1
|
Gross J, Olze H, Mazurek B. Differential expression of transcription factors and inflammation-, ROS-, and cell death-related genes in organotypic cultures in the modiolus, the organ of Corti and the stria vascularis of newborn rats. Cell Mol Neurobiol 2014; 34:523-38. [PMID: 24595552 DOI: 10.1007/s10571-014-0036-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 02/14/2014] [Indexed: 12/22/2022]
Abstract
Cells respond to injury and hypoxia by changing gene expression. To study how the main compartments of the cochlea, the stria vascularis (SV), the organ of Corti (OC), and the modiolus (MOD), respond to such stress, we analyzed the expression of selected genes using microarray analysis. Organotypic cultures of SV, OC, and MOD from newborn rats were used as an experimental model. In the present study, we compare the expression of a total of 50 genes involved in apoptosis and necrosis, reactive oxygen species (ROS) metabolism, inflammation as well as selected transcription factors (TF) and analyze their role for the different cell death patterns observed in the three regions. MOD, OC, and SV differ not only in their basal gene profiles but also in their ability to respond to injury and hypoxia. The results provide two coexpression clusters across the three regions, a Hif-1a coexpression cluster and a cluster around the cell death-associated transcripts Casp3, Capn1, Capn2, and Capns1. These clusters include the TF Jun, Bmyc, Nfyc, Foxd3, Hes1, the ROS-associated molecules Sod3, and Nos2, and the inflammatory chemokine Ccl20. The evidence of both clusters indicates the complex and regulated character of gene expression following injury and hypoxia across the three regions SV, OC, and MOD. The high vulnerability of spiral ganglion neurons in the MOD region, previously explained on the basis of the availability of neuro-trophic factors, is associated with the increased endogenous production of ROS and nitric oxide and inadequate activation of protective acting genes.
Collapse
Affiliation(s)
- Johann Gross
- Molecular Biology Research Laboratory, Department of Otorhinolaryngology, Charité-Universitätsmedizin Berlin, Campus Charité Mitte, Berlin, Germany,
| | | | | |
Collapse
|
2
|
A novel prolyl hydroxylase inhibitor protects against cell death after hypoxia. Neurochem Res 2013; 38:2588-94. [PMID: 24132642 PMCID: PMC3898357 DOI: 10.1007/s11064-013-1175-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 10/01/2013] [Accepted: 10/05/2013] [Indexed: 11/01/2022]
Abstract
Hypoxia-inducible factor 1 (HIF-1) is regulated by the oxygen-dependent hydroxylation of proline residues by prolyl hydroxylases (PHDs). We recently developed a novel PHD inhibitor, TM6008, that suppresses the activity of PHDs, inducing continuous HIF-1α activation. In this study, we investigated how TM6008 affects cell survival after hypoxic conditions capable of inducing HIF-1α expression and how TM6008 regulates PHDs and genes downstream of HIF-1α. After SHSY-5Y cells had been subjected to hypoxia, TM6008 was added to the cell culture medium under normoxic conditions. Apoptotic cell death was significantly augmented just after the hypoxic conditions, compared with cell death under normoxic conditions. Notably, when TM6008 was added to the media after the cells had been subjected to hypoxia, the expression level of HIF-1α increased and the number of cell deaths decreased, compared with the results for cells cultured in media without TM6008 after hypoxia, during the 7-day incubation period under normoxic conditions. Moreover, the protein expression levels of heme oxygenase 1, erythropoietin, and glucose transporter-3, which were genes downstream of HIF-1α, were elevated in media to which TM6008 had been added, compared with media without TM6008, during the 7-day incubation period under normoxic conditions. However, the protein expression levels of PHD2 and p53 which suppressed cell proliferation were suppressed in the media to which TM6008 had been added. Thus, TM6008, which suppresses the protein expressions of PHD2 and p53, might play an important role in cell survival after hypoxic conditions, with possible applications as a new compound for treatment after ischemic stroke.
Collapse
|
3
|
Walter J, Hausmann S, Drepper T, Puls M, Eggert T, Dihné M. Flavin mononucleotide-based fluorescent proteins function in mammalian cells without oxygen requirement. PLoS One 2012; 7:e43921. [PMID: 22984451 PMCID: PMC3439463 DOI: 10.1371/journal.pone.0043921] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 07/27/2012] [Indexed: 11/23/2022] Open
Abstract
Usage of the enhanced green fluorescent protein (eGFP) in living mammalian cells is limited to aerobic conditions due to requirement of oxygen during chromophore formation. Since many diseases or disease models are associated with acute or chronic hypoxia, eGFP-labeling of structures of interest in experimental studies might be unreliable leading to biased results. Thus, a chromophore yielding a stable fluorescence under hypoxic conditions is desirable. The fluorescence of flavin mononucleotide (FMN)-based fluorescent proteins (FbFPs) does not require molecular oxygen. Recently, the advantages of FbFPs for several bacterial strains and yeasts were described, specifically, their usage as a real time fluorescence marker in bacterial expression studies and their ability of chromophore formation under anaerobic conditions. Our objective was to verify if FbFPs also function in mammalian cells in order to potentially broaden the repertoire of chromophores with ones that can reliably be used in mammalian studies under hypoxic conditions. In the present study, we demonstrate for the first time, that FbFPs can be expressed in different mammalian cells, among them murine neural stem cells during proliferative and differentiated stages. Fluorescence intensities were comparable to eGFP. In contrast to eGFP, the FbFP fluorescence did not decrease when cells were exposed to defined hypoxic conditions neither in proliferating nor in differentiated cells. Thus, FbFPs can be regarded as an alternative to eGFP in studies that target cellular structures which are exposed to hypoxic conditions.
Collapse
Affiliation(s)
- Janine Walter
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, Eberhard-Karls-University, Tübingen, Baden-Württemberg, Germany.
| | | | | | | | | | | |
Collapse
|
4
|
Semi-interpenetrating network of polyethylene glycol and photocrosslinkable chitosan as an in-situ-forming nerve adhesive. Acta Biomater 2012; 8:1849-58. [PMID: 22310507 DOI: 10.1016/j.actbio.2012.01.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2011] [Revised: 01/06/2012] [Accepted: 01/16/2012] [Indexed: 01/30/2023]
Abstract
An ideal adhesive for anastomosis of severed peripheral nerves should tolerate strains imposed on rejoined nerves. We use blends of photocrosslinkable 4-azidobenzoic acid-modified chitosan (Az-C) and polyethylene glycol (PEG) as a new in-situ-forming bioadhesive for anastomosing and stabilizing the injured nerves. Cryo-scanning electron microscopy suggests that the polymer blends form a semi-interpenetrating network (semi-IPN), where PEG interpenetrates the Az-C network and reinforces it. Az-C/PEG semi-IPN gels have higher storage moduli than Az-C gel alone and fibrin glue. Nerves anastomosed with an Az-C/PEG gel tolerate a higher force than those with fibrin glue prior to failure. A series of ex vivo and in vitro cell experiments indicate the Az-C/PEG gels are compatible with nerve tissues and cells. In addition, Az-C/PEG gels release PEG over a prolonged period, providing sustained delivery of PEG, a potential aid for nerve cell preservation through membrane fusion. Az-C/PEG semi-IPN gels are promising bioadhesives for repairing severed peripheral nerves not only because of their improved mechanical properties but also because of their therapeutic potential and tissue compatibility.
Collapse
|
5
|
Kritis A, Pourzitaki C, Klagas I, Chourdakis M, Albani M. Proteases inhibition assessment on PC12 and NGF treated cells after oxygen and glucose deprivation reveals a distinct role for aspartyl proteases. PLoS One 2011; 6:e25950. [PMID: 22028798 PMCID: PMC3196512 DOI: 10.1371/journal.pone.0025950] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 09/14/2011] [Indexed: 11/24/2022] Open
Abstract
Hypoxia is a severe stressful condition and induces cell death leading to neuronal loss both to the developing and adult nervous system. Central theme to cellular death is the activation of different classes of proteases such as caspases calpains and cathepsins. In the present study we investigated the involvement of these proteases, in the hypoxia-induced PC12 cell death. Rat PC12 is a model cell line for experimentation relevant to the nervous system and several protocols have been developed for either lethal hypoxia (oxygen and glucose deprivation OGD) or ischemic preconditioning (IPS). Nerve Growth Factor (NGF) treated PC12 differentiate to a sympathetic phenotype, expressing neurites and excitability. Lethal hypoxia was established by exposing undifferentiated and NGF-treated PC12 cells to a mixture of N2/CO2 (93:5%) in DMEM depleted of glucose and sodium pyruvate for 16 h. The involvement of caspases, calpains and lysosomal cathepsins D and E to the cell death induced by lethal OGD was investigated employing protease specific inhibitors such as z-VAD-fmk for the caspases, MDL28170 for the calpains and pepstatin A for the cathepsins D and E. Our findings show that pepstatin A provides statistically significant protection from cell death of both naive and NGF treated PC12 cells exposed to lethal OGD. We propose that apart from the established processes of apoptosis and necrosis that are integral components of lethal OGD, the activation of cathepsins D and E launches additional cell death pathways in which these proteases are key partners.
Collapse
Affiliation(s)
- Aristidis Kritis
- Laboratory of Physiology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | | | | | | | | |
Collapse
|
6
|
Nakamura K, Tan F, Li Z, Thiele CJ. NGF activation of TrkA induces vascular endothelial growth factor expression via induction of hypoxia-inducible factor-1α. Mol Cell Neurosci 2011; 46:498-506. [PMID: 21145972 PMCID: PMC3044333 DOI: 10.1016/j.mcn.2010.12.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 11/03/2010] [Accepted: 12/02/2010] [Indexed: 11/26/2022] Open
Abstract
Communication between the vasculature and nervous system is important during embryogenesis but the molecular mechanisms mediating this are ill-defined. We evaluated the molecular mechanisms by which Nerve Growth Factor (NGF) and Brain-derived neurotrophic factor (BDNF) regulate VEGF production. NGF activation of TrkA causes a marked increase in VEGF secretion by neuronal cells. The NGF induced increase in VEGF is accompanied by an increase in HIF-1α. Pharmacologic inhibitors of the Trk tyrosine kinase, PI-3 kinase and mTOR paths prevent NGF stimulated increases in HIF-1α and VEGF. NGF induced increase in VEGF transcription is dependent on a hypoxia response element (HRE) in the VEGF promoter. Mutation of the HRE or siRNA mediated silencing of HIF-1α expression blocks NGF induced increases in VEGF transcription. In primary cultures of TrkA expressing neurons from dorsal root ganglion, NGF induces VEGF expression that is accompanied by increases in HIF-1α but not HIF-2α expression. In CGN neurons, BDNF induces VEGF that is dependent on induction of HIF-1α. Our study indicates that neurotrophin activation of Trk stimulates an increase in VEGF transcription that is mediated by induction of HIF-1α.
Collapse
Affiliation(s)
- Katsuya Nakamura
- Cell & Molecular Biology Section, Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
7
|
Leiser Y, Silverstein N, Blumenfeld A, Shilo D, Haze A, Rosenfeld E, Shay B, Tabakman R, Lecht S, Lazarovici P, Deutsch D. The induction of tuftelin expression in PC12 cell line during hypoxia and NGF-induced differentiation. J Cell Physiol 2010; 226:165-72. [DOI: 10.1002/jcp.22318] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
8
|
Zhu L, Du F, Yang L, Wu XM, Qian ZM. Nerve Growth Factor Protects the Cortical Neurons from Chemical Hypoxia-induced Injury. Neurochem Res 2007; 33:784-9. [DOI: 10.1007/s11064-007-9495-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Accepted: 08/28/2007] [Indexed: 10/22/2022]
|
9
|
Miao G, Ostrowski RP, Mace J, Hough J, Hopper A, Peverini R, Chinnock R, Zhang J, Hathout E. Dynamic production of hypoxia-inducible factor-1alpha in early transplanted islets. Am J Transplant 2006; 6:2636-43. [PMID: 17049056 DOI: 10.1111/j.1600-6143.2006.01541.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
More than half of transplanted beta-cells undergo apoptotic cell death triggered by nonimmunological factors within a few days after transplantation. To investigate the dynamic hypoxic responses in early transplanted islets, syngeneic islets were transplanted under the kidney capsule of balb/c mice. Hypoxia-inducible factor-1alpha (HIF-1alpha) was strongly expressed at post-transplant day (POD) 1, increased on POD 3, and gradually diminished on POD 14. Insulin secretion decreased on POD 3 in association with a significant increase of HIF-1alpha-related beta-cell death, which can be suppressed by short-term hyperbaric oxygen therapy. On POD 7, apoptosis was not further activated by continually produced HIF-1alpha. In contrast, improvement of nerve growth factor and duodenal homeobox factor-1 (PDx-1) production resulted in islet graft recovery and remodeling. In addition, significant activation of vascular endothelial growth factor in islet grafts on POD 7 correlated with development of massive newly formed microvessels, whose maturation is advanced on POD 14 with gradual diminution of HIF-1alpha. We conclude that (1) transplanted islets strongly express HIF-1alpha in association with beta-cell death and decreased insulin production until adequate revascularization is established and (2) early suppression of HIF-1alpha results in less beta-cell death thereby minimizing early graft failure.
Collapse
Affiliation(s)
- G Miao
- Islet Transplant Laboratory, Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, California, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Jeong HJ, Hong SH, Park RK, Shin T, An NH, Kim HM. Hypoxia-induced IL-6 production is associated with activation of MAP kinase, HIF-1, and NF-kappaB on HEI-OC1 cells. Hear Res 2006; 207:59-67. [PMID: 15913932 DOI: 10.1016/j.heares.2005.04.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2004] [Revised: 04/13/2005] [Accepted: 04/13/2005] [Indexed: 12/20/2022]
Abstract
In the present study, we investigated the signal transduction pathways of expression of IL-6 in the desferrioxamine (DFX)-stimulated cochlear auditory cell line, HEI-OC1 cells. DFX increased the expression of HIF-1alpha and NF-kappaB in HEI-OC1 cells. DFX significantly increased the production of IL-6 (P<0.05) and expression of IL-6 mRNA but did not affect TNF-alpha production. DFX also induced the activation of mitogen-activated protein kinase (MAPK) including p38, ERK, and JNK on HEI-OC1. Increased IL-6 by DFX was significantly inhibited by p38 inhibitor, SB203580 (about 72% inhibition, P=0.027) but not ERK inhibitor, PD98059 or JNK inhibitor, SP600125. SB203580 inhibited the expression of IL-6 mRNA. Increased IL-6 production was partially inhibited by treatment of iron (HIF-1 inhibitor) or pyrriolidine-dithiocarbamate (PDTC, NF-kappaB inhibitor). DFX also induced IL-6 production and HIF-1alpha expression in the inner ear. We demonstrated the regulatory effects of MAPK, HIF-1alpha, and NF-kappaB on DFX-induced IL-6 production in a HEI-OC1 for the first time. In conclusion, these data indicate that regulation of inflammatory cytokine IL-6 by DFX, through mimicking hypoxic conditions, might explain its beneficial effect in the treatment of hypoxia-induced inner ear diseases.
Collapse
Affiliation(s)
- Hyun-Ja Jeong
- College of Oriental Medicine, Kyung Hee University, 1 Hoegi-Dong, Dongdaemun-Gu, Seoul 130-701, Republic of Korea
| | | | | | | | | | | |
Collapse
|
11
|
Zhu YY, Que HF. [Hypoxia-inducible factor-1 and its correlation with removing blood stasis for promoting tissue regeneration of traditional Chinese principle of treatment]. ZHONG XI YI JIE HE XUE BAO = JOURNAL OF CHINESE INTEGRATIVE MEDICINE 2006; 4:94-7. [PMID: 16409985 DOI: 10.3736/jcim20060128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Affiliation(s)
- Yuan-Ying Zhu
- Department of Traditional Chinese Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | | |
Collapse
|
12
|
Jeong HJ, Kim JB, Hong SH, An NH, Kim MS, Park BR, Park RK, Kim HM. Vascular endothelial growth factor is regulated by hypoxic stress via MAPK and HIF-1 alpha in the inner ear. J Neuroimmunol 2005; 163:84-91. [PMID: 15885310 DOI: 10.1016/j.jneuroim.2005.02.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2004] [Revised: 02/22/2005] [Accepted: 02/23/2005] [Indexed: 11/25/2022]
Abstract
Vascular endothelial growth factor (VEGF) is a key regulator of angiogenesis. The iron-chelator desferrioxamine (DFX) increased the expression of hypoxia-inducible factor (HIF)-1alpha in the hair cell line, HEI-OC1. The increased VEGF production by DFX was inhibited by iron. DFX also induced the activation of mitogen-activated protein kinase (MAPK) on HEI-OC1. The increased VEGF production by DFX was inhibited by a specific inhibitor of MAPK. In addition, DFX induced the VEGF production and HIF-1alpha stabilization in vivo. These results indicate that VEGF production is regulated via MAPK and HIF-1alpha under hypoxic condition in the inner ear.
Collapse
Affiliation(s)
- Hyun-Ja Jeong
- College of Oriental Medicine, Kyung Hee University, 1 Hoegi-Dong, Dongdaemun-Gu, Seoul, 130-701, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Koury J, Deitch EA, Homma H, Abungu B, Gangurde P, Condon MR, Lu Q, Xu DZ, Feinman R. Persistent HIF-1alpha activation in gut ischemia/reperfusion injury: potential role of bacteria and lipopolysaccharide. Shock 2005; 22:270-7. [PMID: 15316398 DOI: 10.1097/01.shk.0000135256.67441.3f] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In both animal models of hemorrhagic shock and clinical settings, shock-induced gut ischemia has been implicated in the development of the systemic inflammatory response syndrome and distant organ injury, yet the factors transducing these events remain to be fully determined. Because hypoxia-inducible factor (HIF-1), a transcription factor composed of oxygen-labile HIF-1alpha and constitutive HIF-1beta subunits, regulates the physiologic/pathophysiologic response to hypoxia and ischemia, we examined the HIF-1 response in two rat models of gut ischemia-reperfusion. We found that ileal nuclear HIF-1alpha protein levels were induced in rats subjected to trauma (laparotomy) plus hemorrhagic shock for 90 min relative to their trauma sham-shock and naïve counterparts and that this trauma hemorrhagic shock-induced mucosal HIF-1alpha protein response persisted after 1 h and 3 h of reperfusion. Likewise, in a model of isolated gut ischemia-reperfusion injury, where the superior mesenteric artery was occluded for 45 min, nuclear HIF-1alpha were induced in the gut mucosa relative to their sham counterparts and persisted after 1 h and 3 h or reperfusion. Similar to the in vivo response, in vitro hypoxia induced HIF-alpha expression in three different enterocyte cell lines (rat IEC-6 and human Caco-2 and HT-29 cell lines). However, in contrast to the in vivo response, HIF-1 expression rapidly disappeared on subsequent reoxygenation. Because in vivo enterocytes are exposed to bacteria, we tested whether the in vitro HIF-1alpha response would persist on reoxygenation if the enterocytes were cocultured with bacteria. P. aeruginosa, an enteric bacterium, markedly induced enterocyte HIF-1alpha protein levels under normoxic conditions. Furthermore, the addition of P. aeruginosa during either the hypoxic or reoxygenation phase prevented the degradation of HIF-1alpha protein levels. Moreover, the observation that lipopolysaccharide induced HIF-1alpha expression in a time-dependent manner in IEC-6 cells indicated that the induction of HIF-1 by exposure to P. aeruginosa is not dependent on bacterial viability. In conclusion, these results suggest that HIF-1alpha activation is an early reperfusion-independent event in models of gut ischemia-reperfusion and that this HIF-1alpha response is potentiated by the presence of P. aeruginosa or lipopolysaccharide.
Collapse
Affiliation(s)
- Jadd Koury
- Department of Surgery, UMDNJ-New Jersey Medical School, Newark, New Jersey 07103, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
FRA-2 is involved in cellular differentiation and is also upregulated in response to ischemic injury to the brain. To shed light on the function of this transcription factor, a novel microarray analysis was utilized to identify FRA-2-dependent gene expression increased in the hypoxic response. Genes were identified that were upregulated by exposure of neuronally differentiated PC12 cells to hypoxia. Using a dominant negative construct to block FRA-2, a second subset of genes that were FRA-2 dependent was found. Cross comparison then allowed isolation of a list of genes that were induced in response to hypoxia in a FRA-2-dependent manner. These data suggest that FRA-2 is involved in the transcriptional control of neuroprotective genes and in the switch from aerobic to anaerobic metabolism.
Collapse
Affiliation(s)
- Tanya L. Butler
- Department of Pharmacology and Therapeutics, University of South Florida, Tampa, FL 33612
| | - Keith R. Pennypacker
- Department of Pharmacology and Therapeutics, University of South Florida, Tampa, FL 33612
| |
Collapse
|
15
|
Lampl M, Jeanty P. Exposure to maternal diabetes is associated with altered fetal growth patterns: A hypothesis regarding metabolic allocation to growth under hyperglycemic-hypoxemic conditions. Am J Hum Biol 2004; 16:237-63. [PMID: 15101051 DOI: 10.1002/ajhb.20015] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The prevalence of diabetes is rising worldwide, including women who grew poorly in early life, presenting intergenerational health problems for their offspring. It is well documented that fetuses exposed to maternal diabetes during pregnancy experience both macrosomia and poor growth outcomes in birth size. Less is known about the in utero growth patterns that precede these risk factor expressions. Fetal growth patterns and the effects of clinical class and glycemic control were investigated in 37 diabetic pregnant women and their fetuses and compared to 29 nondiabetic, nonsmoking maternal/fetal pairs who were participants in a biweekly longitudinal ultrasound study with measurements of the head, limb, and trunk dimensions. White clinical class of the diabetic women was recorded (A2-FR) and glycosylated hemoglobin levels taken at the time of measurement assessed glycemic control (median 6.9%, interquartile range 5.6-9.2%). No significant difference in fetal weight was found by exposure. The exposed sample had greater abdominal circumferences from 21 weeks (P < or = 0.05) and shorter legs, but greater upper arm and thigh circumferences accompanied increasing glycemia in the second trimester. In the third trimester, exposed fetuses had a smaller slope for the occipital frontal diameter (P = 0.00) and were brachycephalic. They experienced a proximal/distal growth gradient in limb proportionality with higher humerus / femur ratios (P = 0.04) and arms relatively long by comparison with legs (P = 0.02). HbA1c levels above 7.5% accompanied shorter femur length for thigh circumference after 30 gestational weeks of age. Significant effects of diabetic clinical class and glycemic control were identified in growth rate timing. These growth patterns suggest that hypoxemic and hyperglycemic signals cross-talk with their target receptors in a developmentally regulated, hierarchical sequence. The increase in fetal fat often documented with diabetic pregnancy may reflect altered growth at the level of cell differentiation and proximate mechanisms controlling body composition. These data suggest that the maternal-fetal interchange circuit, designed to share and capture resources on the fetal side, may not have had a long evolutionary history of overabundance as a selective force, and modern health problems drive postnatal sequelae that become exacerbated by increasing longevity.
Collapse
Affiliation(s)
- Michelle Lampl
- Department of Anthropology, Emory University, Atlanta, Georgia 30324, USA.
| | | |
Collapse
|
16
|
Naranjo-Suárez S, Castellanos MC, Alvarez-Tejado M, Vara A, Landázuri MO, del Peso L. Down-regulation of hypoxia-inducible factor-2 in PC12 cells by nerve growth factor stimulation. J Biol Chem 2003; 278:31895-901. [PMID: 12805361 DOI: 10.1074/jbc.m304079200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cellular responses to low oxygen tension are mediated, at least in part, by the activation of the hypoxia-inducible factors (HIFs). In the presence of oxygen, specific HIF residues become hydroxylated by the action of a recently described group of dioxygenases. These post-translational modifications target HIF for proteosomal degradation and prevent its transcriptional activity. Despite these detailed studies, little is known about the regulation of HIF by stimuli other than hypoxia. Here we report that, in rat pheochromocytoma PC12 cells, nerve growth factor (NGF) stimulation results in a decrease of both basal and hypoxia-induced levels of HIF-2 alpha protein. NGF treatment did not increase HIF-hydroxylase gene expression or activity, and the reduction of the HIF-2 alpha protein level upon stimulation was observed even in the presence of HIF-hydroxylase inhibitors such as deferoxamine or dimethyloxoglutarate. Thus, in contrast to the response to hypoxia, the effect of NGF on HIF-2 alpha protein levels is not mediated by the HIF hydroxilases. Quantitative real time (RT)-PCR showed that NGF stimulation results in a decrease of the HIF-2 alpha mRNA level similar to that found at the protein level. Interestingly, NGF effect was specific for HIF-2 alpha mRNA because it did not affect HIF-1 alpha mRNA levels. NGF treatment reduced HIF-2 alpha mRNA levels even in the presence of actinomycin D, suggesting an effect on mRNA stability. Finally, the effect of NGF on HIF2 alpha correlates with reduction of both basal and hypoxia-induced vascular endothelial growth factor mRNA levels. Reporter assays suggest that the reduced expression of hypoxia-inducible genes upon NGF treatment is related, at least in part, to the reduction of HIF-2 alpha protein. Hence, in PC12 cells the level of HIF-2 alpha protein and its effect on gene expression can be down-regulated by stimuli other than oxygen.
Collapse
Affiliation(s)
- Salvador Naranjo-Suárez
- Servicio de Inmunología, Hospital de la Princesa, Universidad Autónoma de Madrid, Diego de León 62, 28006 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
17
|
Jeong HJ, Chung HS, Lee BR, Kim SJ, Yoo SJ, Hong SH, Kim HM. Expression of proinflammatory cytokines via HIF-1alpha and NF-kappaB activation on desferrioxamine-stimulated HMC-1 cells. Biochem Biophys Res Commun 2003; 306:805-11. [PMID: 12821113 DOI: 10.1016/s0006-291x(03)01073-8] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We investigated the expression and the role of hypoxia-inducible factor 1alpha (HIF-1alpha) on the desferrioxamine (DFX)-induced cytokine production in human mast cells, HMC-1 cells. HIF-1alpha mRNA was constitutively expressed in mast cell lines including the P815, RBL-2H3, and HMC-1. DFX (100 microM) resulted in a great increase in protein levels of HIF-1alpha in HMC-1 cells, but it did not affect HIF-1alpha mRNA expression. Iron (HIF-1 inhibitor) inhibited increase of HIF-1alpha and NF-kappaB protein levels. Pyrriolidine-dithiocarbamate (PDTC, NF-kappaB inhibitor) inhibited increase of NF-kappaB protein levels, but it slightly increased HIF-1alpha protein levels. In addition, DFX significantly increased the production of IL-6, IL-8, and TNF-alpha in HMC-1 (P<0.05). These increased cytokine levels were significantly inhibited by treatment of iron or PDTC in a dose-dependent manner (P<0.05). We demonstrated the regulatory effects of HIF-1alpha on the DFX-induced proinflammatory cytokine production in human mast cells for the first time. These data indicate that inflammatory cytokines seem to be under HIF-1alpha or NF-kappaB transcriptional regulation in the hypoxic conditions on mast cells.
Collapse
Affiliation(s)
- Hyun-Ja Jeong
- Department of Pharmacology, College of Oriental Medicine, Kyung Hee University, 1 Hoegi-Dong, Dongdaemun-Gu, Seoul 130-701, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|