1
|
Liu A, Zhao Y, Shen H, Ding Z, Deng HW. ResSAT: Enhancing Spatial Transcriptomics Prediction from H&E- Stained Histology Images with Interactive Spot Transformer. RESEARCH SQUARE 2024:rs.3.rs-4707959. [PMID: 39149477 PMCID: PMC11326376 DOI: 10.21203/rs.3.rs-4707959/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Spatial transcriptomics (ST) revolutionizes RNA quantification with high spatial resolution. Hematoxylin and eosin (H&E) images, the gold standard in medical diagnosis, offer insights into tissue structure, correlating with gene expression patterns. Current methods for predicting spatial gene expression from H&E images often overlook spatial relationships. We introduce ResSAT (Residual networks - Self-Attention Transformer), a framework generating spatially resolved gene expression profiles from H&E images by capturing tissue structures and using a self-attention transformer to enhance prediction.Benchmarking on 10× Visium datasets, ResSAT significantly outperformed existing methods, promising reduced ST profiling costs and rapid acquisition of numerous profiles.
Collapse
|
2
|
Yusuf IH, Garrett A, MacLaren RE, Issa PC. Retinal cadherins and the retinal cadherinopathies: Current concepts and future directions. Prog Retin Eye Res 2022; 90:101038. [DOI: 10.1016/j.preteyeres.2021.101038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 12/13/2021] [Accepted: 12/20/2021] [Indexed: 12/18/2022]
|
3
|
Gan L, Yang C, Shu Y, Liu F, Sun R, Deng B, Xu J, Huang G, Qu C, Gong B, Li J. Identification of a novel homozygous nonsense mutation in the CDHR1 gene in a Chinese family with autosomal recessive retinitis pigmentosa. Clin Chim Acta 2020; 507:17-22. [PMID: 32277948 DOI: 10.1016/j.cca.2020.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/07/2020] [Accepted: 04/07/2020] [Indexed: 11/20/2022]
Abstract
BACKGROUND Retinitis pigmentosa (RP) is a group of hereditary retinal diseases that often lead to blindness. Although 80 genes associated with RP have been observed, the genetic mechanism of approximately 40% RP cases remains unknown. This study was to investigate the disease-causing gene in a Han Chinese family with autosomal recessive RP (arRP). METHODS A Chinese arRP family (RP-2373), consisting of three affected siblings and eight unaffected family members, was recruited in this study. All participants underwent complete ophthalmic examinations, including visual field testing, best-corrected visual acuity, fundus photography and electroretinography. Whole exome sequencing was performed on the three patients and Sanger sequencing was utilized to confirm the mutations identified in all family members and 2010 unrelated controls. RESULTS A novel homozygous nonsense mutation, c.1231C > T (p.Q411X) in the Cadherin-Related Family Member 1 (CDHR1) gene was identified in the RP-2373 family. The proband and her two affected sisters were found to carry a homozygous mutation that led to a substitution of Glutamine to a stop codon. Other unaffected members and 2010 ethnic-matched controls lacked this mutation. These data showed a complete co-segregation of the CDHR1 mutation with arRP in this family. The p.Q411X mutation was observed to affect highly conserved amino acid residue of CHDR1. CONCLUSION Our study expanded the CDHR1 mutation spectrum of RP in the Chinese population, which might help to better understand RP molecular pathogenesis.
Collapse
Affiliation(s)
- Li Gan
- Department of Laboratory Medicine and Key Laboratory for Human Disease Gene Study of Sichuan Province, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Chen Yang
- Department of Laboratory Medicine and Key Laboratory for Human Disease Gene Study of Sichuan Province, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yi Shu
- School of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Fang Liu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ruiting Sun
- Department of Laboratory Medicine and Key Laboratory for Human Disease Gene Study of Sichuan Province, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Bolin Deng
- Department of Ophthalmology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Jiaxin Xu
- Department of Laboratory Medicine and Key Laboratory for Human Disease Gene Study of Sichuan Province, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Guo Huang
- Department of Laboratory Medicine and Key Laboratory for Human Disease Gene Study of Sichuan Province, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Chao Qu
- Department of Ophthalmology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Bo Gong
- Department of Laboratory Medicine and Key Laboratory for Human Disease Gene Study of Sichuan Province, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Institute of Chengdu Biology, Sichuan Translational Medicine Hospital, Chinese Academy of Sciences, Chengdu 610072, China.
| | - Jing Li
- Department of Ophthalmology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China.
| |
Collapse
|
4
|
Singaraju GS, Sagar A, Kumar A, Samuel JS, Hazra JP, Sannigrahi MK, Yennamalli RM, Ashish , Rakshit S. Structural basis of the strong cell-cell junction formed by cadherin-23. FEBS J 2019; 287:2328-2347. [PMID: 31729176 PMCID: PMC7317872 DOI: 10.1111/febs.15141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 08/13/2019] [Accepted: 11/13/2019] [Indexed: 12/03/2022]
Abstract
Cadherin-23, a giant atypical cadherin, forms homophilic interactions at the cell-cell junction of epithelial cells and heterophilic interactions with protocadherin-15 at the tip-links of neuroepithelial cells. While the molecular structure of the heterodimer is solved, the homodimer structure is yet to be resolved. The homodimers play an essential role in cell-cell adhesion as the downregulation of cadherin-23 in cancers loosen the intercellular junction resulting in faster-migration of cancer cells and a significant drop in patient survival. In vitro studies have measured a stronger aggregation-propensity of cadherin-23 compared to typical E-cadherin. Here, we deciphered the unique trans-homodimer structure of cadherin-23 in solution, and show that it consists of two electrostatic-based interfaces extended up to two terminal domains. The interface is robust, with a low off-rate of ~8x10-4 s-1 that supports its strong aggregation-propensity. We identified a point-mutation, E78K, that disrupts this binding. Interestingly, a mutation at the interface was reported in skin cancer. Overall, the structural basis of the strong cadherin-23 adhesion may have far-reaching applications in the fields of mechanobiology and cancer.
Collapse
Affiliation(s)
- Gayathri S. Singaraju
- Department of Chemical SciencesIndian Institute of Science Education and Research MohaliPunjabIndia
| | - Amin Sagar
- Department of Chemical SciencesIndian Institute of Science Education and Research MohaliPunjabIndia
| | - Anuj Kumar
- Department of Physical SciencesIndian Institute of Science Education and Research MohaliPunjabIndia
| | - Jesse S. Samuel
- Department of Chemical SciencesIndian Institute of Science Education and Research MohaliPunjabIndia
| | - Jagadish P. Hazra
- Department of Chemical SciencesIndian Institute of Science Education and Research MohaliPunjabIndia
| | - Malay K. Sannigrahi
- Department of Chemical SciencesIndian Institute of Science Education and Research MohaliPunjabIndia
| | - Ragothaman M. Yennamalli
- Department of Biotechnology and BioinformaticsJaypee University of Information TechnologyWaknaghatIndia
| | - Ashish
- Institute of Microbial Technology (CSIR)ChandigarhIndia
| | - Sabyasachi Rakshit
- Department of Chemical SciencesIndian Institute of Science Education and Research MohaliPunjabIndia
- Centre for Protein Science Design and EngineeringIndian Institute of Science Education and Research MohaliPunjabIndia
| |
Collapse
|
5
|
A Japanese family with cone-rod dystrophy of delayed onset caused by a compound heterozygous combination of novel CDHR1 frameshift and known missense variants. Hum Genome Var 2019; 6:18. [PMID: 30992995 PMCID: PMC6459921 DOI: 10.1038/s41439-019-0048-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 02/06/2023] Open
Abstract
We analyzed two siblings in a Japanese family with delayed onset cone-rod dystrophy (CRD) using whole-exome sequencing. A novel frameshift c.1106dup (p.H370Afs*17) variant and a known missense c.2027 T > A (p.I676N) variant in CDHR1 were identified. Both patients shared the same variants, although they displayed a significant difference in disease severity. A meta-analysis of the relationship between the severity and the variant type was performed using the reported cases in the literature and did not reveal a definitive correlation.
Collapse
|
6
|
Fu J, Ma L, Cheng J, Yang L, Wei C, Fu S, Lv H, Chen R, Fu J. A novel, homozygous nonsense variant of the CDHR1 gene in a Chinese family causes autosomal recessive retinal dystrophy by NGS-based genetic diagnosis. J Cell Mol Med 2018; 22:5662-5669. [PMID: 30160356 PMCID: PMC6201214 DOI: 10.1111/jcmm.13841] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/05/2018] [Accepted: 07/15/2018] [Indexed: 01/10/2023] Open
Abstract
Retinal dystrophy is an inherited, heterogeneous, chronic and progressive disorder of visual functions. The mutations of patients with autosomal recessive retinal retinopathy cone‐and‐rod dysfunction and macular dystrophy have not been well described in the Chinese population. In this study, a three‐generation Chinese retinal dystrophy family was recruited. Ophthalmic examinations were performed. Targeted next generation sequencing (TGS) was used to identify causative genes, and Sanger sequencing was conducted to verify candidate mutations and co‐segregation. Reverse transcription (RT)‐PCR was applied to investigate the spatial and temporal expression patterns of cdhr1 gene in mouse. A novel, homozygous, deleterious and nonsense variant (c.T1641A; p.Y547*) in the CDHR1 gene was identified in the family with autosomal recessive retinal dystrophy, which was co‐segregated with the clinical phenotypes in this family. RT‐PCR analysis revealed that cdhr1 is ubiquitously expressed in eye, particularly very high expression in retina; high expression in lens, sclera, and cornea; and high expression in brain. In conclusion, our study is the first to indicate that the novel homozygous variant c.T1641A (p.Y547*) in the CHDR1 gene might be the disease‐causing mutation for retinal dystrophy in our patient, extending its mutation spectrums. These findings further the understanding of the molecular pathogenesis of this disease and provide new insights for diagnosis as well as new implications for genetic counselling.
Collapse
Affiliation(s)
- Jiewen Fu
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China.,Institute of Medical Technology, Xiangtan Medicine and Health Vocational College, Xiangtan, Hunan, China
| | - Lu Ma
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Jingliang Cheng
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Lisha Yang
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Chunli Wei
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Shangyi Fu
- The Honors College, University of Houston, Houston, Texas.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Hongbin Lv
- Department of Ophthalmology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Rui Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Junjiang Fu
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
7
|
Bagnoli E, FitzGerald U. Mitral cells and the glucagon-like peptide 1 receptor: The sweet smell of success? Eur J Neurosci 2018; 49:422-439. [PMID: 30120857 DOI: 10.1111/ejn.14115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/19/2018] [Accepted: 08/03/2018] [Indexed: 12/11/2022]
Abstract
The olfactory bulb (OB) is often affected at very early stages of neurodegenerative disorders, in the so-called "prodromal" phase. In Parkinson's disease (PD), olfactory disturbances appear years before motor symptoms arise. Additionally, pathological alpha-synuclein aggregates are found in olfactory regions before spreading to other areas of the brain. Being positioned at the frontier between the brain and a potentially hostile environment, could explain the particular vulnerability of the OB. Mitral cells (MCs), the principal projecting neurons of the olfactory system, are involved in the pathogenesis and in the prion-like progression of PD. They are affected by Lewy pathology and are thought to contribute to the axonal transport of misfolded alpha-synuclein to other regions of the brain. Here, we first describe the main markers reported to distinguish MCs from other olfactory neurons. We focus on the glucagon-like peptide 1 receptor (GLP-1R), a membrane protein specifically expressed in MCs. After summarizing OB pathology, we explore the idea of targeting specifically MCs with GLP-1 or its analogues. Exenatide has shown great promise as a neuroprotective and neurorestorative agent and has been used in a clinical trial for clinical PD. Since GLP-1R activation has the ability to mitigate many facets of prodromal PD pathology, we postulate that once a robust biomarker is in place that is capable of identifying individuals in the prodromal phase of PD, homing in on GLP-1R could assist in deferring, or eradicating to a significant degree, the clinical manifestation of this debilitating human disorder.
Collapse
Affiliation(s)
- Enrico Bagnoli
- CÚRAM, Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland.,Galway Neuroscience Centre, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Una FitzGerald
- CÚRAM, Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland.,Galway Neuroscience Centre, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
8
|
Stingl K, Mayer AK, Llavona P, Mulahasanovic L, Rudolph G, Jacobson SG, Zrenner E, Kohl S, Wissinger B, Weisschuh N. CDHR1 mutations in retinal dystrophies. Sci Rep 2017; 7:6992. [PMID: 28765526 PMCID: PMC5539332 DOI: 10.1038/s41598-017-07117-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 06/21/2017] [Indexed: 11/13/2022] Open
Abstract
We report ophthalmic and genetic findings in patients with autosomal recessive retinitis pigmentosa (RP), cone-rod dystrophy (CRD) or cone dystrophy (CD) harboring potential pathogenic variants in the CDHR1 gene. Detailed ophthalmic examination was performed in seven sporadic and six familial subjects. Mutation screening was done using a customized next generation sequencing panel targeting 105 genes implicated in inherited retinal disorders. In one family, homozygosity mapping with subsequent candidate gene analysis was performed. Stringent filtering for rare and potentially disease causing variants following a model of autosomal recessive inheritance led to the identification of eleven different CDHR1 variants in nine index cases. All variants were novel at the time of their identification. In silico analyses confirmed their pathogenic potential. Minigene assays were performed for two non-canonical splice site variants and revealed missplicing for the mutant alleles. Mutations in CDHR1 are a rare cause of retinal dystrophy. Our study further expands the mutational spectrum of this gene and the associated clinical presentation.
Collapse
Affiliation(s)
- Katarina Stingl
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tuebingen, Tuebingen, Germany
| | - Anja K Mayer
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tuebingen, Tuebingen, Germany
| | - Pablo Llavona
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tuebingen, Tuebingen, Germany
| | | | - Günther Rudolph
- University Eye Hospital, Ludwig Maximilians University, Munich, Germany
| | - Samuel G Jacobson
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Eberhart Zrenner
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tuebingen, Tuebingen, Germany.,Werner Reichardt Centre for Integrative Neuroscience (CIN), University of Tuebingen, Tuebingen, Germany
| | - Susanne Kohl
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tuebingen, Tuebingen, Germany
| | - Bernd Wissinger
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tuebingen, Tuebingen, Germany
| | - Nicole Weisschuh
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tuebingen, Tuebingen, Germany.
| |
Collapse
|
9
|
Ebnet K, Kummer D, Steinbacher T, Singh A, Nakayama M, Matis M. Regulation of cell polarity by cell adhesion receptors. Semin Cell Dev Biol 2017; 81:2-12. [PMID: 28739340 DOI: 10.1016/j.semcdb.2017.07.032] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/12/2017] [Accepted: 07/20/2017] [Indexed: 01/01/2023]
Abstract
The ability of cells to polarize is an intrinsic property of almost all cells and is required for the devlopment of most multicellular organisms. To develop cell polarity, cells integrate various signals derived from intrinsic as well as extrinsic sources. In the recent years, cell-cell adhesion receptors have turned out as important regulators of cellular polarization. By interacting with conserved cell polarity proteins, they regulate the recruitment of polarity complexes to specific sites of cell-cell adhesion. By initiating intracellular signaling cascades at those sites, they trigger their specific subcellular activation. Not surprisingly, cell-cell adhesion receptors regulate diverse aspects of cell polarity, including apico-basal polarity in epithelial and endothelial cells, front-to-rear polarity in collectively migrating cells, and planar cell polarity during organ development. Here, we review the recent developments highlighting the central roles of cell-cell adhesion molecules in the development of cell polarity.
Collapse
Affiliation(s)
- Klaus Ebnet
- Institute-associated Research Group: Cell adhesion and cell polarity, Institute of Medical Biochemistry, ZMBE, University of Münster, Germany; Interdisciplinary Clinical Research Center (IZKF), University of Münster, Germany; Cells-In-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Germany.
| | - Daniel Kummer
- Institute-associated Research Group: Cell adhesion and cell polarity, Institute of Medical Biochemistry, ZMBE, University of Münster, Germany; Interdisciplinary Clinical Research Center (IZKF), University of Münster, Germany
| | - Tim Steinbacher
- Institute-associated Research Group: Cell adhesion and cell polarity, Institute of Medical Biochemistry, ZMBE, University of Münster, Germany; Cells-In-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Germany
| | - Amrita Singh
- Cells-In-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Germany; Institute of Cell Biology, ZMBE, University of Münster, Germany
| | - Masanori Nakayama
- Laboratory for Cell Polarity and Organogenesis, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Maja Matis
- Cells-In-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Germany; Institute of Cell Biology, ZMBE, University of Münster, Germany.
| |
Collapse
|
10
|
Kawasawa YI, Salzberg AC, Li M, Šestan N, Greer CA, Imamura F. RNA-seq analysis of developing olfactory bulb projection neurons. Mol Cell Neurosci 2016; 74:78-86. [PMID: 27073125 DOI: 10.1016/j.mcn.2016.03.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 03/27/2016] [Accepted: 03/31/2016] [Indexed: 10/22/2022] Open
Abstract
Transmission of olfactory information to higher brain regions is mediated by olfactory bulb (OB) projection neurons, the mitral and tufted cells. Although mitral/tufted cells are often characterized as the OB counterpart of cortical projection neurons (also known as pyramidal neurons), they possess several unique morphological characteristics and project specifically to the olfactory cortices. Moreover, the molecular networks contributing to the generation of mitral/tufted cells during development are largely unknown. To understand the developmental patterns of gene expression in mitral/tufted cells in the OB, we performed transcriptome analyses targeting purified OB projection neurons at different developmental time points with next-generation RNA sequencing (RNA-seq). Through these analyses, we found 1202 protein-coding genes that are temporally differentially-regulated in developing projection neurons. Among them, 388 genes temporally changed their expression level only in projection neurons. The data provide useful resource to study the molecular mechanisms regulating development of mitral/tufted cells. We further compared the gene expression profiles of developing mitral/tufted cells with those of three cortical projection neuron subtypes, subcerebral projection neurons, corticothalamic projection neurons, and callosal projection neurons, and found that the molecular signature of developing olfactory projection neuron bears resemblance to that of subcerebral neurons. We also identified 3422 events that change the ratio of splicing isoforms in mitral/tufted cells during maturation. Interestingly, several genes expressed a novel isoform not previously reported. These results provide us with a broad perspective of the molecular networks underlying the development of OB projection neurons.
Collapse
Affiliation(s)
- Yuka Imamura Kawasawa
- Department of Pharmacology, Pennsylvania State University College of Medicine, 500 University Dr., Hershey, PA 17033, USA; Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, 500 University Dr., Hershey, PA 17033, USA; Institute for Personalized Medicine, Pennsylvania State University College of Medicine, 500 University Dr., Hershey, PA 17033, USA
| | - Anna C Salzberg
- Institute for Personalized Medicine, Pennsylvania State University College of Medicine, 500 University Dr., Hershey, PA 17033, USA
| | - Mingfeng Li
- Department of Neuroscience, Yale School of Medicine, 300 Cedar St., New Haven, CT 06510, USA
| | - Nenad Šestan
- Department of Neuroscience, Yale School of Medicine, 300 Cedar St., New Haven, CT 06510, USA; Kavli Institute for Neuroscience, Yale School of Medicine, 300 Cedar St., New Haven, CT 06510, USA
| | - Charles A Greer
- Department of Neuroscience, Yale School of Medicine, 300 Cedar St., New Haven, CT 06510, USA; Department of Neurosurgery, Yale School of Medicine, 300 Cedar St., New Haven, CT 06510, USA
| | - Fumiaki Imamura
- Department of Pharmacology, Pennsylvania State University College of Medicine, 500 University Dr., Hershey, PA 17033, USA.
| |
Collapse
|
11
|
Functional Analysis of Novel Candidate Regulators of Insulin Secretion in the MIN6 Mouse Pancreatic β Cell Line. PLoS One 2016; 11:e0151927. [PMID: 26986842 PMCID: PMC4795703 DOI: 10.1371/journal.pone.0151927] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 03/07/2016] [Indexed: 01/11/2023] Open
Abstract
Elucidating the regulation of glucose-stimulated insulin secretion (GSIS) in pancreatic β cells is important for understanding and treating diabetes. The pancreatic β cell line, MIN6, retains GSIS but gradually loses it in long-term culture. The MIN6 subclone, MIN6c4, exhibits well-regulated GSIS even after prolonged culture. We previously used DNA microarray analysis to compare gene expression in the parental MIN6 cells and MIN6c4 cells and identified several differentially regulated genes that may be involved in maintaining GSIS. Here we investigated the potential roles of six of these genes in GSIS: Tmem59l (Transmembrane protein 59 like), Scgn (Secretagogin), Gucy2c (Guanylate cyclase 2c), Slc29a4 (Solute carrier family 29, member 4), Cdhr1 (Cadherin-related family member 1), and Celsr2 (Cadherin EGF LAG seven-pass G-type receptor 2). These genes were knocked down in MIN6c4 cells using lentivirus vectors expressing gene-specific short hairpin RNAs (shRNAs), and the effects of the knockdown on insulin expression and secretion were analyzed. Suppression of Tmem59l, Scgn, and Gucy2c expression resulted in significantly decreased glucose- and/or KCl-stimulated insulin secretion from MIN6c4 cells, while the suppression of Slc29a4 expression resulted in increased insulin secretion. Tmem59l overexpression rescued the phenotype of the Tmem59l knockdown MIN6c4 cells, and immunostaining analysis indicated that the TMEM59L protein colocalized with insulin and GM130, a Golgi complex marker, in MIN6 cells. Collectively, our findings suggested that the proteins encoded by Tmem59l, Scgn, Gucy2c, and Slc29a4 play important roles in regulating GSIS. Detailed studies of these proteins and their functions are expected to provide new insights into the molecular mechanisms involved in insulin secretion.
Collapse
|
12
|
Identification of two novel mutations in CDHR1 in consanguineous Spanish families with autosomal recessive retinal dystrophy. Sci Rep 2015; 5:13902. [PMID: 26350383 PMCID: PMC4642573 DOI: 10.1038/srep13902] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 08/11/2015] [Indexed: 11/22/2022] Open
Abstract
Inherited retinal dystrophies present extensive phenotypic and genetic heterogeneity, posing a challenge for patients’ molecular and clinical diagnoses. In this study, we wanted to clinically characterize and investigate the molecular etiology of an atypical form of autosomal recessive retinal dystrophy in two consanguineous Spanish families. Affected members of the respective families exhibited an array of clinical features including reduced visual acuity, photophobia, defective color vision, reduced or absent ERG responses, macular atrophy and pigmentary deposits in the peripheral retina. Genetic investigation included autozygosity mapping coupled with exome sequencing in the first family, whereas autozygome-guided candidate gene screening was performed by means of Sanger DNA sequencing in the second family. Our approach revealed nucleotide changes in CDHR1; a homozygous missense variant (c.1720C > G, p.P574A) and a homozygous single base transition (c.1485 + 2T > C) affecting the canonical 5’ splice site of intron 13, respectively. Both changes co-segregated with the disease and were absent among cohorts of unrelated control individuals. To date, only five mutations in CDHR1 have been identified, all resulting in premature stop codons leading to mRNA nonsense mediated decay. Our work reports two previously unidentified homozygous mutations in CDHR1 further expanding the mutational spectrum of this gene.
Collapse
|
13
|
Nagayama S, Homma R, Imamura F. Neuronal organization of olfactory bulb circuits. Front Neural Circuits 2014; 8:98. [PMID: 25232305 PMCID: PMC4153298 DOI: 10.3389/fncir.2014.00098] [Citation(s) in RCA: 235] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 07/29/2014] [Indexed: 12/31/2022] Open
Abstract
Olfactory sensory neurons extend their axons solely to the olfactory bulb, which is dedicated to odor information processing. The olfactory bulb is divided into multiple layers, with different types of neurons found in each of the layers. Therefore, neurons in the olfactory bulb have conventionally been categorized based on the layers in which their cell bodies are found; namely, juxtaglomerular cells in the glomerular layer, tufted cells in the external plexiform layer, mitral cells in the mitral cell layer, and granule cells in the granule cell layer. More recently, numerous studies have revealed the heterogeneous nature of each of these cell types, allowing them to be further divided into subclasses based on differences in morphological, molecular, and electrophysiological properties. In addition, technical developments and advances have resulted in an increasing number of studies regarding cell types other than the conventionally categorized ones described above, including short-axon cells and adult-generated interneurons. Thus, the expanding diversity of cells in the olfactory bulb is now being acknowledged. However, our current understanding of olfactory bulb neuronal circuits is mostly based on the conventional and simplest classification of cell types. Few studies have taken neuronal diversity into account for understanding the function of the neuronal circuits in this region of the brain. This oversight may contribute to the roadblocks in developing more precise and accurate models of olfactory neuronal networks. The purpose of this review is therefore to discuss the expanse of existing work on neuronal diversity in the olfactory bulb up to this point, so as to provide an overall picture of the olfactory bulb circuit.
Collapse
Affiliation(s)
- Shin Nagayama
- Department of Neurobiology and Anatomy, The University of Texas Medical School at Houston Houston, TX, USA
| | - Ryota Homma
- Department of Neurobiology and Anatomy, The University of Texas Medical School at Houston Houston, TX, USA
| | - Fumiaki Imamura
- Department of Pharmacology, Pennsylvania State University College of Medicine Hershey, PA, USA
| |
Collapse
|
14
|
Transgene expression in target-defined neuron populations mediated by retrograde infection with adeno-associated viral vectors. J Neurosci 2013; 33:15195-206. [PMID: 24048849 DOI: 10.1523/jneurosci.1618-13.2013] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Tools enabling the manipulation of well defined neuronal subpopulations are critical for probing complex neuronal networks. Cre recombinase (Cre) mouse driver lines in combination with the Cre-dependent expression of proteins using viral vectors--in particular, recombinant adeno-associated viral vectors (rAAVs)--have emerged as a widely used platform for achieving transgene expression in specified neural populations. However, the ability of rAAVs to further specify neuronal subsets on the basis of their anatomical connectivity has been reported as limited or inconsistent. Here, we systematically tested a variety of widely used neurotropic rAAVs for their ability to mediate retrograde gene transduction in the mouse brain. We tested pseudotyped rAAVs of several common serotypes (rAAV 2/1, 2/5, and 2/9) as well as constructs both with and without Cre-dependent expression switches. Many of the rAAVs tested--in particular, though not exclusively, Cre-dependent vectors--showed a robust capacity for retrograde infection and transgene expression. Retrograde expression was successful over distances as large as 6 mm and in multiple neuron types, including olfactory projection neurons, neocortical pyramidal cells projecting to distinct targets, and corticofugal and modulatory projection neurons. Retrograde infection using transgenes such as ChR2 allowed for optical control or optically assisted electrophysiological identification of neurons defined genetically as well as by their projection target. These results establish a widely accessible tool for achieving combinatorial specificity and stable, long-term transgene expression to isolate precisely defined neuron populations in the intact animal.
Collapse
|
15
|
Roles of sex and gonadal steroids in mammalian pheromonal communication. Front Neuroendocrinol 2013; 34:268-84. [PMID: 23872334 DOI: 10.1016/j.yfrne.2013.07.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 07/11/2013] [Accepted: 07/13/2013] [Indexed: 01/27/2023]
Abstract
A brain circuit (the accessory olfactory system) that originates in the vomeronasal organ (VNO) and includes the accessory olfactory bulb (AOB) plus additional forebrain regions mediates many of the effects of pheromones, typically comprised of a variety of non-volatile and volatile compounds, on aspects of social behavior. A second, parallel circuit (the main olfactory system) that originates in the main olfactory epithelium (MOE) and includes the main olfactory bulb (MOB) has also been shown to detect volatile pheromones from conspecifics. Studies are reviewed that point to specific roles of several different steroids and their water-soluble metabolites as putative pheromones. Other studies are reviewed that establish an adult, 'activational' role of circulating sex hormones along with sex differences in the detection and/or processing of non-steroidal pheromones by these two olfactory circuits. Persisting questions about the role of sex steroids in pheromonal processing are posed for future investigation.
Collapse
|
16
|
Sharma P, McNeill H. Fat and Dachsous cadherins. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 116:215-35. [PMID: 23481197 DOI: 10.1016/b978-0-12-394311-8.00010-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Fat and Dachsous (Ds) are very large cell adhesion molecules. They bind each other and have important, highly conserved roles in planar cell polarity (PCP) and growth control. PCP is defined as the directionally coordinated development of cellular structures or behavior. Cellular and tissue growth needs to be modulated in terms of rate and final size, and the Hippo pathway regulates growth in a variety of developmental contexts. Fat and Ds are important upstream regulators of these pathways. There are two Fat proteins in Drosophila, Fat and Fat2, and four in vertebrates, Fat1-4. There is one Ds protein in Drosophila and two in vertebrates, Dachsous1-2. In this chapter, we discuss the roles of Fat and Ds family members, focusing on Drosophila and mouse development.
Collapse
|
17
|
Abstract
The Hippo pathway has emerged as a conserved signaling pathway that is essential for the proper regulation of organ growth in Drosophila and vertebrates. Although the mechanisms of signal transduction of the core kinases Hippo/Mst and Warts/Lats are relatively well understood, less is known about the upstream inputs of the pathway and about the downstream cellular and developmental outputs. Here, we review recently discovered mechanisms that contribute to the dynamic regulation of Hippo signaling during Drosophila and vertebrate development. We also discuss the expanding diversity of Hippo signaling functions during development, discoveries that shed light on a complex regulatory system and provide exciting new insights into the elusive mechanisms that regulate organ growth and regeneration.
Collapse
Affiliation(s)
- Georg Halder
- Department of Biochemistry and Molecular Biology, MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA., Program in Genes and Development, MD Anderson Cancer Center, Houston, TX 77030, USA., Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA., Authors for correspondence (; )
| | - Randy L. Johnson
- Department of Biochemistry and Molecular Biology, MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA., Program in Genes and Development, MD Anderson Cancer Center, Houston, TX 77030, USA., Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA., Authors for correspondence (; )
| |
Collapse
|
18
|
Ostergaard E, Batbayli M, Duno M, Vilhelmsen K, Rosenberg T. Mutations in PCDH21 cause autosomal recessive cone-rod dystrophy. J Med Genet 2010; 47:665-9. [PMID: 20805371 PMCID: PMC2976051 DOI: 10.1136/jmg.2009.069120] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Background Cone-rod dystrophy is a retinal dystrophy with early loss of cone photoreceptors and a parallel or subsequent loss of rod photoreceptors. It may be syndromic, but most forms are non-syndromic with autosomal dominant, autosomal recessive or X-linked recessive inheritance. Methods and results We identified a small consanguineous family with six patients with cone-rod dystrophy from the Faroe Islands. Homozygosity mapping revealed a single homozygous locus of 4.2 Mb on chromosome 10q23.1–q23.2, encompassing 11 genes. All patients were homozygous for a 1-bp duplication in PCDH21, c.524dupA, which results in a frameshift and a premature stop codon (p.Q175QfsX47). Conclusion To our knowledge, this is the first report of mutations in PCDH21 as a cause of human disease. PCDH21 is highly expressed in the retinal photoreceptor cells. It encodes protocadherin 21, which belongs to the cadherin superfamily of large cell surface proteins characterised by a variable number of extracellular cadherin domains. A PCDH21 knockout mouse model has previously shown loss of photoreceptor cells and abnormal cone and rod function, similar to the findings in the patients.
Collapse
Affiliation(s)
- E Ostergaard
- Department of Clinical Genetics 4062, National University Hospital Rigshospitalet, Blegdamsvej 9, Copenhagen 2100, Denmark.
| | | | | | | | | |
Collapse
|
19
|
Kim SY, Mo JW, Han S, Choi SY, Han SB, Moon BH, Rhyu IJ, Sun W, Kim H. The expression of non-clustered protocadherins in adult rat hippocampal formation and the connecting brain regions. Neuroscience 2010; 170:189-99. [PMID: 20541594 DOI: 10.1016/j.neuroscience.2010.05.027] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Accepted: 05/13/2010] [Indexed: 11/26/2022]
Abstract
Non-clustered protocadherins (PCDHs) are calcium-dependent adhesion molecules which have attracted attention for their possible roles in the neuronal circuit formation during development and their implications in the neurological disorders such as autism and mental retardation. Previously, we found that a subset of the non-clustered PCDHs exhibited circuit-dependent expression patterns in thalamo-cortical connections in early postnatal rat brain, but such patterns disappeared in adulthood. In this study, we identified that the non-clustered PCDHs showed differential expression patterns along the septotemporal axis in the subregions of adult hippocampus and dentate gyrus with topographical preferences. The expressions of PCDH1, PCDH9, PCDH10 and PCDH20 showed septal preferences, whereas the expressions of PCDH8, PCDH11, PCDH17 and PCDH19 showed temporal preferences, suggesting that they play roles in the formation/maintenance of intrahippocampal circuits. PCDHs also exhibited the region-specific expression patterns in the areas connected to hippocampal formation such as entorhinal cortex, lateral septum, and basolateral amygdaloid complex. Furthermore, the expression levels of three PCDHs (PCDH8, PCDH19 and PCDH20) were regulated by the electroconvulsive shock stimulation of the brain in the adult hippocampus and dentate gyrus. These results suggest that non-clustered PCDHs are involved in the maintenance and plasticity of adult hippocampal circuitry.
Collapse
Affiliation(s)
- S Y Kim
- Department of Anatomy and Brain Korea 21 Biomedical Science program, Korea University, College of Medicine, Anam-Dong, Sungbuk-Gu, Seoul 136-705, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Sotomayor M, Weihofen WA, Gaudet R, Corey DP. Structural determinants of cadherin-23 function in hearing and deafness. Neuron 2010; 66:85-100. [PMID: 20399731 DOI: 10.1016/j.neuron.2010.03.028] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2010] [Indexed: 12/28/2022]
Abstract
The hair-cell tip link, a fine filament directly conveying force to mechanosensitive transduction channels, is composed of two proteins, protocadherin-15 and cadherin-23, whose mutation causes deafness. However, their molecular structure, elasticity, and deafness-related structural defects are unknown. We present crystal structures of the first and second extracellular cadherin repeats of cadherin-23. Overall, structures show typical cadherin folds, but reveal an elongated N terminus that precludes classical cadherin interactions and contributes to an N-terminal Ca(2+)-binding site. The deafness mutation D101G, in the linker region between the repeats, causes a slight bend between repeats and decreases Ca(2+) affinity. Molecular dynamics simulations suggest that cadherin-23 repeats are stiff and that either removing Ca(2+) or mutating Ca(2+)-binding residues reduces rigidity and unfolding strength. The structures define an uncharacterized cadherin family and, with simulations, suggest mechanisms underlying inherited deafness and how cadherin-23 may bind with itself and with protocadherin-15 to form the tip link.
Collapse
Affiliation(s)
- Marcos Sotomayor
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
21
|
Biomarkers of human gastrointestinal tract regions. Mamm Genome 2009; 20:516-27. [PMID: 19711126 DOI: 10.1007/s00335-009-9212-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Accepted: 07/23/2009] [Indexed: 12/29/2022]
Abstract
Dysregulation of intestinal epithelial cell performance is associated with an array of pathologies whose onset mechanisms are incompletely understood. While whole-genomics approaches have been valuable for studying the molecular basis of several intestinal diseases, a thorough analysis of gene expression along the healthy gastrointestinal tract is still lacking. The aim of this study was to map gene expression in gastrointestinal regions of healthy human adults and to implement a procedure for microarray data analysis that would allow its use as a reference when screening for pathological deviations. We analyzed the gene expression signature of antrum, duodenum, jejunum, ileum, and transverse colon biopsies using a biostatistical method based on a multivariate and univariate approach to identify region-selective genes. One hundred sixty-six genes were found responsible for distinguishing the five regions considered. Nineteen had never been described in the GI tract, including a semaphorin probably implicated in pathogen invasion and six novel genes. Moreover, by crossing these genes with those retrieved from an existing data set of gene expression in the intestine of ulcerative colitis and Crohn's disease patients, we identified genes that might be biomarkers of Crohn's and/or ulcerative colitis in ileum and/or colon. These include CLCA4 and SLC26A2, both implicated in ion transport. This study furnishes the first map of gene expression along the healthy human gastrointestinal tract. Furthermore, the approach implemented here, and validated by retrieving known gene profiles, allowed the identification of promising new leads in both healthy and disease states.
Collapse
|
22
|
Tran H, Chen H, Walz A, Posthumus JC, Gong Q. Influence of olfactory epithelium on mitral/tufted cell dendritic outgrowth. PLoS One 2008; 3:e3816. [PMID: 19043569 PMCID: PMC2583930 DOI: 10.1371/journal.pone.0003816] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Accepted: 11/07/2008] [Indexed: 12/14/2022] Open
Abstract
Stereotypical connections between olfactory sensory neuron axons and mitral cell dendrites in the olfactory bulb establish the first synaptic relay for olfactory perception. While mechanisms of olfactory sensory axon targeting are reported, molecular regulation of mitral cell dendritic growth and refinement are unclear. During embryonic development, mitral cell dendritic distribution overlaps with olfactory sensory axon terminals in the olfactory bulb. In this study, we investigate whether olfactory sensory neurons in the olfactory epithelium influence mitral cell dendritic outgrowth in vitro. We report a soluble trophic activity in the olfactory epithelium conditioned medium which promotes mitral/tufted cell neurite outgrowth. While the trophic activity is present in both embryonic and postnatal olfactory epithelia, only embryonic but not postnatal mitral/tufted cells respond to this activity. We show that BMP2, 5 and 7 promote mitral/tufted cells neurite outgrowth. However, the BMP antagonist, Noggin, fails to neutralize the olfactory epithelium derived neurite growth promoting activity. We provide evidence that olfactory epithelium derived activity is a protein factor with molecular weight between 50–100 kD. We also observed that Follistatin can effectively neutralize the olfactory epithelium derived activity, suggesting that TGF-beta family proteins are involved to promote mitral/tufted dendritic elaboration.
Collapse
Affiliation(s)
- Ha Tran
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California Davis, Davis, California, United States of America
| | - Huaiyang Chen
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California Davis, Davis, California, United States of America
| | - Andreas Walz
- The Rockefeller University, New York, New York, United States of America
| | - Jamie C. Posthumus
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California Davis, Davis, California, United States of America
| | - Qizhi Gong
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
23
|
Lim CK, Hwang WYK, Aw SE, Sun L. Study of gene expression profile during cord blood-associated megakaryopoiesis. Eur J Haematol 2008; 81:196-208. [PMID: 18510698 DOI: 10.1111/j.1600-0609.2008.01104.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
AIMS To study the gene profile in cord blood (CB)-associated megakaryopoiesis. METHODS In vitro differentiation of megakaryocytes (Mks) was carried out using human CB CD34(+) cells under the stimulation of recombinant human interleukin-3, stem cell factor and thrombopoietin for 7 d, followed by thrombopoietin only for further 3 d. Lineage-specific differentiation of Mk was examined by the expression of CD41 using flow cytometry and confocal microscopy. Total cellular RNA was extracted from day-0 CD34(+), day-10 CD41(+) and CD41(-) populations were isolated by immunomagnetic sorting respectively. Microarray was performed, and the data were analyzed using the GeneChip Operating System, Spotfire software and Genomatix BiblioSphere. RESULTS Flow cytometric analysis showed 19.44 +/- 3.05% CD41(+) cells at day 10 of culture. The purity of CD41(+) population was enriched to 95.70 +/- 4.19% after sorting. Gene expression profiling revealed an upregulation of 285 and downregulation of 53 unique genes in the CD41(+) cells compared with CD41(-) and CD34(+) cells. Platelet-associated genes, such as thrombospondin 1, platelet glycoprotein IIIa, etc., were highly expressed in CD41(+) cells but not in CD41(-) cells and CD34(+) cells. Moreover, some genes that have not been reported to be associated with CB-derived megakaryopoiesis, such as Cbl-interacting proteins Sts-1, protocadherin 21, etc., are found to be highly expressed in the CD41(+) cells from this study. CONCLUSIONS This study reveals a global gene expression profile of in vitro human CB-derived megakaryopoiesis at day 10. Some of these genes may play regulatory roles during the development of CB-derived megakaryopoiesis.
Collapse
Affiliation(s)
- Che Kang Lim
- Department of Clinical Research, Singapore General Hospital, Singapore, Republic of Singapore
| | | | | | | |
Collapse
|
24
|
Kaneko-Goto T, Yoshihara SI, Miyazaki H, Yoshihara Y. BIG-2 mediates olfactory axon convergence to target glomeruli. Neuron 2008; 57:834-46. [PMID: 18367085 DOI: 10.1016/j.neuron.2008.01.023] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Revised: 12/06/2007] [Accepted: 01/18/2008] [Indexed: 10/22/2022]
Abstract
Olfactory sensory neurons expressing a given odorant receptor converge axons onto a few topographically fixed glomeruli in the olfactory bulb, leading to establishment of the odor map. Here, we report that BIG-2/contactin-4, an axonal glycoprotein belonging to the immunoglobulin superfamily, is expressed in a subpopulation of mouse olfactory sensory neurons. A mosaic pattern of glomerular arrangement is observed with strongly BIG-2-positive, weakly positive, and negative axon terminals in the olfactory bulb, which is overlapping but not identical with those of Kirrel2 and ephrin-A5. There is a close correlation between the BIG-2 expression level and the odorant receptor choice in individual sensory neurons. In BIG-2-deficient mice, olfactory sensory neurons expressing a given odorant receptor frequently innervate multiple glomeruli at ectopic locations. These results suggest that BIG-2 is one of the axon guidance molecules crucial for the formation and maintenance of functional odor map in the olfactory bulb.
Collapse
Affiliation(s)
- Tomomi Kaneko-Goto
- Laboratory for Neurobiology of Synapse, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | | | | | | |
Collapse
|
25
|
Nagai Y, Sano H, Yokoi M. Transgenic expression of Cre recombinase in mitral/tufted cells of the olfactory bulb. Genesis 2008; 43:12-6. [PMID: 16106355 DOI: 10.1002/gene.20146] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Olfactory information is conveyed from the periphery to the olfactory cortices through mitral and tufted (M/T) cells in the olfactory bulb. A mouse with a specific expression of Cre recombinase in M/T cells is essential for genetic marking of M/T cells and manipulating their properties. Protocadherin 21 (Pcdh21) expression is highly restricted to M/T cells. Here we report a transgenic mouse line, Pcdh21-Cre, in which 10-kb mouse Pcdh21 promoter drives the expression of Cre recombinase. In Pcdh21-Cre mice, Cre recombinase activity is predominantly detected in M/T cells, visualized with the anti-CFP immunostaining in offspring of a cross between Pcdh21-Cre and the reporter Rosa26-loxP-stop-loxP-CFP strain. These results demonstrate that the 10-kb Pcdh21 promoter can drive transcription in M/T cells and Pcdh21-Cre mice can be used to excise floxed DNA fragments in M/T cells, which provides a valuable tool to reveal the structure and function of the central olfactory circuits.
Collapse
Affiliation(s)
- Yumiko Nagai
- Molecular Neurogenetics Unit, HMRO, Kyoto University Graduate School of Medicine, Yoshida-Konoe, Sakyo, Kyoto, Japan
| | | | | |
Collapse
|
26
|
Takashina T, Nakayama M. Modifications enhance the apoptosis-inducing activity of FADD. Mol Cancer Ther 2007; 6:1793-803. [PMID: 17575108 DOI: 10.1158/1535-7163.mct-06-0522] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The ability to enhance apoptosis-inducing activity in specific cells, despite the presence of cellular antiapoptotic proteins, would allow the removal of target cells from a cell population. Here, we show that modification of Fas-associated protein with death domain (FADD) by fusing the tandem death effector domains (DED) of FADD to the E protein of lambda phage, a head coat protein with self-assembly activity, greatly increases the apoptosis-inducing activity of FADD in both adherent NIH3T3 and HEK293 cells. Induction of apoptosis in cell lines that stably express modified FADD (2DEDplusE) resulted in rapid blebbing, and most cells detached from the flask within 5 h. In contrast, following induction of apoptosis, it took over 24 h for the cells expressing unmodified FADD to exhibit these signs. The cells expressing the modified FADD underwent apoptosis through the typical apoptosis cascade via activation of caspase-3, and apoptosis was inhibited by a caspase inhibitor (i.e., z-VAD-fmk). Theoretically, as our adhesive stable cell lines undergo apoptosis rapidly and in synchrony following mifepristone- or tetracycline-controlled production of a single apoptosis protein without affecting any other cellular pathways, they provide excellent model systems in which to analyze the phenomenon of apoptosis in adhesive cell lines, in particular, blebbing and detachment.
Collapse
Affiliation(s)
- Tomoki Takashina
- Laboratory of Pharmacogenomics, Graduate School of Pharmaceutical Sciences, Chiba University, Kisarazu, Chiba, Japan
| | | |
Collapse
|
27
|
Kim SY, Chung HS, Sun W, Kim H. Spatiotemporal expression pattern of non-clustered protocadherin family members in the developing rat brain. Neuroscience 2007; 147:996-1021. [PMID: 17614211 DOI: 10.1016/j.neuroscience.2007.03.052] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Revised: 03/12/2007] [Accepted: 03/15/2007] [Indexed: 02/04/2023]
Abstract
Protocadherins (PCDHs) consist of the largest subgroup of the cadherin superfamily, and most PCDHs are expressed dominantly in the CNS. Because PCDHs are involved in the homophilic cell-cell adhesion, PCDHs in the nervous system have been suggested to play roles in the formation and maintenance of the synaptic connections. Although many PCDHs (>50) are in tandem arranged as a cluster in a specific chromosome locus, there are also considerable numbers of non-clustered PCDH members (approximately 20). In this study, we examined the spatiotemporal distribution of mRNAs for 12 non-clustered PCDHs in rat brain using in situ hybridization. Some of them (PCDH1, PCDH7, PCDH9, PCDH10, PCDH11, PCDH17, and PCDH20) exhibited region-dependent expression pattern in the cerebral cortex during the early postnatal stage (P3), which is a critical period for the establishment of specific synaptic connections: PCDH7 and PCDH20 mRNAs were predominantly expressed in the somatosensory (parietal) and visual (occipital) cortices, whereas PCDH11 and PCDH17 mRNAs were preferentially expressed in the motor (forelimb and hindlimb areas) and auditory (temporal) cortices, and PCDH9 mRNA was highly expressed in the motor and main somatosensory cortices. These PCDHs were also expressed in the specific regions of the connecting thalamic nuclei. These cortical regionalization and thalamic nuclei-specificity appeared to be most distinct in P3 compared with those of embryonic and adult stages. Taken together, these results suggest that PCDHs may play specific roles in the establishment of selective synaptic connections of specific modality of cerebral cortex with other communicating brain regions such as the thalamus.
Collapse
Affiliation(s)
- S-Y Kim
- Department of Anatomy, Division of Brain Korea 21, Biomedical Science, Korea University College of Medicine, Anam-Dong, Sungbuk-Gu, Seoul 136-705, Korea
| | | | | | | |
Collapse
|
28
|
Suzuki E, Nakayama M. MEGF10 is a mammalian ortholog of CED-1 that interacts with clathrin assembly protein complex 2 medium chain and induces large vacuole formation. Exp Cell Res 2007; 313:3729-42. [PMID: 17643423 DOI: 10.1016/j.yexcr.2007.06.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Revised: 06/12/2007] [Accepted: 06/15/2007] [Indexed: 11/25/2022]
Abstract
The mechanisms underlying the engulfment of apoptotic corpses, which is involved in development, cellular homeostasis, and autoimmunity, remain largely unknown in mammals. MEGF10 is a mammalian ortholog of nematode CED-1, a transmembrane protein involved in engulfment of apoptotic corpses. MEGF10-expressing cells display an irregular, mosaic-like pattern of MEGF10, causing cells to tightly adhere to coated glass dishes. This restricted cell motility caused cells to adopt a flat appearance. In the present study, we observed that these cells formed unusually large vacuoles, the formation of which we linked to the cytoplasmic domain of MEGF10. While investigating the signaling pathway and trafficking of MEGF10, we identified an interaction between MEGF10 and clathrin assembly protein complex 2 medium chain (AP50), a component of clathrin-coated pits. In cells co-expressing MEGF10 and AP50, MEGF10 and AP50 colocalized and mirrored the adhesion pattern of MEGF10. LC-MS/MS and immunoblot analyses revealed that the MEGF10 associated with AP2 alpha and beta subunits in addition to associating with AP50 and beta-actin, and that MEGF10 was ubiquitinated and tyrosine phosphorylated. Moreover, we observed that MEGF10 mRNA expression is primarily restricted to the brain, with robust expression in the stellate cells of the cerebellum. Elucidating the trafficking and regulatory machinery of MEGF10 will guide us in having a deeper understanding of the mechanisms involved in clearing apoptotic cells.
Collapse
Affiliation(s)
- Emiko Suzuki
- Department of Human Genome Research, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan
| | | |
Collapse
|
29
|
Willecke M, Hamaratoglu F, Kango-Singh M, Udan R, Chen CL, Tao C, Zhang X, Halder G. The fat cadherin acts through the hippo tumor-suppressor pathway to regulate tissue size. Curr Biol 2006; 16:2090-100. [PMID: 16996265 DOI: 10.1016/j.cub.2006.09.005] [Citation(s) in RCA: 261] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Revised: 08/30/2006] [Accepted: 09/01/2006] [Indexed: 12/14/2022]
Abstract
BACKGROUND The Hippo tumor-suppressor pathway has emerged as a key signaling pathway that controls tissue size in Drosophila. Merlin, the Drosophila homolog of the human Neurofibromatosis type-2 (NF2) tumor-suppressor gene, and the related protein Expanded are the most upstream components of the Hippo pathway identified so far. However, components acting upstream of Expanded and Merlin, such as transmembrane receptors, have not yet been identified. RESULTS Here, we report that the protocadherin Fat acts as an upstream component in the Hippo pathway. Fat is a known tumor-suppressor gene in Drosophila, and fat mutants have severely overgrown imaginal discs. We found that the overgrowth phenotypes of fat mutants are similar to those of mutants in Hippo pathway components: fat mutant cells continued to proliferate after wild-type cells stopped proliferating, and fat mutant cells deregulated Hippo target genes such as cyclin E and diap1. Fat acts genetically and biochemically upstream of other Hippo pathway components such as Expanded, the Hippo and Warts kinases, and the transcriptional coactivator Yorkie. Fat is required for the stability of Expanded and its localization to the plasma membrane. In contrast, Fat is not required for Merlin localization, and Fat and Merlin act in parallel in growth regulation. CONCLUSIONS Taken together, our data identify a cell-surface molecule that may act as a receptor of the Hippo signaling pathway.
Collapse
Affiliation(s)
- Maria Willecke
- Department of Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Nakayama M, Iida M, Koseki H, Ohara O. A gene-targeting approach for functional characterization of KIAA genes encoding extremely large proteins. FASEB J 2006; 20:1718-20. [PMID: 16807365 DOI: 10.1096/fj.06-5952fje] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Given that thousands of genes exist in the mammalian genome, criteria are needed to prioritize their functional analysis and to decrease the likelihood of producing gene-targeted mice that lack overt phenotypes. Initial analysis efforts are likely to be fruitful if focused on genes encoding large proteins, since at least some large proteins serve as frameworks for intricate assembly of protein complexes, and their inactivation would render definitive, observable phenotypes. Here, we describe the functional characterization of the murine homologues of five human KIAA genes (KIAA1409, KIAA1440, KIAA1447, KIAA1768, and KIAA1276) that encode large proteins. Gene-targeted mice had phenotypic and developmental defects resulting from the functional deletion of three of these five genes. Mice with targeted disruption of KIAA1409 lacked the ability to drink, and those with targeted disruption of KIAA1447 displayed hind leg motor dysfunction. Disruption of KIAA1440 led to embryonic lethality at the blastocyst stage. The high success rate of our approach demonstrates the rationale for the genome-wide functional examination of large proteins in mice using reverse genetics.
Collapse
Affiliation(s)
- Manabu Nakayama
- Department of Human Genome Technology, Kausa DNA Research Institute, Japan.
| | | | | | | |
Collapse
|
31
|
Matakatsu H, Blair SS. Separating the adhesive and signaling functions of the Fat and Dachsous protocadherins. Development 2006; 133:2315-24. [PMID: 16687445 DOI: 10.1242/dev.02401] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The protocadherins Fat (Ft) and Dachsous (Ds) are required for several processes in the development of Drosophila, including controlling growth of imaginal discs, planar cell polarity (PCP) and the proximodistal patterning of appendages. Ft and Ds bind in a preferentially heterophilic fashion, and Ds is expressed in distinct patterns along the axes of polarity. It has thus been suggested that Ft and Ds serve not as adhesion molecules, but as receptor and ligand in a poorly understood signaling pathway. To test this hypothesis, we performed a structure-function analysis of Ft and Ds, separating their adhesive and signaling functions. We found that the extracellular domain of Ft is not required for its activity in growth, PCP and proximodistal patterning. Thus, ligand binding is not necessary for Ft activity. By contrast, the extracellular domain of Ds is necessary and sufficient to mediate its effects on PCP, consistent with the model that Ds acts as a ligand during PCP. However, we also provide evidence that Ds can regulate growth independently of Ft, and that the intracellular domain of Ds can affect proximodistal patterning, both suggestive of functions independent of binding Ft. Finally, we show that ft mutants or a dominant-negative Ft construct can affect disc growth without changes in the expression of wingless and Wingless target genes.
Collapse
Affiliation(s)
- Hitoshi Matakatsu
- Department of Zoology, University of Wisconsin, 250 North Mills Street, Madison, WI 53706, USA
| | | |
Collapse
|
32
|
Rock R, Schrauth S, Gessler M. Expression of mouse dchs1, fjx1, and fat-j suggests conservation of the planar cell polarity pathway identified in Drosophila. Dev Dyn 2006; 234:747-55. [PMID: 16059920 DOI: 10.1002/dvdy.20515] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The dachsous (ds), fat (ft), and four-jointed (fj) genes have been identified in Drosophila as part of a signaling pathway that regulates planar cell polarity (PCP). A homologous PCP signaling pathway has also been identified in vertebrates, but nothing is known thus far about the conservation of Ds/Ft/Fj signaling. Here we analyzed and compared for the first time the expression patterns of all ds, ft and fj homologs in the mouse. During embryogenesis, expression analysis was performed by RNA in situ hybridization and in adult organs by real time PCR. As in Drosophila, we detected a complementary expression of fjx1 and dchs1 in organs like kidney, lung, and intestine. The ubiquitous expression of ft in several tissues in Drosophila appears to be split into an epithelial expression of fat1/fat3 and a mesenchymal expression of fat-j. These data are compatible with a conservation and sub-functionalization of the Drosophila Ds, Fj, and Fat signaling in higher vertebrates.
Collapse
Affiliation(s)
- Rebecca Rock
- University of Wuerzburg, Theodor-Boveri-Institute (Biocenter), Physiological Chemistry I, Am Hubland, Wuerzburg, Germany
| | | | | |
Collapse
|
33
|
Rock R, Heinrich AC, Schumacher N, Gessler M. Fjx1: A notch-inducible secreted ligand with specific binding sites in developing mouse embryos and adult brain. Dev Dyn 2005; 234:602-12. [PMID: 16145673 DOI: 10.1002/dvdy.20553] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The mouse fjx1 gene was identified as a homologue to the Drosophila gene four-jointed (fj). Fj encodes a transmembrane type II glycoprotein that is partially secreted. The gene was found to be a downstream target of the Notch signaling pathway in leg segmentation and planar cell polarity processes during eye development of Drosophila. Here, we show that fjx1 is not only conserved in vertebrates, but we also identified the murine fjx1 gene as a direct target of Notch signaling. In addition to the previously described expression of fjx1 in mouse brain, we show here that fjx1 is expressed in the peripheral nervous system, epithelial cells of multiple organs, and during limb development. The protein is processed and secreted as a presumptive ligand. Through the use of an fjx1-AP fusion protein, we could visualize fjx1 binding sites at complementary locations, supporting the notion that fjx1 may function as a novel signaling molecule.
Collapse
Affiliation(s)
- Rebecca Rock
- University of Wuerzburg, Theodor-Boveri-Institute (Biocenter), Physiological Chemistry I, Am Hubland, Wuerzburg, Germany
| | | | | | | |
Collapse
|
34
|
Abstract
Cell-cell adhesion is fundamental to multicellular architecture. Several classes of adhesion molecule are used to achieve this, and cadherins represent a major family of such molecules. The cadherin family has multiple subfamilies. Members of the Fat cadherin subfamily, which is conserved across species, have an extraordinarily large extracellular region, comprising 34 repeated domains, making them the largest cadherin molecules. Classic Fat, identified in Drosophila, is known to regulate cell proliferation and planar cell polarity. Recent studies of one of its mammalian homologs, Fat1, have revealed novel functions of this molecule. Fat1 binds to Ena/VASP proteins and regulates actin dynamics at both cell-cell contacts and leading edges. These observations suggest that Fat1 is an important regulator of actin dynamics and controls cell-cell interactions through this activity.
Collapse
Affiliation(s)
- Takuji Tanoue
- RIKEN Center for Developmental Biology, Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | | |
Collapse
|
35
|
Matakatsu H, Blair SS. Interactions between Fat and Dachsous and the regulation of planar cell polarity in theDrosophila wing. Development 2004; 131:3785-94. [PMID: 15240556 DOI: 10.1242/dev.01254] [Citation(s) in RCA: 235] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
It was recently suggested that a proximal to distal gradient of the protocadherin Dachsous (Ds) acts as a cue for planar cell polarity (PCP) in the Drosophila wing, orienting cell-cell interactions by inhibiting the activity of the protocadherin Fat (Ft). This Ft-Ds signaling model is based on mutant loss-of-function phenotypes, leaving open the question of whether Ds is instructive or permissive for PCP. We developed tools for misexpressing ds and ft in vitro and in vivo, and have used these to test aspects of the model. First, this model predicts that Ds and Ft can bind. We show that Ft and Ds mediate preferentially heterophilic cell adhesion in vitro, and that each stabilizes the other on the cell surface. Second, the model predicts that artificial gradients of Ds are sufficient to reorient PCP in the wing; our data confirms this prediction. Finally,loss-of-function phenotypes suggest that the gradient of dsexpression is necessary for correct PCP throughout the wing. Surprisingly,this is not the case. Uniform levels of ds drive normally oriented PCP and, in all but the most proximal regions of the wing, uniform dsrescues the ds mutant PCP phenotype. Nor are distal PCP defects increased by the loss of spatial information from the distally expressed four-jointed (fj) gene, which encodes putative modulator of Ft-Ds signaling. Thus, while our results support the existence of Ft-Ds binding and show that it is sufficient to alter PCP, ds expression is permissive or redundant with other PCP cues in much of the wing.
Collapse
Affiliation(s)
- Hitoshi Matakatsu
- Department of Zoology, University of Wisconsin, 250 North Mills Street, Madison, WI 53706, USA
| | | |
Collapse
|
36
|
Beghini A, Magnani I, Roversi G, Piepoli T, Di Terlizzi S, Moroni RF, Pollo B, Fuhrman Conti AM, Cowell JK, Finocchiaro G, Larizza L. The neural progenitor-restricted isoform of the MARK4 gene in 19q13.2 is upregulated in human gliomas and overexpressed in a subset of glioblastoma cell lines. Oncogene 2003; 22:2581-91. [PMID: 12735302 DOI: 10.1038/sj.onc.1206336] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Alterations of 19q13 are frequently observed in glial neoplasms, suggesting that this region harbors at least one gene involved in gliomagenesis. Following our previous studies on structural 19q chromosome rearrangements in gliomas, we have undertaken a detailed FISH analysis of the breakpoints and identified a 19q13.2 intrachromosomal amplification of the MAP/microtubule affinity-regulating kinase 4 (MARK4) gene in three primary glioblastoma cell lines. Recent data suggest that this gene is involved in the Wnt-signaling pathway. We observed that the expression of the alternatively spliced MARK4L isoform is upregulated in both fresh and cultured gliomas and overexpressed in all of the above three glioblastoma cell lines. Interestingly, we also found that MARK4L expression is restricted to undifferentiated neural progenitor cells or proliferating glial precursor cells, whereas its expression is downregulated during glial differentiation. Perturbation of expression using antisense oligonucleotides against MARK4 in glioblastoma cell lines, consistently induced a decreased proliferation of tumor cells. Taken together, these data show that MARK4, which is normally expressed in neural progenitors, is re-expressed in gliomas and may become a key target of intrachromosomal amplification upon 19q rearrangements.
Collapse
Affiliation(s)
- Alessandro Beghini
- Department of Biology and Genetics, University of Milan, via Viotti 3/5, 20133 Milan, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Nakayama M, Kikuno R, Ohara O. Protein-protein interactions between large proteins: two-hybrid screening using a functionally classified library composed of long cDNAs. Genome Res 2002; 12:1773-84. [PMID: 12421765 PMCID: PMC187542 DOI: 10.1101/gr.406902] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Large proteins have multiple domains that are potentially capable of binding many kinds of partners. It is conceivable, therefore, that such proteins could function as an intricate framework of assembly protein complexes. To comprehensively study protein-protein interactions between large KIAA proteins, we have constructed a library composed of 1087 KIAA cDNA clones based on prior functional classifications done in silico. We were guided by two principles that raise the success rate for detecting interactions per tested combination: we avoided testing low-probability combinations, and reduced the number of potential false negatives that arise from the fact that large proteins cannot reliably be expressed in yeast. The latter was addressed by constructing a cDNA library comprised of random fragments encoding large proteins. Cytoplasmic domains of KIAA transmembrane proteins (>1000 amino acids) were used as bait for yeast two-hybrid screening. Our analyses reveal that several KIAA proteins bearing a transmembrane region have the capability of binding to other KIAA proteins containing domains (e.g., PDZ, SH3, rhoGEF, and spectrin) known to be localized to highly specialized submembranous sites, indicating that they participate in cellular junction formation, receptor or channel clustering, and intracellular signaling events. Our representative library should be a very useful resource for detecting previously unidentified interactions because it complements conventional expression libraries, which seldom contain large cDNAs.
Collapse
Affiliation(s)
- Manabu Nakayama
- Department of Human Gene Research, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan.
| | | | | |
Collapse
|
38
|
Abstract
Protocadherins constitute the largest subgroup within the cadherin family of calcium-dependent cell-cell adhesion molecules. Recent progress in genome sequencing has enabled a refined phylogenetic analysis of protocadherins and led to the discovery of three large protocadherin clusters on human chromosome 5/mouse chromosome 18. Interestingly, many of the circa 70 protocadherins in mammals are highly expressed in the central nervous system. Roles in tissue morphogenesis and formation of neuronal circuits during early vertebrate development have been inferred. In the postnatal brain, protocadherins are possibly involved in the modulation of synaptic transmission and the generation of specific synaptic connections.
Collapse
Affiliation(s)
- Marcus Frank
- Department of Molecular Embryology, Max-Planck Institute of Immunobiology, Stuebeweg 51, D-79108 Freiburg, Germany.
| | | |
Collapse
|
39
|
Blons H, Laccourreye O, Houllier AM, Carnot F, Brasnu D, Beaune P, Zucman-Rossi J, Laurent-Puig P. Delineation and candidate gene mutation screening of the 18q22 minimal region of deletion in head and neck squamous cell carcinoma. Oncogene 2002; 21:5016-23. [PMID: 12118382 DOI: 10.1038/sj.onc.1205626] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2002] [Revised: 04/05/2002] [Accepted: 04/26/2002] [Indexed: 11/09/2022]
Abstract
The 18q chromosome arm is frequently lost in advanced head and neck squamous cell carcinoma. Twenty-four microsatellite markers located on chromosome 18q were genotyped in 145 primary tumors and 10 cell lines in order to identify putative tumor suppressor genes implicated in tumor progression. Two different minimal common regions of loss (MCRL) were identified at 18q22 and 18q23 respectively. To refine and delineate boundaries of an homozygous deletion found in one cell line, 44 extra markers located at 18q22 were analysed and the homozygous deletion was precisely defined within a critical region of 4.9 Mb. Four known genes (CDH7, CDH19, DNAM-1, FLJ23594) located in this critical region and two EST clusters (Hs.96900, Hs.98628) were selected for further investigations. For these six genes, genomic structures were established, somatic mutations were screened in 20 HNSCC and 10 cell lines and transcription levels were determined in eight cell lines. No somatic mutations were found in any of the candidate genes analysed (57 coding exons). However, differential transcription levels were observed for CDH19 and Hs.96900 in head and neck cancer cell lines supporting their putative involvement through down regulation mechanisms in head and neck cancer progression.
Collapse
Affiliation(s)
- Hélène Blons
- Unité de Toxicologie Moléculaire, U490 INSERM, 45 Rue des Saints Pères 75006 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
BACKGROUND Planar polarity refers to the asymmetry of a cell within the plane of the epithelium; for example, cells may form hairs that point in a posterior direction, or cilia may beat in one way. This property implies that cells have information about their orientation; we wish to understand the nature of this information. Relevant also is the body plan of insects, which, in the ectoderm and somatic mesoderm, consists of a chain of alternating anterior and posterior compartments - basic units of development with independent cell lineage and subject to independent genetic control. RESULTS Using the abdomen of adult Drosophila, we have taken genes required for normal polarity and either removed the gene or constitutively expressed it in small clones of cells and observed the effects on polarity. Hitherto, all such studies of polarity genes have not found any difference of behavior between the different compartments. We report here that the three genes, four-jointed, dachsous, and fat, cause opposite effects in anterior and posterior compartments. For example, in anterior compartments, clones ectopically expressing four-jointed reverse the polarity of cells in front of the clone, while, in posterior compartments, they reverse behind the clone. These three genes have been reported by others to be functionally linked. CONCLUSIONS This discovery impacts on models of how cells read polarity. At the heart of one class of models is the hypothesis that cell polarity is determined by the vector of a morphogen gradient. Here, we present evidence that cell polarity in the abdomen depends on at least two protein gradients (Fj and Ds), each of which is reflected at compartment borders. Consequently, these gradients have opposing slopes in the two compartments. Because all polarized structures made by abdominal cells point posteriorly, we surmise that cells in each compartment are programmed to interpret these protein gradients with opposite signs, pointing up the gradient in one compartment and down the gradient in the other.
Collapse
Affiliation(s)
- José Casal
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, United Kingdom
| | | | | |
Collapse
|
41
|
Mitsui K, Nakajima D, Ohara O, Nakayama M. Mammalian fat3: a large protein that contains multiple cadherin and EGF-like motifs. Biochem Biophys Res Commun 2002; 290:1260-6. [PMID: 11811999 DOI: 10.1006/bbrc.2002.6338] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Using computer-based, motif-trap screening, we have identified a third member of the mammalian fat family, fat3. Human and rat fat3 are also similar to the Drosophila tumor suppressor gene fat. The rat fat3 gene encodes a large protein of 4555 amino acids with 34 cadherin domains, 4 epidermal growth factor (EGF)-like motifs, a laminin A-G motif, and a cytoplasmic domain. Each member of the fat family is differentially expressed in the central nervous system during development. While both fat3 mRNA and fat1 mRNA are abundantly expressed in the fetal brain, the expression of MEGF1/fat2 mRNA is restricted to the postnatal cerebellum. fat3 mRNA and protein expression in the brain peaks at E15 during embryonic development. During this time, robust fat3 immunoreactivity is also observed in the spinal cord. These data suggest that the fat3 protein plays an important role in axon fasciculation and modulation of the extracellular space surrounding axons during embryonic development.
Collapse
Affiliation(s)
- Kazutaka Mitsui
- Department of Human Gene Research, Kazusa DNA Research Institute, Chiba-ken, Japan
| | | | | | | |
Collapse
|