1
|
Tadjalli A, Mitchell GS. Cervical spinal 5-HT 2A and 5-HT 2B receptors are both necessary for moderate acute intermittent hypoxia-induced phrenic long-term facilitation. J Appl Physiol (1985) 2019; 127:432-443. [PMID: 31219768 DOI: 10.1152/japplphysiol.01113.2018] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Serotonin (5-HT) is a key regulator of spinal respiratory motor plasticity. For example, spinal 5-HT receptor activation is necessary for the induction of phrenic long-term facilitation (pLTF), a form of respiratory motor plasticity triggered by moderate acute intermittent hypoxia (mAIH). mAIH-induced pLTF is blocked by cervical spinal application of the broad-spectrum 5-HT-receptor antagonist, methysergide. However, methysergide does not allow distinctions between the relative contributions of different 5-HT receptor subtypes. Intravenous administration of the Gq protein-coupled 5-HT2A/2C receptor antagonist ketanserin blocks mAIH-induced pLTF when administered before, but not after, mAIH; thus, 5-HT2 receptor activation is necessary for the induction but not maintenance of mAIH-induced pLTF. However, systemic ketanserin administration does not identify the site of the relevant 5-HT2A/2C receptors. Furthermore, this approach does not differentiate between the roles of 5-HT2A versus 5-HT2C receptors, nor does it preclude involvement of other Gq protein-coupled metabotropic 5-HT receptors capable of eliciting long-lasting phrenic motor facilitation, such as 5-HT2B receptors. Here we tested the hypothesis that mAIH-induced pLTF requires cervical spinal 5-HT2 receptor activation and determined which 5-HT2 receptor subtypes are involved. Anesthetized, paralyzed, and ventilated adult male Sprague Dawley rats were pretreated intrathecally with cervical (~C3-C5) spinal injections of subtype selective 5-HT2A/2C, 5-HT2B, or 5-HT2C receptor antagonists before mAIH. Whereas cervical spinal 5-HT2C receptor inhibition had no impact on mAIH-induced pLTF, pLTF was no longer observed after pretreatment with either 5-HT2A/2C or 5-HT2B receptor antagonists. Furthermore, spinal pretreatment with an MEK/ERK MAPK inhibitor blocked phrenic motor facilitation elicited by intrathecal injections of 5-HT2A but not 5-HT2B receptor agonists. Thus, mAIH-induced pLTF requires concurrent cervical spinal activation of both 5-HT2A and 5-HT2B receptors. However, these distinct receptor subtypes contribute to phrenic motor facilitation via distinct downstream signaling cascades that differ in their requirement for ERK MAPK signaling. The demonstration that both 5-HT2A and 5-HT2B receptors make unique contributions to mAIH-induced pLTF advances our understanding of mechanisms that underlie 5-HT-induced phrenic motor plasticity.NEW & NOTEWORTHY Moderate acute intermittent hypoxia (mAIH) triggers a persistent enhancement in phrenic motor output, an effect termed phrenic long-term facilitation (pLTF). mAIH-induced pLTF is blocked by cervical spinal application of the broad-spectrum serotonin (5-HT) receptor antagonist methysergide, demonstrating the need for spinal 5-HT receptor activation. However, the exact type of 5-HT receptors required for initiation of pLTF remains unknown. To the best of out knowledge, the present study is the first to demonstrate that 1) spinal coactivation of two distinct Gq protein-coupled 5-HT2 receptor subtypes is necessary for mAIH-induced pLTF, and 2) these receptors contribute to pLTF via cascades that differ in their requirement for ERK MAPK signaling.
Collapse
Affiliation(s)
- Arash Tadjalli
- Center for Respiratory Research and Rehabilitation, Department of Physical Therapy and the McKnight Brain Institute, University of Florida, Gainesville, Florida
| | - Gordon S Mitchell
- Center for Respiratory Research and Rehabilitation, Department of Physical Therapy and the McKnight Brain Institute, University of Florida, Gainesville, Florida
| |
Collapse
|
2
|
Ogata M, Akita H, Ishibashi H. Behavioral responses to anxiogenic tasks in young adult rats with neonatal dopamine depletion. Physiol Behav 2019; 204:10-19. [PMID: 30738032 DOI: 10.1016/j.physbeh.2019.02.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 01/29/2019] [Accepted: 02/05/2019] [Indexed: 12/19/2022]
Abstract
The dopaminergic neural system plays a crucial role in motor regulation as well as regulation of anxiety-related behaviors. Although rats with neonatal dopamine depletion exhibit motor hyperactivity and have been utilized as animal models of attention deficit hyperactivity disorder, characterization of their behavior under anxiogenic conditions is lacking. In the present study, we investigated behavioral responses to anxiogenic stimuli in young adult rats with neonatal dopamine depletion using the open field (OF), elevated plus maze (EPM), and light/dark (L/B) box tests. The OF and EPM tests were performed under low-light and bright-light conditions. The ameliorative effects of pretreatment with methamphetamine (MAP) or atomoxetine (ATX) on abnormal behaviors induced by neonatal dopamine depletion were also assessed. Rats that underwent 6-hydroxydopamine treatment 4 day after birth showed significant increases in motor activity and decreases in anxiety-related behaviors in OF tests under both conditions and in EPM tests under bright-light conditions. Furthermore, rats with neonatal dopamine depletion did not show normal behavioral responsiveness to changes in the intensity of anxiogenic stimuli. Pretreatment with MAP (4 mg/kg) and ATX (1.2 mg/kg/day) ameliorated motor hyperactivity but not abnormal anxiety-related behaviors. These results suggest that the dopaminergic system plays a crucial role in the development of neural networks involved in locomotion as well as in those involved in anxiety-related behavior. The results indicate that the mechanisms underlying the abnormal anxiolytic responses partially differ from those underlying motor hyperactivity.
Collapse
Affiliation(s)
- Masanori Ogata
- Department of Physiology, School of Allied Health Sciences, Kitasato University, 1-15-1, Kitasato Minami-ku, Sagamihara, Kanagawa 252-0373, Japan.
| | - Hisanao Akita
- Department of Physiology, School of Allied Health Sciences, Kitasato University, 1-15-1, Kitasato Minami-ku, Sagamihara, Kanagawa 252-0373, Japan.
| | - Hitoshi Ishibashi
- Department of Physiology, School of Allied Health Sciences, Kitasato University, 1-15-1, Kitasato Minami-ku, Sagamihara, Kanagawa 252-0373, Japan.
| |
Collapse
|
3
|
Li L, Qiu G, Ding S, Zhou FM. Serotonin hyperinnervation and upregulated 5-HT2A receptor expression and motor-stimulating function in nigrostriatal dopamine-deficient Pitx3 mutant mice. Brain Res 2012; 1491:236-50. [PMID: 23159831 DOI: 10.1016/j.brainres.2012.11.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 10/29/2012] [Accepted: 11/08/2012] [Indexed: 10/27/2022]
Abstract
The striatum receives serotonin (5-hydroxytryptamine, 5-HT) innervation and expresses 5-HT2A receptors (5-HT2ARs) and other 5-HT receptors, raising the possibility that the striatal 5-HT system may undergo adaptive changes after chronic severe dopamine (DA) loss and contribute to the function and dysfunction of the striatum. Here we show that in transcription factor Pitx3 gene mutant mice with a selective, severe DA loss in the dorsal striatum mimicking the DA denervation in late Parkinson's disease (PD), both the 5-HT innervation and the 5-HT2AR mRNA expression were increased in the dorsal striatum. Functionally, while having no detectable motor effect in wild type mice, the 5-HT2R agonist 2,5-dimethoxy-4-iodoamphetamine increased both the baseline and l-dopa-induced normal ambulatory and dyskinetic movements in Pitx3 mutant mice, whereas the selective 5-HT2AR blocker volinanserin had the opposite effects. These results demonstrate that Pitx3 mutant mice are a convenient and valid mouse model to study the compensatory 5-HT upregulation following the loss of the nigrostriatal DA projection and that the upregulated 5-HT2AR function in the DA deficient dorsal striatum may enhance both normal and dyskinetic movements.
Collapse
Affiliation(s)
- Li Li
- Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | | | | |
Collapse
|
4
|
Maternal para-chlorophenylalanine exposure modifies central monoamines and behaviors in the adult offspring. Brain Res 2008; 1234:1-7. [DOI: 10.1016/j.brainres.2008.07.064] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Revised: 07/15/2008] [Accepted: 07/18/2008] [Indexed: 01/12/2023]
|
5
|
Brown P, Gerfen CR. Plasticity within striatal direct pathway neurons after neonatal dopamine depletion is mediated through a novel functional coupling of serotonin 5-HT2 receptors to the ERK 1/2 map kinase pathway. J Comp Neurol 2006; 498:415-30. [PMID: 16871540 PMCID: PMC2585776 DOI: 10.1002/cne.21034] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Dysfunction within the striatal direct and indirect projecting systems arises after 6-hydroxydopamine (6-OHDA)-induced dopamine depletion, highlighting the central regulatory function of dopamine in motor systems. However, the striatal 5-hydroxytryptamine (5-HT) innervation remains intact after 6-OHDA lesions, suggesting that the 5-HT system may contribute to the lesion-induced dysfunction, or alternatively, it may adapt and compensate for the dopamine deficit. Neonatal 6-OHDA lesions actually give rise to a 5-HT axonal hyperinnervation within the dorsal striatum, further reinforcing the idea that the 5-HT system plays a central role in striatal function after dopamine depletion. Here we show that neonatal but not adult 6-OHDA lesions result in a novel coupling of 5-HT2 receptors to the ERK1/2/MAP Kinase pathway, a signaling cascade known to regulate neuronal plasticity. Chloroamphetamine-induced 5-HT release or direct stimulation of striatal 5-HT2 receptors via the 5-HT2 agonist DOI, produced robust ERK1/2 phosphorylation throughout the dorsal striatum of neonatal lesioned animals, a response not observed within the intact striatum. Pretreatment with the select 5-HT2 receptor antagonist Ketanserin blocked DOI-induced ERK1/2 phosphorylation. This drug-induced ERK1/2 phosphorylation was subsequently shown to be restricted to direct pathway striatal neurons. Our data show that adaptation of direct pathway neurons after neonatal 6-OHDA lesions involves coupling of 5-HT2 receptors to the ERK1/2/MAP Kinase cascade, a pathway not typically active in these neurons. Because dopamine-mediated signaling is redundant after 6-OHDA lesions, 5-HT-mediated stimulation of the ERK1/2/MAP Kinase pathway may provide an alternative signaling route allowing the regulation of neuronal gene expression and neuronal plasticity in the absence of dopamine.
Collapse
Affiliation(s)
- Pierre Brown
- Laboratory of Systems Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
6
|
Sivam SP, Cox J. Postnatal administration of D1 dopamine agonist reverses neonatal dopaminergic lesion-induced changes in striatal enkephalin and substance P systems. Brain Res 2006; 1073-1074:159-63. [PMID: 16455064 DOI: 10.1016/j.brainres.2005.12.076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Revised: 12/11/2005] [Accepted: 12/15/2005] [Indexed: 10/25/2022]
Abstract
The present study examined the effects of postnatal dopamine (DA) receptor stimulation on enkephalin (Met5-enkephalin; ME) and tachykinin (substance P; SP) systems of basal ganglia of rats, lesioned as neonates with 6-hydroxydopamine (6-OHDA, intracisternally) on the third postnatal day. D1 agonist, SKF-38393 or D2 agonist, LY-171555 (also known as quinpirole) was administered s.c. twice daily for 14 days, beginning 24 h after 6-OHDA administration. The animals were sacrificed at 60 days of age, and the concentrations of striatal DA, SP, and ME were determined by HPLC or radioimmunoassay. As expected, 6-OHDA induced a severe loss of DA, an increase in ME, and a decrease in SP. SKF-38393, but not, quinpirole significantly reversed the lesion-induced changes in ME and SP levels. The results indicate an important role for D1 receptors in the postnatal development of ME and SP systems in the striatum. These studies are relevant to our further understanding of potential early interventions in the progression and expression of DA deficiency states such as Parkinsonism and Lesch-Nyhan disease.
Collapse
Affiliation(s)
- Subbiah P Sivam
- Department of Pharmacology and Toxicology, Indiana University School of Medicine-Northwest, 3400 Broadway, Gary, IN 46408, USA.
| | | |
Collapse
|
7
|
Masuo Y, Morita M, Oka S, Ishido M. Motor hyperactivity caused by a deficit in dopaminergic neurons and the effects of endocrine disruptors: a study inspired by the physiological roles of PACAP in the brain. ACTA ACUST UNITED AC 2005; 123:225-34. [PMID: 15518916 DOI: 10.1016/j.regpep.2004.05.010] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Recent studies have revealed that the pituitary adenylate cyclase-activating polypeptide (PACAP) might act as a psychostimulant. Here we investigated the mechanisms underlying motor hyperactivity in patients with pervasive developmental disorders, such as autism, and attention-deficit hyperactivity disorder (ADHD). We studied the effects of intracisternal administration of 6-hydroxydopamine (6-OHDA) or endocrine disruptors (EDs) on spontaneous motor activity (SMA) and multiple gene expression in neonatal rats. Treatment with 6-OHDA caused significant hyperactivity during the dark phase in rats aged 4-5 weeks. Motor hyperactivities also were observed after treatment with endocrine disruptors, such as bisphenol A, nonylphenol, diethylhexyl phthalate and dibutyl phthalate, during both dark and light phases. Gene-expression profiles produced using cDNA macroarrays of 8-week-old rats with 6-OHDA lesions revealed the altered expression of several classes of gene, including the N-methyl-D-aspartate (NMDA) receptor 1, glutamate/aspartate transporter, gamma-aminobutyric-acid transporter, dopamine transporter 1, D4 receptor, and peptidergic elements such as the galanin receptor, arginine vasopressin receptor, neuropeptide Y and tachykinin 2. The changes in gene expression caused by treatment with endocrine disruptors differed from those induced by 6-OHDA. These results suggest that the mechanisms underlying the induction of motor hyperactivity and/or compensatory changes in young adult rats might differ between 6-OHDA and endocrine disruptors.
Collapse
Affiliation(s)
- Yoshinori Masuo
- Human Stress Signal Research Center, National Institute of Advanced Industrial Science and Technology, Tsukuba Central 6, 1-1-1 Higashi, Tsukuba 305-8566, Japan.
| | | | | | | |
Collapse
|
8
|
Bishop C, Tessmer JL, Ullrich T, Rice KC, Walker PD. Serotonin 5-HT2A Receptors Underlie Increased Motor Behaviors Induced in Dopamine-Depleted Rats by Intrastriatal 5-HT2A/2C Agonism. J Pharmacol Exp Ther 2004; 310:687-94. [PMID: 15044557 DOI: 10.1124/jpet.104.066365] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Gene expression studies have suggested that dopamine (DA) depletion increases the sensitivity of striatal direct pathway neurons to the effects of serotonin (5-HT) via the 5-HT(2) receptor. The present study examined the possible influence(s) of 5-HT(2A) or 5-HT(2C) receptor-mediated signaling locally within the striatum on motor behavior triggered by 5-HT(2) receptor agonism in the neonatal DA-depleted rat. Male Sprague-Dawley rats were treated with 6-hydroxydopamine (6-OHDA; 60 microg in 5 microl per lateral ventricle) on postnatal day 3 to achieve near-total DA depletion bilaterally. Sixty days later, sham-operated (saline-injected) or 6-OHDA-treated rats were challenged with the 5-HT(2A/2C) agonist DOI [(+/-)-1-(4-iodo-2,5-dimethoxyphenyl)-2-aminopropane] or saline either by systemic treatment or bilateral intrastriatal infusion. Motor behavior was quantified for 60 min after agonist injection using computerized activity monitors. Systemic DOI treatment (0.2 or 2.0 mg/kg i.p.) was more effective in inducing motor activity in the DA-depleted group compared with intact controls. Intrastriatal DOI infusion (1.0 or 10.0 microg/side) also produced a significant rise in motor activity in the DA-depleted group during the 30- to 60-min period of behavioral analysis but did not influence behavior in intact animals. The effects of intrastriatal DOI infusion were blocked by intrastriatal coinfusion of the 5-HT(2) antagonist ketanserin (1.0 microg) and the 5-HT(2A)-preferring antagonist M100907 [(R)(+)-alpha-(2,3-dimethoxyphenyl)-1-[2-(4-fluorophenyl)ethyl]-4-piperidinemethanol; 1.0 microg] but not the 5-HT(2C)-preferring antagonist RS102221 [8-[5-(2,4-dimethoxy-5-(4-trifluoromethylsulfo-amido)phenyl-5-oxopentyl]-1,3,8-triazaspiro[4.5]decane-2,4-dione; 1.0 microg]. Such results support the hypothesis that 5-HT(2A) receptor-mediated signaling events are strengthened within the striatum under conditions of DA depletion to provide a more potent regulation of motor activity.
Collapse
Affiliation(s)
- Christopher Bishop
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI 48201, USA
| | | | | | | | | |
Collapse
|
9
|
Bishop C, Walker PD. Combined intrastriatal dopamine D1 and serotonin 5-HT2 receptor stimulation reveals a mechanism for hyperlocomotion in 6-hydroxydopamine-lesioned rats. Neuroscience 2004; 121:649-57. [PMID: 14568025 DOI: 10.1016/s0306-4522(03)00516-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Loss of dopaminergic innervation to the striatum increases the sensitivity of dopamine (DA) D1 and serotonin (5-HT) 5-HT2 receptor signaling. Previous work from our laboratory has shown that systemic co-administration of D1 and 5-HT2 receptor agonists leads to the synergistic overexpression of striatal preprotachykinin mRNA levels in the DA-depleted, but not intact animals. In the present study, we examined this mechanism as related to locomotor behavior. Adult male Sprague-Dawley rats were subject to bilateral i.c.v. 6-hydroxydopamine (6-OHDA; 200 microg in 10 microl/side) or vehicle (0.9% saline and 0.1% ascorbic acid). After 3 weeks, rats were tested for locomotor responses to bilateral intrastriatal infusions of vehicle (0.9% NaCl), the D1 agonist SKF82958 [(+/-)6-chloro-7,8-dihydroxy-3-allyl-1-phenyl-2,3,4,5-tetra-hydro-(1H)-3-benzazepine hydrobromide; 0.1, 1.0 or 10.0 microg/side], the 5-HT2 agonist DOI [(+/-)-1-(4-iodo-2,5-dimethoxyphenyl)-2-aminopropane; 0.1, 1.0 or 10.0 microg/side] or subthreshold doses of DOI and SKF82958 (0.1 microg+0.1 microg in 0.8 microl/side). Rats with DA loss demonstrated supersensitive locomotor responses to SKF82958, but not DOI. Combined administration of subthreshold SKF82958 and DOI doses (0.1 microg+0.1 microg) synergistically increased locomotor behavior only in 6-OHDA-lesioned rats. These effects were blocked by either the D1 antagonist SCH23390 3-methyl-1-phenyl-2,3,4,5-tetrahydro-7-chloro-8-hydroxy-(1H)-3-benzazepine or the 5-HT2 antagonist ritanserin (each 1.0 microg in 0.8 microl/side). The results of this study suggest that the behavioral synergy induced by local co-stimulation of D1 and 5-HT2 receptors within the 6-OHDA-lesioned striatum may lead to hyperkinesias that can occur with continued pharmacological treatment of Parkinson's disease.
Collapse
Affiliation(s)
- C Bishop
- Department of Anatomy and Cell Biology, Wayne State University, School of Medicine, Detroit, MI 48201, USA
| | | |
Collapse
|
10
|
Abstract
This paper is the twenty-third installment of the annual review of research concerning the opiate system. It summarizes papers published during 2000 that studied the behavioral effects of the opiate peptides and antagonists, excluding the purely analgesic effects, although stress-induced analgesia is included. The specific topics covered this year include stress; tolerance and dependence; learning, memory, and reward; eating and drinking; alcohol and other drugs of abuse; sexual activity, pregnancy, and development; mental illness and mood; seizures and other neurological disorders; electrical-related activity; general activity and locomotion; gastrointestinal, renal, and hepatic function; cardiovascular responses; respiration and thermoregulation; and immunological responses.
Collapse
Affiliation(s)
- A L Vaccarino
- Department of Psychology, University of New Orleans, New Orleans, LA 70148, USA.
| | | |
Collapse
|
11
|
Campbell BM, Gresch PJ, Walker PD. Neonatal dopamine depletion reveals a synergistic mechanism of mRNA regulation that is mediated by dopamine(D1) and serotonin(2) receptors and is targeted to tachykinin neurons of the dorsomedial striatum. Neuroscience 2001; 105:671-80. [PMID: 11516832 DOI: 10.1016/s0306-4522(01)00218-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
It has been hypothesized that dopamine(D1) and serotonin(2) receptors become sensitized to agonist-mediated regulation of gene expression following loss of dopaminergic innervation to the striatum. We have previously demonstrated that the combined administration of dopamine(D1) and serotonin(2) receptor agonists to dopamine-depleted adult rats induced preprotachykinin mRNA expression within the periventricular rostral striatum to levels which were significantly different than what could be elicited by either agonist alone. In the present study, we have determined that this phenomenon is revealed only after dopamine depletion. In addition, it is targeted primarily to tachykinin producing neurons of the dorsomedial striatum and is dependent on both dopamine(D1) and serotonin(2) receptor activation. Preprotachykinin mRNA levels in the intact striatum were unaltered 4 h following an i.p. injection of either SKF-38393 (1 mg/kg, dopamine(D1) partial agonist) or (+/-)-1-(4-Iodo-2,5-dimethoxyphenyl)-2-aminopropane (DOI 1 mg/kg, serotonin(2) agonist). However, the combined application of both agonists increased (+44%) preprotachykinin message levels, but these changes were restricted to the dorsomedial striatum. In adult animals depleted of dopamine as neonates, striatal preprotachykinin mRNA expression was reduced by approximately 50%. From this lowered level of basal expression, DOI or SKF-38393 raised preprotachykinin mRNA levels within the dorsomedial, but not the dorsolateral striatum. Furthermore, co-stimulation of dopamine(D1) and serotonin(2) receptors produced a nearly four-fold induction of preprotachykinin message levels in the dorsomedial striatum that was significantly greater than either agonist alone. Application of both agonists also elevated preprotachykinin mRNA expression within the dorsolateral striatum, but to a lesser extent. All increases in preprotachykinin mRNA resulting from co-application of SKF-38393 and DOI were prevented by pretreatment with either SCH-23390 (1 mg/kg, dopamine(D1) antagonist) or ritanserin (1 mg/kg, serotonin(2) antagonist). Alternately, preproenkephalin mRNA expression was unaffected by dopamine(D1) receptor stimulation, but was slightly elevated by DOI or both agonists together (42-58%) in intact animals. However, neither agonist treatment in this experiment significantly altered preproenkephalin mRNA expression in the dopamine-depleted striatum which was elevated in response to dopamine lesion alone. Dopamine depletion appears to promote a synergistic interaction between dopamine(D1) and serotonin(2) receptors that leads to enhanced expression of striatal preprotachykinin mRNA levels. The localization of this phenomenon to tachykinin neurons of the direct striatonigral pathway specifically within the dorsomedial regions of the rostral striatum may be relevant to the problem of dyskinetic behaviors which arise during the pharmacological treatment of movement disorders.
Collapse
MESH Headings
- 3,4-Dihydroxyphenylacetic Acid/metabolism
- Aging/physiology
- Animals
- Animals, Newborn/metabolism
- Dopamine/metabolism
- Dopamine Agonists/pharmacology
- Dopamine Antagonists/pharmacology
- Drug Synergism
- Enkephalins/genetics
- Gene Expression Regulation, Developmental/drug effects
- Gene Expression Regulation, Developmental/physiology
- Male
- Movement Disorders/drug therapy
- Movement Disorders/metabolism
- Movement Disorders/physiopathology
- Neostriatum/drug effects
- Neostriatum/growth & development
- Neostriatum/metabolism
- Neurons/drug effects
- Neurons/metabolism
- Oxidopamine/pharmacology
- Protein Precursors/genetics
- RNA, Messenger/drug effects
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Dopamine D1/drug effects
- Receptors, Dopamine D1/metabolism
- Receptors, Serotonin/drug effects
- Receptors, Serotonin/metabolism
- Serotonin Antagonists/pharmacology
- Serotonin Receptor Agonists/pharmacology
- Tachykinins/biosynthesis
- Tachykinins/drug effects
- Tachykinins/genetics
Collapse
Affiliation(s)
- B M Campbell
- Cellular and Clinical Neurobiology Program, Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | |
Collapse
|
12
|
Campbell BM, Walker PD. NMDA receptor antagonism modifies the synergistic regulation of striatal tachykinin gene expression induced by dopamine D(1) and serotonin(2) receptor stimulation following neonatal dopamine depletion. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2001; 93:90-4. [PMID: 11532342 DOI: 10.1016/s0169-328x(01)00156-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Co-application of SKF-38393 (dopamine D(1) agonist; 1 mg/kg) and DOI (serotonin(2) agonist; 1 mg/kg) induced a synergistic increase in striatal preprotachykinin (PPT) mRNA levels in adult rats 60 days after neonatal intracerebroventricular injection of 6-hydroxydopamine. This magnitude of response was not observed in intact (vehicle-injected) rats and was restricted to the dorsomedial (DM, 333+/-25% of lesion) subregion of the anterior striatum, with smaller increases observed in the dorsolateral striatum (DL, 206+/-26% of lesion). A single i.p. injection of MK-801 (NMDA antagonist; 0.1 mg/kg) administered prior to dopamine D(1) (D(1)) and serotonin(2) (5-HT(2)) receptor co-stimulation suppressed the synergistic regulation of PPT mRNA expression in the DM striatum, but also produced a large increase in PPT message levels within the DL striatum (321+/-17% of lesion). These data suggest that the synergistic regulation of PPT mRNA within the DM striatum induced by D(1)/5-HT(2) receptor co-stimulation in the dopamine lesioned rat is dependent on NMDA receptor activity. However, MK-801 may simultaneously potentiate striatal PPT mRNA expression by a separate mechanism due to the changed environment of the dopamine-depleted basal ganglia.
Collapse
Affiliation(s)
- B M Campbell
- Cellular and Clinical Neurobiology Program, Department of Psychiatry and Behavioral Neurosciences, Wayne State University, School of Medicine, Detroit, MI 48201, USA
| | | |
Collapse
|
13
|
Basura GJ, Walker PD. Serotonin 2A receptor regulation of striatal neuropeptide gene expression is selective for tachykinin, but not enkephalin neurons following dopamine depletion. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2001; 92:66-77. [PMID: 11483243 DOI: 10.1016/s0169-328x(01)00151-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Serotonin (5-HT) 2A receptor-mediated regulation of striatal preprotachykinin (PPT) and preproenkephalin (PPE) mRNAs was studied in adult rodents that had been subjected to near-total dopamine (DA) depletion as neonates. Two months following bilateral 6-hydroxydopamine (6-OHDA) lesion, PPT mRNA levels decreased 59-73% across dorsal subregions of the rostral and caudal striatum while PPE transcripts increased 61-94%. Four hours after a single injection of the serotonin 2A/2C receptor agonist, (+/-)-1-(2,5-Dimethoxy-4-iodophenyl)-2-aminopropane (DOI; 1 mg/kg), PPT mRNA expression was significantly increased in DA-depleted rats across all dorsal subregions of the rostral and caudal striatum as compared to 6-OHDA-treated animals alone. In the intact rat, DOI did not influence PPT mRNA levels in the rostral striatum, but did raise expression in the caudal striatum where 5-HT2A receptors are prominent. DOI did not regulate PPE mRNA levels in any striatal sub-region of the intact or DA-depleted rat. Prior administration of the 5-HT2A/2C receptor antagonist, ritanserin (1 mg/kg) or the 5-HT2A receptor antagonist, ketanserin (1 mg/kg) completely blocked the DOI-induced increases in striatal PPT mRNA in both lesioned and intact animals. The ability of ketanserin to produce identical results as ritanserin suggests that 5-HT2A receptor-mediated regulation is selectively strengthened within tachykinin neurons of the rostral striatum which are suppressed by DA depletion. The selectivity suggests that 5-HT2A receptor upregulation following DA depletion is capable of regulating tachykinin biosynthesis without influencing enkephalin expression in striatal output neurons.
Collapse
Affiliation(s)
- G J Basura
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, MI 48201, USA
| | | |
Collapse
|
14
|
Basura GJ, Zhou SY, Walker PD, Goshgarian HG. Distribution of Serotonin 2A and 2C Receptor mRNA Expression in the Cervical Ventral Horn and Phrenic Motoneurons Following Spinal Cord Hemisection. Exp Neurol 2001; 169:255-63. [PMID: 11358440 DOI: 10.1006/exnr.2001.7682] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cervical spinal cord injury leads to a disruption of bulbospinal innervation from medullary respiratory centers to phrenic motoneurons. Animal models utilizing cervical hemisection result in inhibition of ipsilateral phrenic nerve activity, leading to paralysis of the hemidiaphragm. We have previously demonstrated a role for serotonin (5-HT) as one potential modulator of respiratory recovery following cervical hemisection, a mechanism that likely occurs via 5-HT2A and/or 5-HT2C receptors. The present study was designed to specifically examine if 5-HT2A and/or 5-HT2C receptors are colocalized with phrenic motoneurons in both intact and spinal-hemisected rats. Adult female rats (250-350 g; n = 6 per group) received a left cervical (C2) hemisection and were injected with the fluorescent retrograde neuronal tracer Fluorogold into the left hemidiaphragm. Twenty-four hours later, animals were killed and spinal cords processed for in situ hybridization and immunohistochemistry. Using (35)S-labeled cRNA probes, cervical spinal cords were probed for 5-HT2A and 5-HT2C receptor mRNA expression and double-labeled using an antibody to Fluorogold to detect phrenic motoneurons. Expression of both 5-HT2A and 5-HT2C receptor mRNA was detected in motoneurons of the cervical ventral horn. Despite positive expression of both 5-HT2A and 5-HT2C receptor mRNA-hybridization signal over phrenic motoneurons, only 5-HT2A silver grains achieved a signal-to-noise ratio representative of colocalization. 5-HT2A mRNA levels in identified phrenic motoneurons were not significantly altered following cervical hemisection compared to sham-operated controls. Selective colocalization of 5-HT2A receptor mRNA with phrenic motoneurons may have implications for recently observed 5-HT2A receptor-mediated regulation of respiratory activity and/or recovery in both intact and injury-compromised states.
Collapse
MESH Headings
- Animals
- Anterior Horn Cells/metabolism
- Anterior Horn Cells/pathology
- Female
- Gene Expression Regulation
- Immunohistochemistry
- In Situ Hybridization
- Motor Neurons/metabolism
- Motor Neurons/pathology
- Phrenic Nerve/metabolism
- Phrenic Nerve/pathology
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- Rats
- Rats, Sprague-Dawley
- Receptor, Serotonin, 5-HT2A
- Receptor, Serotonin, 5-HT2C
- Receptors, Serotonin/analysis
- Receptors, Serotonin/genetics
- Reference Values
- Spinal Cord Injuries/genetics
- Spinal Cord Injuries/metabolism
- Spinal Cord Injuries/pathology
- Transcription, Genetic
Collapse
Affiliation(s)
- G J Basura
- Department of Anatomy and Cell Biology, The Cellular and Clinical Neurobiology Program, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, MI 48201, USA
| | | | | | | |
Collapse
|