1
|
Huang Y, Wang W, Yu H, Peng J, Hu Z, Chen L. The role of 14-3-3 proteins in plant growth and response to abiotic stress. PLANT CELL REPORTS 2022; 41:833-852. [PMID: 34773487 DOI: 10.1007/s00299-021-02803-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
The 14-3-3 proteins widely exist in almost all plant species. They specifically recognize and interact with phosphorylated target proteins, including protein kinases, phosphatases, transcription factors and functional proteins, offering an array of opportunities for 14-3-3s to participate in the signal transduction processes. 14-3-3s are multigene families and can form homo- and heterodimers, which confer functional specificity of 14-3-3 proteins. They are widely involved in regulating biochemical and cellular processes and plant growth and development, including cell elongation and division, seed germination, vegetative and reproductive growth, and seed dormancy. They mediate plant response to environmental stresses such as salt, alkaline, osmotic, drought, cold and other abiotic stresses, partially via hormone-related signalling pathways. Although many studies have reviewed the function of 14-3-3 proteins, recent research on plant 14-3-3s has achieved significant advances. Here, we provide a comprehensive overview of the fundamental properties of 14-3-3 proteins and systematically summarize and dissect the emerging advances in understanding the roles of 14-3-3s in plant growth and development and abiotic stress responses. Some ambiguous questions about the roles of 14-3-3s under environmental stresses are reviewed. Interesting questions related to plant 14-3-3 functions that remain to be elucidated are also discussed.
Collapse
Affiliation(s)
- Ye Huang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenshu Wang
- Institute of Crop Science of Wuhan Academy of Agriculture Science, Wuhan, 430345, China
| | - Hua Yu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junhua Peng
- Huazhi Biotech Co., Ltd., Changsha, 410125, China
| | - Zhengrong Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Liang Chen
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China.
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Keçeli BN, Jin C, Van Damme D, Geelen D. Conservation of centromeric histone 3 interaction partners in plants. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5237-5246. [PMID: 32369582 PMCID: PMC7475239 DOI: 10.1093/jxb/eraa214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 04/28/2020] [Indexed: 05/07/2023]
Abstract
The loading and maintenance of centromeric histone 3 (CENH3) at the centromere are critical processes ensuring appropriate kinetochore establishment and equivalent segregation of the homologous chromosomes during cell division. CENH3 loss of function is lethal, whereas mutations in the histone fold domain are tolerated and lead to chromosome instability and chromosome elimination in embryos derived from crosses with wild-type pollen. A wide range of proteins in yeast and animals have been reported to interact with CENH3. The histone fold domain-interacting proteins are potentially alternative targets for the engineering of haploid inducer lines, which may be important when CENH3 mutations are not well supported by a given crop. Here, we provide an overview of the corresponding plant orthologs or functional homologs of CENH3-interacting proteins. We also list putative CENH3 post-translational modifications that are also candidate targets for modulating chromosome stability and inheritance.
Collapse
Affiliation(s)
- Burcu Nur Keçeli
- Ghent University, Department Plants and Crops, unit HortiCell, Coupure Links, Ghent, Belgium
| | - Chunlian Jin
- Ghent University, Department Plants and Crops, unit HortiCell, Coupure Links, Ghent, Belgium
| | - Daniel Van Damme
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark, Ghent, Belgium
| | - Danny Geelen
- Ghent University, Department Plants and Crops, unit HortiCell, Coupure Links, Ghent, Belgium
- Corresponding author:
| |
Collapse
|
3
|
Differential abundance and transcription of 14-3-3 proteins during vegetative growth and sexual reproduction in budding yeast. Sci Rep 2018; 8:2145. [PMID: 29391437 PMCID: PMC5794856 DOI: 10.1038/s41598-018-20284-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 01/16/2018] [Indexed: 12/02/2022] Open
Abstract
14-3-3 is a family of relatively low molecular weight, acidic, dimeric proteins, conserved from yeast to metazoans including humans. Apart from their role in diverse cellular processes, these proteins are also known for their role in several clinical implications. Present proteomic and biochemical comparison showed increased abundance and differential phosphorylation of these proteins in meiotic cells. Double deletion of bmh1−/−bmh2−/− leads to complete absence of sporulation with cells arrested at G1/S phase while further incubation of cells in sporulating media leads to cell death. In silico analysis showed the presence of 14-3-3 interacting motifs in bonafide members of kinetochore complex (KC) and spindle pole body (SPB), while present cell biological data pointed towards the possible role of yeast Bmh1/2 in regulating the behaviour of KC and SPB. We further showed the involvement of 14-3-3 in segregation of genetic material and expression of human 14-3-3β/α was able to complement the function of endogenous 14-3-3 protein even in the complex cellular process like meiosis. Our present data also established haplosufficient nature of BMH1/2. We further showed that proteins synthesized during mitotic growth enter meiotic cells without de novo synthesis except for meiotic-specific proteins required for induction and meiotic progression in Saccharomyces cerevisiae.
Collapse
|
4
|
Kumar R. An account of fungal 14-3-3 proteins. Eur J Cell Biol 2017; 96:206-217. [PMID: 28258766 DOI: 10.1016/j.ejcb.2017.02.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 02/21/2017] [Accepted: 02/21/2017] [Indexed: 01/09/2023] Open
Abstract
14-3-3s are a group of relatively low molecular weight, acidic, dimeric, protein(s) conserved from single-celled yeast to multicellular vertebrates including humans. Despite lacking catalytic activity, these proteins have been shown to be involved in multiple cellular processes. Apart from their role in normal cellular physiology, recently these proteins have been implicated in various medical consequences. In this present review, fungal 14-3-3 protein localization, interactions, transcription, regulation, their role in the diverse cellular process including DNA duplication, cell cycle, protein trafficking or secretion, apoptosis, autophagy, cell viability under stress, gene expression, spindle positioning, role in carbon metabolism have been discussed. In the end, I also highlighted various roles of yeasts 14-3-3 proteins in tabular form. Thus this review with primary emphasis on yeast will help in appreciating the significance of 14-3-3 proteins in cell physiology.
Collapse
Affiliation(s)
- Ravinder Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, Maharashtra, India.
| |
Collapse
|
5
|
Gu L, Jung HJ, Kwak KJ, Dinh SN, Kim YO, Kang H. An RRM-containing mei2-like MCT1 plays a negative role in the seed germination and seedling growth of Arabidopsis thaliana in the presence of ABA. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 109:273-279. [PMID: 27771580 DOI: 10.1016/j.plaphy.2016.10.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 09/10/2016] [Accepted: 10/12/2016] [Indexed: 05/01/2023]
Abstract
Despite an increasing understanding of the essential role of the Mei2 gene encoding an RNA-binding protein (RBP) in premeiotic DNA synthesis and meiosis in yeasts and animals, the functional roles of the mei2-like genes in plant growth and development are largely unknown. Contrary to other mei2-like RBPs that contain three RNA-recognition motifs (RRMs), the mei2 C-terminal RRM only (MCT) is unique in that it harbors only the last C-terminal RRM. Although MCTs have been implicated to play important roles in plants, their functional roles in stress responses as well as plant growth and development are still unknown. Here, we investigated the expression and functional role of MCT1 (At1g37140) in plant response to abscisic acid (ABA). Confocal analysis of MCT1-GFP-expressing plants revealed that MCT1 is localized to the nucleus. The transcript level of MCT1 was markedly increased upon ABA treatment. Analysis of MCT1-overexpressing transgenic Arabidopsis plants and artificial miRNA-mediated mct1 knockdown mutants demonstrated that MCT1 inhibited seed germination and cotyledon greening of Arabidopsis plants under ABA. The transcript levels of ABA signaling-related genes, such as ABI3, ABI4, and ABI5, were markedly increased in the MCT1-overexpressing transgenic plant. Collectively, these results suggest that ABA-upregulated MCT1 plays a negative role in Arabidopsis seed germination and seedling growth under ABA by modulating the expression of ABA signaling-related genes.
Collapse
Affiliation(s)
- Lili Gu
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Republic of Korea; Xinjiang Key Laboratory of Grassland Resources and Ecology, College of Grassland and Environmental Sciences, Xinjiang Agricultural University, Urumqi 830052, China
| | - Hyun Ju Jung
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Kyung Jin Kwak
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Sy Nguyen Dinh
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Yeon-Ok Kim
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Hunseung Kang
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Republic of Korea.
| |
Collapse
|
6
|
Cotelle V, Leonhardt N. 14-3-3 Proteins in Guard Cell Signaling. FRONTIERS IN PLANT SCIENCE 2015; 6:1210. [PMID: 26858725 PMCID: PMC4729941 DOI: 10.3389/fpls.2015.01210] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 12/15/2015] [Indexed: 05/19/2023]
Abstract
Guard cells are specialized cells located at the leaf surface delimiting pores which control gas exchanges between the plant and the atmosphere. To optimize the CO2 uptake necessary for photosynthesis while minimizing water loss, guard cells integrate environmental signals to adjust stomatal aperture. The size of the stomatal pore is regulated by movements of the guard cells driven by variations in their volume and turgor. As guard cells perceive and transduce a wide array of environmental cues, they provide an ideal system to elucidate early events of plant signaling. Reversible protein phosphorylation events are known to play a crucial role in the regulation of stomatal movements. However, in some cases, phosphorylation alone is not sufficient to achieve complete protein regulation, but is necessary to mediate the binding of interactors that modulate protein function. Among the phosphopeptide-binding proteins, the 14-3-3 proteins are the best characterized in plants. The 14-3-3s are found as multiple isoforms in eukaryotes and have been shown to be involved in the regulation of stomatal movements. In this review, we describe the current knowledge about 14-3-3 roles in the regulation of their binding partners in guard cells: receptors, ion pumps, channels, protein kinases, and some of their substrates. Regulation of these targets by 14-3-3 proteins is discussed and related to their function in guard cells during stomatal movements in response to abiotic or biotic stresses.
Collapse
Affiliation(s)
- Valérie Cotelle
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPSCastanet-Tolosan, France
- *Correspondence: Valérie Cotelle,
| | - Nathalie Leonhardt
- UMR7265, Laboratoire de Biologie du Développement des Plantes, Service de Biologie Végétale et de Microbiologie Environnementales, Institut de Biologie Environnementale et Biotechnologie, CNRS–CEA–Université Aix-MarseilleSaint-Paul-lez-Durance, France
| |
Collapse
|
7
|
Cotelle V, Leonhardt N. 14-3-3 Proteins in Guard Cell Signaling. FRONTIERS IN PLANT SCIENCE 2015. [PMID: 26858725 DOI: 10.3389/fpis.2015.01210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Guard cells are specialized cells located at the leaf surface delimiting pores which control gas exchanges between the plant and the atmosphere. To optimize the CO2 uptake necessary for photosynthesis while minimizing water loss, guard cells integrate environmental signals to adjust stomatal aperture. The size of the stomatal pore is regulated by movements of the guard cells driven by variations in their volume and turgor. As guard cells perceive and transduce a wide array of environmental cues, they provide an ideal system to elucidate early events of plant signaling. Reversible protein phosphorylation events are known to play a crucial role in the regulation of stomatal movements. However, in some cases, phosphorylation alone is not sufficient to achieve complete protein regulation, but is necessary to mediate the binding of interactors that modulate protein function. Among the phosphopeptide-binding proteins, the 14-3-3 proteins are the best characterized in plants. The 14-3-3s are found as multiple isoforms in eukaryotes and have been shown to be involved in the regulation of stomatal movements. In this review, we describe the current knowledge about 14-3-3 roles in the regulation of their binding partners in guard cells: receptors, ion pumps, channels, protein kinases, and some of their substrates. Regulation of these targets by 14-3-3 proteins is discussed and related to their function in guard cells during stomatal movements in response to abiotic or biotic stresses.
Collapse
Affiliation(s)
- Valérie Cotelle
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS Castanet-Tolosan, France
| | - Nathalie Leonhardt
- UMR7265, Laboratoire de Biologie du Développement des Plantes, Service de Biologie Végétale et de Microbiologie Environnementales, Institut de Biologie Environnementale et Biotechnologie, CNRS-CEA-Université Aix-Marseille Saint-Paul-lez-Durance, France
| |
Collapse
|
8
|
Russo R, Zito F, Costa C, Bonaventura R, Matranga V. Transcriptional increase and misexpression of 14-3-3 epsilon in sea urchin embryos exposed to UV-B. Cell Stress Chaperones 2010; 15:993-1001. [PMID: 20607471 PMCID: PMC3024062 DOI: 10.1007/s12192-010-0210-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 06/15/2010] [Accepted: 06/17/2010] [Indexed: 12/19/2022] Open
Abstract
Members of the 14-3-3 protein family are involved in many important cellular events, including stress response, survival and apoptosis. Genes of the 14-3-3 family are conserved from plants to humans, and some members are responsive to UV radiation. Here, we report the isolation of the complete cDNA encoding the 14-3-3 epsilon isoform from Paracentrotus lividus sea urchin embryos, referred to as Pl14-3-3ε, and the phylogenetic relationship with other homologues described in different phyla. Pl14-3-3ε mRNA levels were measured by QPCR during development and found to increase from the mesenchyme blastula to the prism stage. In response to UV-B (312 nm) exposure, early stage embryos collected 2 h later showed a 2.3-fold (at 400 J/m(2)) and a 2.7-fold (at 800 J/m(2)) increase in Pl14-3-3ε transcript levels compared with controls. The spatial expression of Pl14-3-3ε mRNA, detected by whole mount in situ hybridization in both control and UV-B exposed embryos, harvested at late developmental stages, showed transcripts to be located in the archenteron of gastrula stage and widely distributed in all germ layers, respectively. The Pl14-3-3ε mRNA delocalization parallels the failure in archenteron elongation observed morphologically, as well as the lack of specific endoderm markers, investigated by indirect immuno-fluorescence on whole mount embryos. Results confirm the involvement of 14-3-3ε in the stress response elicited by UV-B and demonstrate, for the first time, its contribution at the transcriptional level in the sea urchin embryo.
Collapse
Affiliation(s)
- Roberta Russo
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare, “Alberto Monroy”, Via Ugo La Malfa 153, 90146 Palermo, Italy
| | - Francesca Zito
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare, “Alberto Monroy”, Via Ugo La Malfa 153, 90146 Palermo, Italy
| | - Caterina Costa
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare, “Alberto Monroy”, Via Ugo La Malfa 153, 90146 Palermo, Italy
| | - Rosa Bonaventura
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare, “Alberto Monroy”, Via Ugo La Malfa 153, 90146 Palermo, Italy
| | - Valeria Matranga
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare, “Alberto Monroy”, Via Ugo La Malfa 153, 90146 Palermo, Italy
| |
Collapse
|
9
|
Cardasis HL, Sehnke PC, Laughner B, Eyler JR, Powell DH, Ferl RJ. FTICR-MS analysis of 14-3-3 isoform substrate selection. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2007; 1774:866-73. [PMID: 17569603 DOI: 10.1016/j.bbapap.2007.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2007] [Revised: 04/18/2007] [Accepted: 05/01/2007] [Indexed: 11/26/2022]
Abstract
The 14-3-3s are a ubiquitous class of eukaryotic proteins that participate in a second regulatory step in many phosphorylation-based signal transduction systems. The Arabidopsis family of 14-3-3 proteins represents a rather large 14-3-3 gene family. The biological motive for such diversity within a single protein family is not yet completely understood. The work presented here utilizes 14-3-3 micro-affinity chromatography in conjunction with Fourier transform ion cyclotron resonance mass spectrometry to survey the substrate sequence selectivity of two Arabidopsis 14-3-3 isoforms that represent the two major subclasses of this protein family. A method was developed to compare the relative binding of eight synthetic phosphopeptide sequences. The degree to which each phosphopeptide bound to either isoform was assigned a relative value, defined here as the binding ratio. The method provided a simple means for visualizing differences in substrate sequence selection among different 14-3-3 isoforms. A reproducible preference for specific phosphopeptide sequences was measured for both isoforms. This binding preference was consistent among the two classes of isoforms, suggesting that any pressure for isoform selectivity must reside outside the central core that interacts with the phosphopeptide sequence of the client.
Collapse
Affiliation(s)
- Helene L Cardasis
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | | | | | | | | | | |
Collapse
|
10
|
Sinnige MP, Roobeek I, Bunney TD, Visser AJWG, Mol JNM, de Boer AH. Single amino acid variation in barley 14-3-3 proteins leads to functional isoform specificity in the regulation of nitrate reductase. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 44:1001-9. [PMID: 16359392 DOI: 10.1111/j.1365-313x.2005.02599.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The highly conserved family of 14-3-3 proteins function in the regulation of a wide variety of cellular processes. The presence of multiple 14-3-3 isoforms and the diversity of cellular processes regulated by 14-3-3 suggest functional isoform specificity of 14-3-3 isoforms in the regulation of target proteins. Indeed, several studies observed differences in affinity and functionality of 14-3-3 isoforms. However, the structural variation by which isoform specificity is accomplished remains unclear. Because other reports suggest that specificity is found in differential expression and availability of 14-3-3 isoforms, we used the nitrate reductase (NR) model system to analyse the availability and functionality of the three barley 14-3-3 isoforms. We found that 14-3-3C is unavailable in dark harvested barley leaf extract and 14-3-3A is functionally not capable to efficiently inhibit NR activity, leaving 14-3-3B as the only characterized isoform able to regulate NR in barley. Further, using site directed mutagenesis, we identified a single amino acid variation (Gly versus Ser) in loop 8 of the 14-3-3 proteins that plays an important role in the observed isoform specificity. Mutating the Gly residue of 14-3-3A to the alternative residue, as found in 14-3-3B and 14-3-3C, turned it into a potent inhibitor of NR activity. Using surface plasmon resonance, we show that the ability of 14-3-3A and the mutated version to inhibit NR activity correlates well with their binding affinity for the 14-3-3 binding motif in the NR protein, indicating involvement of this residue in ligand discrimination. These results suggest that both the availability of 14-3-3 isoforms as well as binding affinity determine isoform-specific regulation of NR activity.
Collapse
Affiliation(s)
- Mark P Sinnige
- Department of Developmental Genetics, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
| | | | | | | | | | | |
Collapse
|
11
|
Paul AL, Sehnke PC, Ferl RJ. Isoform-specific subcellular localization among 14-3-3 proteins in Arabidopsis seems to be driven by client interactions. Mol Biol Cell 2005; 16:1735-43. [PMID: 15659648 PMCID: PMC1073656 DOI: 10.1091/mbc.e04-09-0839] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In most higher eukaryotes, the predominantly phosphoprotein-binding 14-3-3 proteins are the products of a multigene family, with many organisms having 10 or more family members. However, current models for 14-3-3/phosphopeptide interactions suggest that there is little specificity among 14-3-3s for diverse phosphopeptide clients. Therefore, the existence of sequence diversity among 14-3-3s within a single organism begs questions regarding the in vivo specificities of the interactions between the various 14-3-3s and their clients. Chief among those questions is, Do the different 14-3-3 isoforms interact with different clients within the same cell? Although the members of the Arabidopsis 14-3-3 family of proteins typically contain highly conserved regions of sequence, they also display distinctive variability with deep evolutionary roots. In the current study, a survey of several Arabidopsis 14-3-3/GFP fusions revealed that 14-3-3s demonstrate distinct and differential patterns of subcellular distribution, by using trichomes and stomate guard cells as in vivo experimental cellular contexts. The effects of client interaction on 14-3-3 localization were further analyzed by disrupting the partnering with peptide and chemical agents. Results indicate that 14-3-3 localization is both isoform specific and highly dependent upon interaction with cellular clients.
Collapse
Affiliation(s)
- Anna-Lisa Paul
- Department of Horticultural Sciences, Program in Plant Molecular and Cellular Biology, University of Florida, Gainesville, 32611, USA
| | | | | |
Collapse
|
12
|
Jaubert S, Laffaire JB, Ledger TN, Escoubas P, Amri EZ, Abad P, Rosso MN. Comparative analysis of two 14-3-3 homologues and their expression pattern in the root-knot nematode Meloidogyne incognita. Int J Parasitol 2004; 34:873-80. [PMID: 15157770 DOI: 10.1016/j.ijpara.2004.02.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2003] [Revised: 02/16/2004] [Accepted: 02/23/2004] [Indexed: 11/23/2022]
Abstract
14-3-3 proteins are highly conserved ubiquitous proteins found in all eukaryotic organisms. They are involved in various cellular processes including signal transduction, cell-cycle control, apoptosis, stress response and cytoskeleton organisation. We report here the cloning of two genes encoding 14-3-3 isoforms from the plant parasitic root-knot nematode Meloidogyne incognita, together with an analysis of their expression. Both genes were shown to be transcribed in unhatched second stage larvae, infective second stage larvae, adult males and females. The Mi-14-3-3-a gene was shown to be specifically transcribed in the germinal primordium of infective larvae, whereas Mi-14-3-3-b was transcribed in the dorsal oesophageal gland in larvae of this stage. The MI-14-3-3-B protein was identified by mass spectrometry in in vitro-induced stylet secretions from infective larvae. The stability and distribution of MI-14-3-3 proteins in host plant cells was assessed after stable expression of the corresponding genes in tobacco BY2 cells.
Collapse
Affiliation(s)
- S Jaubert
- INRA. Unité Interactions Plantes-Microorganismes et Santé Végétale. 400, Route des Chappes, BP 167, 06 903 Sophia Antipolis Cedex, France
| | | | | | | | | | | | | |
Collapse
|
13
|
Jeffares DC, Phillips MJ, Moore S, Veit B. A description of the Mei2-like protein family; structure, phylogenetic distribution and biological context. Dev Genes Evol 2004; 214:149-58. [PMID: 14986133 DOI: 10.1007/s00427-004-0384-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2003] [Accepted: 12/21/2003] [Indexed: 10/26/2022]
Abstract
The Schizosaccharomyces pombe Mei2 gene encodes an RNA recognition motif (RRM) protein that stimulates meiosis upon binding a specific non-coding RNA and subsequent accumulation in a "mei2-dot" in the nucleus. We present here the first systematic characterization of the family of proteins with characteristic Mei2-like amino acid sequences. Mei2-like proteins are an ancient eukaryotic protein family with three identifiable RRMs. The C-terminal RRM (RRM3) is unique to Mei2-like proteins and is the most highly conserved of the three RRMs. RRM3 also contains conserved sequence elements at its C-terminus not found in other RRM domains. Single copy Mei2-like genes are present in some fungi, in alveolates such as Paramecium and in the early branching eukaryote Entamoeba histolytica, while plants contain small families of Mei2-like genes. While the C-terminal RRM is highly conserved between plants and fungi, indicating conservation of molecular mechanisms, plant Mei2-like genes have changed biological context to regulate various aspects of developmental pattern formation.
Collapse
Affiliation(s)
- Daniel C Jeffares
- Department of Evolutionary Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark.
| | | | | | | |
Collapse
|
14
|
Abstract
The field of signal transduction has experienced a significant paradigm shift as a result of an increased understanding of the roles of 14-3-3 proteins. There are many cases where signal-induced phosphorylation itself may cause a change in protein function. This simple modification is, in fact, the primary basis of signal transduction events in many systems. There are a large and growing number of cases, however, where simple phosphorylation is not enough to effect a change in protein function. In these cases, the 14-3-3 proteins can be required to complete the change in function. Therefore signal transduction can be either the relatively simple process where phosphorylation alters target activity, or it can be a more complex, multistep process with the 14-3-3 proteins playing the major role of bringing the signal transduction event to completion. This makes 14-3-3-modulated signal transduction a more complicated process with additional avenues for regulation and variety. Adding further complexity to the process is the fact that 14-3-3 proteins are present as multigene families in most organisms (Aitken et al. Trends Biochem Sci 17: 498-501, 1992; Ferl Annu Rev Plant Physiol Plant Molecular Biology 47: 49-73, 1996), with each member of the family being differentially expressed in various tissues and with potentially differential affinity for various target proteins. This review focuses on the 14-3-3 family of Arabidopsis as a model for further developing understanding of the roles of the 14-3-3 proteins as modulators of signal transduction events in plants. The primary approaches to these questions are not unlike the approaches that would be used in the functional dissection of any multigene family, but the interpretation of these data will have wide implications since the 14-3-3 s physically interact with other protein families.
Collapse
Affiliation(s)
- Robert J. Ferl
- Program in Plant Molecular and Cellular Biology, Horticultural Sciences Department, University of Florida, Gainesville, FL 32601-0690, USA
| |
Collapse
|
15
|
Sato M, Watanabe Y, Akiyoshi Y, Yamamoto M. 14-3-3 protein interferes with the binding of RNA to the phosphorylated form of fission yeast meiotic regulator Mei2p. Curr Biol 2002; 12:141-5. [PMID: 11818066 DOI: 10.1016/s0960-9822(01)00654-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The switch from mitosis to meiosis is controlled by the Pat1(Ran1) kinase-Mei2p system in Schizosaccharomyces pombe. Mei2p promotes both premeiotic DNA synthesis and meiosis I, and its RNA binding ability is essential for these two processes. Mei2p forms a dot structure in the nucleus prior to meiosis I, aided by a specific RNA species named "meiRNA". Pat1 kinase phosphorylates Mei2p on two positions and downregulates its activity. Pat1 kinase undergoes inactivation under meiotic conditions, as a result of the production of a tethering pseudosubstrate Mei3p, and accumulation of the unphosphorylated form of Mei2p commits cells to meiosis. However, the mechanism of how phosphorylation of Mei2p suppresses its activity to induce meiosis remains largely unknown. Here we show that S. pombe Rad24p, a 14-3-3 protein, functions as a negative factor for meiosis by antagonizing the function of meiRNA to promote the formation of a nuclear Mei2p dot. Rad24p binds preferentially to Mei2p phosphorylated by Pat1 kinase. It inhibits association of meiRNA to the phosphorylated form of Mei2p but not to the unphosphorylated form in vitro. We speculate that Rad24p, bound tightly to the residues phosphorylated by Pat1 kinase, may mask the RNA recognition motifs on Mei2p. This model will explain, at least partly, why phosphorylation by Pat1 kinase inhibits the meiosis-inducing activity of Mei2p.
Collapse
Affiliation(s)
- Masamitsu Sato
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Hongo, Japan
| | | | | | | |
Collapse
|
16
|
Affiliation(s)
- M J van Hemert
- Institute for Molecular Plant Sciences, Leiden University, Wassenaarseweg 64, 2333 AL Leiden, The Netherlands
| | | | | |
Collapse
|