1
|
Wargny M, Goronflot T, Rimbert A, Boursier J, Kab S, Henny J, Lainé A, Leux C, Smati S, Hadjadj S, Le May C, Goldberg M, Zins M, Cariou B. Primary hypocholesterolemia is associated with an increased risk of hepatic complications in the general population. J Hepatol 2024; 80:846-857. [PMID: 38331324 DOI: 10.1016/j.jhep.2024.01.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 01/22/2024] [Accepted: 01/28/2024] [Indexed: 02/10/2024]
Abstract
BACKGROUND & AIMS Beyond cardiovascular disease protection, the health consequences of very low concentrations of low-density lipoprotein-cholesterol (LDL-C) remain a matter of debate. In primary hypobetalipoproteinemia (HBL), liver steatosis and cirrhosis have occasionally been reported. Here, we aimed to investigate the association between HBL and the risk of hepatic complications (cirrhosis complications and/or primary liver cancer) in the general population. METHODS A cohort study was conducted in the French population-based cohort CONSTANCES. Participants with primary HBL (LDL-C <5th percentile for age and sex, [HBL]) were compared with those with normal LDL-C concentrations (40th-60th percentile, [Control]). Participants on lipid-lowering therapies were excluded. For hepatic complications, follow-up events were compared by calculating the incidence density ratio (IDR). The same analyses were replicated in the UK Biobank (UKBB) cohort. RESULTS In the CONSTANCES and UKBB cohorts, 34,653 and 94,666 patients were analyzed, with median ages of 45 and 56 years, mean LDL-C concentrations (HBL vs. control) of 71 vs. 128 mg/dl and 86 vs. 142 mg/dl, and mean follow-up durations of 5.0 and 11.5 years, respectively. The HBL group presented a higher incidence of hepatic complications than the control group: 0.32/ vs. 0.07/1,000 person-years (IDR = 4.50, 95% CI 1.91-10.6) in CONSTANCES, and 0.69/ vs. 0.21/1,000 person-years (IDR = 3.27, 95% CI 2.63-4.06) in the UKBB. This risk proved to be independent of classic risk factors for liver disease (obesity, alcohol consumption, diabetes, viral hepatitis), including in a 5-year landmark analysis excluding early events. Sensitivity analyses based on apoliprotein-B levels (instead of LDL-C levels) or genetically defined HBL showed similar results. CONCLUSIONS HBL is associated with a markedly increased risk of hepatic complications. HBL must be considered as a substantial independent risk factor for liver diseases which justifies specific prevention and screening. IMPACT AND IMPLICATIONS Hypobetalipoproteinemia (HBL) is a lipid disorder characterized by permanent, inherited low levels (below the 5th percentile) of low-density lipoprotein-cholesterol. While HBL is associated with a lower risk of cardiovascular events, some studies suggest that it may be associated with a potential risk of hepatic steatosis and hepatic complications. Here, we studied the association between HBL and hepatic complications (defined as cirrhosis complications and/or primary liver cancer) in two populations of several hundred thousand people, both in France (CONSTANCES cohort) and the United Kingdom (UKBB). The results show that HBL is associated with a significant and independent excess risk of hepatic complications, including primary liver cancer. Thus, in people with HBL, the value of regular liver monitoring must be studied.
Collapse
Affiliation(s)
- Matthieu Wargny
- Nantes Université, CHU Nantes, CNRS, Inserm, l'institut du thorax, F-44000 Nantes, France; Nantes Université, CHU Nantes, Pôle Hospitalo-Universitaire 11: Santé Publique, Clinique des données, INSERM, CIC 1413, F-44000 Nantes, France
| | - Thomas Goronflot
- Nantes Université, CHU Nantes, Pôle Hospitalo-Universitaire 11: Santé Publique, Clinique des données, INSERM, CIC 1413, F-44000 Nantes, France
| | - Antoine Rimbert
- Nantes Université, CHU Nantes, CNRS, Inserm, l'institut du thorax, F-44000 Nantes, France
| | - Jérôme Boursier
- Service d'Hépato-Gastroentérologie et Oncologie Digestive, Hôpital Universitaire d'Angers, Angers, France; Laboratoire HIFIH UPRES EA3859, SFR ICAT 4208, Université d'Angers, Angers, France
| | - Sofiane Kab
- Université Paris Cité, Paris Saclay University, UVSQ, Inserm UMS 011, Villejuif, France
| | - Joseph Henny
- Université Paris Cité, Paris Saclay University, UVSQ, Inserm UMS 011, Villejuif, France
| | - Antoine Lainé
- Nantes Université, CHU Nantes, CNRS, Inserm, l'institut du thorax, F-44000 Nantes, France
| | - Christophe Leux
- Nantes Université, CHU Nantes, Service d'information médicale, F-44000 Nantes, France
| | - Sarra Smati
- Nantes Université, CHU Nantes, CNRS, Inserm, l'institut du thorax, F-44000 Nantes, France
| | - Samy Hadjadj
- Nantes Université, CHU Nantes, CNRS, Inserm, l'institut du thorax, F-44000 Nantes, France
| | - Cédric Le May
- Nantes Université, CHU Nantes, CNRS, Inserm, l'institut du thorax, F-44000 Nantes, France
| | - Marcel Goldberg
- Université Paris Cité, Paris Saclay University, UVSQ, Inserm UMS 011, Villejuif, France
| | - Marie Zins
- Université Paris Cité, Paris Saclay University, UVSQ, Inserm UMS 011, Villejuif, France
| | - Bertrand Cariou
- Nantes Université, CHU Nantes, CNRS, Inserm, l'institut du thorax, F-44000 Nantes, France.
| |
Collapse
|
2
|
Noto D, Arca M, Tarugi P, Cefalù AB, Barbagallo CM, Averna MR. Association between familial hypobetalipoproteinemia and the risk of diabetes. Is this the other side of the cholesterol-diabetes connection? A systematic review of literature. Acta Diabetol 2017; 54:111-122. [PMID: 27804036 DOI: 10.1007/s00592-016-0931-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 10/09/2016] [Indexed: 02/03/2023]
Abstract
Statin therapy is beneficial in reducing LDL cholesterol (LDL-C) levels and cardiovascular events, but it is associated with the risk of incident diabetes mellitus (DM). Familial hypercholesterolemia (FH) is characterized by genetically determined high levels of plasma LDL-C and a low prevalence of DM. LDL-C levels seem then inversely correlated with prevalence of DM. Familial hypobetalipoproteinemia (FHBL) represents the genetic mirror of FH in terms of LDL-C levels, very low in subjects carrying mutations of APOB, PCSK9 (FHBL1) or ANGPTL3 (FHBL2). This review explores the hypothesis that FHBL might represent also the genetic mirror of FH in terms of prevalence of DM and that it is expected to be increased in FHBL in comparison with the general population. A systematic review of published literature on FHBL was made by searching PubMed (1980-2016) for articles presenting clinical data on FHBL probands and relatives. The standardized prevalence rates of DM in FHBL1 were similar to those of the reference population, with a prevalence rate of 8.2 and 9.2%, respectively, while FHBL2 showed a 4.9% prevalence of DM. In conclusion, low LDL-C levels of FHBL do not seem connected to DM as it happens in subjects undergoing statin therapy and the diabetogenic effect of statins has to be explained by mechanisms that do not rely exclusively on the reduced levels of LDL-C. The review also summarizes the published data on the effects of FHBL on insulin sensitivity and the relationships between FH, statin therapy, FHBL1 and intracellular cholesterol metabolism, evaluating possible diabetogenic pathways.
Collapse
Affiliation(s)
- Davide Noto
- Department of Biomedicine, Internal Medicine and Medical Specialties (DIBIMIS), University of Palermo, Palermo, Italy.
- Department of Internal Medicine, Policlinico "Paolo Giaccone", Via del Vespro 141, 90127, Palermo, Italy.
| | - Marcello Arca
- Department of Internal Medicine and Allied Sciences, Unit of Atherosclerosis and Lipid Disorders, Sapienza University of Rome, Rome, Italy
| | - Patrizia Tarugi
- Department of Biomedical Sciences, University of Modena-Reggio, Modena, Italy
| | - Angelo B Cefalù
- Department of Biomedicine, Internal Medicine and Medical Specialties (DIBIMIS), University of Palermo, Palermo, Italy
| | - Carlo M Barbagallo
- Department of Biomedicine, Internal Medicine and Medical Specialties (DIBIMIS), University of Palermo, Palermo, Italy
| | - Maurizio R Averna
- Department of Biomedicine, Internal Medicine and Medical Specialties (DIBIMIS), University of Palermo, Palermo, Italy.
- Department of Internal Medicine, Policlinico "Paolo Giaccone", Via del Vespro 141, 90127, Palermo, Italy.
| |
Collapse
|
3
|
Abstract
"Primary hypobetalipoproteinemia" refers to an eclectic group of inherited lipoprotein disorders characterized by low concentrations of or absence of low-density lipoprotein cholesterol and apolipoprotein B in plasma. Abetalipoproteinemia and homozygous familial hypobetalipoproteinemia, although caused by mutations in different genes, are clinically indistinguishable. A framework for the clinical follow-up and management of these two disorders has been proposed recently, focusing on monitoring of growth in children and preventing complications by providing specialized dietary advice and fat-soluble vitamin therapeutic regimens. Other recent publications on familial combined hypolipidemia suggest that although a reduction of angiopoietin-like 3 activity may improve insulin sensitivity, complete deficiency also reduces serum cholesterol efflux capacity and increases the risk of early vascular atherosclerotic changes, despite low low-density lipoprotein cholesterol levels. Specialist laboratories offer exon-by-exon sequence analysis for the molecular diagnosis of primary hypobetalipoproteinemia. In the future, massively parallel sequencing of panels of genes involved in dyslipidemia may play a greater role in the diagnosis of these conditions.
Collapse
|
4
|
Burnett JR, Bell DA, Hooper AJ, Hegele RA. Clinical utility gene card for: Familial hypobetalipoproteinaemia (APOB)--Update 2014. Eur J Hum Genet 2014; 23:ejhg2014225. [PMID: 25335495 DOI: 10.1038/ejhg.2014.225] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 09/08/2014] [Accepted: 09/19/2014] [Indexed: 01/08/2023] Open
Affiliation(s)
- John R Burnett
- 1] Department of Clinical Biochemistry, PathWest Laboratory Medicine, Royal Perth Hospital, Perth, Western Australia, Australia [2] School of Medicine & Pharmacology, University of Western Australia, Perth, Western Australia, Australia
| | - Damon A Bell
- 1] Department of Clinical Biochemistry, PathWest Laboratory Medicine, Royal Perth Hospital, Perth, Western Australia, Australia [2] School of Medicine & Pharmacology, University of Western Australia, Perth, Western Australia, Australia
| | - Amanda J Hooper
- 1] Department of Clinical Biochemistry, PathWest Laboratory Medicine, Royal Perth Hospital, Perth, Western Australia, Australia [2] School of Medicine & Pharmacology, University of Western Australia, Perth, Western Australia, Australia [3] School of Pathology & Laboratory Medicine, University of Western Australia, Perth, Western Australia, Australia
| | | |
Collapse
|
5
|
Non-alcoholic steatohepatitis-related cirrhosis in a patient with APOB L343V familial hypobetalipoproteinaemia. Clin Chim Acta 2013; 421:121-5. [DOI: 10.1016/j.cca.2013.03.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/01/2013] [Accepted: 03/01/2013] [Indexed: 01/01/2023]
|
6
|
Clinical utility gene card for: Familial Hypobetalipoproteinaemia (APOB). Eur J Hum Genet 2012; 20:ejhg201285. [PMID: 22588666 DOI: 10.1038/ejhg.2012.85] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
7
|
Daly AK, Ballestri S, Carulli L, Loria P, Day CP. Genetic determinants of susceptibility and severity in nonalcoholic fatty liver disease. Expert Rev Gastroenterol Hepatol 2011; 5:253-263. [PMID: 21476920 DOI: 10.1586/egh.11.18] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) in most patients involves only simple hepatic steatosis; however, a minority develop progressive steatohepatitis. Family studies and inter-ethnic differences in susceptibility suggest that genetic factors may be important risk determinants for progressive disease. Polymorphisms in genes affecting lipid metabolism, cytokines, fibrotic mediators and oxidative stress may be associated with steatohepatitis and/or fibrosis, but most of these findings require replication. A recent finding that a nonsynonymous polymorphism in the PNPLA3 gene predicts the extent of steatosis in NAFLD has been replicated in at least eight studies, with several studies also demonstrating an association with fibrosis. A new genome-wide association study has identified several additional novel associations with NAFLD severity. Other disease genes may be identified by similar approaches in the future.
Collapse
Affiliation(s)
- Ann K Daly
- Institute of Cellular Medicine, Newcastle University Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK.
| | | | | | | | | |
Collapse
|
8
|
Hooper AJ, Adams LA, Burnett JR. Genetic determinants of hepatic steatosis in man. J Lipid Res 2011; 52:593-617. [PMID: 21245030 DOI: 10.1194/jlr.r008896] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatic steatosis is one of the most common liver disorders in the general population. The main cause of hepatic steatosis is nonalcoholic fatty liver disease (NAFLD), representing the hepatic component of the metabolic syndrome, which is characterized by type 2 diabetes, obesity, and dyslipidemia. Insulin resistance and excess adiposity are considered to play key roles in the pathogenesis of NAFLD. Although the risk factors for NAFLD are well established, the genetic basis of hepatic steatosis is largely unknown. Here we review recent progress on genomic variants and their association with hepatic steatosis and discuss the potential impact of these genetic studies on clinical practice. Identifying the genetic determinants of hepatic steatosis will lead to a better understanding of the pathogenesis and progression of NAFLD.
Collapse
Affiliation(s)
- Amanda J Hooper
- Department of Core Clinical Pathology and Biochemistry, Royal Perth Hospital, Perth, Australia
| | | | | |
Collapse
|
9
|
Novel Mutation in the Apob Gene (Apo B-15.56): A Case Report. Balkan J Med Genet 2010. [DOI: 10.2478/v10034-010-0029-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Novel Mutation in theApobGene (Apo B-15.56): A Case ReportFamilial hypobetalipoproteinemia (FHBL) is a rare co-dominant genetic disorder characterized by decrease of plasma low density lipoprotein-cholesterol (LDL-c) or apolipoprotein B (Apo-B) equal to or less than the 5thpercentile for the population. We describe a 48-year-old male who presented with fatty liver disease (FLD), insulin resistance (IR), obesity and hypertension. Our patient thus met the latest diagnostic criteria of the metabolic syndrome (MS) proposed by the Adult Treatment Panel and the International Diabetes Federation. However, he had very low plasma concentration of LDL-c and Apo-B. DNA sequencing showed that he and two first-degree relatives affected by obesity and mild IR were heterozygous for a single nucleotide deletion on exon 15 of theAPOBgene, which was predicted to form a truncated Apo-B designated Apo B-15.56.
Collapse
|
10
|
El Harchaoui K, Akdim F, Stroes ESG, Trip MD, Kastelein JJP. Current and future pharmacologic options for the management of patients unable to achieve low-density lipoprotein-cholesterol goals with statins. Am J Cardiovasc Drugs 2009; 8:233-42. [PMID: 18690757 DOI: 10.2165/00129784-200808040-00003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Low-density lipoprotein-cholesterol (LDL-C) lowering is the mainstay of the current treatment guidelines in the management of cardiovascular risk. HMG-CoA reductase inhibitors (statins) are currently the most effective LDL-C-lowering drugs. However, a substantial number of patients do not reach treatment targets with statins. Therefore, an unmet medical need exists for lipid-lowering drugs with novel mechanisms of action to reach the recommended cholesterol target levels, either by monotherapy or combination therapy. Upregulation of the LDL receptor with squalene synthase inhibitors has shown promising results in animal studies but the clinical development of the lead compound lapaquistat (TAK-475) has recently been discontinued. Ezetimibe combined with statins allowed significantly more patients to reach their LDL-C targets. Other inhibitors of intestinal cholesterol absorption such as disodium ascorbyl phytostanol phosphate (FM-VP4) and bile acid transport inhibitors have shown positive results in early development trials, whereas the prospect of acyl coenzyme A: cholesterol acyltransferase inhibition in cardiovascular prevention is dire. Selective inhibition of messenger RNA (mRNA) by antisense oligonucleotides is a new approach to modify cholesterol levels. The inhibition of apolipoprotein B mRNA is in advanced development and mipomersen sodium (ISIS 301012) has shown striking results in phase II studies both as monotherapy as well as in combination with statins.
Collapse
Affiliation(s)
- Karim El Harchaoui
- Department of Vascular Medicine, Academic Medical Center, Meibergdreef 9, Amsterdam, the Netherlands
| | | | | | | | | |
Collapse
|
11
|
Hooper AJ, van Bockxmeer FM, Burnett JR. Monogenic Hypocholesterolaemic Lipid Disorders and Apolipoprotein B Metabolism. Crit Rev Clin Lab Sci 2008; 42:515-45. [PMID: 16390683 DOI: 10.1080/10408360500295113] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The study of apolipoprotein (apo) B metabolism is central to our understanding of human lipoprotein metabolism. Moreover, the assembly and secretion of apoB-containing lipoproteins is a complex process. Increased plasma concentrations of apoB-containing lipoproteins are an important risk factor for the development of atherosclerotic coronary heart disease. In contrast, decreased levels of, but not the absence of, these apoB-containing lipoproteins is associated with resistance to atherosclerosis and potential long life. The study of inherited monogenic dyslipidaemias has been an effective means to elucidate key metabolic steps and biologically relevant mechanisms. Naturally occurring gene mutations in affected families have been useful in identifying important domains of apoB and microsomal triglyceride transfer protein (MTP) governing the metabolism of apoB-containing lipoproteins. Truncation-causing mutations in the APOB gene cause familial hypobetalipoproteinaemia, whereas mutations in MTP result in abetalipoproteinaemia; both rare conditions are characterised by marked hypocholesterolaemia. The purpose of this review is to examine the role of apoB in lipoprotein metabolism and to explore the key biochemical, clinical, metabolic and genetic features of the monogenic hypocholesterolaemic lipid disorders affecting apoB metabolism.
Collapse
Affiliation(s)
- Amanda J Hooper
- School of Surgery and Pathology, University of Western Australia, Crawley, Australia
| | | | | |
Collapse
|
12
|
Are saturated fatty acids and insulin resistance associated with fatty liver in obese children? Clin Nutr 2008; 27:233-40. [DOI: 10.1016/j.clnu.2007.11.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Revised: 11/05/2007] [Accepted: 11/26/2007] [Indexed: 11/24/2022]
|
13
|
Tarugi P, Averna M, Di Leo E, Cefalù AB, Noto D, Magnolo L, Cattin L, Bertolini S, Calandra S. Molecular diagnosis of hypobetalipoproteinemia: an ENID review. Atherosclerosis 2007; 195:e19-27. [PMID: 17570373 DOI: 10.1016/j.atherosclerosis.2007.05.003] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Revised: 04/27/2007] [Accepted: 05/03/2007] [Indexed: 01/26/2023]
Abstract
Primary hypobetalipoproteinemia (HBL) includes a group of genetic disorders: abetalipoproteinemia (ABL) and chylomicron retention disease (CRD), with a recessive transmission, and familial hypobetalipoproteinemia (FHBL) with a co-dominant transmission. ABL and CRD are rare disorders due to mutations in the MTP and SARA2 genes, respectively. Heterozygous FHBL is much more frequent. FHBL subjects often have fatty liver and, less frequently, intestinal fat malabsorption. FHBL may be linked or not to the APOB gene. Most mutations in APOB gene cause the formation of truncated forms of apoB which may or may be not secreted into the plasma. Truncated apoBs with a size below that of apoB-30 are not detectable in plasma; they are more frequent in patients with the most severe phenotype. Only a single amino acid substitution (R463W) has been reported as the cause of FHBL. Approximately 50% of FHBL subjects are carriers of pathogenic mutations in APOB gene; therefore, a large proportion of FHBL subjects have no apoB gene mutations or are carriers of rare amino acid substitutions in apoB with unknown effect. In some kindred FHBL is linked to a locus on chromosome 3 (3p21) but the candidate gene is unknown. Recently a FHBL plasma lipid phenotype was observed in carriers of mutations of the PCSK9 gene causing loss of function of the encoded protein, a proprotein convertase which regulates LDL-receptor number in the liver. Inactivation of this enzyme is associated with an increased LDL uptake and hypobetalipoproteinemia. HBL carriers of PCSK9 mutations do not develop fatty liver disease.
Collapse
Affiliation(s)
- Patrizia Tarugi
- Department of Biomedical Sciences, University of Modena e Reggio Emilia, Via Campi 287, I-41100 Modena, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Burnett JR, Zhong S, Jiang ZG, Hooper AJ, Fisher EA, McLeod RS, Zhao Y, Barrett PHR, Hegele RA, van Bockxmeer FM, Zhang H, Vance DE, McKnight CJ, Yao Z. Missense mutations in APOB within the betaalpha1 domain of human APOB-100 result in impaired secretion of ApoB and ApoB-containing lipoproteins in familial hypobetalipoproteinemia. J Biol Chem 2007; 282:24270-83. [PMID: 17588943 DOI: 10.1074/jbc.m702442200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Familial hypobetalipoproteinemia (FHBL) is associated with mutations in the APOB gene. We reported the first missense APOB mutation, R463W, in an FHBL kindred (Burnett, J. R., Shan, J., Miskie, B. A., Whitfield, A. J., Yuan, J., Tran, K., Mc-Knight, C. J., Hegele, R. A., and Yao, Z. (2003) J. Biol. Chem. 278, 13442-13452). Here we identified a second nonsynonymous APOB mutation, L343V, in another FHBL kindred. Heterozygotes for L343V (n = 10) had a mean plasma apoB at 0.31 g/liter as compared with 0.80 g/liter in unaffected family members (n = 22). The L343V mutation impaired secretion of apoB-100 and very low density lipoproteins. The secretion efficiency was 20% for B100wt and 10% for B100LV and B100RW. Decreased secretion of mutant apoB-100 was associated with increased endoplasmic reticulum retention and increased binding to microsomal triglyceride transfer protein and BiP. Reduced secretion efficiency was also observed with B48LV and B17LV. Biochemical and biophysical analyses of apoB domain constructs showed that L343V and R463W altered folding of the alpha-helical domain within the N terminus of apoB. Thus, proper folding of the alpha-helical domain of apoB-100 is essential for efficient secretion.
Collapse
Affiliation(s)
- John R Burnett
- Department of Core Clinical Pathology and Biochemistry, Royal Perth Hospital, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Burnett JR, Watts GF. MTP inhibition as a treatment for dyslipidaemias: time to deliver or empty promises? Expert Opin Ther Targets 2007; 11:181-9. [PMID: 17227233 DOI: 10.1517/14728222.11.2.181] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The development of cholesterol-lowering drugs, including a statins, bile acid sequestrants and cholesterol absorption inhibitors has expanded the options for cardiovascular prevention. Recent treatment guidelines emphasise that individuals at substantial risk for atherosclerotic coronary heart disease should meet defined lipid targets. Combination therapy with drugs that have different and complementary mechanisms of action is often needed to achieve these goals. Existing approaches to the treatment of hypercholesterolaemia are still ineffective in halting the progression of coronary artery disease in some patients despite combination therapies. Other patients are resistant to, or intolerant of, conventional pharmacotherapy and remain at high-risk of atherosclerotic cardiovascular disease, so that alternative approaches are needed. New agents, including inhibitors of microsomal triglyceride transfer protein (MTP), may play a future role, either alone or in combination, in the treatment of hyperlipidaemias. This review focuses on novel approaches to treat dyslipidaemias via the inhibition of MTP. Patients most suitable for use of MTP inhibitors include those with hepatic hypersecretion of apoB, including the metabolic syndrome, Type 2 diabetes mellitus and familial combined hyperlipidaemia, as well as homozygous and heterozygous familial hypercholesterolaemia. However, certain safety issues with these agents need resolving, particularly fatty liver disease.
Collapse
Affiliation(s)
- John R Burnett
- PathWest Laboratory Medicine, Department of Core Clinical Pathology & Biochemistry, Royal Perth Hospital, Wellington Street Campus, GPO Box X2213, Perth, WA 6847, Australia.
| | | |
Collapse
|
16
|
Fasano T, Cefalù AB, Di Leo E, Noto D, Pollaccia D, Bocchi L, Valenti V, Bonardi R, Guardamagna O, Averna M, Tarugi P. A novel loss of function mutation of PCSK9 gene in white subjects with low-plasma low-density lipoprotein cholesterol. Arterioscler Thromb Vasc Biol 2007; 27:677-81. [PMID: 17170371 DOI: 10.1161/01.atv.0000255311.26383.2f] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVES The PCSK9 gene, encoding a pro-protein convertase involved in posttranslational degradation of low-density lipoprotein receptor, has emerged as a key regulator of plasma low-density lipoprotein cholesterol. In African-Americans two nonsense mutations resulting in loss of function of PCSK9 are associated with a 30% to 40% reduction of plasma low-density lipoprotein cholesterol. The aim of this study was to assess whether loss of function mutations of PCSK9 were a cause of familial hypobetalipoproteinemia and a determinant of low-plasma low-density lipoprotein cholesterol in whites. METHODS AND RESULTS We sequenced PCSK9 gene in 18 familial hypobetalipoproteinemia subjects and in 102 hypocholesterolemic blood donors who were negative for APOB gene mutations known to cause familial hypobetalipoproteinemia. The PCSK9 gene variants found in these 2 groups were screened in 42 subjects in the lowest (<5th) percentile, 44 in the highest (>95th) percentile, and 100 with the average plasma cholesterol derived from general population. In one familial hypobetalipoproteinemia kindred and in 2 hypocholesterolemic blood donors we found a novel PCSK9 mutation in exon 1 (c.202delG) resulting in a truncated peptide (Ala68fsLeu82X). Two familial hypobetalipoproteinemia subjects and 4 hypocholesterolemic blood donors were carriers of the R46L substitution previously reported to be associated with reduced low-density lipoprotein cholesterol as well as other rare amino acid changes (T77I, V114A, A522T and P616L) not found in the other groups examined. CONCLUSIONS We discovered a novel inactivating mutation as well as some rare nonconservative amino acid substitutions of PCSK9 in white hypocholesterolemic individuals.
Collapse
Affiliation(s)
- Tommaso Fasano
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, Via Campi 287, I-41100 Modena, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Di Leo E, Magnolo L, Lancellotti S, Crocè L, Visintin L, Tiribelli C, Bertolini S, Calandra S, Tarugi P. Abnormal apolipoprotein B pre-mRNA splicing in patients with familial hypobetalipoproteinaemia. J Med Genet 2007; 44:219-24. [PMID: 17158591 PMCID: PMC2598025 DOI: 10.1136/jmg.2006.046359] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2006] [Revised: 10/24/2006] [Accepted: 11/13/2006] [Indexed: 11/04/2022]
Abstract
BACKGROUND Familial hypobetalipoproteinaemia (FHBL) is a codominant disorder characterised by fatty liver and reduced plasma levels of low-density lipoprotein (LDL) and its protein constituent apolipoprotein B (apoB). FHBL is linked to the APOB gene in some but not all known cases. In a group of 59 patients with FHBL genotyped for APOB gene mutations, we found three novel splice-site mutations: c.904+4A-->G in intron 8, c.3843-2A-->G in intron 24 and c.4217-1G-->T in intron 25. OBJECTIVE To assess the effects of these mutations on apoB pre-mRNA splicing. METHODS ApoB mRNA was analysed in the liver of one proband and in cells expressing APOB minigenes harbouring the mutations found in the other probands. RESULTS In the liver of the c.3843-2A-->G carrier, an apoB mRNA devoid of exon 25 was identified, predicted to encode a truncated peptide of 1260 amino acids. The analysis of minigene transcripts in COS-1 cells showed that the c.904+4A-->G mutation caused the formation of an mRNA devoid of exon 8, predicted to encode a short apoB of 247 amino acids. The minigene harbouring the c.4217-1G-->T mutation in intron 25 generated an mRNA in which exon 25 joined to a partially deleted exon 26, resulting from the activation of an acceptor site in exon 26; this mRNA is predicted to encode a truncated protein of 1380 amino acids. All these truncated apoBs were not secreted as constituents of plasma lipoproteins. CONCLUSION These findings demonstrate the pathogenic effect of rare splice-site mutations of the APOB gene found in FHBL.
Collapse
|
18
|
Burnett JR, Huff MW. Cholesterol absorption inhibitors as a therapeutic option for hypercholesterolaemia. Expert Opin Investig Drugs 2006; 15:1337-51. [PMID: 17040195 DOI: 10.1517/13543784.15.11.1337] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The development of cholesterol-lowering drugs (including a variety of statins, bile acid-binding resins and recently discovered inhibitors of cholesterol absorption) has expanded the options for cardiovascular prevention. Recent treatment guidelines emphasise that individuals at substantial risk for atherosclerotic coronary heart disease should meet defined targets for LDL cholesterol concentrations. Combination therapy with drugs that have different or complementary mechanisms of action is often needed to achieve lipid goals. Existing approaches to the treatment of hypercholesterolaemia are still ineffective in halting the progression of coronary artery disease in some patients despite combination therapies. Other patients are resistant to conventional drug treatment and remain at high risk for the development and progression of atherosclerotic cardiovascular disease and alternative approaches are needed. The discovery and development of ezetimibe (a novel, selective and potent cholesterol absorption inhibitor) has advanced the treatment of hypercholesterolaemia. New agents including the phytostanol preparation FM-VP4 and inhibitors of acyl coenzyme A:cholesterol acyltransferase, the apical Na(+)-dependent bile acid transporter and microsomal triglyceride transfer protein may also play a future role in combination therapy. This review focuses on the recent progress in the molecular mechanisms of intestinal cholesterol absorption and transport, and novel therapeutic approaches to inhibit the cholesterol absorption process.
Collapse
Affiliation(s)
- John R Burnett
- Royal Perth Hospital, Department of Core Clinical Pathology & Biochemistry, PathWest Laboratory Medicine WA, Wellington Street Campus, GPO Box X2213, Perth, WA 6847, Australia.
| | | |
Collapse
|
19
|
|
20
|
Prati D, Shiffman ML, Diago M, Gane E, Rajender Reddy K, Pockros P, Farci P, O'Brien CB, Lardelli P, Blotner S, Zeuzem S. Viral and metabolic factors influencing alanine aminotransferase activity in patients with chronic hepatitis C. J Hepatol 2006; 44:679-85. [PMID: 16487620 DOI: 10.1016/j.jhep.2006.01.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2005] [Revised: 01/09/2006] [Accepted: 01/12/2006] [Indexed: 02/06/2023]
Abstract
BACKGROUND/AIMS In chronic hepatitis C, disease progression and clinical manifestations are heterogenous. To clarify the role and interactions of viral and host factors in inducing liver cell injury, we examined the associations of several virological and metabolic variables with serum alanine aminotransferase levels. METHODS Patients with chronic hepatitis C enrolled in three phase III clinical trials of peginterferon alfa-2a (40KD) plus ribavirin (two studies analysing 'elevated' and one persistently 'normal' alanine aminotransferase) were included. RESULTS Multivariate analyses of 2,881 patients before treatment and of 1,403 patients with a sustained virological response indicated that gender, viral factors (genotype, HCV RNA titer) and indicators of metabolic syndrome (body mass index, blood pressure, blood glucose, cholesterol and triglyceride concentration) were associated with alanine aminotransferase levels. In addition, hepatitis C virus infection influenced serum lipids concentration according to a genotype-specific effect. CONCLUSIONS Heterogeneity in alanine aminotransferase levels in patients with chronic hepatitis C partially depends on the degree of derangement of fat and carbohydrate metabolism. As this is the result of an interaction of chronic hepatitis C infection with the patient's individual characteristics, treatment decisions should not be based on alanine aminotransferase level alone but rather on global evaluation of the patient.
Collapse
Affiliation(s)
- Daniele Prati
- Ospedale A. Manzoni, Lecco and IRCCS Ospedale Maggiore Policlinico Mangiagalli e Regina Elena, Milan, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Burnett JR, Watts GF. New therapies for familial hypercholesterolemia. Expert Opin Ther Pat 2006. [DOI: 10.1517/13543776.16.3.349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
22
|
Lonardo A, Lombardini S, Scaglioni F, Carulli L, Ricchi M, Ganazzi D, Adinolfi LE, Ruggiero G, Carulli N, Loria P. Hepatic steatosis and insulin resistance: does etiology make a difference? J Hepatol 2006; 44:190-196. [PMID: 16168516 DOI: 10.1016/j.jhep.2005.06.018] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2004] [Revised: 06/15/2005] [Accepted: 06/20/2005] [Indexed: 02/07/2023]
Abstract
BACKGROUND/AIMS To ascertain whether the etiology of hepatic steatosis modulates insulin resistance (IR) and to determine the predictors of IR. METHODS We studied IR through HOMA IR in 146 subjects, 99 of whom had ultrasonographic and/or histologic steatosis. Twenty-two had familial heterozygous hypobetalipoproteinemia (FHBL), 48 had non-alcoholic fatty liver disease (NAFLD), 34 HCV infection (17 with HCV1b, 17 with HCV3a) and 42 were healthy controls without steatosis. RESULTS Steatosis was present in 77.3% of FHBL and, by enrolment criteria, in all NAFLD and HCV cases. Overall HOMA-IR correlated with BMI and GGT (P<0.01). FHBL and healthy groups had similar HOMA-IR and GGT values, whereas higher levels were observed in HCV and NAFLD. HCV3a and FHBL patients were hypolipidemic. HOMA-IR was similar in FHBL patients and controls and lower than in HCV and NAFLD. FHBL patients had a high extent of steatosis, similar to that observed in HCV3a, but lower grading and staging than NAFLD and HCV. At multivariate analysis, steatosis and GGT predicted HOMA-IR. CONCLUSIONS Data suggest that not all hepatic fat associates with IR. FHBL patients, for some aspects, resemble HCV3a infection, possibly suggesting a shared steatogenic mechanism. Among steatotic patients serum GGT levels is the independent predictor of IR.
Collapse
Affiliation(s)
- Amedeo Lonardo
- Unità Operativa di Medicina Interna e Gastroenterologia, Nuovo Ospedale Civile-Estense, Via Giardini, Baggiovara, Modena 41100, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Yue P, Averna M, Lin X, Schonfeld G. The c.43_44insCTG variation inPCSK9 is associated with low plasma LDL-cholesterol in a Caucasian population. Hum Mutat 2006; 27:460-6. [PMID: 16619215 DOI: 10.1002/humu.20316] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The genetic etiology of familial hypobetalipoproteinemia (FHBL) is unclear in the majority of cases. Mutations in apolipoprotein B (APOB) are the only confirmed causes of FHBL. Recently, loss-of-function mutations of PCSK9 gene have been shown to be associated with the hypocholesterolemia phenotype. Our primary goal was to confirm that mutations in PCSK9 could be another cause of FHBL. Using the sequencing approach, we found that the c.43_44insCTG variation in PCSK9, a common in-frame insertion in both African American and Caucasian populations, is associated with the hypocholesterolemia phenotype in three FHBL families. Then we tested whether this variation could be associated with lower cholesterol levels in the general population. A total of 403 subjects from a Caucasian population, in which hypobetalipoprotein (HBL) and normal groups were classified using standard criteria, were sequenced for this variation. The allele frequency of this variation in the HBL group was 0.186, but was only 0.128 in the normal lipid group. The mean plasma low-density lipoprotein (LDL)-cholesterol level in subjects heterozygous for this variant is significantly lower than that in the normal group (p<0.01). Heterozygous subjects also had higher high-density lipoprotein (HDL)-cholesterol levels (p<0.01). In general, LDL-cholesterol concentration in individuals with PCSK9 c.43_44insCTG variation was approximately 10-15 mg/dL lower than that in normal individuals. We conclude that the c.43_44insCTG variant plays a role in lowering cholesterol in the general population.
Collapse
Affiliation(s)
- Pin Yue
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | | |
Collapse
|
24
|
Affiliation(s)
- H Cortez-Pinto
- Department of Gastroenterology and Centre of Nutrition and Metabolism, University Hospital of Santa Maria, Lisbon, Portugal.
| |
Collapse
|
25
|
Sankatsing RR, Fouchier SW, de Haan S, Hutten BA, de Groot E, Kastelein JJP, Stroes ESG. Hepatic and cardiovascular consequences of familial hypobetalipoproteinemia. Arterioscler Thromb Vasc Biol 2005; 25:1979-84. [PMID: 16002743 DOI: 10.1161/01.atv.0000176191.64314.07] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Individuals with familial hypobetalipoproteinemia (FHBL) have been reported to be prone to fatty liver disease (FLD). Conversely, the profound reduction of low-density lipoprotein (LDL) cholesterol in this disorder might decrease cardiovascular risk. In the present study, we assessed hepatic steatosis as well as noninvasive surrogate markers for cardiovascular disease (CVD) in subjects with FHBL and in matched controls. METHODS AND RESULTS Hepatic steatosis was assessed by abdominal ultrasonography. Carotid intima-media thickness (IMT) and distal common carotid arterial wall stiffness as surrogate markers for CVD risk were measured using high-resolution B-mode ultrasonography. Whereas transaminase levels were only modestly elevated, both prevalence (54% versus 29%; P=0.01) and severity of steatosis were significantly higher in FHBL individuals compared with controls. Despite similar IMT measurements, arterial stiffness was significantly lower in FHBL (P=0.04) compared with controls. Additionally, the increase in arterial stiffness as seen in the presence of traditional risk factors was attenuated, suggesting that very low levels of apoB-containing lipoproteins can negate the adverse effects of other risk factors on the vasculature. CONCLUSIONS FHBL is characterized by an increased prevalence and severity of fatty liver disease. The observed decreased level of arterial wall stiffness, most pronounced in the presence of nonlipid risk factors, is indicative of cardiovascular protection in these subjects.
Collapse
Affiliation(s)
- Raaj R Sankatsing
- Department of Vascular Medicine, Academic Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
26
|
Lancellotti S, Zaffanello M, Di Leo E, Costa L, Lonardo A, Tarugi P. Pediatric gallstone disease in familial hypobetalipoproteinemia. J Hepatol 2005; 43:188-191. [PMID: 15894400 DOI: 10.1016/j.jhep.2005.03.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2005] [Revised: 03/01/2005] [Accepted: 03/07/2005] [Indexed: 12/04/2022]
Abstract
Familial hypobetalipoproteinemia (FHBL) is an monogenic co-dominant disorder characterized by reduced plasma levels of cholesterol, low density lipoproteins (LDL) and apolipoprotein B (apoB) often associated with non-alcoholic fatty liver disease (NAFLD). It has been suggested that FHBL might predispose to gallstone disease (GD). We report a hypocholesterolemic 10 year old girl with obstructive jaundice due to cholesterol stones in gallbladder and common bile duct which required cholecistectomy. The analysis of patient's plasma lipoproteins revealed a marked reduction of LDL and apoB, a lipid profile consistent with the clinical diagnosis of heterozygous FHBL. The same profile was found in her mother who had severe NAFLD. The analysis of apoB gene, the main candidate gene in FHBL, revealed that the patient and her mother were heterozygotes for a novel nonsense mutation (Y1220X) predicted to cause the formation of a short truncated apoB (apoB-26.87) not secreted into the plasma. The presence of cholesterol stones could result from increased biliary cholesterol secretion as a compensatory mechanism for the reduced capacity of the liver to export cholesterol incorporated into apoB-containing lipoproteins. FHBL should be considered as a possible predisposing factor for cholesterol gallstones in children (190).
Collapse
Affiliation(s)
- Sandra Lancellotti
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41100 Modena, Italy
| | | | | | | | | | | |
Collapse
|
27
|
Yue P, Tanoli T, Wilhelm O, Patterson B, Yablonskiy D, Schonfeld G. Absence of fatty liver in familial hypobetalipoproteinemia linked to chromosome 3p21. Metabolism 2005; 54:682-8. [PMID: 15877300 DOI: 10.1016/j.metabol.2004.12.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Our aim was to ascertain whether fatty liver may be present in the genetic form of familial hypobetalipoproteinemia (FHBL) linked to a susceptibility locus on chromosome 3p21. Three genetic forms of FHBL exist: (a) FHBL caused by truncation-specifying mutations of apolipoprotein B (apoB), (b) FHBL linked to chr3p21, and (c) FHBL not linked either to APOB or to chr3p21. Fatty liver is common in apoB-defective FHBL. Hepatic fat contents were quantified by magnetic resonance spectroscopy in 16 subjects with 3p21-linked FHBL, 32 subjects with apoB-defective FHBL, and 39 sex- and age-matched controls. Mean liver fat of 3p21 subjects was similar to controls and approximately 60% lower than apoB-defective FHBL subjects ( P = .0012). Indices of adiposity (body mass index, waist/hip ratio) and masses of abdominal subcutaneous, retroperitoneal, and intraperitoneal adipose tissue (IPAT) were quantified by MR imaging. Mean measures of adiposity were similar in the 3 groups, suggesting that adiposity per se was not responsible for differences in liver fat. Liver fat content was positively correlated with IPAT. The intercepts of regression lines of IPAT on liver fat content were similar in controls and 3p21, but higher in apoB-defective FHBL subjects. The slopes of the lines were steepest in apoB-defective, intermediate in 3p21, and flattest in controls. Lipoprotein profiles and very low density lipoprotein-apoB100 kinetics of 3p21 and apoB-defective groups also differed. Thus, 2 genetic subtypes of FHBL also differ in several phenotypic features.
Collapse
Affiliation(s)
- Pin Yue
- Departments of Internal Medicine and Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | | | | | | | | | | |
Collapse
|
28
|
Yue P, Isley WL, Harris WS, Rosipal S, Akin CD, Schonfeld G. Genetic variants of ApoE account for variability of plasma low-density lipoprotein and apolipoprotein B levels in FHBL. Atherosclerosis 2005; 178:107-13. [PMID: 15585207 DOI: 10.1016/j.atherosclerosis.2004.06.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2003] [Revised: 06/16/2004] [Accepted: 06/28/2004] [Indexed: 10/26/2022]
Abstract
We report two novel APOB mutations causing short apolipoprotein B (apoB) truncations undetectable in plasma and familial hypobetalipoproteinemia (FHBL). In Family 56, a 5 bp deletion in APOB exon 7 (870_874del5) causes a frame shift, converting tyrosine to a stop codon (Y220X) and producing an apoB-5 truncation. In Family 59, a point mutation (1941G>T) in APOB exon 13 converts glutamic acid to stop codon (E578X), specifying apoB-13. A recurrent mutation in exon 26 (4432delT) produces apoB-30.9 in Family 58. In some members of these families, we observed that plasma low-density lipoprotein (LDL) cholesterol and apoB levels were unusually low even for subjects heterozygous for FHBL. To ascertain whether genetic variations in apolipoprotein E (apoE) would explain some of the variations of apoB and LDL cholesterol levels, apoE genotypes were assessed in affected subjects from a total of eight FHBL families with short apoB truncations. Heterozygous FHBL with the epsilon3/epsilon4 genotype had 10-1 5mg/dL higher plasma LDL cholesterol and apoB levels compared to subjects with the epsilon2/epsilon3 and epsilon3/epsilon3 genotypes. The apoE genotype has been reported to account for approximately 10% of the variation of LDL cholesterol in the general population. It accounted for 15-60% of the variability of plasma LDL cholesterol or apoB levels in our FHBL subjects. The physiologic bases for the greater effects of apoE in FHBL remain to be determined.
Collapse
Affiliation(s)
- Pin Yue
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University, School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
29
|
Cortez-Pinto H, Camilo ME. Non-alcoholic fatty liver disease/non-alcoholic steatohepatitis (NAFLD/NASH): diagnosis and clinical course. Best Pract Res Clin Gastroenterol 2004; 18:1089-104. [PMID: 15561640 DOI: 10.1016/j.bpg.2004.06.021] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a frequent syndrome encompassing fatty liver alone and steatohepatitis (NASH). Often asymptomatic, the suspicion arises because of abnormal aminotransferases or a bright liver on abdominal ultrasound. It should be suspected during evaluation of associated conditions as obesity, diabetes or dyslipidaemia. The diagnostic evaluation must exclude other potential causes of liver disease and may include a liver biopsy, the only method able to confirm features of necroinflammation and fibrosis that define NASH and its prognostic implications. Indeed, the presence of necroinflammation has been associated with a significant risk of progression to cirrhosis and eventually hepatocellular carcinoma. Age >45 years, obesity and diabetes have also been associated with an increased risk of liver fibrosis and progression to cirrhosis. Given the high prevalence of NAFLD, general measures of life-style changes, focusing on exercise, diet, and total alcohol abstinence, should be implemented before a liver biopsy is considered.
Collapse
Affiliation(s)
- Helena Cortez-Pinto
- Centro de Gastrenterologia, Hospital de Santa Maria, Av. Prof. Egas Moniz, 1649-035 Lisboa, Portugal.
| | | |
Collapse
|
30
|
Lonardo A, Bagni A, Tarugi P, Loria P. The wide spectrum of steatohepatitis: a report of four cases and a review of the literature. Eur J Gastroenterol Hepatol 2004; 16:1043-1050. [PMID: 15371930 DOI: 10.1097/00042737-200410000-00015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We report on four cases displaying the wide range of aetiological risk factors (presence or absence of family history of dyslipidaemia and cryptogenic cirrhosis, from subnormal body mass index through morbid obesity, from absent through hepatotoxic alcohol consumption), laboratory test results (from subnormal through elevated uric acid and ferritin values), ultrasonographic changes (from normal findings through 'bright liver' with or without attenuation of ultrasound beam and absence/presence of focal lesions), and histological severity of steatohepatitis (fibrosis appearing to be inversely related to the amount of liver fat but zone 3 accentuation of lesions and ballooning being observed in all cases). Cases illustrate the concepts of overlapping aetiologies of steatohepatitis (hepatitis C, diabetes and lipodystrophy); the relationships between cryptogenic cirrhosis, familial cirrhosis, non-alcoholic fatty liver disease and hepatocellular carcinoma; familial hypobetalipoproteinaemia as an aetiology of steatohepatitis; and alcoholic liver disease in the obese. These issues, which are worthy of future investigation, are reviewed.
Collapse
Affiliation(s)
- Amedeo Lonardo
- Unità Operativa di Medicina Interna e Gastroenterologia, Ospedale Civile di Modena, Università di Modena e Reggio Emilia, Italy.
| | | | | | | |
Collapse
|
31
|
Fromenty B, Robin MA, Igoudjil A, Mansouri A, Pessayre D. The ins and outs of mitochondrial dysfunction in NASH. DIABETES & METABOLISM 2004; 30:121-38. [PMID: 15223984 DOI: 10.1016/s1262-3636(07)70098-8] [Citation(s) in RCA: 190] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Rich diet and lack of exercise are causing a surge in obesity, insulin resistance and steatosis, which can evolve into steatohepatitis. Steatosis and nonalcoholic steatohepatitis (NASH) can also be induced by drugs such as amiodarone, tamoxifen and some antiretroviral drugs. There is growing evidence that mitochondrial dysfunction, and more specifically respiratory chain deficiency, plays a role in the pathophysiology of NASH whatever its initial cause. In contrast, the B-oxidation of fatty acids can be either increased (as in insulin resistance-associated NASH) or decreased (as in drug-induced NASH). However, in both circumstances, the generation of reactive oxygen species (ROS) by the damaged respiratory chain is augmented, as components of this chain are over-reduced by electrons, which then abnormally react with oxygen to form increased amounts of ROS. Concomitantly, ROS oxidize fat deposits to release lipid peroxidation products that have detrimental effects on hepatocytes and other hepatic cells. In hepatocytes, ROS and lipid peroxidation products further impair the respiratory chain, either directly or indirectly through oxidative damage to the mitochondrial genome. This, in turn, leads to the generation of more ROS and a vicious cycle ensues. Mitochondrial dysfunction can also lead to apoptosis or necrosis depending on the energy status of the cell. ROS and lipid peroxidation products also activate stellate cells, thus resulting in fibrosis. Finally, ROS and lipid peroxidation increase the generation of several cytokines (TNF-alpha, TGF-B, Fas ligand) that play sundry roles in the pathogenesis of NASH. Recent investigations have shown that some genetic polymorphisms can significantly increase the risk of steatohepatitis and that several drugs can prevent or even reverse NASH. For the next decade, reducing the incidence of NASH will be a major challenge for hepatologists.
Collapse
Affiliation(s)
- B Fromenty
- Institut national de la Santé et de la Recherche médicale (INSERM) Unité 481, Faculté de Médecine Xavier Bichat, 750118 Paris, France.
| | | | | | | | | |
Collapse
|
32
|
Alapont Puchalt B, Prósper Sierra M, Ricart Alvarez E, Navarro Hervás M. [Hepatic steatosis associated with heterozygotic familial hypobetalipoproteinemia]. GASTROENTEROLOGIA Y HEPATOLOGIA 2004; 27:256-9. [PMID: 15056412 DOI: 10.1016/s0210-5705(03)70455-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Fatty liver disease is now recognized as a major health burden, due to the greater number of cases that are being diagnosed. This trend could partly be explained by the increased use of liver ultrasonography in asymptomatic patients for various reasons, mainly persistent transaminase elevation. The most commonly reported risk factors associated with fatty liver disease are chronic alcohol intake, obesity, type 2 diabetes mellitus, hyperlipidemia, and some drugs. When these factors have been ruled out in a patient with a fatty liver, less frequent causes such as certain inherited metabolic disorders should be considered. Familial hypobetalipoproteinemia is characterized by an alteration of apolipoprotein B (apo B) synthesis, leading to the secretion of truncated forms of the protein, which in turn leads to a marked reduction in excretion of very low-density lipoproteins from the liver and consequently to lipid deposits, especially triglycerides, in the hepatocytes. We report the case of a 23-year-old man who met the diagnostic criteria for heterozygous familial hypobetalipoproteinemia. He presented with mild transaminase elevation and fatty liver. Total cholesterol, low-density lipoprotein cholesterol, very low-density lipoprotein cholesterol and apo B were below normal limits, while levels of high-density lipoprotein cholesterol were normal. Lipid profile determination and liver ultrasonography of first and second-degree relatives were also performed. Molecular studies of the index case revealed an unaffected apo B gene.
Collapse
|
33
|
Tanoli T, Yue P, Yablonskiy D, Schonfeld G. Fatty liver in familial hypobetalipoproteinemia: roles of the APOB defects, intra-abdominal adipose tissue, and insulin sensitivity. J Lipid Res 2004; 45:941-7. [PMID: 14967820 DOI: 10.1194/jlr.m300508-jlr200] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Fatty liver is frequent in the apolipoprotein B (apoB)-defective genetic form of familial hypobetalipoproteinemia (FHBL), but interindividual variability in liver fat is large. To explain this, we assessed the roles of metabolic factors in 32 affected family members with apoB-defective FHBL and 33 related and unrelated normolipidemic controls matched for age, sex, and indices of adiposity. Two hour, 75 g oral glucose tests, with measurements of plasma glucose and insulin levels, body mass index, and waist-hip ratios were obtained. Abdominal subcutaneous, intraperitoneal (IPAT), and retroperitoneal adipose tissue masses were quantified by MR imaging, and hepatic fat was quantified by MR spectroscopy. Mean +/- SD liver fat percentage values of FHBL and controls were 14.8 +/- 12.0 and 5.2 +/- 5.9, respectively (P = 0.001). Means for these measures of obesity and insulin action were similar in the two groups. Important determinants of liver fat percentage were FHBL-affected status, IPAT, and area under the curve (AUC) insulin in both groups, but the strongest predictors were IPAT in FHBL (partial R(2) = 0.55, P < 0.0002) and AUC insulin in controls (partial R(2) = 0.59, P = 0.0001). Regression of liver fat percentage on IPAT fat was significantly greater for FHBL than for controls (P < 0.001). In summary, because apoB-defective FHBL imparts heightened susceptibility to liver triglyceride accumulation, increasing IPAT and insulin resistance exert greater liver fat-increasing effects in FHBL.
Collapse
Affiliation(s)
- Tariq Tanoli
- Departments of Internal Medicine and Radiology, Washington University School of Medicine, St. Louis, MO
| | | | | | | |
Collapse
|
34
|
Lancellotti S, Di Leo E, Penacchioni JY, Balli F, Viola L, Bertolini S, Calandra S, Tarugi P. Hypobetalipoproteinemia with an apparently recessive inheritance due to a “de novo” mutation of apolipoprotein B. Biochim Biophys Acta Mol Basis Dis 2004; 1688:61-7. [PMID: 14732481 DOI: 10.1016/j.bbadis.2003.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Familial hypobetalipoproteinemia (FHBL) is a co-dominant disorder either linked or not linked to apolipoprotein (apo) B gene. Abetalipoproteinemia (ABL) is a recessive disorder due to mutations of microsomal triglyceride transfer protein (MTP) gene. We investigated a patient with apparently recessive hypobetalipoproteinemia consistent with symptomatic heterozygous FHBL or a "mild" form of ABL. The proband had fatty liver associated with LDL-cholesterol (LDL-C) and apo B levels <5th percentile but no truncated apo B forms detectable in plasma. MTP gene sequence revealed that he was a carrier of the I128T polymorphism and an unreported amino acid substitution (V168I) unlikely to be the cause of hypobetalipoproteinemia. Apo B gene sequence showed that he was heterozygous for two single base substitutions in exon 9 and 22 resulting in a nonsense (Q294X) and a missense (R1101H) mutation, respectively. Neither of his parents carried the Q294X; his father and paternal grandmother carried the R1101H mutation. Analysis of polymorphic genetic markers excluded non-paternity. In conclusion, the proband has a "de novo" mutation of apo B gene resulting in a short truncated apo B form (apo B-6.46). Sporadic cases of FHBL with an apparently recessive transmission may be caused by "de novo" mutations of apo B gene.
Collapse
Affiliation(s)
- Sandra Lancellotti
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, Via Campi 287, I-41100 Modena, Italy
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
We review the genetics and pathophysiology of familial hypobetalipoproteinemia (FHBL), a mildly symptomatic genetically heterogeneous autosomal trait. The minority of human FHBL is caused by truncation-specifying mutations of the APOB gene on chromosome 2. In seven families, linkage to chromosome 2 is absent, linkage is instead to chromosome 3 (3p21). In others, linkage is absent to both APOB and to 3p21. Apolipoprotein B-100 (apoB-100) levels are approximately 25% of normal, instead of the 50% expected based on the presence of one normal allele due to reduced rates of production. The presence of the truncating mutation seems to have a "dominant recessive" effect on apoB-100 secretion. Concentrations of apoB truncations in plasma differ by truncation but average at approximately 10% of normal levels. Lipoproteins bearing truncated forms of apoB are cleared more rapidly than apoB-100 particles. In contrast with apoB-100 particles cleared primarily in liver via the LDL receptor, most apoB truncation particles are cleared in renal proximal tubular cells via megalin. Since apoB defects cause a dysfunctional VLDL-triglyceride transport system, livers accumulate fat. Hepatic synthesis of fatty acids is reduced in compensation. Informational lacunae remain about genes affecting fat accumulation in liver, and the modulation of liver fat in the presence apoB truncation defects.
Collapse
Affiliation(s)
- Gustav Schonfeld
- Washington University School of Medicine St. Louis, MO 63110, USA.
| |
Collapse
|
36
|
Burnett JR, Shan J, Miskie BA, Whitfield AJ, Yuan J, Tran K, McKnight CJ, Hegele RA, Yao Z. A novel nontruncating APOB gene mutation, R463W, causes familial hypobetalipoproteinemia. J Biol Chem 2003; 278:13442-52. [PMID: 12551903 DOI: 10.1074/jbc.m300235200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Familial hypobetalipoproteinemia (FHBL), an autosomal co-dominant disorder, is associated with reduced plasma concentrations (<5th percentile for age and sex) of apolipoprotein (apo) B and beta-migrating lipoproteins. To date, only mutations in APOB encoding prematurely truncated apoB have been found in FHBL. We discovered a novel APOB gene mutation, namely R463W, in an extended Christian Lebanese FHBL kindred. Heterozygotes for R463W had the typical FHBL phenotype, whereas homozygotes had barely detectable apoB-100. The effect of the R463W mutation on apoB secretion was examined using transfected McA-RH7777 cells that expressed one of two recombinant human apoBs, namely B48 and B17. In both cases, the mutant proteins (B48RW and B17RW) were retained within the endoplasmic reticulum and were secreted poorly compared with their wild-type counterparts. Pulse-chase analysis showed that secretion efficiencies of B48RW and B17RW were, respectively, 45 and 40% lower than those of the wild-types. Substitution of Arg(463) with Ala in apoB-17 (B17RA) decreased secretion efficiency by approximately 50%, but substitution with Lys (B17RK) had no effect on secretion, indicating that the positive charge was important. Molecular modeling of apoB predicted that Arg(463) was in close proximity to Glu(756) and Asp(456). Substitution of Glu(756) with Gln (B17EQ) had no effect on secretion, but substitution of Asp(456) with Asn (B17DN) decreased secretion to the same extent as B17RW. In co-transfection experiments, the mutant B17RW showed increased binding to microsomal triglyceride transfer protein as compared with wild-type B17. Thus, the naturally occurring R463W mutant reveals a key local domain governing assembly and secretion of apoB-containing lipoproteins.
Collapse
Affiliation(s)
- John R Burnett
- Department of Core Clinical Pathology and Biochemistry, Royal Perth Hospital and Department of Pathology, University of Western Australia, Perth WA 6847, Western Australia, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Schonfeld G, Patterson BW, Yablonskiy DA, Tanoli TSK, Averna M, Elias N, Yue P, Ackerman J. Fatty liver in familial hypobetalipoproteinemia: triglyceride assembly into VLDL particles is affected by the extent of hepatic steatosis. J Lipid Res 2003; 44:470-8. [PMID: 12562873 DOI: 10.1194/jlr.m200342-jlr200] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Familial hypobetalipoproteinemia (FHBL) subjects may develop fatty liver. Liver fat was assessed in 21 FHBL with six different apolipoprotein B (apoB) truncations (apoB-4 to apoB-89) and 14 controls by magnetic resonance spectroscopy (MRS). Liver fat percentages were 16.7 +/- 11.5 and 3.3 +/- 2.9 (mean +/- SD) (P = 0.001). Liver fat percentage was positively correlated with body mass index, waist circumference, and areas under the insulin curves of 2 h glucose tolerance tests, suggesting that obesity may affect the severity of liver fat accumulation in both groups. Despite 5-fold differences in liver fat percentage, mean values for obesity and insulin indexes were similar. Thus, for similar degrees of obesity, FHBL subjects have more hepatic fat. VLDL-triglyceride (TG)-fatty acids arise from plasma and nonplasma sources (liver and splanchnic tissues). To assess the relative contributions of each, [2H2]palmitate was infused over 12 h in 13 FHBL subjects and 11 controls. Isotopic enrichment of plasma free palmitate and VLDL-TG-palmitate was determined by mass spectrometry. Non-plasma sources contributed 51 +/- 15% in FHBL and 37 +/- 13% in controls (P = 0.02). Correlations of liver fat percentage and percent VLDL-TG-palmitate from liver were r = 0.89 (P = 0.0001) for FHBL subjects and r = 0.69 (P = 0.01) for controls. Thus, apoB truncation-producing mutations result in fatty liver and in altered assembly of VLDL-TG.
Collapse
Affiliation(s)
- Gustav Schonfeld
- Department of Internal Medicine, Washington University, St. Louis, MO, USA.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
|
39
|
Tarugi P, Lonardo A, Gabelli C, Sala F, Ballarini G, Cortella I, Previato L, Bertolini S, Cordera R, Calandra S. Phenotypic expression of familial hypobetalipoproteinemia in three kindreds with mutations of apolipoprotein B gene. J Lipid Res 2001; 42:1552-1561. [PMID: 11590210 DOI: 10.1016/s0022-2275(20)32208-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
We report the clinical phenotype in three kindreds with familial heterozygous hypobetalipoproteinemia (FHBL) carrying novel truncated apolipoprotein Bs (apoBs) of different sizes (apoB-8.15, apoB-33.4 and apoB-75.7). In D.A. kindred, we found three carriers of a C-deletion in exon 10 leading to the synthesis of apoB-8.15 not detectable in plasma. They showed steatorrhea and fatty liver. In N.L. kindred, the proband is heterozygous for a nonsense mutation in exon 26, leading to the formation of apoB-33.4. He had premature cerebrovascular disease and fatty liver; two apoB-33.4 carriers in this kindred showed only fatty liver. In B.E. kindred, the proband is heterozygous for a T-deletion in exon 26, which converts tyrosine at codon 3435 into a stop codon, resulting in apoB-75.7. The proband, a heavy alcohol drinker, had steatohepatitis, whereas his teetotaller daughter, an apoB-75.7 carrier, had no detectable fatty liver. This study suggests that: i) fatty liver invariably develops in FHBL carriers of short and medium-size truncated apoBs (< apoB-48), but its occurrence needs additional environmental factors in carriers of longer apoB forms; ii) intestinal lipid malabsorption develops only in carriers of short truncated apoBs, which are not secreted into the plasma; and iii) cerebrovascular disease due to premature atherosclerosis may occur even in FHBL subjects.
Collapse
Affiliation(s)
- P Tarugi
- Dipartimento di Scienze Biomediche, Università di Modena e Reggio Emilia, Via Campi 287, I-41100 Modena, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Lonardo A, Loria P, Carulli N. Concurrent non-alcoholic steatohepatitis and psoriasis. Report of three cases from the POLI.ST.E.N.A. study. Dig Liver Dis 2001; 33:86-87. [PMID: 11303985 DOI: 10.1016/s1590-8658(01)80144-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|