1
|
Chandra S, Srinivasan S, Batra J. Hepatocyte nuclear factor 1 beta: A perspective in cancer. Cancer Med 2021; 10:1791-1804. [PMID: 33580750 PMCID: PMC7940219 DOI: 10.1002/cam4.3676] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 12/17/2022] Open
Abstract
Hepatocyte nuclear factor 1 beta (HNF1 β/B) exists as a homeobox transcription factor having a vital role in the embryonic development of organs mainly liver, kidney and pancreas. Initially described as a gene causing maturity‐onset diabetes of the young (MODY), HNF1β expression deregulation and single nucleotide polymorphisms in HNF1β have now been associated with several tumours including endometrial, prostate, ovarian, hepatocellular, renal and colorectal cancers. Its function has been studied either as homodimer or heterodimer with HNF1α. In this review, the role of HNF1B in different cancers will be discussed along with the role of its splice variants, and its emerging role as a potential biomarker in cancer.
Collapse
Affiliation(s)
- Shubhra Chandra
- Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Australian Prostate Cancer Research Centre-Queensland, Queensland University of Technology, Brisbane, QLD, Australia.,Translational Research Institute, Woolloongabba, QLD, Australia
| | - Srilakshmi Srinivasan
- Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Australian Prostate Cancer Research Centre-Queensland, Queensland University of Technology, Brisbane, QLD, Australia.,Translational Research Institute, Woolloongabba, QLD, Australia
| | - Jyotsna Batra
- Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Australian Prostate Cancer Research Centre-Queensland, Queensland University of Technology, Brisbane, QLD, Australia.,Translational Research Institute, Woolloongabba, QLD, Australia
| |
Collapse
|
2
|
Preya UH, Woo JH, Choi YS, Choi JH. Hepatocyte nuclear factor-1 beta protects endometriotic cells against apoptotic cell death by up-regulating the expression of antiapoptotic genes†. Biol Reprod 2019; 101:686-694. [PMID: 31322170 DOI: 10.1093/biolre/ioz127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 06/07/2019] [Accepted: 07/11/2019] [Indexed: 12/17/2022] Open
Abstract
The overexpression of hepatocyte nuclear factor-1 beta (HNF1β) in endometriotic lesion has been demonstrated. However, the role of HNF1β in endometriosis remains largely unknown. Human endometriotic 12Z cells showed higher level of HNF1β when compared with normal endometrial HES cells. In human endometriotic 12Z cells, HNF1β knockdown increased susceptibility to apoptotic cell death by oxidative stress, while HNF1β overexpression suppressed apoptosis. In addition, HNF1β knockdown and overexpression significantly decreased and increased, respectively, the expression of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)-dependent antiapoptotic genes. Knockdown of the antiapoptotic genes significantly reduced the HNF1β-induced resistance against oxidative stress in 12Z cells. Furthermore, HNF1β regulated the transcriptional activity of NF-κB, and an NF-κB inhibitor suppressed the HNF1β-enhanced NF-κB-dependent antiapoptotic gene expression and the resistance of the 12Z cells against cell death. Taken together, these data suggest that HNF1β overexpression may protect endometriotic cells against oxidative damage by augmenting antiapoptotic gene expression.
Collapse
Affiliation(s)
- Umma Hafsa Preya
- College of Pharmacy, Kyung Hee University, Seoul, South Korea.,Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, South Korea
| | - Jeong-Hwa Woo
- College of Pharmacy, Kyung Hee University, Seoul, South Korea
| | - Youn Seok Choi
- Department of Obstetrics and Gynecology, School of Medicine, Catholic University of Daegu, Daegu, South Korea
| | - Jung-Hye Choi
- College of Pharmacy, Kyung Hee University, Seoul, South Korea.,Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
3
|
Vojta A, Samaržija I, Bočkor L, Zoldoš V. Glyco-genes change expression in cancer through aberrant methylation. Biochim Biophys Acta Gen Subj 2016; 1860:1776-85. [PMID: 26794090 DOI: 10.1016/j.bbagen.2016.01.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 01/08/2016] [Accepted: 01/09/2016] [Indexed: 01/25/2023]
Abstract
BACKGROUND Most eukaryotic proteins are modified by covalent addition of glycan molecules that considerably influence their function. Aberrant glycosylation is profoundly involved in malignant transformation, tumor progression and metastasis. Some glycan structures are tumor-specific and reflect disturbed glycan biosynthesis pathways. METHODS We analyzed DNA methylation and expression of 86 glyco-genes in melanoma, hepatocellular, breast and cervical cancers using data from publicly available databases. We also analyzed methylation datasets without the available matching expression data for glyco-genes in lung cancer, and progression of melanoma into lymph node and brain metastases. RESULTS Ten glyco-genes (GALNT3, GALNT6, GALNT7, GALNT14, MGAT3, MAN1A1, MAN1C1, ST3GAL2, ST6GAL1, ST8SIA3) showing changes in both methylation and expression in the same type of cancer belong to GalNAc transferases, GlcNAc transferases, mannosidases and sialyltransferases, which is in line with changes in glycan structures already reported in the same type of tumors. Some of those genes were additionally identified as potentially valuable for disease prognosis. The MGAT5B gene, so far identified as specifically expressed in brain, emerged as a novel candidate gene that is epigenetically dysregulated in different cancers other than brain cancer. We also report for the first time aberrant expression of the GALNT and MAN genes in cancer by aberrant promoter methylation. CONCLUSIONS Aberrant expression of glyco-genes due to aberrant promoter methylation could be a way leading to characteristic glycosylation profiles commonly described in cancer. GENERAL SIGNIFICANCE Methylation status in promoters of candidate glyco-genes might serve as prognostic markers for specific tumors and point to potential novel targets for epigenetic drugs. This article is part of a Special Issue entitled "Glycans in personalised medicine" Guest Editor: Professor Gordan Lauc.
Collapse
Affiliation(s)
- Aleksandar Vojta
- University of Zagreb Faculty of Science, Department of Biology, Division of Molecular Biology, Horvatovac 102a, HR-10000 Zagreb, Croatia
| | - Ivana Samaržija
- University of Zagreb Faculty of Science, Department of Biology, Division of Molecular Biology, Horvatovac 102a, HR-10000 Zagreb, Croatia
| | - Luka Bočkor
- University of Zagreb Faculty of Science, Department of Biology, Division of Molecular Biology, Horvatovac 102a, HR-10000 Zagreb, Croatia
| | - Vlatka Zoldoš
- University of Zagreb Faculty of Science, Department of Biology, Division of Molecular Biology, Horvatovac 102a, HR-10000 Zagreb, Croatia.
| |
Collapse
|
4
|
Yu DD, Guo SW, Jing YY, Dong YL, Wei LX. A review on hepatocyte nuclear factor-1beta and tumor. Cell Biosci 2015; 5:58. [PMID: 26464794 PMCID: PMC4603907 DOI: 10.1186/s13578-015-0049-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 10/01/2015] [Indexed: 01/06/2023] Open
Abstract
Hepatocyte nuclear factor-1beta (HNF1β) was initially identified as a liver-specific transcription factor. It is a homeobox transcription factor that functions as a homodimer or heterodimer with HNF1α. HNF1β plays an important role in organogenesis during embryonic stage, especially of the liver, kidney, and pancreas. Mutations in the HNF1β gene cause maturity-onset diabetes of the young type 5 (MODY5), renal cysts, genital malformations, and pancreas atrophy. Recently, it has been shown that the expression of HNF1β is associated with cancer risk in several tumors, including hepatocellular carcinoma, pancreatic carcinoma, renal cancer, ovarian cancer, endometrial cancer, and prostate cancer. HNF1β also regulates the expression of genes associated with stem/progenitor cells, which indicates that HNF1β may play an important role in stem cell regulation. In this review, we discuss some of the current developments about HNF1β and tumor, the relationship between HNF1β and stem/progenitor cells, and the potential pathogenesis of HNF1β in various tumors.
Collapse
Affiliation(s)
- Dan-Dan Yu
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, 225 Changhai Road, 200438 Shanghai, China
| | - Shi-Wei Guo
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, 225 Changhai Road, 200438 Shanghai, China
| | - Ying-Ying Jing
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, 225 Changhai Road, 200438 Shanghai, China
| | - Yu-Long Dong
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, 225 Changhai Road, 200438 Shanghai, China
| | - Li-Xin Wei
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, 225 Changhai Road, 200438 Shanghai, China
| |
Collapse
|
5
|
Yu DD, Jing YY, Guo SW, Ye F, Lu W, Li Q, Dong YL, Gao L, Yang YT, Yang Y, Wu MC, Wei LX. Overexpression Of Hepatocyte Nuclear Factor-1beta Predicting Poor Prognosis Is Associated With Biliary Phenotype In Patients With Hepatocellular Carcinoma. Sci Rep 2015; 5:13319. [PMID: 26311117 PMCID: PMC4550878 DOI: 10.1038/srep13319] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 07/23/2015] [Indexed: 12/13/2022] Open
Abstract
Hepatocyte nuclear factor-1beta (HNF-1B) is involved in the hepatobiliary specification of hepatoblasts to cholangiocytes during liver development, and is strongly expressed throughout adult biliary epithelium. The aim of this study was to examine the expression of HNF-1B in different pathologic subtypes of primary liver cancer, including hepatocellular carcinoma (HCC) and cholangiocarcinoma (ICC), and the relationship between HNF-1B expression, clinicopathological features and prognosis. We retrospectively investigated 2 cohorts of patients, including 183 HCCs and 69 ICCs. The expression of HNF-1B was examined by immunohistochemistry. We found that HNF-1B expression was associated with pathological subtype of primary tumor, and HNF-1B expression in HCC tissue may be associated with the change of phenotype on recurrence. The HNF-1B expression was positively correlated with biliary/HPC (hepatic progenitor cell) markers expression. Further, multivariable analysis showed that HNF-1B expression was an independent prognostic factor for both overall survival and disease-free survival of HCC patients. However, no correlation between HNF-1B expression and survival was found in ICC patients. In summary, HCC with high HNF-1B expression displayed biliary phenotype and tended to show poorer prognosis. HNF-1B-positive malignant cells could be bipotential cells and give rise to both hepatocytic and cholangiocytic lineages during tumorigenesis.
Collapse
Affiliation(s)
- Dan-Dan Yu
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, China
| | - Ying-Ying Jing
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, China
| | - Shi-Wei Guo
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, China
| | - Fei Ye
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, China
| | - Wen Lu
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, China
| | - Quan Li
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, China
| | - Yu-Long Dong
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, China
| | - Lu Gao
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, China
| | - Yu-Ting Yang
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, China
| | - Yang Yang
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, China
| | - Meng-Chao Wu
- Department of Comprehensive Treatment, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, China
| | - Li-Xin Wei
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, China
| |
Collapse
|
6
|
Yuan RH, Lai HS, Hsu HC, Lai PL, Jeng YM. Expression of bile duct transcription factor HNF1β predicts early tumor recurrence and is a stage-independent prognostic factor in hepatocellular carcinoma. J Gastrointest Surg 2014; 18:1784-94. [PMID: 25052070 DOI: 10.1007/s11605-014-2596-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 07/11/2014] [Indexed: 01/31/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) frequently exhibits biliary differentiation, which is typically overlooked. Hepatocyte nuclear factor 1β (HNF1β), a bile duct-specific transcription factor expressed in bile ducts but not in the normal hepatocytes, is also expressed in HCC. MATERIALS AND METHODS The expression of HNF1β and the biliary differentiation marker cytokeratin 19 (CK19) were retrospectively evaluated using immunohistochemistry in 159 surgically resected primary HCCs. RESULTS A significant correlation was observed between HNF1β protein expression and younger age (p = 0.0293), high serum α-fetoprotein levels (p = 6 × 10(-4)), and high tumor grade (p = 0.0255). However, HNF1β expression exhibited no correlation with tumor stage. Patients with HCCs and HNF1β expression were more likely to exhibit early tumor recurrence (ETR; p = 0.0048) and a lower 5-year survival rate (p = 0.0001). A multivariate analysis indicated HNF1β expression as an independent prognostic factor in HCC (p = 0.0048). A combinatorial analysis revealed additive adverse effects of HNF1β when concomitant with CK19 expression and p53 mutation. Furthermore, HNF1β expression can predict poor prognosis in patients with ETR. CONCLUSION Our results indicated that HNF1β expression is a crucial predictor of poor prognosis in HCC and is independent of tumor stage. Moreover, concomitant HNF1β and CK19 expressions exhibited additive adverse effects in HCC, confirming that HCC with biliary differentiation has a poor prognosis.
Collapse
Affiliation(s)
- Ray-Hwang Yuan
- Department of Surgery, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei, 10051, Taiwan, Republic of China
| | | | | | | | | |
Collapse
|
7
|
Shim JH, Kang HJ, Han S, Lee YJ, Lee SG, Yu E, Lee HC. Prognostic value of hepatocyte nuclear factors 4α and 1α identified by tissue microarray in resectable hepatocellular carcinoma. J Gastroenterol Hepatol 2014; 29:524-32. [PMID: 23981200 DOI: 10.1111/jgh.12371] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/06/2013] [Indexed: 01/11/2023]
Abstract
BACKGROUND AND AIM This study aimed to investigate the prognostic value of expression of hepatocyte nuclear factors (HNFs) involved in hepatic gene transcription in patients undergoing curative resection for hepatocellular carcinoma (HCC). METHODS We performed immunohistochemical analyses on microarrays of the tumors and matched adjacent tissue using antibodies against HNF1α, HNF1β, HNF4α, and α-fetoprotein (AFP). We evaluated the prognostic value of biomarker expression using Cox regression and the Kaplan-Meier method in a training cohort of 220 patients and conducted an independent validation in 232 patients. We also determined whether measurement of HNFs improved risk prediction beyond the use of established factors, using net reclassification improvement (NRI). RESULTS Post-surgical recurrence and hepatic death were predicted by intratumoral HNF4α underexpression in both cohorts. In the training cohort they were also predicted by peritumoral HNF1α positivity. A pooled cohort analysis showed that these predictors were independently associated with early but not late-phase recurrence, and resultant mortality. Intratumoral expression levels of HNF4α were correlated with those of HNF1α, HNF1β, and AFP (P < 0.05). Similarly, HNF1α expression in peritumoral tissue was correlated with that of other markers (P < 0.05). There was no significant correlation between expression of HNF4α in tumors and HNF1α in peritumoral tissue. Adding combinations of intratumoral HNF4α and peritumoral HNF1α to 2-year recurrence and 5-year mortality models including known clinicopathological prognostic factors significantly improved the NRI indexes (39% and 44%, respectively; P < 0.05). CONCLUSIONS Immunohistological activation of intratumoral HNF4α and depletion of peritumoral HNF1α have prognostic significance for delayed recurrence and death after HCC resection.
Collapse
Affiliation(s)
- Ju Hyun Shim
- Department of Gastroenterology, Asan Medical Center, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
8
|
Shim JH, Lee HC, Han S, Kang HJ, Yu E, Lee SG. Hepatocyte nuclear factor 1β is a novel prognostic marker independent of the Milan criteria in transplantable hepatocellular carcinoma: a retrospective analysis based on tissue microarrays. Liver Transpl 2013. [PMID: 23203386 DOI: 10.1002/lt.23584] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We retrospectively investigated the prognostic value of hepatocyte nuclear factor 1 (HNF1) proteins in 159 liver transplant patients with hepatocellular carcinoma (HCC), including 36 (22.6%) exceeding the Milan criteria. The expression of alpha-fetoprotein (AFP), HNF1α, and HNF1β was examined with immunohistochemistry on duplicate tissue microarray slides containing HCC tumor explants. The times to recurrence and cancer death were analyzed with a Cox regression model and were compared according to the expression of markers of interest. We compared risk predictions with area under the receiver operator curves (AUROCs) and C statistics. AFP, HNF1α, and HNF1β were positive in 22.6%, 46.5%, and 61.0% of the tumor immunoprofiles, respectively. Although several variables were associated with the times to recurrence and cancer death in univariate Cox analyses, only AFP expression for the time to recurrence and the Milan criteria and HNF1β expression for the times to recurrence and cancer death remained significant after multivariate adjustments. The expression of HNF1β (but not HNF1α) was related to a serum AFP level ≥ 200 ng/mL, microvascular invasion, and AFP expression (P < 0.05 for all). A subgroup analysis showed that in the group meeting the Milan criteria, recurrence and cancer death rates at 10 years in the HNF1β-negative patients were approximately one-tenth of those in the HNF1β-positive patients, but the difference was not significant in the group exceeding the Milan criteria. The addition of HNF1β expression to the Milan criteria increased the C statistics and AUROCs for both recurrence and mortality (P < 0.05 for all). In conclusion, the immunohistological detection of HNF1β predicts recurrence and HCC-specific death after transplantation and provides an additive benefit in comparison with the Milan selection criteria on their own.
Collapse
Affiliation(s)
- Ju Hyun Shim
- Department of Gastroenterology (Asan Liver Center), University of Ulsan College of Medicine, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
9
|
Inhibition of hepatocyte nuclear factor 1 and 4 alpha (HNF1α and HNF4α) as a mechanism of arsenic carcinogenesis. Arch Toxicol 2012; 87:1001-12. [DOI: 10.1007/s00204-012-0948-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 09/18/2012] [Indexed: 12/21/2022]
|
10
|
Zeng X, Lin Y, Yin C, Zhang X, Ning BF, Zhang Q, Zhang JP, Qiu L, Qin XR, Chen YX, Xie WF. Recombinant adenovirus carrying the hepatocyte nuclear factor-1alpha gene inhibits hepatocellular carcinoma xenograft growth in mice. Hepatology 2011; 54:2036-47. [PMID: 21898499 DOI: 10.1002/hep.24647] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
UNLABELLED Hepatocyte nuclear factor-1alpha (HNF1α) is one of the key transcription factors of the HNF family, which plays a critical role in hepatocyte differentiation. Substantial evidence has suggested that down-regulation of HNF1α may contribute to the development of hepatocellular carcinoma (HCC). Herein, human cancer cells and tumor-associated fibroblasts (TAFs) were isolated from human HCC tissues, respectively. A recombinant adenovirus carrying the HNF1α gene (AdHNF1α) was constructed to determine its effect on HCC in vitro and in vivo. Our results demonstrated that HCC cells and HCC tissues revealed reduced expression of HNF1α. Forced reexpression of HNF1α significantly suppressed the proliferation of HCC cells and TAFs and inhibited the clonogenic growth of hepatoma cells in vitro. In parallel, HNF1α overexpression reestablished the expression of certain liver-specific genes and microRNA 192 and 194 levels, with a resultant increase in p21 levels and induction of G(2)/M arrest. Additionally, AdHNF1α inhibited the expression of cluster of differentiation 133 and epithelial cell adhesion molecule and the signal pathways of the mammalian target of rapamycin and transforming growth factor beta/Smads. Furthermore, HNF1α abolished the tumorigenicity of hepatoma cells in vivo. Most interestingly, intratumoral injection of AdHNF1α significantly inhibited the growth of subcutaneous HCC xenografts in nude mice. Systemic delivery of AdHNF1α could eradicate the orthotopic liver HCC nodules in nonobese diabetic/severe combined immunodeficiency mice. CONCLUSION These results suggest that the potent inhibitive effect of HNF1α on HCC is attained by inducing the differentiation of hepatoma cells into mature hepatocytes and G(2)/M arrest. HNF1α might represent a novel, promising therapeutic agent for human HCC treatment. Our findings also encourage the evaluation of differentiation therapy for tumors of organs other than liver using their corresponding differentiation-determining transcription factor.
Collapse
Affiliation(s)
- Xin Zeng
- Department of Gastroenterology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Hypoplastic glomerulocystic kidney disease and hepatoblastoma: a potential association not caused by mutations in hepatocyte nuclear factor 1beta. J Pediatr Hematol Oncol 2009; 31:527-9. [PMID: 19564751 DOI: 10.1097/mph.0b013e3181a974c8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Hypoplastic glomerulocystic kidney disease is an autosomal dominant disorder caused by mutations in hepatocyte nuclear factor-1beta. Hepatoblastoma is a sporadic occurring tumor of embryonal origin that has been associated with the several overgrowth syndromes. We report a case of concomitant hypoplastic glomerulocystic kidney disease and hepatoblastoma. Review of the literature identified 4 other patients with a similar association. We propose that hypoplastic glomerulocystic kidney disease and hepatoblastoma represent a possible association, and we excluded mutations in hepatocyte nuclear factor-1beta in our patient as causative of this putative association.
Collapse
|
12
|
|
13
|
Lazarevich NL, Fleishman DI. Tissue-specific transcription factors in progression of epithelial tumors. BIOCHEMISTRY (MOSCOW) 2008; 73:573-91. [PMID: 18605982 DOI: 10.1134/s0006297908050106] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Dedifferentiation and epithelial-mesenchymal transition are important steps in epithelial tumor progression. A central role in the control of functional and morphological properties of different cell types is attributed to tissue-specific transcription factors which form regulatory cascades that define specification and differentiation of epithelial cells during embryonic development. The main principles of the action of such regulatory systems are reviewed on an example of a network of hepatocyte nuclear factors (HNFs) which play a key role in establishment and maintenance of hepatocytes--the major functional type of liver cells. HNFs, described as proteins binding to promoters of most hepatospecific genes, not only control expression of functional liver genes, but are also involved in regulation of proliferation, morphogenesis, and detoxification processes. One of the central components of the hepatospecific regulatory network is nuclear receptor HNF4alpha. Derangement of the expression of this gene is associated with progression of rodent and human hepatocellular carcinomas (HCCs) and contributes to increase of proliferation, loss of epithelial morphology, and dedifferentiation. Dysfunction of HNF4alpha during HCC progression can be either caused by structural changes of this gene or occurs due to modification of up-stream regulatory signaling pathways. Investigations preformed on a model system of the mouse one-step HCC progression have shown that the restoration of HNF4alpha function in dedifferentiated cells causes partial reversion of malignant phenotype both in vitro and in vivo. Derangement of HNFs function was also described in other tumors of epithelial origin. We suppose that tissue-specific factors that underlie the key steps in differentiation programs of certain tissues and are able to receive or modulate signals from the cell environment might be considered as promising candidates for the role of tumor suppressors in the tissue types where they normally play the most significant role.
Collapse
Affiliation(s)
- N L Lazarevich
- Institute of Carcinogenesis, Blokhin Russian Cancer Research Center, Russian Academy of Medical Sciences, Moscow 115478, Russia.
| | | |
Collapse
|
14
|
Abstract
To know the precise mechanisms underlying the life or death and the regeneration or differentiation of cells would be relevant and useful for the development of a regenerative therapy for organ failure. Liver-specific gene expression is controlled primarily at a transcriptional level. Studies on the transcriptional regulatory elements of genes expressed in hepatocytes have identified several liver-enriched transcriptional factors, including hepatocyte nuclear factor (HNF)-1, HNF-3, HNF-4, HNF-6 and CCAAT/enhancer binding protein families, which are key components of the differentiation process for the fully functional liver. The transcriptional regulation by these HNFs, which form a hierarchical and cooperative network, is both essential for hepatocyte differentiation during mammalian liver development and also crucial for metabolic regulation and liver function. Among these liver-enriched transcription factors, HNF-4 is likely to act the furthest upstream as a master gene in transcriptional cascade and interacts with other liver-enriched transcriptional factors to stimulate hepatocyte-specific gene transcription. A link between the extracellular matrix, changes in cytoskeletal filament assembly and hepatocyte differentiation via HNF-4 has been shown to be involved in the transcriptional regulation of liver-specific gene expression. This review provides an overview of the roles of liver-enriched transcription factors in liver function.
Collapse
Affiliation(s)
- Masahito Nagaki
- Department of Gastroenterology, Gifu University Graduate School of Medicine, Yanagido, Gifu, Japan
| | | |
Collapse
|
15
|
Kushida M, Sukata T, Uwagawa S, Ozaki K, Kinoshita A, Wanibuchi H, Morimura K, Okuno Y, Fukushima S. Low dose DDT inhibition of hepatocarcinogenesis initiated by diethylnitrosamine in male rats: possible mechanisms. Toxicol Appl Pharmacol 2005; 208:285-94. [PMID: 15885732 DOI: 10.1016/j.taap.2005.03.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2004] [Revised: 02/15/2005] [Accepted: 03/04/2005] [Indexed: 11/15/2022]
Abstract
Previously we reported a tendency for reduction of the development of glutathione-S-transferase placental form (GST-P) positive foci, recognized as preneoplastic changes in rat liver, by a low dose of 1,1-bis(p-chlorophenyl)-2,2,2-trichloroethane (DDT), which belongs to the same group of hepatic cytochrome P-450 inducers as phenobarbital and is itself a non-genotoxic hepatocarcinogen. In order to clarify the biological significance of this phenomenon, we investigated the reproducibility and changes in other parameters using an initiation-promotion model in which male F344 rats were treated with DDT at doses of 0, 0.005, 0.5, 500 ppm in the diet for 11 or 43 weeks after initiation of hepatocarcinogenesis with N-diethylnitrosamine (DEN). When 500 ppm DDT was applied, the formation of GST-P positive foci and tumor were markedly elevated. In contrast, induction of GST-P positive foci and liver tumors tended to be inhibited at a dose of 0.005 ppm, correlating with protein levels of cytochrome P450 2B1 and 3A2 (CYP2B1 and 3A2) and generation of 8-hydroxy-2'-deoxyguanosine (8-OHdG), a marker of oxidative DNA damage. mRNA levels for 8-oxoguanine glycosylase 1 (OGG1), an 8-OHdG repair enzyme, connexin 32 (Cx32), a major component of Gap junctions, and hepatic nuclear factor 1alpha (HNF-1alpha), a Cx32 regulator, were inversely correlated with GST-P positive foci and tumor formation. These results indicate that low dose DDT may indeed exhibit inhibitory effects on chemically initiated-rat hepatocarcinogenicity, in contrast to the promotion observed with high doses, and that this is related to changes in metabolizing enzymes, cell communication, and DNA damage and its repair.
Collapse
MESH Headings
- Administration, Oral
- Animals
- Apoptosis/drug effects
- Cell Proliferation/drug effects
- Connexins/drug effects
- Connexins/genetics
- Connexins/metabolism
- Cytochrome P-450 Enzyme System/drug effects
- Cytochrome P-450 Enzyme System/metabolism
- DDT/administration & dosage
- DDT/pharmacology
- DNA Damage/drug effects
- DNA Glycosylases/drug effects
- DNA Glycosylases/genetics
- DNA Glycosylases/metabolism
- DNA, Single-Stranded/drug effects
- Deoxyguanosine/antagonists & inhibitors
- Diethylnitrosamine/administration & dosage
- Diethylnitrosamine/antagonists & inhibitors
- Diethylnitrosamine/toxicity
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Drug Administration Schedule
- Gene Expression
- Glutathione S-Transferase pi/antagonists & inhibitors
- Glutathione S-Transferase pi/drug effects
- Glutathione S-Transferase pi/metabolism
- Glutathione Transferase/antagonists & inhibitors
- Glutathione Transferase/drug effects
- Glutathione Transferase/metabolism
- Hepatocyte Nuclear Factor 1-alpha/drug effects
- Hepatocyte Nuclear Factor 1-alpha/genetics
- Hepatocyte Nuclear Factor 1-alpha/metabolism
- Immunochemistry/methods
- Injections, Intraperitoneal
- Liver Neoplasms, Experimental/chemically induced
- Liver Neoplasms, Experimental/metabolism
- Liver Neoplasms, Experimental/prevention & control
- Male
- Proliferating Cell Nuclear Antigen/drug effects
- RNA, Messenger/genetics
- Rats
- Rats, Inbred F344
- Time Factors
- Up-Regulation/drug effects
- Gap Junction beta-1 Protein
Collapse
Affiliation(s)
- Masahiko Kushida
- Department of Pathology, Osaka City University Medical School, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan; Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., 1-98, 3-chome, Kasugade-Naka, Konohana-ku, Osaka 554-8558, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Dehm SM, Bonham K. SRC gene expression in human cancer: the role of transcriptional activation. Biochem Cell Biol 2004; 82:263-74. [PMID: 15060621 DOI: 10.1139/o03-077] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Human pp60c-Src (or c-Src) is a 60 kDa nonreceptor tyrosine kinase encoded by the SRC gene and is the cellular homologue to the potent transforming v-Src viral oncogene. c-Src functions at the hub of a vast array of signal transduction cascades that influence cellular proliferation, differentiation, motility, and survival. c-Src activation has been documented in upwards of 50% of tumors derived from the colon, liver, lung, breast, and pancreas. Therefore, a major focus has been to understand the mechanisms of c-Src activation in human cancer. Early studies concentrated on post-translational mechanisms that lead to increased c-Src kinase activity, which often correlated with overexpression of c-Src protein. More recently, the discovery of an activating SRC mutation in a small subset of advanced colon tumors has been reported. In addition, elevated SRC transcription has been identified as yet another mechanism contributing significantly to c-Src activation in a subset of human colon cancer cell lines. Interestingly, histone deacetylase (HDAC) inhibitors, agents with well-documented anti-cancer activity, repress SRC transcription in a wide variety of human cancer cell lines. Analysis of the mechanisms behind HDAC inhibitor mediated repression could be utilized in the future to specifically inhibit SRC gene expression in human cancer.
Collapse
Affiliation(s)
- Scott M Dehm
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Canada.
| | | |
Collapse
|
17
|
Bosserhoff AK, Moser M, Schölmerich J, Buettner R, Hellerbrand C. Specific expression and regulation of the new melanoma inhibitory activity-related gene MIA2 in hepatocytes. J Biol Chem 2003; 278:15225-31. [PMID: 12586826 DOI: 10.1074/jbc.m212639200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The novel human gene MIA2 encoding a melanoma inhibitory activity (MIA) homologous protein was identified by a GenBank(TM) search. MIA2, together with MIA, OTOR, and TANGO, belongs to the novel MIA gene family sharing important structural features, significant homology at both the nucleotide and protein levels, and similar genomic organization. In situ hybridization, reverse transcriptase-PCR, and Northern blots presented a highly tissue-specific MIA2 expression pattern in the liver. Promoter studies analyzing transcriptional regulation of MIA2 revealed an HNF-1-binding site at position -236 controlling hepatocyte-specific expression. Mutation of the site led to a complete loss of promoter activity in HepG2 cell. Further sites detected in the MIA2 promoter were consensus binding sites for SMAD and STAT3, Consistently, stimulation of MIA2 mRNA expression occurred by treatment with interleukin-6, transforming growth factor-beta, and conditioned medium from activated hepatic stellate cells. In accordance with these results, MIA2 mRNA was found to be increased in liver tissue of patients with chronic hepatitis C infection compared with controls. MIA2 mRNA levels were significantly higher in patients with severe fibrosis or inflammation than in patients with less severe fibrosis or inflammation. In summary our data indicate that MIA2 represents a potential novel acute phase protein and MIA2 expression responds to liver damage. The increased transcription in more severe chronic liver disease suggests that MIA2 may serve as a marker of hepatic disease activity and severity.
Collapse
Affiliation(s)
- Anja K Bosserhoff
- Institute of Pathology and Department of Internal Medicine I, University of Regensburg, 93053 Regensburg, Germany.
| | | | | | | | | |
Collapse
|
18
|
Suk FM, Lin MH, Newman M, Pan S, Chen SH, Liu JD, Shih C. Replication advantage and host factor-independent phenotypes attributable to a common naturally occurring capsid mutation (I97L) in human hepatitis B virus. J Virol 2002; 76:12069-77. [PMID: 12414948 PMCID: PMC136898 DOI: 10.1128/jvi.76.23.12069-12077.2002] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2002] [Accepted: 08/26/2002] [Indexed: 12/12/2022] Open
Abstract
Mutations of human hepatitis B virus (HBV) occur frequently within the capsid (core) protein in natural infections. The most frequent mutation of the core protein in HBV from Southeast Asia occurs at amino acid 97, changing an isoleucine (I) to a leucine (L). In our systematic study of virus-host interactions, we have examined the replication efficiency of a site-directed mutant, I97L, and its parental wild-type HBV in several different hepatoma cell lines. Interestingly, we found that this capsid variant replicated in human Huh7 hepatoma cells approximately 4.8-fold better than its parental wild-type HBV. A similar phenomenon was observed in another hepatoma cell line, J3. In addition, the level of encapsidated RNA pregenome in mutant I97L was about 5.7-fold higher than that of the wild-type HBV in Huh7 cells. Unlike Huh7 cells, no significant difference in viral DNA replication between the same I97L mutant and its parental wild-type HBV was observed in HepG2, a human hepatoblastoma cell line. This finding of a profound replication advantage for mutant I97L in Huh7 and J3 cells but not in HepG2 cells may have important implications for the emergence of this mutant in chronic HBV carriers. We speculate here that the mutation confers a host factor-independent growth advantage for the survival of HBV variants in gradually dedifferentiating hepatocytes and thus helps prolong viral persistence.
Collapse
Affiliation(s)
- Fat-Moon Suk
- Center for Tropical Diseases and Sealy Center for Vaccine Development, Department of Pathology, University of Texas Medical Branch, Galveston, Texas 77555-0609, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Mirpuri E, García-Trevijano ER, Castilla-Cortazar I, Berasain C, Quiroga J, Rodriguez-Ortigosa C, Mato JM, Prieto J, Avila MA. Altered liver gene expression in CCl4-cirrhotic rats is partially normalized by insulin-like growth factor-I. Int J Biochem Cell Biol 2002; 34:242-52. [PMID: 11849991 DOI: 10.1016/s1357-2725(01)00123-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We have previously shown that the administration of low doses of insulin-like growth factor-I (IGF-I) to CCl4-cirrhotic rats improves liver function and reduces fibrosis. To better understand the mechanisms behind the hepatoprotective effects of IGF-I, and to identify those genes whose expression is affected in cirrhosis and after IGF-1 treatment, we have performed differential display of mRNA analysis by means of polymerase chain reaction (PCR) in livers from control and CCl4-cirrhotic rats treated or not with IGF-I. We have identified 16 genes that were up- or down-regulated in the cirrhotic liver. IGF-I treatment partially normalized the expression of eight of these genes, including serine proteinase inhibitors such as serpin-2 and alpha-1-antichymotripsin, alpha-1-acid glycoprotein, and alpha-2u-globulin. Additionally, we show that IGF-I enhanced the regenerative activity in the cirrhotic liver, as determined by the increased expression of the proliferating cell nuclear antigen (PCNA). Finally, IGF-I treatment partially restored the expression of growth hormone receptor (GHR) and the levels of global genomic DNA methylation, which are reduced in human and experimental cirrhosis. Taken together, our observations confirm the hepatoprotective effects of IGF-I, and suggest that this action can be exerted in part through the normalization of liver gene expression, growth hormone (GH) responsiveness and global genomic DNA methylation.
Collapse
Affiliation(s)
- Eduardo Mirpuri
- División de Hepatología y Terapia Génica, Facultad de Medicina, Departamento de Medicina Interna, Universidad de Navarra, 31008, Pamplona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Kondili LA, Taliani G, Tosti ME, De Bac C, Pasquazzi C, Mele A. Methodological issues in papers on IFN therapy: time for reappraisal. J Viral Hepat 2000; 7:184-95. [PMID: 10849260 DOI: 10.1046/j.1365-2893.2000.00214.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
We conducted an analytical review of 194 full papers on interferon (IFN) therapy for chronic hepatitis C to evaluate current methodology (i.e. study design, criteria for evaluating the efficacy of therapy and predictors of response). Of the papers evaluated, 64 were randomized controlled trials (RCT), 40 were non-randomized controlled trials (NRCT) and 90 were observational studies (OS). The methodological analysis was focused mainly on clinical trials. The number of patients enrolled in RCT was higher compared with the number enrolled in NRCT. Uniform enrolment criteria were used in less than 50% of the trials. Only 20% of RCT and 2.5% of NRCT used criteria for defining sample size. The response rate was calculated on an intention-to-treat basis in 36 of the RCT and in 14 of the NRCT. The outcome of treatment and the criteria employed to define the response to treatment were found to be far from standardized. In 51.5% of the RCT and 42.5% of the NRCT, normalization of alanine aminotransferase (ALT) level at the end of follow-up was the only marker of response studied. Only 57.6% of the trials considered histological evidence as an important outcome. Among the clinical trials, 71.1% evaluated predictors of good response to IFN therapy. In 51% of the OS, ALT normalization by the end of follow-up was the only criterion for defining response. In conclusion, to ensure a high level of reliability in comparing or combining the results of different studies, some basic general requirements must be followed when planning trials on antiviral therapy.
Collapse
Affiliation(s)
- L A Kondili
- Laboratorio di Epidemiologia e Biostatistica, Istituto Superiore di Sanit¿a, Roma, Italy
| | | | | | | | | | | |
Collapse
|
21
|
Sánchez A, Alvarez AM, Pagan R, Roncero C, Vilaró S, Benito M, Fabregat I. Fibronectin regulates morphology, cell organization and gene expression of rat fetal hepatocytes in primary culture. J Hepatol 2000; 32:242-50. [PMID: 10707864 DOI: 10.1016/s0168-8278(00)80069-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND/AIMS The extracellular matrix regulates hepatic development and regeneration, modulating the maintenance of liver architecture in the differentiated state. The aim of this work was to analyze how different extracellular matrix molecules modulate fetal hepatocyte morphology, growth and differentiation. METHODS We cultured fetal hepatocytes either on plastic or on different extracellular matrix proteins, i.e., collagen I, fibronectin or E-C-L (entactin-collagen IV-laminin) and we analyzed cell attachment, morphological organization, proliferative response and gene expression. RESULTS Cell attachment was increased by all the extracellular matrix proteins to a similar extent. However, only fibronectin facilitated the formation of elongated cord-like structures, reminiscent of liver plate organization. Immunocytochemical analysis of the cells in these structures revealed high levels of albumin and cytokeratin 18, phenotypical markers of parenchymal hepatocytes. Fibronectin did not block the mitogenic stimuli induced by epidermal growth factor in these cells and the elongated structures appeared either in the absence or in the presence of the mitogen. Cells cultured on fibronectin, regardless of whether epidermal growth factor was present or not, also presented the maximal levels of expression for liver specific genes, such as albumin or alpha-fetoprotein. This expression was coincident with an increased expression of hepatocyte nuclear factor (HNF)-4 and a higher HNF-1alpha/HNF-1beta ratio, when compared with those cells that were cultured on collagen or E-C-L extracellular matrix. CONCLUSIONS These results suggest that fibronectin might play a differential role, as compared to other extracellular matrix proteins, in fetal hepatocyte organization and gene expression.
Collapse
Affiliation(s)
- A Sánchez
- Departamento de Bioquímica y Biología Molecular, Centro Mixto CSIC/UCM, Universidad Complutense de Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
22
|
Hayashi Y, Wang W, Ninomiya T, Nagano H, Ohta K, Itoh H. Liver enriched transcription factors and differentiation of hepatocellular carcinoma. Mol Pathol 1999; 52:19-24. [PMID: 10439834 PMCID: PMC395665 DOI: 10.1136/mp.52.1.19] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The development of a complex organism relies on the precise temporal and spacial expression of its genome in many different cell types. The unique phenotype of hepatocytes arises from the expression of genes in a liver specific fashion, which is controlled primarily at the level of mRNA synthesis. By analysing DNA sequences implicated in liver specific transcription, it has been possible to identify members of the nuclear proteins, such as the liver enriched transactivating factors, hepatic nuclear factor 1(HNF-1), HNF-3, HNF-4, HNF-6, CCAAT/enhancer binding protein (C/EBP), and D binding protein (DBP), which are key elements in the liver specific transcriptional regulation of genes. Each of these factors is characterised by DNA binding domains that bind to unique DNA sequences (cis-acting factors) in the promoter and enhancer regions of genes expressed in terminally differentiated hepatocytes (such as, albumin, alpha 1-antitrypsin, transthyretin, alpha-fetoprotein). The determination of the tissue distribution of these factors and analysis of their hierarchical relations has led to the hypothesis that the cooperation of liver enriched transcription factors with the ubiquitous transactivating factors is necessary, and possibly even sufficient, for the maintenance of liver specific gene transcription. With the increase in information about transcriptional regulation, it should be possible to evaluate fully the clinicopathological usefulness of transcription factors in the diagnosis and treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Y Hayashi
- First Division of Pathology, Kobe University School of Medicine, Japan.
| | | | | | | | | | | |
Collapse
|
23
|
Wang W, Hayashi Y, Ninomiya T, Ohta K, Nakabayashi H, Tamaoki T, Itoh H. Expression of HNF-1 alpha and HNF-1 beta in various histological differentiations of hepatocellular carcinoma. J Pathol 1998; 184:272-8. [PMID: 9614379 DOI: 10.1002/(sici)1096-9896(199803)184:3<272::aid-path4>3.0.co;2-k] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Hepatic nuclear factor 1 (HNF-1) regulates genes in a hepatocyte-specific manner. It has been previously reported that the ratio of HNF-1 alpha and HNF-1 beta mRNA is related to histological differentiation hepatocellular carcinoma (HCC). In this study, the expression levels of the HNF-1 alpha and HNF-1 beta proteins were analysed relatively and quantitatively in various histologically differentiated HCC and surrounding non-cancerous tissues, and HNF-1 alpha binding activity for the AT element of the B domain of the human alpha-fetoprotein enhancer was examined. Western blot analysis demonstrated that HNF-1 alpha protein was expressed at a higher level in well-differentiated HCC tissues than in the surrounding non-HCC tissues; on the other hand, the HNF-1 alpha protein was expressed at lower levels in moderately and poorly differentiated HCCs than in the surrounding non-HCC tissues. The levels of HNF-1 beta expression in well-differentiated and poorly differentiated HCCs were similar to and higher than those found in the respective surrounding non-cancerous portions. In binding assays, HNF-1 binding activity was high in well-differentiated HCC and lower in moderately and poorly differentiated HCCs. Most well-differentiated HCC cases showed immunohistochemical expression of HNF-1 alpha. These findings show that poor histological differentiation of HCC correlates with decreases in the level and activity of HNF-1 alpha proteins.
Collapse
Affiliation(s)
- W Wang
- First Division of Pathology, Kobe University School of Medicine, Japan
| | | | | | | | | | | | | |
Collapse
|
24
|
Suaud L, Joseph B, Formstecher P, Laine B. mRNA expression of HNF-4 isoforms and of HNF-1alpha/HNF-1beta variants and differentiation of human cell lines that mimic highly specialized phenotypes of intestinal epithelium. Biochem Biophys Res Commun 1997; 235:820-5. [PMID: 9207245 DOI: 10.1006/bbrc.1997.6888] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The mRNA expression of HNF-4 isoforms and the ratio of HNF-1alpha/HNF-1beta variants in cell lines representing highly specialized phenotypes of human intestinal epithelium were studied by RT-PCR. A strong rise in expression of HNF-4 isoforms alpha2, alpha4 and gamma correlates with commitment into highly differentiated enterocyte-like phenotype of Caco-2 cells which best mimic enterocytes, whereas only isoform alpha4 expression is high in the less differentiated HT-29 G- cells. These increased expressions are not encountered in the highly differentiated mucous-secreting HT-29 MTX cells. Differentiation into highly specialized enterocyte-like Caco-2 cells and mucous-secreting HT-29 MTX cells is accompanied by a moderate rise in HNF-1 without change in the ratio of its variants. Our data corroborate those of Spath et al. (Mol. Cell. Biol., 1997, 17, 1913) in hepatoma cells and suggest that HNF-4 isoforms alpha2, alpha4 and gamma play a major role in the differentiation of enterocytes.
Collapse
Affiliation(s)
- L Suaud
- Unité 459 INSERM, Laboratoire de Biochimie Structurale, Faculté de Médecine de Lille, France
| | | | | | | |
Collapse
|
25
|
Abelev GI, Lazarevich NL. Conformational effects of volatile anesthetics on the membrane-bound acetylcholine receptor protein: facilitation of the agonist-induced affinity conversion. Biochemistry 1983; 95:61-113. [PMID: 16860656 DOI: 10.1016/s0065-230x(06)95003-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The rate of the carbamylcholine-induced affinity conversion of the membrane-bound acetylcholine receptor protein from Torpedo californica is enhanced by pretreatment of the membranes under an atmosphere of 3% halothane or 1% chloroform. The enhancement is much more pronounced in the presence of low rather than high concentrations of carbamylcholine since the volatile anesthetics alter the apparent dissociation constant for carbamylcholine from 17 to 3 microM without affecting the first-order rate constant for the ligand-induced conversion (0.07 s-1). These results indicate that the acetylcholine receptor is assuming a conformational form with intermediate affinity for carbamylcholine in addition to the previously described low- and high-affinity forms. The dissociation constants for carbamylcholine obtained from kinetic studies of the carbamylcholine-induced transition are 3-15-fold lower than those obtained as inhibition constants from the rate of 125I-labeled alpha-bungarotoxin binding to the low-affinity conformer of the acetylcholine receptor protein. This pattern, observed in both the presence and absence of anesthetic, provides further evidence that the acetylcholine receptor has nonequivalent ligand binding sites for carbamylcholine.
Collapse
Affiliation(s)
- Garry I Abelev
- Department of Immunochemistry, Institute of Carcinogenesis, N. N. Blokhin Cancer Research Center, Moscow 115478, Russia
| | | |
Collapse
|