University, 413 45 Göteborg, Sweden.
| | | |
Collapse
|
15
|
Edwards IJ, Wagner JD, Vogl-Willis CA, Litwak KN, Cefalu WT. Arterial heparan sulfate is negatively associated with hyperglycemia and atherosclerosis in diabetic monkeys. Cardiovasc Diabetol 2004; 3:6. [PMID: 15117408 PMCID: PMC421734 DOI: 10.1186/1475-2840-3-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2004] [Accepted: 04/29/2004] [Indexed: 12/31/2022] Open
Abstract
Background Arterial proteoglycans are implicated in the pathogenesis of atherosclerosis by their ability to trap plasma lipoproteins in the arterial wall and by their influence on cellular migration, adhesion and proliferation. In addition, data have suggested an anti-atherogenic role for heparan sulfate proteoglycans and a pro-atherogenic role for dermatan sulfate proteoglycans. Using a non-human primate model for human diabetes, studies examined diabetes-induced changes in arterial proteoglycans that may increase susceptibility to atherosclerosis. Methods Control (n = 7) and streptozotocin-induced diabetic (n = 8) cynomolgous monkeys were assessed for hyperglycemia by measurement of plasma glycated hemoglobin (GHb). Thoracic aortas obtained at necropsy, were extracted with 4 M guanidine HCL and proteoglycans were measured as hexuronic acid. Atherosclerosis was measured by enzymatic analysis of extracted tissue cholesterol. Glycosaminoglycan chains of arterial proteoglycans were released with papain, separated by agarose electrophoresis and analysed by scanning densitometry. Results Tissue cholesterol was positively associated with hexuronic acid content in diabetic arteries (r = .82, p < .025) but not in control arteries. Glycosaminoglycan chain analysis demonstrated that dermatan sulfate was associated with increased tissue cholesterol in both control (r = .8, p < 0.05) and diabetic (r = .8, p < .025) arteries, whereas a negative relationship was observed between heparan sulfate and tissue cholesterol in diabetic arteries only (r = -.7, p < .05). GHb, which was significantly higher in diabetic animals (8.2 ± 0.9 vs 3.8 ± 0.2%, p < .0005) was negatively associated with heparan sulfate in diabetic arteries (r = -.7, p < .05). Conclusions These data implicate hyperglycemia induced modifications in arterial proteoglycans that may promote atherosclerosis.
Collapse
Affiliation(s)
- Iris J Edwards
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine Winston-Salem, North Carolina 27157-1047 USA
| | - Janice D Wagner
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine Winston-Salem, North Carolina 27157-1047 USA
| | - Catherine A Vogl-Willis
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine Winston-Salem, North Carolina 27157-1047 USA
| | - Kenneth N Litwak
- Department of Surgery-Thoracic and Cardiovascular Cardiovascular Research Center University of Louisville School of Medicine 500 S. Floyd St Louisville, Kentucky 40292 USA
| | - William T Cefalu
- Pennington Biomedical Research Center Louisiana State University 6400 Perkins Road Baton Rouge, Louisiana 70808, USA
| |
Collapse
|
16
|
Abstract
Lipoprotein-matrix interactions play an important role in arterial disease. Extracellular matrix proteoglycans bind and retain specific positively charged domains on apolipoproteins B- and E-containing lipoproteins during atherogenesis. Retained lipoproteins can undergo several modifications, which may alter their interaction with extracellular matrix molecules. Growth factors, cytokines and oxidized low density lipoproteins influence proteoglycan structure, rendering them more likely to bind and retain lipoproteins during atherogenesis. Lipoproteins, native and modified, also can modulate the expression of several of the matrix degrading enzymes present in vascular tissue, thereby influencing plaque stability. Thus, the interaction of atherogenic lipoproteins with arterial wall matrix molecules can influence the genesis and progression of atherosclerosis and its complications.
Collapse
Affiliation(s)
- A Chait
- Department of Medicine and Pathology, University of Washington, Seattle 98195, USA.
| | | |
Collapse
|