1
|
Aladdin N, Ghareib SA. Vitamin D3 Exerts a Neuroprotective Effect in Metabolic Syndrome Rats: Role of BDNF/TRKB/Akt/GS3Kβ Pathway. J Biochem Mol Toxicol 2024; 38:e70082. [PMID: 39651608 DOI: 10.1002/jbt.70082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 10/25/2024] [Accepted: 11/20/2024] [Indexed: 12/11/2024]
Abstract
Metabolic syndrome (MetS) is usually associated with cognitive impairment, neuropathic pain, and reduced brain-derived neurotrophic factor (BDNF) levels. BDNF via tropomyosin receptor kinase B (TrkB) exerts neuroprotection by activating protein kinase B (Akt) to inhibit glycogen synthase kinase-3β (GSK3β). Although Vitamin D3 (VitD3) has demonstrated favorable metabolic and neuronal outcomes in MetS, the precise molecular mechanisms underlying its neuroprotective effects remain poorly elucidated. We aimed to test the hypothesis that VitD3 mitigates MetS-induced cognition deficits and neuropathic pain via modulating the BDNF/TRKB/Akt/GS3Kβ signaling pathway. MetS was induced in male rats by 10% fructose-supplemented water and 3% salt-enriched diet. After 6 weeks, normal and MetS rats received either vehicle or VitD3 (10 µg/kg/day) for an additional 6 weeks. Glycemic status, lipid profile, and behavioral changes were assessed. The advanced glycation end products (AGEs), and markers of inflammation (TNF-α and NF-κB), oxidative stress (malondialdehyde), and apoptosis (caspase3), as well as BDNF, TrkB, PI3K, Akt, GSK3β, phosphorylated tau, and amyloid beta (Aβ) were assessed in the cerebral cortex. MetS rats had deteriorated glycemic and lipid profiles, higher AGEs, reduced levels of BDNF, TrkB, PI3K, and active Akt, along with increased GSK3β levels, inflammation, oxidative stress, and apoptosis. These changes were associated with higher levels of cognitive impairment markers phosphorylated tau and Aβ, as well as behavioral changes indicative of cognitive impairment and neuropathic pain. VitD3 improved the cognitive and behavioral alterations, while mitigating the associated molecular derangements. Our results indicate that VitD3 may exert neuroprotective effects by modulating the BDNF/TrkB/PI3K/Akt/GSK3β signaling pathway.
Collapse
Affiliation(s)
- Noha Aladdin
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Salah A Ghareib
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| |
Collapse
|
2
|
Dong X, Liu H, Huang Z, Liu K, Zhang R, Sun S, Feng B, Guo H, Feng S. Night shift work, poor sleep quality and unhealthy sleep behaviors are positively associated with the risk of epilepsy disease. BMC Public Health 2024; 24:3337. [PMID: 39614183 DOI: 10.1186/s12889-024-20885-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/27/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND Night shift work and poor sleep quality are gradually becoming more prevalent in modern society. Nevertheless, there have been limited studies assessing the association between night shift work, sleep behaviors, and risk of epilepsy. The aim of our study was to ascertain whether a positive association exists between night shift work, sleep quality, sleep behaviors, and risk of epilepsy. METHODS Our study included a total of over 270,000 individuals with or without epilepsy from the UK Biobank, followed up over a period of 13.5 years. Information on current night shift work and major sleep behaviors was also obtained. We used Cox proportional hazard models to assess the association between night shift work, sleep quality, sleep behaviors, and the risk of epilepsy after adjusting for multiple variables. RESULTS Night shift work was positively associated with a higher risk of epilepsy (P for trend = 0.059). There was a gradual increase in epilepsy risk from 'never/rarely' to 'usual/permanent' night shifts, with 'usual/permanent' night shifts work presenting the highest risk [hazard ratio (HR) 1.29, 95% confidence interval (CI) 1.01-1.65). Additionally, there was a significant association between sleep quality and risk of epilepsy (P < 0.001). Among the five major sleep behaviors, sleep duration (< 7 or > 8 h/day), frequent insomnia, and daytime sleepiness were significantly associated with a higher risk of epilepsy (HR 1.19, 95% CI 1.11-1.28; HR 1.19, 95% CI 1.09-1.30; HR 1.46, 95% CI 1.24-1.72, respectively). Furthermore, sleep duration exhibited a 'U-shaped' association with epilepsy risk. Nevertheless, no significant association was found between sleep chronotype and snoring and the risk of incident epilepsy (HR 1.04, 95% CI 0.96-1.12; HR 0.96, 95% CI 0.89-1.04). CONCLUSIONS 'Usual/permanent' night shifts and poor sleep quality were positively associated with a greater risk of incident epilepsy. Major sleep behaviors, including unhealthy sleep duration (< 7 or > 8 h/day), frequent insomnia, and daytime sleepiness, also tended to increase the risk of epilepsy.
Collapse
Affiliation(s)
- Xushuai Dong
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jingwuweiqi Road No. 324, Jinan, 250021, China
| | - Huiling Liu
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jingwuweiqi Road No. 324, Jinan, 250021, China
| | - Zhiheng Huang
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jingwuweiqi Road No. 324, Jinan, 250021, China
| | - Kaidi Liu
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jingwuweiqi Road No. 324, Jinan, 250021, China
| | - Rui Zhang
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jingwuweiqi Road No. 324, Jinan, 250021, China
| | - Shicheng Sun
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jingwuweiqi Road No. 324, Jinan, 250021, China
| | - Bin Feng
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jingwuweiqi Road No. 324, Jinan, 250021, China
| | - Hua Guo
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jingwuweiqi Road No. 324, Jinan, 250021, China.
| | - Shaobin Feng
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jingwuweiqi Road No. 324, Jinan, 250021, China.
| |
Collapse
|
3
|
Skv M, Abraham SM, Eshwari O, Golla K, Jhelum P, Maity S, Komal P. Tremendous Fidelity of Vitamin D3 in Age-related Neurological Disorders. Mol Neurobiol 2024; 61:7211-7238. [PMID: 38372958 DOI: 10.1007/s12035-024-03989-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/23/2024] [Indexed: 02/20/2024]
Abstract
Vitamin D3 (VD) is a secosteroid hormone and shows a pleiotropic effect in brain-related disorders where it regulates redox imbalance, inflammation, apoptosis, energy production, and growth factor synthesis. Vitamin D3's active metabolic form, 1,25-dihydroxy Vitamin D3 (1,25(OH)2D3 or calcitriol), is a known regulator of several genes involved in neuroplasticity, neuroprotection, neurotropism, and neuroinflammation. Multiple studies suggest that VD deficiency can be proposed as a risk factor for the development of several age-related neurological disorders. The evidence for low serum levels of 25-hydroxy Vitamin D3 (25(OH)D3 or calcidiol), the major circulating form of VD, is associated with an increased risk of Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), dementia, and cognitive impairment. Despite decades of evidence on low VD association with neurological disorders, the precise molecular mechanism behind its beneficial effect remains controversial. Here, we will be delving into the neurobiological importance of VD and discuss its benefits in different neuropsychiatric disorders. The focus will be on AD, PD, and HD as they share some common clinical, pathological, and epidemiological features. The central focus will be on the different attributes of VD in the aspect of its anti-oxidative, anti-inflammatory, anti-apoptotic, anti-cholinesterase activity, and psychotropic effect in different neurodegenerative diseases.
Collapse
Affiliation(s)
- Manjari Skv
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani (BITS-Pilani) Hyderabad campus, Shameerpet-Mandal, Hyderabad, Telangana, India
| | - Sharon Mariam Abraham
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani (BITS-Pilani) Hyderabad campus, Shameerpet-Mandal, Hyderabad, Telangana, India
| | - Omalur Eshwari
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani (BITS-Pilani) Hyderabad campus, Shameerpet-Mandal, Hyderabad, Telangana, India
| | - Kishore Golla
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani (BITS-Pilani) Hyderabad campus, Shameerpet-Mandal, Hyderabad, Telangana, India
| | - Priya Jhelum
- Centre for Research in Neuroscience and Brain Program, The Research Instituteof the, McGill University Health Centre , Montreal, QC, Canada
| | - Shuvadeep Maity
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani (BITS-Pilani) Hyderabad campus, Shameerpet-Mandal, Hyderabad, Telangana, India
| | - Pragya Komal
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani (BITS-Pilani) Hyderabad campus, Shameerpet-Mandal, Hyderabad, Telangana, India.
| |
Collapse
|
4
|
Somelar-Duracz K, Jürgenson M, Viil J, Zharkovsky A, Jaako K. 'Unpredictable chronic mild stress does not exacerbate memory impairment or altered neuronal and glial plasticity in the hippocampus of middle-aged vitamin D deficient mice'. Eur J Neurosci 2024; 59:1696-1722. [PMID: 38269959 DOI: 10.1111/ejn.16256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/10/2023] [Accepted: 01/02/2024] [Indexed: 01/26/2024]
Abstract
Vitamin D deficiency is a worldwide health concern, especially in the elderly population. Much remains unknown about the relationship between vitamin D deficiency (VDD), stress-induced cognitive dysfunctions and depressive-like behaviour. In this study, 4-month-old male C57Bl/6J mice were fed with control or vitamin D free diet for 6 months, followed by unpredictable chronic stress (UCMS) for 8 weeks. VDD induced cognitive impairment and reduced grooming behaviour, but did not induce depressive-like behaviour. While UCMS in vitamin D sufficient mice induced expected depressive-like phenotype and impairments in the contextual fear memory, chronic stress did not manifest as an additional risk factor for memory impairments and depressive-like behaviour in VDD mice. In fact, UCMS restored self-care behaviour in VDD mice. At the histopathological level, VDD mice exhibited cell loss in the granule cell layer, reduced survival of newly generated cells, accompanied with an increased number of apoptotic cells and alterations in glial morphology in the hippocampus; however, these effects were not exacerbated by UCMS. Interestingly, UCMS reversed VDD induced loss of microglial cells. Moreover, tyrosine hydroxylase levels decreased in the striatum of VDD mice, but not in stressed VDD mice. These findings indicate that long-term VDD in adulthood impairs cognition but does not augment behavioural response to UCMS in middle-aged mice. While VDD caused cell loss and altered glial response in the DG of the hippocampus, these effects were not exacerbated by UCMS and could contribute to mechanisms regulating altered stress response.
Collapse
Affiliation(s)
- Kelli Somelar-Duracz
- Institute of Biomedicine and Translational Medicine, Department of Pharmacology, University of Tartu, Tartu, Estonia
| | - Monika Jürgenson
- Institute of Biomedicine and Translational Medicine, Department of Pharmacology, University of Tartu, Tartu, Estonia
| | - Janeli Viil
- Institute of Biomedicine and Translational Medicine, Department of Pharmacology, University of Tartu, Tartu, Estonia
| | - Alexander Zharkovsky
- Institute of Biomedicine and Translational Medicine, Department of Pharmacology, University of Tartu, Tartu, Estonia
| | - Külli Jaako
- Institute of Biomedicine and Translational Medicine, Department of Pharmacology, University of Tartu, Tartu, Estonia
| |
Collapse
|
5
|
Ciobanu AM, Petrescu C, Anghele C, Manea MC, Ciobanu CA, Petrescu DM, Antonia MO, Riga S. Severe Vitamin D Deficiency-A Possible Cause of Resistance to Treatment in Psychiatric Pathology. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:2056. [PMID: 38138159 PMCID: PMC10744484 DOI: 10.3390/medicina59122056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 12/24/2023]
Abstract
In the last few years, vitamin D functions have been studied progressively, and along with their main role in regulating calcium homeostasis, the potential function in the nervous system and the link between different psychiatric disorders and vitamin D deficiency have been revealed. The discovery of vitamin D receptors in multiple brain structures, like the hippocampus, led to the hypothesis that vitamin D deficiency could be responsible for treatment resistance in psychiatric diseases. The aim of this study was to analyze the current knowledge in the literature regarding vitamin D deficiency among individuals afflicted with psychiatric disorders and assess the potential therapeutic benefits of vitamin D supplementation. A systematic search was conducted on the PubMed database for articles published in the last five years (2016-2022) in English, focusing on human subjects. Results show that vitamin D deficiency has implications for numerous psychiatric disorders, affecting mood and behavior through its influence on neurotransmitter release, neurotrophic factors, and neuroprotection. It also plays a role in modulating inflammation, which is often elevated in psychiatric disorders. In conclusion, vitamin D deficiency is prevalent and has far-reaching implications for mental health. This review underscores the importance of exploring the therapeutic potential of vitamin D supplementation in individuals with psychiatric disorders and highlights the need for further research in this complex field.
Collapse
Affiliation(s)
- Adela Magdalena Ciobanu
- Neuroscience Department, Discipline of Psychiatry, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.M.C.); (C.P.); (C.A.); (M.C.M.)
- Department of Psychiatry, “Prof. Dr. Alexandru Obregia” Clinical Hospital of Psychiatry, 041914 Bucharest, Romania
| | - Cristian Petrescu
- Neuroscience Department, Discipline of Psychiatry, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.M.C.); (C.P.); (C.A.); (M.C.M.)
- Department of Psychiatry, “Prof. Dr. Alexandru Obregia” Clinical Hospital of Psychiatry, 041914 Bucharest, Romania
| | - Cristina Anghele
- Neuroscience Department, Discipline of Psychiatry, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.M.C.); (C.P.); (C.A.); (M.C.M.)
- Department of Psychiatry, “Prof. Dr. Alexandru Obregia” Clinical Hospital of Psychiatry, 041914 Bucharest, Romania
| | - Mihnea Costin Manea
- Neuroscience Department, Discipline of Psychiatry, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.M.C.); (C.P.); (C.A.); (M.C.M.)
- Department of Psychiatry, “Prof. Dr. Alexandru Obregia” Clinical Hospital of Psychiatry, 041914 Bucharest, Romania
| | | | - Diana Mihaela Petrescu
- Department of Neurology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Mihalache Oana Antonia
- Neurology Clinic, “Fundeni” Clinical Institute, 022328 Bucharest, Romania
- Department of Stress Research and Prophylaxis, “Prof. Dr. Alexandru Obregia” Clinical Hospital of Psychiatry, 041914 Bucharest, Romania;
| | - Sorin Riga
- Department of Stress Research and Prophylaxis, “Prof. Dr. Alexandru Obregia” Clinical Hospital of Psychiatry, 041914 Bucharest, Romania;
- Romanian Academy of Medical Sciences, 927180 Bucharest, Romania
| |
Collapse
|
6
|
Mirarchi A, Albi E, Beccari T, Arcuri C. Microglia and Brain Disorders: The Role of Vitamin D and Its Receptor. Int J Mol Sci 2023; 24:11892. [PMID: 37569267 PMCID: PMC10419106 DOI: 10.3390/ijms241511892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/17/2023] [Accepted: 07/23/2023] [Indexed: 08/13/2023] Open
Abstract
Accounting for 5-20% of the total glial cells present in the adult brain, microglia are involved in several functions: maintenance of the neural environment, response to injury and repair, immunesurveillance, cytokine secretion, regulation of phagocytosis, synaptic pruning, and sculpting postnatal neural circuits. Microglia contribute to some neurodevelopmental disorders, such as Nasu-Hakola disease (NHD), Tourette syndrome (TS), autism spectrum disorder (ASD), and schizophrenia. Moreover, microglial involvement in neurodegenerative diseases, such as Alzheimer's (AD) and Parkinson's (PD) diseases, has also been well established. During the last two decades, epidemiological and research studies have demonstrated the involvement of vitamin D3 (VD3) in the brain's pathophysiology. VD3 is a fat-soluble metabolite that is required for the proper regulation of many of the body's systems, as well as for normal human growth and development, and shows neurotrophic and neuroprotective actions and influences on neurotransmission and synaptic plasticity, playing a role in various neurological diseases. In order to better understand the exact mechanisms behind the diverse actions of VD3 in the brain, a large number of studies have been performed on isolated cells or tissues of the central nervous system (CNS). Here, we discuss the involvement of VD3 and microglia on neurodegeneration- and aging-related diseases.
Collapse
Affiliation(s)
- Alessandra Mirarchi
- Department of Medicine and Surgery, University of Perugia, 06123 Perugia, Italy;
| | - Elisabetta Albi
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy; (E.A.); (T.B.)
| | - Tommaso Beccari
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy; (E.A.); (T.B.)
| | - Cataldo Arcuri
- Department of Medicine and Surgery, University of Perugia, 06123 Perugia, Italy;
| |
Collapse
|
7
|
Sangha A, Quon M, Pfeffer G, Orton SM. The Role of Vitamin D in Neuroprotection in Multiple Sclerosis: An Update. Nutrients 2023; 15:2978. [PMID: 37447304 DOI: 10.3390/nu15132978] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Multiple sclerosis (MS) is a complex neurological condition that involves both inflammatory demyelinating and neurodegenerative components. MS research and treatments have traditionally focused on immunomodulation, with less investigation of neuroprotection, and this holds true for the role of vitamin D in MS. Researchers have already established that vitamin D plays an anti-inflammatory role in modulating the immune system in MS. More recently, researchers have begun investigating the potential neuroprotective role of vitamin D in MS. The active form of vitamin D, 1,25(OH)2D3, has a range of neuroprotective properties, which may be important in remyelination and/or the prevention of demyelination. The most notable finding relevant to MS is that 1,25(OH)2D3 promotes stem cell proliferation and drives the differentiation of neural stem cells into oligodendrocytes, which carry out remyelination. In addition, 1,25(OH)2D3 counteracts neurodegeneration and oxidative stress by suppressing the activation of reactive astrocytes and M1 microglia. 1,25(OH)2D3 also promotes the expression of various neuroprotective factors, including neurotrophins and antioxidant enzymes. 1,25(OH)2D3 decreases blood-brain barrier permeability, reducing leukocyte recruitment into the central nervous system. These neuroprotective effects, stimulated by 1,25(OH)2D3, all enhance neuronal survival. This review summarizes and connects the current evidence supporting the vitamin D-mediated mechanisms of action for neuroprotection in MS.
Collapse
Affiliation(s)
- Amarpreet Sangha
- Faculty of Science and Technology, Mount Royal University, Calgary, AB T3E 6K6, Canada
| | - Michaela Quon
- Faculty of Science and Technology, Mount Royal University, Calgary, AB T3E 6K6, Canada
| | - Gerald Pfeffer
- Hotchkiss Brain Institute, Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Alberta Child Health Research Institute, Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Sarah-Michelle Orton
- Faculty of Science and Technology, Mount Royal University, Calgary, AB T3E 6K6, Canada
| |
Collapse
|
8
|
Pham H, Waterhouse M, Rahman S, Baxter C, Romero BD, McLeod DSA, Armstrong BK, Ebeling PR, English DR, Hartel G, Kimlin MG, O'Connell RL, van der Pols JC, Venn AJ, Webb PM, Whiteman DC, Almeida OP, Neale RE. Vitamin D supplementation and cognition-Results from analyses of the D-Health trial. J Am Geriatr Soc 2023; 71:1773-1784. [PMID: 36715270 DOI: 10.1111/jgs.18247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 12/15/2022] [Accepted: 12/26/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND Observational studies have consistently found a link between low serum 25-hydroxyvitamin D concentration and higher risk of cognitive impairment. Results from randomized controlled trials have been mixed, and few have been conducted in the general population. METHODS We recruited 21,315 community-dwelling Australians aged between 60 and 84 years to participate in the D-Health Trial, a randomized, double-blind, placebo-controlled trial. The intervention was monthly oral doses of 60,000 international units of vitamin D or placebo for 5 years. We assessed cognitive function in a randomly sampled group of participants aged ≥70 years using the Telephone Interview for Cognitive Status (TICS) at 2 and 5 years after randomization. The primary outcome for this analysis was TICS score; the secondary outcome was the proportion of people who had cognitive impairment (defined as TICS score ≤25). We analyzed data using mixed models (linear and logistic). RESULTS We interviewed 3887 participants at year 2 and 3614 participants at year 5. The mean TICS score at these time points was 32.3 and 32.2, respectively. Vitamin D supplementation did not affect cognitive function as measured by TICS score (mean difference between vitamin D and placebo groups 0.04; 95% CI -0.14 to 0.23), or alter risk of cognitive impairment (odds ratio 1.00; 95% CI 0.75 to 1.33). CONCLUSIONS Monthly bolus doses of vitamin D supplementation neither enhanced nor hindered cognitive function among older adults. Population-wide vitamin D supplementation of older adults that are largely vitamin D replete is unlikely to substantially benefit cognition.
Collapse
Affiliation(s)
- Hai Pham
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- School of Public Health, University of Queensland, Brisbane, Australia
| | - Mary Waterhouse
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Sabbir Rahman
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Catherine Baxter
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Briony Duarte Romero
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Donald S A McLeod
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Department of Endocrinology and Diabetes, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | | | - Peter R Ebeling
- Department of Medicine, School of Clinical Sciences, Monash University, Melbourne, Australia
| | - Dallas R English
- Melbourne School of Population Health, University of Melbourne, and Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Australia
| | - Gunter Hartel
- Statistics Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Michael G Kimlin
- School of Biomedical Sciences, Queensland University of Technology, Australia
| | | | - Jolieke C van der Pols
- Faculty of Health, School of Exercise and Nutrition Sciences, Queensland University of Technology (QUT), Brisbane, Australia
| | - Alison J Venn
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Penelope M Webb
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- School of Public Health, University of Queensland, Brisbane, Australia
| | - David C Whiteman
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- School of Public Health, University of Queensland, Brisbane, Australia
| | | | - Rachel E Neale
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- School of Public Health, University of Queensland, Brisbane, Australia
| |
Collapse
|
9
|
Saad AE, Othman AA, Ghanem HB, Soliman S, Alshenawy HA, Ghafar MTA, Rayia DMA. Vitamin D3 supplementation could ameliorate the inflammatory and redox status in the muscular phase of trichinellosis. Parasitol Int 2023; 94:102737. [PMID: 36736658 DOI: 10.1016/j.parint.2023.102737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/25/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023]
Abstract
Nutritional supplements, particularly vitamin D, have been widely used worldwide in the treatment of various infections, including parasites. This study aimed to evaluate the potential effects of vitamin D3 supplementation on the muscular phase of trichinellosis in experimental animals. Mice were divided as follows: (group I): infected untreated, (group IIa) infected and treated with vitamin D3 for 12 doses beginning 2 weeks before infection and continuing after infection, (group IIb) infected and treated with vitamin D3 for 8 doses beginning on the same day of infection, (group III) normal control, (group IVa) which received vitamin D3 for 12 doses and (group IVb) which received vitamin D3 for 8 doses. Mice were sacrificed 35 days after infection and total muscle larval count, and histopathological examination of muscle samples with immunohistochemical staining of cyclooxygenase 2 (COX2) and inducible nitric oxide synthase (iNOS) were performed. Muscle relative cathelicidin mRNA expression was assessed, as well as serum levels of muscle enzymes CK and LDH, interleukin-4 (IL-4), IL-10, IL-17 and interferon-gamma (INF-γ). Vitamin D3 supplementation significantly reduced muscle larval count, inflammatory cellular infiltration, COX2 and iNOS expression. Furthermore, it increased cathelicidin gene expression, decreased serum levels of CK and LDH and affected serum cytokine levels, increasing serum IL-4 and IL10 levels while decreasing serum INF γ and IL-17. In conclusion, vitamin D3 supplementation has favorable outcomes on the muscle phase of trichinellosis, including anti-inflammatory, antioxidant, and immunomodulatory effects.
Collapse
Affiliation(s)
- Abeer Ezzat Saad
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Egypt.; Medical Parasitology Sub-Unit, Pathology Department, College of Medicine, Jouf University, Sakaka, Saudi Arabia
| | - Ahmad Aly Othman
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Egypt
| | - Heba Bassiony Ghanem
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia; Medical Biochemistry Department, Faculty of Medicine, Tanta University, Egypt
| | - Shaimaa Soliman
- Public Health, Biostatistics and Community Medicine Department, Faculty of Medicine, Menoufia University, Egypt
| | | | | | | |
Collapse
|
10
|
Yakout SM, Abdi S, Alaskar AH, Khattak MNK, Al-Masri AA, Al-Daghri NM. Impact of Vitamin D Status Correction on Serum Lipid Profile, Carboxypeptidase N and Nitric Oxide Levels in Saudi Adults. Int J Mol Sci 2023; 24:ijms24097711. [PMID: 37175418 PMCID: PMC10177893 DOI: 10.3390/ijms24097711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
This study aimed to determine the impact on the lipid profile, carboxypeptidase N (CPN) and nitric oxide (NOx) associated with vitamin D (VD) status correction among Saudi adults with VD deficiency. A total 111 VD deficient (25(OH)D < 50 nmol/L)) adult Saudis aged 18-50 years old (57 females and 54 males) were enrolled in this 6-month interventional study. They were given 50,000 IU VD weekly for the first 2 months and then twice a month for the next 2 months, followed by 1000 IU daily for the last 2 months. The fasting lipid profile and the blood glucose, VD, NOx and CPN concentrations were measured at baseline and after intervention. Post-supplementation, the median VD was significantly higher (p < 0.001) in females [58.3 (50.6-71.2)] and males [57.8 (51.0-71.8)]. HDL cholesterol significantly increased (p = 0.05) and NOx significantly decreased (p = 0.02) in males post-supplementation. Triglycerides were positively associated with NOx in all subjects before (r = 0.44, p = 0.01) and after (r = 0.37, p = 0.01) VD status correction. There was a significant increase in serum levels of CPN2 (p = 0.02) in all subjects. Furthermore, CPN was inversely correlated with NOx (r = -0.35, p = 0.05) in males post-supplementation. In conclusion, VD status correction reduced serum NOx, particularly in males. The inhibition of NOx synthesis may be responsible for the anti-inflammatory effects of VD supplementation. An inverse association was found between NOx and CPN2.
Collapse
Affiliation(s)
- Sobhy M Yakout
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saba Abdi
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Alhanouf H Alaskar
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Malak Nawaz Khan Khattak
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abeer A Al-Masri
- Department of Physiology, College Medicine, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nasser M Al-Daghri
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
11
|
Saeedfar M, Ardjmand A, Alani B, Ghaderi A, Banafshe HR, Shahaboddin ME, Ghavipanjeh G. The effect of vitamin D on morphine preference in rats: Possible biochemical and DRD2-GDNF signaling. Brain Behav 2023; 13:e2877. [PMID: 36630182 PMCID: PMC9927858 DOI: 10.1002/brb3.2877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 01/12/2023] Open
Abstract
INTRODUCTION Despite half a century of research on vitamin D (Vit. D), its link to substance abuse and dependence has only been discussed in recent decades. Evidence also shows the involvement of Vit. D in the evolution of dopaminergic neurons in the nucleus accumbens, an increase in the expression of tyrosine hydroxylase, and the regulation of dopaminergic processes. The novel idea for this work is taken from a hypothesis given about the effectiveness of Vit. D on dopamine signaling pathway. It is therefore presumed that Vit. D can be considered an effective therapeutic approach for narcotic addiction and substance abuse. METHODS The animals were assigned into six groups (control, vehicle, Morphine [Mor.], and Vit. D [250, 500, and 1000 IU/kg, i.p.]). Following each conditioning session in a conditioned place preference (CPP) model, the animals received Vit. D. Afterward, the locomotor activity of the animals was assessed using open-field apparatus. Malondialdehyde (MDA), nitric oxide (NO), catalase (CAT), superoxide dismutase (SOD), thiol, and total antioxidant capacity (TAC) were measured in the brain. The relative DRD2 and GDNF expressions (%) were also measured in the hippocampus. RESULTS Vit. D administration after Mor. caused a significant increase in the place preference index in the acquisition phase (p < .05). Vit. D altered the oxidation/antioxidation profiles (CAT, SOD, MDA, NO, TAC, and Thiol). Vit. D was more effective than Mor. in the expression of GDNF (p < .0001); however, in the expression of DRD2, this was only the case for 1000 IU Vit. D (p < .0001). CONCLUSIONS Considering the increased place preference index induced by Mor., it can be concluded that Vit. D interacts via the oxidative pathway and DRD2-GDNF signaling to potentiate the Mor. effect.
Collapse
Affiliation(s)
- Mahbubeh Saeedfar
- Institute for Basic Sciences, Physiology Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Abolfazl Ardjmand
- Institute for Basic Sciences, Physiology Research Center, Kashan University of Medical Sciences, Kashan, Iran.,Department of Physiology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Behrang Alani
- Department of Applied Cell Sciences, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Amir Ghaderi
- Department of Addiction Studies, School of Medical, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamid Reza Banafshe
- Institute for Basic Sciences, Physiology Research Center, Kashan University of Medical Sciences, Kashan, Iran.,Department of Addiction Studies, School of Medical, Kashan University of Medical Sciences, Kashan, Iran.,Department of Pharmacology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Esmaeil Shahaboddin
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Gholamreza Ghavipanjeh
- Institute for Basic Sciences, Physiology Research Center, Kashan University of Medical Sciences, Kashan, Iran.,Department of Physiology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
12
|
Cui X, Eyles DW. Vitamin D and the Central Nervous System: Causative and Preventative Mechanisms in Brain Disorders. Nutrients 2022; 14:nu14204353. [PMID: 36297037 PMCID: PMC9610817 DOI: 10.3390/nu14204353] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/13/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Twenty of the last one hundred years of vitamin D research have involved investigations of the brain as a target organ for this hormone. Our group was one of the first to investigate brain outcomes resulting from primarily restricting dietary vitamin D during brain development. With the advent of new molecular and neurochemical techniques in neuroscience, there has been increasing interest in the potential neuroprotective actions of vitamin D in response to a variety of adverse exposures and how this hormone could affect brain development and function. Rather than provide an exhaustive summary of this data and a listing of neurological or psychiatric conditions that vitamin D deficiency has been associated with, here, we provide an update on the actions of this vitamin in the brain and cellular processes vitamin D may be targeting in psychiatry and neurology.
Collapse
Affiliation(s)
- Xiaoying Cui
- Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Wacol Q4076, Australia
- Queensland Brain Institute, University of Queensland, St Lucia Q4076, Australia
| | - Darryl W. Eyles
- Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Wacol Q4076, Australia
- Queensland Brain Institute, University of Queensland, St Lucia Q4076, Australia
- Correspondence:
| |
Collapse
|
13
|
Galoppin M, Kari S, Soldati S, Pal A, Rival M, Engelhardt B, Astier A, Thouvenot E. Full spectrum of vitamin D immunomodulation in multiple sclerosis: mechanisms and therapeutic implications. Brain Commun 2022; 4:fcac171. [PMID: 35813882 PMCID: PMC9260308 DOI: 10.1093/braincomms/fcac171] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/03/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022] Open
Abstract
Vitamin D deficiency has been associated with the risk of multiple sclerosis, disease activity and progression. Results from in vitro experiments, animal models and analysis of human samples from randomized controlled trials provide comprehensive data illustrating the pleiotropic actions of Vitamin D on the immune system. They globally result in immunomodulation by decreasing differentiation of effector T and B cells while promoting regulatory subsets. Vitamin D also modulates innate immune cells such as macrophages, monocytes and dendritic cells, and acts at the level of the blood–brain barrier reducing immune cell trafficking. Vitamin D exerts additional activity within the central nervous system reducing microglial and astrocytic activation. The immunomodulatory role of Vitamin D detected in animal models of multiple sclerosis has suggested its potential therapeutic use for treating multiple sclerosis. In this review, we focus on recent published data describing the biological effects of Vitamin D in animal models of multiple sclerosis on immune cells, blood–brain barrier function, activation of glial cells and its potential neuroprotective effects. Based on the current knowledge, we also discuss optimization of therapeutic interventions with Vitamin D in patients with multiple sclerosis, as well as new technologies allowing in-depth analysis of immune cell regulations by vitamin D.
Collapse
Affiliation(s)
- Manon Galoppin
- IGF, University Montpellier, CNRS, INSERM , Montpellier , France
| | - Saniya Kari
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291 – CNRS UMR5051 – Université Toulouse III , 31024 Toulouse cedex 3 , France
| | - Sasha Soldati
- Theodor Kocher Institute, University of Bern , Bern , Switzerland
| | - Arindam Pal
- Theodor Kocher Institute, University of Bern , Bern , Switzerland
| | - Manon Rival
- IGF, University Montpellier, CNRS, INSERM , Montpellier , France
- Department of Neurology, Nîmes University Hospital, University Montpellier , Nîmes , France
| | | | - Anne Astier
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291 – CNRS UMR5051 – Université Toulouse III , 31024 Toulouse cedex 3 , France
| | - Eric Thouvenot
- IGF, University Montpellier, CNRS, INSERM , Montpellier , France
- Department of Neurology, Nîmes University Hospital, University Montpellier , Nîmes , France
| |
Collapse
|
14
|
Vitamin D and Parkinson's Disease. Nutrients 2022; 14:nu14061220. [PMID: 35334877 PMCID: PMC8953648 DOI: 10.3390/nu14061220] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 02/04/2023] Open
Abstract
Vitamin D is a fat-soluble secosteroid, traditionally considered a key regulator of bone metabolism, calcium and phosphorous homeostasis. Its action is made possible through the binding to the vitamin D receptor (VDR), after which it directly and indirectly modulates the expression of thousands of genes. Vitamin D is important for brain development, mature brain activity and associated with many neurological diseases, including Parkinson’s disease (PD). High frequency of vitamin D deficiency in patients with Parkinson’s disease compared to control population was noted nearly twenty years ago. This finding is of interest given vitamin D’s neuroprotective effect, exerted by the action of neurotrophic factors, regulation of nerve growth or through protection against cytotoxicity. Vitamin D deficiency seems to be related to disease severity and disease progression, evaluated by Unified Parkinson’s Disease Rating Scale (UPDRS) and Hoehn and Yahr (H&Y) scale, but not with age of PD onset and duration of disease. Additionally, fall risk has been associated with lower vitamin D levels in PD. However, while the association between vitamin D and motor-symptoms seems to be possible, results of studies investigating the association with non-motor symptoms are conflicting. In addition, very little evidence exists regarding the possibility to use vitamin D supplementation to reduce clinical manifestations and disability in patients with PD. However, considering the positive balance between potential benefits against its limited risks, vitamin D supplementation for PD patients will probably be considered in the near future, if further confirmed in clinical studies.
Collapse
|
15
|
Rihal V, Khan H, Kaur A, Singh TG. Vitamin D as therapeutic modulator in cerebrovascular diseases: a mechanistic perspectives. Crit Rev Food Sci Nutr 2022; 63:7772-7794. [PMID: 35285752 DOI: 10.1080/10408398.2022.2050349] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Vitamin D deficiency has been linked to several major chronic diseases, such as cardiovascular and neurodegenerative diseases, diabetes, and cancer, linked to oxidative stress, inflammation, and aging. Vitamin D deficiency appears to be particularly harmful to the cardiovascular system, as it can cause endothelial dysfunctioning and vascular abnormalities through the modulation of various downstream mechanisms. As a result, new research indicates that therapeutic approaches targeting vitamin D inadequacies or its significant downstream effects, such as impaired autophagy, abnormal pro-inflammatory and pro-oxidant reactions, may delay the onset and severity of major cerebrovascular disorders such as stroke and neurologic malformations. Vitamin D modulates the various molecular pathways, i.e., Nitric Oxide, PI3K-Akt Pathway, cAMP pathway, NF-kB Pathway, Sirtuin 1, Nrf2, FOXO, in cerebrovascular disorder. The current review shows evidence for vitamin D's mitigating or slowing the progression of these cerebrovascular disorders, which are significant causes of disability and death worldwide.
Collapse
Affiliation(s)
- Vivek Rihal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Heena Khan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Amarjot Kaur
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | | |
Collapse
|
16
|
Janjusevic M, Gagno G, Fluca AL, Padoan L, Beltrami AP, Sinagra G, Moretti R, Aleksova A. The peculiar role of vitamin D in the pathophysiology of cardiovascular and neurodegenerative diseases. Life Sci 2022; 289:120193. [PMID: 34864062 DOI: 10.1016/j.lfs.2021.120193] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 02/07/2023]
Abstract
Vitamin D is a hormone with both genomic and non-genomic actions. It exerts its activity by binding vitamin D receptor (VDR), which belongs to the superfamily of nuclear receptors and ligand-activated transcription factors. Since VDR has been found in various tissues, it has been estimated that it regulates approximately 3% of the human genome. Several recent studies have shown pleiotropic effects of vitamin D in various processes such as cellular proliferation, differentiation, DNA repair and apoptosis and its involvement in different pathophysiological conditions as inflammation, diabetes mellitus, and anemia. It has been suggested that vitamin D could play an important role in neurodegenerative and cardiovascular disorders. Moderate to strong associations between lower serum vitamin D concentrations and stroke and cardiovascular events have been identified in different analytic approaches, even after controlling for traditional demographic and lifestyle covariates. The mechanisms behind the associations between vitamin D and cerebrovascular and cardiologic profiles have been widely examined both in animal and human studies. Optimization of vitamin D levels in human subjects may improve insulin sensitivity and beta-cell function and lower levels of inflammatory markers. Moreover, it has been demonstrated that altered gene expression of VDR and 1,25D3-membrane-associated rapid response steroid-binding (1,25D3-MARRS) receptor influences the role of vitamin D within neurons and allows them to be more prone to degeneration. This review summarizes the current understanding of the molecular mechanisms underlying vitamin D signaling and the consequences of vitamin D deficiency in neurodegenerative and cardiovascular disorders.
Collapse
Affiliation(s)
- Milijana Janjusevic
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI) and Department of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy
| | - Giulia Gagno
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI) and Department of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy
| | - Alessandra Lucia Fluca
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI) and Department of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy
| | - Laura Padoan
- Cardiology and Cardiovascular Physiopathology, Azienda Ospedaliero-Universitaria S. Maria della Misericordia, 06156 Perugia, Italy
| | - Antonio Paolo Beltrami
- Clinical Pathology Department, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC) and Department of Medicine (DAME), University of Udine, 33100 Udine, Italy
| | - Gianfranco Sinagra
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI) and Department of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy
| | - Rita Moretti
- Department of Internal Medicine and Neurology, Neurological Clinic, Complex Case Section, Trieste, Italy
| | - Aneta Aleksova
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI) and Department of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy.
| |
Collapse
|
17
|
Katsuki H. Nuclear receptors of NR1 and NR4 subfamilies in the regulation of microglial functions and pathology. Pharmacol Res Perspect 2021; 9:e00766. [PMID: 34676987 PMCID: PMC8532137 DOI: 10.1002/prp2.766] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/01/2021] [Accepted: 03/15/2021] [Indexed: 12/15/2022] Open
Abstract
This review provides an overview of researches on the NR1 and NR4 nuclear receptors involved in the regulation of microglial functions. Nuclear receptors are attractive candidates for drug targets in the therapies of the central nervous system disorders, because the activation of these receptors is expected to regulate the functions and the phenotypes of microglia, by controlling the expression of specific gene subsets and also by regulating the cellular signaling mechanisms in a nongenomic manner. Several members of NR1 nuclear receptor subfamily have been examined for their ability to regulate microglial functions. For example, stimulation of vitamin D receptor inhibits the production of pro-inflammatory factors and increases the production of anti-inflammatory cytokines. Similar regulatory actions of nuclear receptor ligands on inflammation-related genes have also been reported for other NR1 members such as retinoic acid receptors, peroxisome proliferator-activated receptors (PPARs), and liver X receptors (LXRs). In addition, stimulation of PPARγ and LXRs may also result in increased phagocytic activities of microglia. Consistent with these actions, the agonists at nuclear receptors of NR1 subfamily are shown to produce therapeutic effects on animal models of various neurological disorders such as experimental allergic encephalomyelitis, Alzheimer's disease, Parkinson's disease, and ischemic/hemorrhagic stroke. On the other hand, increasing lines of evidence suggest that the stimulation of NR4 subfamily members of nuclear receptors such as Nur77 and Nurr1 also regulates microglial functions and alleviates neuropathological events in several disease models. Further advancement of these research fields may prove novel therapeutic opportunities.
Collapse
Affiliation(s)
- Hiroshi Katsuki
- Department of Chemico‐Pharmacological SciencesGraduate School of Pharmaceutical SciencesKumamoto UniversityKumamotoJapan
| |
Collapse
|
18
|
Wiciński M, Ozorowski M, Wódkiewicz E, Otto SW, Kubiak K, Malinowski B. Impact of Vitamin D Supplementation on Inflammatory Markers' Levels in Obese Patients. Curr Issues Mol Biol 2021; 43:1606-1622. [PMID: 34698104 PMCID: PMC8929128 DOI: 10.3390/cimb43030114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 11/18/2022] Open
Abstract
In view of research suggesting a possible beneficial impact of vitamin D on systemic inflammatory response, the authors decided to investigate an influence of vitamin D supplementation on serum levels of certain inflammatory markers in obese patients. The current study included such biomarkers as interleukin-6 (IL-6), pituitary adenylate cyclase-activating peptide (PACAP), advanced oxidation protein products (AOPP), C-X3-C Motif Chemokine Ligand 1 (CX3CL1), monocyte chemoattractant protein-1 (MCP-1), and nitric oxide (NO). The measurements were performed with the ELISA method before and after 3-month-long supplementation of 2000 IU of vitamin D orally. The results showed that the therapy did not induce any statistically significant changes in serum levels of MCP-1, IL-6, CX3CL1, and PACAP. The supplementation was related to a significant increase in measurements of NO and AOPP levels, although the correlation analysis between vitamin D concentration after its supplementation and the concentration of the molecular parameters did not show significant relation. In conclusion, our study seems to contradict certain aspects of findings available in the literature regarding the vitamin D's impact.
Collapse
Affiliation(s)
- Michał Wiciński
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland; (M.W.); (M.O.); (B.M.)
| | - Mateusz Ozorowski
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland; (M.W.); (M.O.); (B.M.)
| | - Eryk Wódkiewicz
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland; (M.W.); (M.O.); (B.M.)
| | | | - Karol Kubiak
- Department of Obstetrics and Gynecology, St. Franziskus-Hospital, 48145 Münster, Germany;
| | - Bartosz Malinowski
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland; (M.W.); (M.O.); (B.M.)
| |
Collapse
|
19
|
Câmara AB, Brandão IA. The relationship between vitamin D deficiency and oxidative stress can be independent of age and gender. INT J VITAM NUTR RES 2021; 91:108-123. [DOI: 10.1024/0300-9831/a000614] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Abstract. The active vitamin D (1,25(OH)2D) acts through a nuclear receptor to perform several functions in cellular metabolism. 1,25(OH)2D participates directly in calcium homeostasis, regulates the immune system, nervous system, blood pressure, insulin secretion, among others. Vitamin D deficiency could also be associated with several diseases and increased cellular oxidative damage. The present study aimed to investigate whether lipid peroxidation and/or protein oxidation are affected by vitamin D deficiency and whether sunlight exposure/diet, gender, and age might influence this relationship. Vitamin D concentrations were obtained from the Heart Hospital database and a questionnaire was applied among the 212 participants. We used the inactive vitamin D (25(OH)2) in the analyses since 1,25(OH)2D has a short half-life and a low blood concentration. Lipid peroxidation and protein oxidation analyses were performed using spectrophotometry. Multivariate analyses suggested the participation of vitamin D deficiency (<30 ng/mL) and sunlight/diet in oxidative stress (p <0.05; R2 MDA: 0.562; R2 CG: 0.429). Multiple linear regression test show that the age and gender of patients are not interfering in the analyses (p>0.05). Therefore, we suggest that the relationship between vitamin D deficiency and oxidative stress can be independent of age and gender.
Collapse
Affiliation(s)
- Alice Barros Câmara
- Department of Biophysics and Pharmacology, Bioscience Center, Federal University of Rio Grande do Norte, Natal/RN, Brazil
| | - Igor Augusto Brandão
- Metrópole Digital Institute, Federal University of Rio Grande do Norte, Natal/RN, Brazil
| |
Collapse
|
20
|
Abstract
It has been 20 years since we first proposed vitamin D as a "possible" neurosteroid.( 1 ) Our work over the last two decades, particularly results from our cellular and animal models, has confirmed the numerous ways in which vitamin D differentiates the developing brain. As a result, vitamin D can now confidently take its place among all other steroids known to regulate brain development.( 2 ) Others have concentrated on the possible neuroprotective functions of vitamin D in adult brains. Here these data are integrated, and possible mechanisms outlined for the various roles vitamin D appears to play in both developing and mature brains and how such actions shape behavior. There is now also good evidence linking gestational and/or neonatal vitamin D deficiency with an increased risk of neurodevelopmental disorders, such as schizophrenia and autism, and adult vitamin D deficiency with certain degenerative conditions. In this mini-review, the focus is on what we have learned over these past 20 years regarding the genomic and nongenomic actions of vitamin D in shaping brain development, neurophysiology, and behavior in animal models. © 2020 The Author. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Darryl Walter Eyles
- Queensland Centre for Mental Health Research The Park Centre for Mental Health Wacol Australia.,Queensland Brain Institute University of Queensland St. Lucia Queensland Australia
| |
Collapse
|
21
|
Hancı F, Kabakuş N, Türay S, Bala KA, Dilek M. The role of obesity and vitamin D deficiency in primary headaches in childhood. Acta Neurol Belg 2020; 120:1123-1131. [PMID: 30963478 DOI: 10.1007/s13760-019-01134-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 04/02/2019] [Indexed: 02/01/2023]
Abstract
This study evaluates the role of obesity, overweight and vitamin D deficiency in primary headaches in childhood. This retrospective observational study included pediatric patients aged 5-17 years admitted to the pediatric neurology clinic with headaches between January 2015 and August 2018 and diagnosed with primary headache based on ICHD III-beta criteria. The control group consisted of healthy children without headache admitted to the pediatric outpatient clinic for check-ups before engaging in athletic or school activities. The control and patient groups were at the same risk of low 25(OH)D3 levels. The study population was divided into three groups-patients with migraine (group A), patients with tension-type headache (TTH) (group B) and the control group (group C). Participants' demographic data, medical histories, physical examination findings and laboratory results were retrieved retrospectively from the patient charts. BMI was significantly higher in patients with primary headache, the risk of primary headache increasing in patients with a BMI in excess of 25. Comparison of the patients with primary headache and the control group revealed lower 25(OH)D levels in the primary headache group, although the difference was not statistically significant. Girls with primary headache had significantly lower 25(OH)D levels than boys. A relationship may be present between overweight, obesity and primary headache, while female gender may be suggested as a negative factor for primary headache. Patients should be advised to lose weight if BMI indicates overweight or obesity.
Collapse
|
22
|
Farghali M, Ruga S, Morsanuto V, Uberti F. Can Brain Health Be Supported by Vitamin D-Based Supplements? A Critical Review. Brain Sci 2020; 10:brainsci10090660. [PMID: 32972010 PMCID: PMC7563709 DOI: 10.3390/brainsci10090660] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/10/2020] [Accepted: 09/15/2020] [Indexed: 02/07/2023] Open
Abstract
This review presents recent knowledge on the neuroprotective effects of vitamin D and their usefulness as oral supplementation when combined with other molecules, such as curcumin. A critical look at the effectiveness of vitamin D in this field is also provided. Vitamin D plays a crucial role in neuroprotection and in the cognitive decline associated with aging, where vitamin D’s levels are related to the levels of several neurotrophic factors. An important role of vitamin D has also been observed in the mechanism of neuroinflammation, which is the basis of several aging conditions, including cognitive decline and neurodegeration; furthermore, the neuroprotective effect of vitamin D in the cognitive decline of aging has recently been reported. For this reason, many food supplements created for humans contain vitamin D alone or combined with other molecules with antioxidant properties. However, recent studies also explored negative consequences of the use at a high dosage of vitamin D. Vitamin D in tissues or brain cells can also modulate calbindin-D28K, parvalbumin, and calretinin, and is involved in immune function, thanks also to the combination with curcumin. Curcumin acts as a free radical scavenger and antioxidant, inhibiting lipid peroxidation and oxidative DNA damage. In particular, curcumin is a potent immune-regulatory agent and its administration has been reported to attenuate cognitive impairments. These effects could be exploited in the future to control the mechanisms that lead to the brain decay typical of neurodegenerative diseases.
Collapse
|
23
|
Shiravi AA, Saadatkish M, Abdollahi Z, Miar P, Khanahmad H, Zeinalian M. Vitamin D can be effective on the prevention of COVID-19 complications: A narrative review on molecular aspects. INT J VITAM NUTR RES 2020; 92:134-146. [PMID: 32811354 DOI: 10.1024/0300-9831/a000676] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The widespread COVID-19 pandemic has been, currently, converted to a catastrophic human health challenge. Vitamin D (VD) and its metabolites have been used as a palliative treatment for chronic inflammatory and infectious diseases from ancient times. In the current study, some molecular aspects of the potential effects of VD against COVID-19 side-effects have been discussed. An arguable role in autophagy or apoptosis control has been suggested for VD through calcium signaling at the mitochondrial and ER levels. 1,25(OH)2D3 is also an immunomodulator that affects the development of B-cells, T-cells, and NK cells in both innate and acquired immunity. The production of some anti-microbial molecules such as defensins and cathelicidins is also stimulated by VD. The overexpression of glutathione, glutathione peroxidase, and superoxide dismutase, and down-regulation of NADPH oxidase are induced by VD to reduce the oxidative stress. Moreover, the multi-organ failure due to a cytokine storm induced by SARS-CoV2 in COVID-19 may be prevented by the immunomodulatory effects of VD. It can also downregulate the renin-angiotensin system which has a protective role against cardiovascular complications induced by COVID-19. Given the many experimental and molecular evidences due to the potential protective effects of VD on the prevention of the COVID-19-induced morbidities, a VD supplementation is suggested to prevent the lethal side-effects of the infection. It is particularly recommended in VD-deficient patients or those at greater risk of serious or critical effects of COVID-19, including the elderly, and patients with pre-existing chronic diseases, especially those in nursing homes, care facilities, and hospitals.
Collapse
Affiliation(s)
- Amir-Abbas Shiravi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Milad Saadatkish
- School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zeinab Abdollahi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Paniz Miar
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Khanahmad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehrdad Zeinalian
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.,Ala Cancer Control and Prevention Center, Isfahan, Iran
| |
Collapse
|
24
|
Zhang CY, He FF, Su H, Zhang C, Meng XF. Association between chronic kidney disease and Alzheimer's disease: an update. Metab Brain Dis 2020; 35:883-894. [PMID: 32246323 DOI: 10.1007/s11011-020-00561-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 03/05/2020] [Indexed: 12/11/2022]
Abstract
It has been accepted that kidney function is connected with brain activity. In clinical studies, chronic kidney disease (CKD) patients have been found to be prone to suffering cognitive decline and Alzheimer's disease (AD). The cognitive function of CKD patients may improve after kidney transplantation. All these indicators show a possible link between kidney function and dementia. However, little is known about the mechanism behind the relation of CKD and AD. This review discusses the associations between CKD and AD from the perspective of the pathophysiology of the kidney and complications and/or concomitants of CKD that may lead to cognitive decline in the progression of CKD and AD. Potential preventive and therapeutic strategies for AD are also presented. Further studies are warranted in order to confirm whether the setting of CKD is a possible new determinant for cognitive impairment in AD.
Collapse
Affiliation(s)
- Chun-Yun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Fang-Fang He
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hua Su
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xian-Fang Meng
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
25
|
Fullard ME, Duda JE. A Review of the Relationship Between Vitamin D and Parkinson Disease Symptoms. Front Neurol 2020; 11:454. [PMID: 32536905 PMCID: PMC7267215 DOI: 10.3389/fneur.2020.00454] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/28/2020] [Indexed: 12/20/2022] Open
Abstract
Vitamin D is a fat-soluble secosteroid that exerts its effects by binding to the vitamin D receptor (VDR), through which it directly and indirectly modulates the expression of hundreds to thousands of genes. While originally known for its role in regulating calcium homeostasis and metabolism, vitamin D is now associated with many other health conditions, including Parkinson's disease (PD). A high prevalence of vitamin D deficiency has been noted in PD for at least the past two decades. These findings, along with the discovery that the VDR and 1α-hydroxylase, the enzyme that converts vitamin D to its active form, are highly expressed in the substantia nigra, led to the hypothesis that inadequate levels of circulating vitamin D may lead to dysfunction or cell death within the substantia nigra. Studies investigating the relationship between vitamin D status and PD, however, have been inconsistent. Two prospective studies examined the association between mid-life vitamin D levels and risk of PD and produced conflicting results-one demonstrated an increased risk for PD with lower mid-life vitamin D levels, and the other showed no association between vitamin D and PD risk. One of the most consistent findings in the literature is the inverse association between serum vitamin D level and motor symptom severity in cross-sectional studies. While these data suggest that vitamin D may modify the disease, another likely explanation is confounding due to limited mobility. Fall risk has been associated with vitamin D in PD, but more study is needed to determine if supplementation decreases falls, which has been demonstrated in the general population. The association between vitamin D and non-motor symptoms is less clear. There is some evidence that vitamin D is associated with verbal fluency and verbal memory in PD. Studies in PD have also shown associations between vitamin D status and mood, orthostatic hypotension and olfactory impairment in PD. While more research is needed, given the numerous potential benefits and limited risks, vitamin D level assessment in PD patients and supplementation for those with deficiency and insufficiency seems justified.
Collapse
Affiliation(s)
| | - John E. Duda
- Parkinson's Disease Research, Education and Clinical Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, United States
- Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
26
|
Abstract
Epilepsy is considered a major serious chronic neurological disorder, characterized by recurrent seizures. It is usually associated with a history of a lesion in the nervous system. Irregular activation of inflammatory molecules in the injured tissue is an important factor in the development of epilepsy. It is unclear how the imbalanced regulation of inflammatory mediators contributes to epilepsy. A recent research goal is to identify interconnected inflammation pathways which may be involved in the development of epilepsy. The clinical use of available antiepileptic drugs is often restricted by their limitations, incidence of several side effects, and drug interactions. So development of new drugs, which modulate epilepsy through novel mechanisms, is necessary. Alternative therapies and diet have recently reported positive treatment outcomes in epilepsy. Vitamin D (Vit D) has shown prophylactic and therapeutic potential in different neurological disorders. So, the aim of current study was to review the associations between different brain inflammatory mediators and epileptogenesis, to strengthen the idea that targeting inflammatory pathway may be an effective therapeutic strategy to prevent or treat epilepsy. In addition, neuroprotective effects and mechanisms of Vit D in clinical and preclinical studies of epilepsy were reviewed.
Collapse
|
27
|
Miclea A, Bagnoud M, Chan A, Hoepner R. A Brief Review of the Effects of Vitamin D on Multiple Sclerosis. Front Immunol 2020; 11:781. [PMID: 32435244 PMCID: PMC7218089 DOI: 10.3389/fimmu.2020.00781] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/06/2020] [Indexed: 12/15/2022] Open
Abstract
Multiple sclerosis (MS) is characterized as an autoimmune disease affecting the central nervous system. It is one of the most common neurological disorders in young adults. Over the past decades, increasing evidence suggested that hypovitaminosis D is a contributing factor to the risk of developing MS. From different risk factors contributing to the development of MS, vitamin D status is of particular interest since it is not only a modifiable risk factor but is also associated with MS disease activity. MS patients with lower serum vitamin D concentrations were shown to have higher disease activity. However, this finding does not demonstrate causality. In this regard, prospective vitamin D supplementation studies missed statistical significance in its primary endpoints but showed promising results in secondary outcome measures or post hoc analyses. An explanation for missed primary endpoints may be underpowered trials. Besides vitamin D supplementation as a potential add-on to long-term immunotherapeutic treatment, a recent laboratory study of our group pointed toward a beneficial effect of vitamin D to improve the efficacy of glucocorticoids in relapse therapy. In the following article, we will briefly review the effects of vitamin D on MS by outlining its effects on the immune and nervous system and by reviewing the association between vitamin D and MS risk as well as MS disease activity. We will also review the effects of vitamin D supplementation on MS risk and MS disease activity.
Collapse
Affiliation(s)
- Andrei Miclea
- Department of Neurology, University Hospital Bern and University of Bern, Bern, Switzerland
| | - Maud Bagnoud
- Department of Neurology, University Hospital Bern and University of Bern, Bern, Switzerland
| | - Andrew Chan
- Department of Neurology, University Hospital Bern and University of Bern, Bern, Switzerland
| | - Robert Hoepner
- Department of Neurology, University Hospital Bern and University of Bern, Bern, Switzerland
| |
Collapse
|
28
|
Kim HA, Perrelli A, Ragni A, Retta F, De Silva TM, Sobey CG, Retta SF. Vitamin D Deficiency and the Risk of Cerebrovascular Disease. Antioxidants (Basel) 2020; 9:antiox9040327. [PMID: 32316584 PMCID: PMC7222411 DOI: 10.3390/antiox9040327] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/15/2020] [Accepted: 04/15/2020] [Indexed: 02/07/2023] Open
Abstract
Vitamin D deficiency has been clearly linked to major chronic diseases associated with oxidative stress, inflammation, and aging, including cardiovascular and neurodegenerative diseases, diabetes, and cancer. In particular, the cardiovascular system appears to be highly sensitive to vitamin D deficiency, as this may result in endothelial dysfunction and vascular defects via multiple mechanisms. Accordingly, recent research developments have led to the proposal that pharmacological interventions targeting either vitamin D deficiency or its key downstream effects, including defective autophagy and abnormal pro-oxidant and pro-inflammatory responses, may be able to limit the onset and severity of major cerebrovascular diseases, such as stroke and cerebrovascular malformations. Here we review the available evidence supporting the role of vitamin D in preventing or limiting the development of these cerebrovascular diseases, which are leading causes of disability and death all over the world.
Collapse
Affiliation(s)
- Hyun Ah Kim
- Department of Physiology, Anatomy & Microbiology and Centre for Cardiovascular Biology and Disease Research, School of Life Sciences, La Trobe University, Bundoora 3086, Australia; (H.A.K.); (T.M.D.S.)
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton 3800, Australia
| | - Andrea Perrelli
- Department of Clinical and Biological Sciences, University of Torino, Orbassano, 10043 Torino, Italy;
- CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, Orbassano, 10043 Torino, Italy
| | - Alberto Ragni
- Oncological Endocrinology Unit, Department of Medical Sciences, Città della Salute e della Scienza Hospital, University of Torino, 10126 Torino, Italy; (A.R.); (F.R.)
| | - Francesca Retta
- Oncological Endocrinology Unit, Department of Medical Sciences, Città della Salute e della Scienza Hospital, University of Torino, 10126 Torino, Italy; (A.R.); (F.R.)
| | - T. Michael De Silva
- Department of Physiology, Anatomy & Microbiology and Centre for Cardiovascular Biology and Disease Research, School of Life Sciences, La Trobe University, Bundoora 3086, Australia; (H.A.K.); (T.M.D.S.)
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton 3800, Australia
| | - Christopher G. Sobey
- Department of Physiology, Anatomy & Microbiology and Centre for Cardiovascular Biology and Disease Research, School of Life Sciences, La Trobe University, Bundoora 3086, Australia; (H.A.K.); (T.M.D.S.)
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton 3800, Australia
- Correspondence: (C.G.S.); (S.F.R.); Tel.: +61-3-94791316 (C.G.S.); +39-011-6706426 (S.F.R.)
| | - Saverio Francesco Retta
- Department of Clinical and Biological Sciences, University of Torino, Orbassano, 10043 Torino, Italy;
- CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, Orbassano, 10043 Torino, Italy
- Correspondence: (C.G.S.); (S.F.R.); Tel.: +61-3-94791316 (C.G.S.); +39-011-6706426 (S.F.R.)
| |
Collapse
|
29
|
Morello M, Pieri M, Zenobi R, Talamo A, Stephan D, Landel V, Féron F, Millet P. The Influence of Vitamin D on Neurodegeneration and Neurological Disorders: A Rationale for its Physio-pathological Actions. Curr Pharm Des 2020; 26:2475-2491. [PMID: 32175837 DOI: 10.2174/1381612826666200316145725] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/11/2020] [Indexed: 12/12/2022]
Abstract
Vitamin D is a steroid hormone implicated in the regulation of neuronal integrity and many brain functions. Its influence, as a nutrient and a hormone, on the physiopathology of the most common neurodegenerative diseases is continuously emphasized by new studies. This review addresses what is currently known about the action of vitamin D on the nervous system and neurodegenerative diseases such as Multiple Sclerosis, Alzheimer's disease, Parkinson's disease and Amyotrophic Lateral Sclerosis. Further vitamin D research is necessary to understand how the action of this "neuroactive" steroid can help to optimize the prevention and treatment of several neurological diseases.
Collapse
Affiliation(s)
- Maria Morello
- Clinical Biochemistry, Department of Experimental Medicine, Faculty of Medicine, University of Rome "Tor Vergata" and University Hospital of Tor Vergata, 00133 Rome, Italy
| | - Massimo Pieri
- Clinical Biochemistry, Department of Experimental Medicine, Faculty of Medicine, University of Rome "Tor Vergata" and University Hospital of Tor Vergata, 00133 Rome, Italy
| | - Rossella Zenobi
- Clinical Biochemistry, Department of Experimental Medicine, Faculty of Medicine, University of Rome "Tor Vergata" and University Hospital of Tor Vergata, 00133 Rome, Italy
| | - Alessandra Talamo
- Psychiatric Clinic, University Hospital of Tor Vergata, 00133 Rome, Italy
| | - Delphine Stephan
- Aix Marseille University, CNRS, INP, UMR 7051, Marseille, France
| | - Verena Landel
- Aix Marseille University, CNRS, INP, UMR 7051, Marseille, France
| | - François Féron
- Aix Marseille University, CNRS, INP, UMR 7051, Marseille, France
| | - Pascal Millet
- Aix Marseille University, CNRS, INP, UMR 7051, Marseille, France.,Association UNIVI (Agirc-Arrco), 75010 Paris, France.,Hôpital Gériatrique les Magnolias, Ballainvilliers, France
| |
Collapse
|
30
|
Janbek J, Specht IO, Heitmann BL. Associations between vitamin D status in pregnancy and offspring neurodevelopment: a systematic literature review. Nutr Rev 2020; 77:330-349. [PMID: 30806662 DOI: 10.1093/nutrit/nuy071] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
CONTEXT Vitamin D plays an important role in the development of the brain, which is one of the earliest fetal organs to develop. Results from epidemiological studies investigating associations between maternal levels of vitamin D during pregnancy and offspring neurodevelopment are mixed and inconclusive. OBJECTIVE This systematic review of studies that examined vitamin D levels in pregnancy and offspring neurodevelopment used 3 specific domains-timing of exposure during pregnancy trimesters, neurodevelopmental outcomes, and offspring age at assessment of outcomes-to determine whether vitamin D status in pregnancy is associated with offspring neurodevelopment. DATA SOURCES A search of the Embase, PsychInfo, Scopus, and The Cochrane Library databases in September 2017 and February 2018 identified 844 articles, of which 46 were retrieved for full-text assessment. STUDY SELECTION Eligibility criteria were used to select studies. All authors examined the studies, and consensus was reached through discussion. Results were divided according to the 3 domains. DATA EXTRACTION Authors examined the studies independently, and data from eligible studies were extracted using a modified version of the Cochrane data collection form. Using the modified Downs and Black checklist, 2 authors assessed the quality of the studies independently and were blinded to each other's assessment. Consensus was reached upon discussion and with the involvement of the third author. RESULTS Fifteen observational studies were included. Vitamin D in pregnancy was associated with offspring language and motor skills in young children. Associations persisted into adolescence, and results were not dependent on the timing of vitamin D exposure during pregnancy. No supplementation studies were identified. CONCLUSIONS There is some evidence that low vitamin D status in pregnancy is associated with offspring language and motor development, particularly in young children. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration number CRD42017078312.
Collapse
Affiliation(s)
- Janet Janbek
- Research Unit for Dietary Studies at the Parker Institute, Bispebjerg and Frederiksberg Hospital (part of Copenhagen University Hospital), Frederiksberg, Denmark. J. Janbek and B.L. Heitmann are with the Section of General Practice, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Ina O Specht
- Research Unit for Dietary Studies at the Parker Institute, Bispebjerg and Frederiksberg Hospital (part of Copenhagen University Hospital), Frederiksberg, Denmark. J. Janbek and B.L. Heitmann are with the Section of General Practice, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Berit L Heitmann
- Research Unit for Dietary Studies at the Parker Institute, Bispebjerg and Frederiksberg Hospital (part of Copenhagen University Hospital), Frederiksberg, Denmark. J. Janbek and B.L. Heitmann are with the Section of General Practice, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
31
|
Genetic, environmental and biomarker considerations delineating the regulatory effects of vitamin D on central nervous system function. Br J Nutr 2020; 123:41-58. [PMID: 31640823 DOI: 10.1017/s000711451900268x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Studies show that vitamin D (vit-D) (25(OH)D), the bioactive metabolite (1,25(OH)2D3) and vit-D receptors (vit-D receptor; protein disulphide isomerase, family A member 3) are expressed throughout the brain, particularly in regions pivotal to learning and memory. This has led to the paradigm that avoiding vit-D deficiency is important to preserve cognitive function. However, presently, it is not clear if the common clinical measure of serum 25(OH)D serves as a robust surrogate marker for central nervous system (CNS) homeostasis or function. Indeed, recent studies report CNS biosynthesis of endogenous 25(OH)D, the CNS expression of the CYP group of enzymes which catalyse conversion to 1,25(OH)2D3 and thereafter, deactivation. Moreover, in the periphery, there is significant ethnic/genetic heterogeneity in vit-D conversion to 1,25(OH)2D3 and there is a paucity of studies which have actually investigated vit-D kinetics across the cerebrovasculature. Compared with peripheral organs, the CNS also has differential expression of receptors that trigger cellular response to 1,25(OH)2D3 metabolites. To holistically consider the putative association of peripheral (blood) abundance of 25(OH)D on cognitive function, herein, we have reviewed population and genetic studies, pre-clinical and clinical intervention studies and moreover have considered potential confounders of vit-D analysis.
Collapse
|
32
|
Hypovitaminosis Din Postherpetic Neuralgia-High Prevalence and Inverse Association with Pain: A Retrospective Study. Nutrients 2019; 11:nu11112787. [PMID: 31731694 PMCID: PMC6893816 DOI: 10.3390/nu11112787] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/07/2019] [Accepted: 11/13/2019] [Indexed: 02/07/2023] Open
Abstract
Hypovitaminosis D (25-hydroxyvitamin D (25(OH)D) <75 nmol/L) is associated with neuropathic pain and varicella-zoster virus (VZV) immunity. A two-part retrospective hospital-based study was conducted. Part I (a case-control study): To investigate the prevalence and risk of hypovitaminosis D in postherpetic neuralgia (PHN) patients compared to those in gender/index-month/age-auto matched controls who underwent health examinations. Patients aged ≥50 years were automatically selected by ICD-9 codes for shingle/PHN. Charts were reviewed. Part II (a cross-sectional study): To determine associations between 25(OH)D, VZV IgG/M, pain and items in the DN4 questionnaire at the first pain clinic visit of patients. Independent predictors of PHN were presented as adjusted odds ratios(AOR) and 95% confidence intervals (CI). Prevalence (73.9%) of hypovitaminosis D in 88 patients was high. In conditional logistic regressions, independent predictors for PHN were hypovitaminosis D (AOR3.12, 95% CI1.73–5.61), malignancy (AOR3.21, 95% CI 1.38–7.48) and Helicobacter pylori-related peptic ulcer disease (AOR3.47, 95% CI 1.71–7.03). 25(OH)D was inversely correlated to spontaneous/brush-evoked pain. Spontaneous pain was positively correlated to VZV IgM. Based on the receiver operator characteristic curve, cutoffs for 25(OH)D to predict spontaneous and brush-evoked pain were 67.0 and 169.0 nmol/L, respectively. A prospective, longitudinal study is needed to elucidate the findings.
Collapse
|
33
|
Hussein M, Fathy W, Abd Elkareem RM. The potential role of serum vitamin D level in migraine headache: a case-control study. J Pain Res 2019; 12:2529-2536. [PMID: 31686895 PMCID: PMC6709376 DOI: 10.2147/jpr.s216314] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 08/02/2019] [Indexed: 12/17/2022] Open
Abstract
PURPOSE Much concern was directed toward exploring the relationship between vitamin D and migraine. There is strong evidence that vitamin D supplementation can decrease frequency, severity, and duration of migraine headache attacks. The aim of this work was to investigate the difference in serum levels of 25 (OH)-vitamin D between patients with migraine and healthy controls, to determine the differences in headache characteristics according to vitamin D status, and to correlate serum 25 (OH)-vitamin D level with duration, frequency, and severity of migraine headache attacks. PATIENTS AND METHODS This is a case-control study conducted on 40 patients diagnosed with migraine and 40 healthy controls. History was taken from patients with migraine regarding headache characteristics. Migraine severity scale (MIGSEV) and Headache Impact Test-6 (HIT-6) were used for migraine assessment. Serum 25(OH)-vitamin D was measured for all patients and controls using enzyme-linked immunosorbent assay (ELISA). RESULTS Patients with migraine had significantly lower 25(OH)-vitamin D serum level in comparison to controls (P-value=0.019). The incidence of aura, phonophobia/photophobia, autonomic manifestations, allodynia, and resistance to medications were significantly higher in migraineurs with vitamin D deficiency than those with normal vitamin D. There was a statistically significant negative correlation between 25(OH)-vitamin D serum level and attack duration in hours (P-value˂0.001), frequency of the attacks/month (P-value˂0.001), MIGSEV scale (P-value=0.001), and HIT-6 scale (P-value=0.001). CONCLUSION Patients with migraine had significant vitamin D deficiency compared to healthy controls. Such deficiency significantly affects headache characteristics, duration, frequency, and severity of headache attacks.
Collapse
Affiliation(s)
- Mona Hussein
- Department of Neurology, Beni-Suef University, Beni-Suef, Egypt
| | - Wael Fathy
- Department of Anaesthesia and Pain Management, Beni-Suef University, Beni-Suef, Egypt
| | - Rehab M Abd Elkareem
- Department of Clinical and Chemical Pathology, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
34
|
Neonatal vitamin D levels and cognitive ability in young adulthood. Eur J Nutr 2019; 59:1919-1928. [PMID: 31278417 DOI: 10.1007/s00394-019-02042-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 06/30/2019] [Indexed: 12/13/2022]
Abstract
PURPOSE Intelligence has a strong influence on life capability, and thus, identifying early modifiable risk factors related to cognitive ability is of major public health interest. During pregnancy, vitamin D is transported from the mother to the fetus through the placenta in the form of 25-hydroxyvitamin D (25(OH)D). Levels of 25(OH)D have in some studies been associated with childhood neurodevelopment; however, results from all studies are not in agreement. We investigated if neonatal 25(OH)D3 concentrations were associated with Børge Priens IQ test score (BPP) in young adulthood. METHODS In this nested cohort study, 25(OH)D3 concentrations were measured in dried blood spots from 818 newborns. We followed the children for their IQ BPP test scores in the Danish Conscription Register, which holds information on test results from the BPP test on individuals who have been recruited for Danish mandatory military draft board examination. Using general linear models, we investigated the crude and adjusted relationship between quintiles of 25(OH)D3 concentrations and BPP IQ test results. RESULTS The study population consisted of 95.8% men, with a mean age of 19.4 years. The median and range of the neonatal 25(OH)D3 levels were 26.2 nmol/L (0-104.7 nmol/L). The overall Wald test did not show an association between neonatal 25(OH)D3 levels and BPP IQ scores (p = 0.23); however, individuals within the 3rd (BPP IQ = 101.0, 98.0-103.9) and 4th (BPP IQ = 101.2, 99.1-104.3) quintiles had slightly higher BPP IQ scores than individuals from the first quintile (BPP IQ = 97.6, 94.6-100.6). CONCLUSIONS Our results support the hypothesis that individuals with the lowest levels of neonatal vitamin D might have slightly lower BPP. However, more studies are needed with larger study populations to confirm our results.
Collapse
|
35
|
|
36
|
Gazerani P, Fuglsang R, Pedersen JG, Sørensen J, Kjeldsen JL, Yassin H, Nedergaard BS. A randomized, double-blinded, placebo-controlled, parallel trial of vitamin D 3 supplementation in adult patients with migraine. Curr Med Res Opin 2019; 35:715-723. [PMID: 30182753 DOI: 10.1080/03007995.2018.1519503] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Vitamin D levels have been linked to certain pain states, including migraine. This study investigated whether vitamin D supplementation would be beneficial for adult patients with migraine (ClinicalTrials.gov Identifier: NCT01695460). METHODS A randomized, double-blinded, placebo-controlled parallel trial was conducted in migraine patients (36 women and 12 men, 18-65 years of age). A 4-week baseline period was conducted before randomization to 24 weeks of treatment. Participants were assigned to receive D3-Vitamin (n = 24, 18 women and 6 men, 100 μg/day D3-Vitamin) or placebo (n = 24, 18 women and 6 men). Migraine attacks and related symptoms were assessed by self-reported diaries. The response rate (i.e. experiencing a 50% or greater reduction in migraine frequency from baseline to week 24), change in migraine severity, and number of migraine days were recorded. Changes in migraine-related symptoms, HIT-6TM scores, and pain sensitivity tests (pressure pain threshold and temporal summation) were also evaluated. Serum levels of both 25 (OH)D and 1,25 (OH)2D were assessed from baseline to week 24. RESULTS The number of headache days changed from 6.14 ± 3.60 in the treatment group and 5.72 ± 4.52 in the placebo group at baseline to 3.28 ± 3.24 and 4.93 ± 3.24 by the end of the trial, respectively. Migraine patients on D3-Vitamin demonstrated a significant decrease (p < .001) in migraine frequency from baseline to week 24 compared with placebo. However, migraine severity, pressure pain thresholds, or temporal summation did not show a significant change. 25(OH)D levels increased significantly for the D3-Vitamin group during the first 12 weeks of treatment. There was no significant change in 1,25(OH)2D. No side-effects were reported or noted. CONCLUSIONS D3-Vitamin was superior to placebo in reducing migraine days in migraine patients. Larger studies are required to confirm that vitamin D3 might be one of the prophylactic options for adult patients with migraine.
Collapse
Affiliation(s)
- P Gazerani
- a Department of Health Science and Technology, Faculty of Medicine , Aalborg University , Aalborg , Denmark
| | - R Fuglsang
- a Department of Health Science and Technology, Faculty of Medicine , Aalborg University , Aalborg , Denmark
| | - J G Pedersen
- a Department of Health Science and Technology, Faculty of Medicine , Aalborg University , Aalborg , Denmark
| | - J Sørensen
- a Department of Health Science and Technology, Faculty of Medicine , Aalborg University , Aalborg , Denmark
| | - J L Kjeldsen
- a Department of Health Science and Technology, Faculty of Medicine , Aalborg University , Aalborg , Denmark
| | - H Yassin
- a Department of Health Science and Technology, Faculty of Medicine , Aalborg University , Aalborg , Denmark
| | - B S Nedergaard
- b Center for Clinical and Basic Research (CCBR) , Aalborg , Denmark
| |
Collapse
|
37
|
Dursun E, Gezen-Ak D. Vitamin D basis of Alzheimer's disease: from genetics to biomarkers. Hormones (Athens) 2019; 18:7-15. [PMID: 30484096 DOI: 10.1007/s42000-018-0086-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 09/10/2018] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder seen mostly in the elderly population. While to date AD research has focused on either neurochemical disruptions, genetic studies, or the pathological hallmarks, little has been done to establish a novel approach that would encompass all three aspects, one that would overcome the current barriers in AD research and determine the cause of AD and, eventually, discover a treatment. Meanwhile, there have been strong indications in recent years that vitamin D, a secosteroid hormone, and its receptors are fundamentally involved in neurodegenerative mechanisms. Observational studies have pointed to vitamin D deficiency as a genetic risk factor for AD, Parkinson's disease (PD), vascular dementia, and multiple sclerosis (MS), as well as other neurological disorders, brought about by alterations in genes involved in metabolism, transportation, and actions of vitamin D. Molecular studies have demonstrated that vitamin D treatments prevent amyloid production while also increasing its clearance from the brain in AD. Finally, recent vitamin D intervention studies have reported significant improvement in cognitive performance in subjects with senile dementia, mild cognitive impairment, and AD. This review aims to describe how a vitamin D research strategy, fully integrating all aspects of present-day AD research, would elucidate the genetic, molecular, and biochemical background of the disease.
Collapse
Affiliation(s)
- Erdinç Dursun
- Brain and Neurodegenerative Disorders Research Laboratory, Department of Medical Biology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, 34098, Istanbul, Turkey.
| | - Duygu Gezen-Ak
- Brain and Neurodegenerative Disorders Research Laboratory, Department of Medical Biology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, 34098, Istanbul, Turkey
| |
Collapse
|
38
|
Chen H, Liu Y, Huang G, Zhu J, Feng W, He J. Association between vitamin D status and cognitive impairment in acute ischemic stroke patients: a prospective cohort study. Clin Interv Aging 2018; 13:2503-2509. [PMID: 30573955 PMCID: PMC6292227 DOI: 10.2147/cia.s187142] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Objective Previous studies found that low vitamin D levels were modestly associated with risk of stroke and poor functional outcome after stroke. In addition, vitamin D deficiency has been linked with cognitive decline. Our study aimed to explore the potential relationship between vitamin D levels in the short-term acute phase of ischemic stroke and cognitive impairment at 1 month. Methods In total, 354 ischemic stroke patients were consecutively enrolled in the study and received 1-month follow-up. The serum levels of vitamin D were measured within 24 hours after admission. Cognitive function was evaluated by the Mini-Mental State Examination (MMSE) at 1 month after acute ischemic stroke. Cognitive impairment was defined according to different education levels. Results According to MMSE scores, 114 participants (32.2%) had cognitive impairment at 1 month. Patients with vitamin D deficiency were more likely to have cognitive impairment than those with vitamin D insufficiency and vitamin D sufficiency (P<0.001). After adjusting for potential confounders in our Cox proportional hazards model, vitamin D deficiency was independently associated with the development of cognitive impairment in acute ischemic stroke patients. Conclusion Independent of established risk factors, vitamin D deficiency in the short-term phase of ischemic stroke was associated with a higher incidence of 1-month cognitive impairment.
Collapse
Affiliation(s)
- Huijun Chen
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China,
| | - Yuntao Liu
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China,
| | - Guiqian Huang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China,
| | - Jie Zhu
- Department of Mental Health, Mental Health School, Wenzhou Medical University, Wenzhou 325000, China
| | - Wenqian Feng
- Department of Mental Health, Mental Health School, Wenzhou Medical University, Wenzhou 325000, China
| | - Jincai He
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China,
| |
Collapse
|
39
|
Câmara AB, de Souza ID, Dalmolin RJS. Sunlight Incidence, Vitamin D Deficiency, and Alzheimer's Disease. J Med Food 2018; 21:841-848. [DOI: 10.1089/jmf.2017.0130] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Alice Barros Câmara
- Bioinformatics Multidisciplinary Environment, IMD, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Iara Dantas de Souza
- Bioinformatics Multidisciplinary Environment, IMD, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Rodrigo Juliani Siqueira Dalmolin
- Bioinformatics Multidisciplinary Environment, IMD, Federal University of Rio Grande do Norte, Natal, Brazil
- Department of Biochemistry, CB, Federal University of Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
40
|
Vitamin D in Neurological Diseases: A Rationale for a Pathogenic Impact. Int J Mol Sci 2018; 19:ijms19082245. [PMID: 30065237 PMCID: PMC6121649 DOI: 10.3390/ijms19082245] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/25/2018] [Accepted: 07/26/2018] [Indexed: 12/22/2022] Open
Abstract
It is widely known that vitamin D receptors have been found in neurons and glial cells, and their highest expression is in the hippocampus, hypothalamus, thalamus and subcortical grey nuclei, and substantia nigra. Vitamin D helps the regulation of neurotrophin, neural differentiation, and maturation, through the control operation of growing factors synthesis (i.e., neural growth factor [NGF] and glial cell line-derived growth factor (GDNF), the trafficking of the septohippocampal pathway, and the control of the synthesis process of different neuromodulators (such as acetylcholine [Ach], dopamine [DA], and gamma-aminobutyric [GABA]). Based on these assumptions, we have written this review to summarize the potential role of vitamin D in neurological pathologies. This work could be titanic and the results might have been very fuzzy and even incoherent had we not conjectured to taper our first intentions and devoted our interests towards three mainstreams, demyelinating pathologies, vascular syndromes, and neurodegeneration. As a result of the lack of useful therapeutic options, apart from the disease-modifying strategies, the role of different risk factors should be investigated in neurology, as their correction may lead to the improvement of the cerebral conditions. We have explored the relationships between the gene-environmental influence and long-term vitamin D deficiency, as a risk factor for the development of different types of neurological disorders, along with the role and the rationale of therapeutic trials with vitamin D implementation.
Collapse
|
41
|
Nourhashemi F, Hooper C, Cantet C, Féart C, Gennero I, Payoux P, Salabert AS, Guyonnet S, De Souto Barreto P, Vellas B. Cross-sectional associations of plasma vitamin D with cerebral β-amyloid in older adults at risk of dementia. Alzheimers Res Ther 2018; 10:43. [PMID: 29695305 PMCID: PMC5922310 DOI: 10.1186/s13195-018-0371-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 04/03/2018] [Indexed: 01/17/2023]
Abstract
BACKGROUND Vitamin D deficiency is associated with an increased risk of Alzheimer's disease and increased beta-amyloid (Aβ) in animals. Hence we sought to investigate the relationship between plasma 25-hydroxyvitamin D (25(OH)D) and cerebral Aβ in older adults with subjective memory complaints. METHODS This is a secondary analysis of the Multidomain Alzheimer Preventive Trial. Participants were 178 dementia-free individuals aged 70 years or older with data on plasma 25(OH)D and cerebral Aβ load assessed by [18F]-florbetapir positron emission tomography. Plasma 25(OH)D was measured at study baseline using a commercially available electro-chemiluminescence competitive binding assay. Standard uptake value ratios (SUVRs) were generated using the cerebellum as a reference. Brain regions assessed included the cortex, anterior cingulate, anterior putamen, caudate, hippocampus, medial orbitofrontal cortex, occipital cortex, parietal cortex, pons, posterior cingulate, posterior putamen, precuneus, semioval centre and temporal cortex. Associations were explored using fully adjusted multiple linear regression models. RESULTS Participants had a mean (SD) age of 76.2 years (4.4) and 59.6% were female. The mean (SD) plasma 25(OH)D level was 22.4 ng/ml (10.8) and the mean (SD) cortical SUVR was 1.2 (0.2). We did not find any cross-sectional associations (p > 0.05) between baseline 25(OH)D levels and Aβ in any of the brain regions studied. CONCLUSIONS These preliminary results suggest that circulating 25(OH)D is not associated with cerebral Aβ in older adults. Further longitudinal studies with the measurement of mid-life vitamin D status are required to explore the relationship between vitamin D and Aβ accrual over time, thereby circumventing the shortfalls of a cross-sectional study.
Collapse
Affiliation(s)
- Fati Nourhashemi
- Gérontopôle, Department of Geriatrics, Toulouse University Hospital, Toulouse, France
- INSERM UMR 1027, Toulouse, France
- University of Toulouse III, Toulouse, France
- Department of Epidemiology and Public Health, CHU Toulouse, Toulouse, France
| | - Claudie Hooper
- Gérontopôle, Department of Geriatrics, Toulouse University Hospital, Toulouse, France
| | - Christelle Cantet
- Gérontopôle, Department of Geriatrics, Toulouse University Hospital, Toulouse, France
- INSERM UMR 1027, Toulouse, France
- University of Toulouse III, Toulouse, France
- Department of Epidemiology and Public Health, CHU Toulouse, Toulouse, France
| | - Catherine Féart
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, Team LEHA, UMR 1219, F-33000 Bordeaux, France
| | - Isabelle Gennero
- UMR1043 Centre de Physiopathologie Toulouse Purpan, Université de Toulouse, UPS, INSERM, Toulouse, France
- Institut Federatif de Biologie, CHU Toulouse, Purpan University Hospital, Toulouse, France
| | - Pierre Payoux
- UMR 1214, Toulouse Neuroimaging Center, University of Toulouse III, Toulouse, France
- Department of Nuclear Medicine, Toulouse University Hospital, Toulouse, France
| | - Anne Sophie Salabert
- UMR 1214, Toulouse Neuroimaging Center, University of Toulouse III, Toulouse, France
- Department of Nuclear Medicine, Toulouse University Hospital, Toulouse, France
| | - Sophie Guyonnet
- Gérontopôle, Department of Geriatrics, Toulouse University Hospital, Toulouse, France
- INSERM UMR 1027, Toulouse, France
- University of Toulouse III, Toulouse, France
- Department of Epidemiology and Public Health, CHU Toulouse, Toulouse, France
| | - Philipe De Souto Barreto
- Gérontopôle, Department of Geriatrics, Toulouse University Hospital, Toulouse, France
- INSERM UMR 1027, Toulouse, France
- University of Toulouse III, Toulouse, France
- Department of Epidemiology and Public Health, CHU Toulouse, Toulouse, France
| | - Bruno Vellas
- Gérontopôle, Department of Geriatrics, Toulouse University Hospital, Toulouse, France
- INSERM UMR 1027, Toulouse, France
- University of Toulouse III, Toulouse, France
- Department of Epidemiology and Public Health, CHU Toulouse, Toulouse, France
| |
Collapse
|
42
|
Kim K, Gong HS, Kim J, Baek GH. Expression of vitamin D receptor in the subsynovial connective tissue in women with carpal tunnel syndrome. J Hand Surg Eur Vol 2018; 43:290-295. [PMID: 29329504 DOI: 10.1177/1753193417749158] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
UNLABELLED Studies suggest that low vitamin D levels are associated with carpal tunnel syndrome. We aimed to evaluate whether level of vitamin D receptor expression in the endothelial cells of the subsynovial connective tissue is associated with clinical features of carpal tunnel syndrome. We obtained the subsynovial connective tissue from 52 women with carpal tunnel syndrome during surgery and performed immunohistochemical analysis of vitamin D receptors in the endothelial cells of the subsynovial connective tissue. We explored correlation of vitamin D receptor expression with clinical features of carpal tunnel syndrome, such as age, symptom duration, symptom severity and electrophysiological severity. Diverse range of vitamin D receptor expression was observed. Vitamin D receptor expression was independently associated with distal motor latency. This suggests that vitamin D receptor expression may be associated with disease progression, as prolonged distal motor latency reflects severity of the disease. Further studies are necessary to explore the role of vitamin D and vitamin D receptors in patients with carpal tunnel syndrome. LEVEL OF EVIDENCE IV.
Collapse
Affiliation(s)
- Kahyun Kim
- 1 Department of Orthopaedic Surgery, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Hyun Sik Gong
- 2 Department of Orthopedic Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Jihyeung Kim
- 2 Department of Orthopedic Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Goo Hyun Baek
- 2 Department of Orthopedic Surgery, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
43
|
Donmez A, Orun E, Sonmez F. Vitamin D status in children with headache: A case-control study. Clin Nutr ESPEN 2018; 23:222-227. [DOI: 10.1016/j.clnesp.2017.09.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 09/10/2017] [Accepted: 09/26/2017] [Indexed: 12/27/2022]
|
44
|
Stessman LE, Peeples ES. Vitamin D and Its Role in Neonatal Hypoxic-Ischemic Brain Injury. Neonatology 2018; 113:305-312. [PMID: 29466806 DOI: 10.1159/000486819] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/14/2018] [Indexed: 12/27/2022]
Abstract
Emerging evidence has demonstrated that vitamin D plays an important role in many adult neurologic disorders, but is also critical in neuronal development and pruning in the neonatal and pediatric populations. Neonates are at a particularly high risk of vitamin D deficiency, in part due to the high prevalence of maternal deficiency during pregnancy. Several preclinical studies have demonstrated that infants born to vitamin D-deficient mothers are at a high risk of developing neonatal brain injury, and recent clinical studies have shown that neonates with hypoxic-ischemic encephalopathy (HIE) tend to be vitamin D-deficient. There are limited data, however, on whether additional prenatal or postnatal supplementation may alter the prevalence or severity of neonatal HIE. This review examines the current data supporting the neuroprotective role of vitamin D, with a focus on how these findings may be translated to neonates with HIE.
Collapse
|
45
|
Song TJ, Chu MK, Sohn JH, Ahn HY, Lee SH, Cho SJ. Effect of Vitamin D Deficiency on the Frequency of Headaches in Migraine. J Clin Neurol 2018; 14:366-373. [PMID: 29971976 PMCID: PMC6031995 DOI: 10.3988/jcn.2018.14.3.366] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/19/2018] [Accepted: 03/22/2018] [Indexed: 01/01/2023] Open
Abstract
Background and Purpose The risk of vitamin D deficiency varies with the season. The frequency of vitamin D deficiency in migraine patients and its association with migraine are unclear. Methods We retrospectively evaluated first-visit migraine patients between January 2016 and May 2017, and investigated the demographics, season, migraine subtypes, frequency, severity, and impact of migraine, psychological and sleep variables, climate factors, and vitamin D levels. The nonfasting serum 25-hydroxyvitamin D concentration was measured to determine the vitamin D level, with deficiency of vitamin D defined as a concentration of <20 ng/mL. Results In total, 157 patients with migraine aged 37.0±8.6 years (mean±standard deviation) were analyzed. Their serum level of vitamin D was 15.9±7.4 ng/mL. Vitamin D deficiency was present in 77.1% of the patients, and occurred more frequently in spring and winter than in summer and autumn (89.1%, 85.7%, 72.4%, and 61.7%, respectively; p=0.008). In multivariate Poisson regression analysis, monthly headache was 1.203 times (95% confidence interval=1.046–1.383, p=0.009) more frequent in patients with vitamin D deficiency than in those without deficiency after adjusting for demographics, season, migraine subtype, depression, anxiety, and sleep quality. These associations were consistently noted in subgroup analysis of episodic migraine (odds ratio=1.266, p=0.033) and chronic migraine (odds ratio=1.390, p=0.041). Conclusions Our study found that a larger number of monthly days with headache was related to vitamin D deficiency among migraineurs. Future studies should attempt to confirm the causal relationship between vitamin D deficiency and migraine.
Collapse
Affiliation(s)
- Tae Jin Song
- Department of Neurology, College of Medicine, Ewha Womans University, Seoul, Korea
| | - Min Kyung Chu
- Department of Neurology, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Jong Hee Sohn
- Department of Neurology, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon, Korea
| | - Hong Yup Ahn
- Department of Statistics, Dongguk University, Seoul, Korea
| | - Sun Hwa Lee
- Department of Neurology, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong, Korea
| | - Soo Jin Cho
- Department of Neurology, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong, Korea.
| |
Collapse
|
46
|
Abstract
Globally, an estimated 46 million people are currently living with dementia and this figure is projected to increase 3-fold by 2050, highlighting this major public health concern and its substantial associated healthcare costs. With pharmacological treatment yet to reach fruition, the emphasis on evidence-based preventative lifestyle strategies is becoming increasingly important and several modifiable lifestyle factors have been identified that may preserve cognitive health. These include good cardiovascular health, physical activity, low alcohol intake, smoking and a healthy diet, with growing interest in vitamin D. The aim of the present paper is to review the evidence supporting the potential roles of vitamin D in ageing and cognitive health in community-dwelling older adults. Furthermore, to describe the utility and challenges of cognitive assessments and outcomes when investigating vitamin D in this context. Evidence indicates that serum 25-hydroxyvitamin D (25(OH)D) may impact brain health. There is a biological plausibility from animal models that vitamin D may influence neurodegenerative disorders, through several mechanisms. Epidemiological evidence supports associations between low serum 25(OH)D concentrations and poorer cognitive performance in community-dwelling older populations, although an optimal 25(OH)D level for cognitive health could not be determined. The effect of raising 25(OH)D concentrations on cognitive function remains unclear, as there is a paucity of interventional evidence. At a minimum, it seems prudent to aim to prevent vitamin D deficiency in older adults, with other known common protective lifestyle factors, as a viable component of brain health strategies.
Collapse
|
47
|
Gürer B, Karakoç A, Bektaşoğlu PK, Kertmen H, Kanat MA, Arıkök AT, Ergüder Bİ, Sargon MF, Öztürk ÖÇ, Çelikoğlu E. Comparative effects of vitamin D and methylprednisolone against ischemia/reperfusion injury of rabbit spinal cords. Eur J Pharmacol 2017; 813:50-60. [DOI: 10.1016/j.ejphar.2017.07.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 07/14/2017] [Accepted: 07/17/2017] [Indexed: 01/01/2023]
|
48
|
Vitamin D enhances antiepileptic and cognitive effects of lamotrigine in pentylenetetrazole-kindled rats. Brain Res 2017; 1673:78-85. [DOI: 10.1016/j.brainres.2017.08.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 08/08/2017] [Accepted: 08/09/2017] [Indexed: 11/17/2022]
|
49
|
Vitamin D 3 attenuates cognitive deficits and neuroinflammatory responses in ICV-STZ induced sporadic Alzheimer's disease. Inflammopharmacology 2017; 26:39-55. [PMID: 28702935 DOI: 10.1007/s10787-017-0372-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/01/2017] [Indexed: 10/19/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by intracellular neurofibrillary tangles and extracellular Aβ deposition. Growing experimental evidence indicate diverse biological effects of vitamin D3 including antioxidant, neuroprotective, anti-inflammatory and cardiovascular benefits. However, the underlying neuroprotective mechanism of vitamin D3 is still largely elusive. Therefore, the present study was aimed to investigate the neuroprotective effects of vitamin D3 on ICV-STZ induced sporadic AD. Our study demonstrated that vitamin D3 pretreatment significantly improved spatial learning and memory functions and effectively mitigated ICV-STZ mediated neuronal oxidative stress, mitochondrial aberrations and improved cholinergic functions. Moreover, vitamin D3 attenuated hippocampal neuroinflammatory response and reduced neuronal death in cortex and hippocampus. Our findings indicated that prophylactic vitamin D3 supplementation ameliorated ICV-STZ mediated neurobehavioral alterations, oxidative stress and neuroinflammation thereby improving cholinergic functions and reversed degenerative changes in brain. Thus, our study further provides evidence for its therapeutic supplementation for various neurodegenerative disorders including AD.
Collapse
|
50
|
Gatto NM, Paul KC, Sinsheimer JS, Bronstein JM, Bordelon Y, Rausch R, Ritz B. Vitamin D receptor gene polymorphisms and cognitive decline in Parkinson's disease. J Neurol Sci 2016; 370:100-106. [PMID: 27772736 PMCID: PMC5325129 DOI: 10.1016/j.jns.2016.09.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 08/12/2016] [Accepted: 09/06/2016] [Indexed: 02/06/2023]
Abstract
We and others have suggested that vitamin D receptor gene (VDR) polymorphisms influence susceptibility for Parkinson's disease (PD), Alzheimer's disease (AD), mild cognitive impairment (MCI) or overall cognitive functioning. Here we examine VDR polymorphisms and cognitive decline in patients with PD. Non-Hispanic Caucasian PD patients (n=190) in the Parkinson Environment Gene (PEG) study were successfully genotyped for seven VDR polymorphisms. Cognitive function was assessed with the Mini-Mental State Exam (MMSE) at baseline and at a maximum of three follow-up exams. Using repeated-measures regression we assessed associations between VDR SNP genotypes and change in MMSE longitudinally. PD cases were on average 67.4years old at diagnosis and were followed for an average of 7.1years into disease. Each additional copy of the FokI A allele was associated with a 0.115 decrease in the total MMSE score per year of follow-up (β=-0.115, SE(β)=0.05, p=0.03) after adjusting for age, sex, education and PD duration. The effect on MMSE by the FokI A allele was comparable in absolute magnitude to the effect for disease duration in years prior to first interview (β=-0.129 per year, SE(β)=0.08, p=0.13), and years of education (β=0.118 per year, SE(β)=0.03, p<0.001). When LD/LED use and PD subtype were added to the model, the effect of the FokI A allele on total MMSE score was magnified (β=-0.141, SE(β)=0.05, p=0.005). Results point to Fokl, a functional VDR polymorphism, as being associated with cognitive decline in PD. Future studies examining the contributions of the vitamin D metabolic pathway to cognitive dysfunction in PD are needed.
Collapse
Affiliation(s)
- Nicole M Gatto
- School of Community and Global Health, Claremont Graduate University, Claremont, CA 91711, United States.
| | - Kimberly C Paul
- Department of Epidemiology, UCLA, Los Angeles, CA 90095, United States
| | - Janet S Sinsheimer
- Department of Human Genetics, UCLA, Los Angeles, CA 90095, United States; Department of Biomathematics, UCLA, Los Angeles, CA 90095, United States; Department of Biostatistics, UCLA, Los Angeles, CA 90095, United States
| | - Jeff M Bronstein
- Department of Neurology, UCLA, Los Angeles, CA 90095, United States
| | - Yvette Bordelon
- Department of Neurology, UCLA, Los Angeles, CA 90095, United States
| | - Rebecca Rausch
- Department of Neurology, UCLA, Los Angeles, CA 90095, United States
| | - Beate Ritz
- Department of Epidemiology, UCLA, Los Angeles, CA 90095, United States; Department of Environmental Health Sciences, UCLA, Los Angeles, CA 90095, United States; Department of Neurology, UCLA, Los Angeles, CA 90095, United States
| |
Collapse
|