1
|
Mazzotta E, Grants I, Villalobos-Hernandez E, Chaudhuri S, McClain JL, Seguella L, Kendig DM, Blakeney BA, Murthy SK, Schneider R, Leven P, Wehner S, Harzman A, Grider JR, Gulbransen BD, Christofi FL. BQ788 reveals glial ET B receptor modulation of neuronal cholinergic and nitrergic pathways to inhibit intestinal motility: Linked to postoperative ileus. Br J Pharmacol 2023; 180:2550-2576. [PMID: 37198101 PMCID: PMC11085045 DOI: 10.1111/bph.16145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/19/2023] Open
Abstract
BACKGROUND AND PURPOSE ET-1 signalling modulates intestinal motility and inflammation, but the role of ET-1/ETB receptor signalling is poorly understood. Enteric glia modulate normal motility and inflammation. We investigated whether glial ETB signalling regulates neural-motor pathways of intestinal motility and inflammation. EXPERIMENTAL APPROACH We studied ETB signalling using: ETB drugs (ET-1, SaTX, BQ788), activity-dependent stimulation of neurons (high K+ -depolarization, EFS), gliotoxins, Tg (Ednrb-EGFP)EP59Gsat/Mmucd mice, cell-specific mRNA in Sox10CreERT2 ;Rpl22-HAflx or ChATCre ;Rpl22-HAflx mice, Sox10CreERT2 ::GCaMP5g-tdT, Wnt1Cre2 ::GCaMP5g-tdT mice, muscle tension recordings, fluid-induced peristalsis, ET-1 expression, qPCR, western blots, 3-D LSM-immunofluorescence co-labelling studies in LMMP-CM and a postoperative ileus (POI) model of intestinal inflammation. KEY RESULTS In the muscularis externa ETB receptor is expressed exclusively in glia. ET-1 is expressed in RiboTag (ChAT)-neurons, isolated ganglia and intra-ganglionic varicose-nerve fibres co-labelled with peripherin or SP. ET-1 release provides activity-dependent glial ETB receptor modulation of Ca2+ waves in neural evoked glial responses. BQ788 reveals amplification of glial and neuronal Ca2+ responses and excitatory cholinergic contractions, sensitive to L-NAME. Gliotoxins disrupt SaTX-induced glial-Ca2+ waves and prevent BQ788 amplification of contractions. The ETB receptor is linked to inhibition of contractions and peristalsis. Inflammation causes glial ETB up-regulation, SaTX-hypersensitivity and glial amplification of ETB signalling. In vivo BQ788 (i.p., 1 mg·kg-1 ) attenuates intestinal inflammation in POI. CONCLUSION AND IMPLICATIONS Enteric glial ET-1/ETB signalling provides dual modulation of neural-motor circuits to inhibit motility. It inhibits excitatory cholinergic and stimulates inhibitory nitrergic motor pathways. Amplification of glial ETB receptors is linked to muscularis externa inflammation and possibly pathogenic mechanisms of POI.
Collapse
Affiliation(s)
- Elvio Mazzotta
- Department of Anesthesiology, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | - Iveta Grants
- Department of Anesthesiology, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | | | - Samhita Chaudhuri
- Department of Anesthesiology, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | - Jonathon L McClain
- Department of Physiology, Michigan State University, East Lansing, Michigan, USA
| | - Luisa Seguella
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| | - Derek M Kendig
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Bryan A Blakeney
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Srinivasa K Murthy
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, USA
| | | | - Patrick Leven
- Department of Surgery, University of Bonn, Bonn, Germany
| | - Sven Wehner
- Department of Surgery, University of Bonn, Bonn, Germany
| | - Alan Harzman
- Department of GI Surgery, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | - John R Grider
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Brian D Gulbransen
- Department of Physiology, Michigan State University, East Lansing, Michigan, USA
| | - Fedias L Christofi
- Department of Anesthesiology, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
2
|
Islamov RR, Valiullin VV, Murashov AK. Mechanisms of neuroprotective effect of estrogens associated with vascular endothelial growth factor expression. BIOL BULL+ 2007. [DOI: 10.1134/s1062359007020021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Murashov AK, Chintalgattu V, Islamov RR, Lever TE, Pak ES, Sierpinski PL, Katwa LC, Van Scott MR. RNAi pathway is functional in peripheral nerve axons. FASEB J 2007; 21:656-70. [PMID: 17209129 DOI: 10.1096/fj.06-6155com] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Recent observations demonstrated that translation of mRNAs may occur in axonal processes at sites that are long distances away from the neuronal perikaria. While axonal protein synthesis has been documented in several studies, the mechanism of its regulation remains unclear. The aim of this study was to investigate whether RNA interference (RNAi) may be one of the pathways that control local protein synthesis in axons. Here we show that sciatic nerve contains Argonaute2 nuclease, fragile X mental retardation protein, p100 nuclease, and Gemin3 helicase-components of the RNA-induced silencing complex (RISC). Application of short-interfering RNAs against neuronal beta-tubulin to the sciatic nerve initiated RISC formation, causing a decrease in levels of neuronal beta-tubulin III mRNA and corresponding protein, as well as a significant reduction in retrograde labeling of lumbar motor neurons. Our observations indicate that RNAi is functional in peripheral mammalian axons and is independent from the neuronal cell body or Schwann cells. We introduce a concept of local regulation of axonal translation via RNAi.
Collapse
Affiliation(s)
- Alexander K Murashov
- Department of Physiology, Brody School of Medicine, East Carolina University, 600 Moye Blvd., Greenville, NC 27834, USA.
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Benton RL, Woock JP, Gozal E, Hetman M, Whittemore SR. Intraspinal application of endothelin results in focal ischemic injury of spinal gray matter and restricts the differentiation of engrafted neural stem cells. Neurochem Res 2006; 30:809-23. [PMID: 16187216 DOI: 10.1007/s11064-005-6875-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2005] [Indexed: 10/25/2022]
Abstract
Previous data have shown that pluripotent stem cells engrafted into the contused spinal cord differentiate only along an astrocytic lineage. The unknown restrictive cues appear to be quite rigid as even neuronal-restricted precursors fail to differentiate to the mature potential they exhibit in vitro after similar grafting into the contused spinal cord. It has been hypothesized that this potent lineage restriction is, in part, the result of the significant loss of both gray and white matter observed following spinal contusion, which elicits a massive acute inflammatory response and is manifested chronically by dramatic cystic cavitation. To evaluate the gray matter component, we developed a clinically relevant model of focal gray matter ischemic injury using the potent vasoconstrictor endothelin (ET-1) and characterized the differentiation of pluripotent stem cells transplanted into this atraumatic vascular SCI. Results demonstrate that low dose ET-1 microinjection into cervical spinal gray matter results in an inflammatory response that is temporally comparable to that observed following traumatic SCI, as well as chronic gray matter loss, but without significant cystic cavitation or white matter degeneration. However, despite the preservation of host spinal parenchyma, no elaboration of neuronal phenotypes was observed from engrafted stem or precursor cells. These results suggest that a common pathologic component responsible for this lineage restriction exists between contusive SCI and ET-1 mediated focal ischemic SCI.
Collapse
Affiliation(s)
- Richard L Benton
- Kentucky Spinal Cord Injury Research Center (KSCIRC), 511 South Floyd Street, MDR 616, Louisville, KY 40292, USA
| | | | | | | | | |
Collapse
|