1
|
Agoston DV. Great insight created by tiny holes; celebrating 40 years of brain micropunch technique. Front Neuroanat 2014; 8:61. [PMID: 25071466 PMCID: PMC4092355 DOI: 10.3389/fnana.2014.00061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 06/13/2014] [Indexed: 11/13/2022] Open
Affiliation(s)
- Denes V Agoston
- Anatomy, Physiology and Genetics, Uniformed Services University Bethesda, MD, USA ; Experimental Traumatology, Department of Neuroscience, Karolinska Institute Stockholm, Sweden
| |
Collapse
|
2
|
Martín-Ibáñez R, Crespo E, Urbán N, Sergent-Tanguy S, Herranz C, Jaumot M, Valiente M, Long JE, Pineda JR, Andreu C, Rubenstein JLR, Marín O, Georgopoulos K, Mengod G, Fariñas I, Bachs O, Alberch J, Canals JM. Ikaros-1 couples cell cycle arrest of late striatal precursors with neurogenesis of enkephalinergic neurons. J Comp Neurol 2010; 518:329-51. [PMID: 19950118 DOI: 10.1002/cne.22215] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
During central nervous system development, several transcription factors regulate the differentiation of progenitor cells to postmitotic neurons. Here we describe a novel role for Ikaros-1 in the generation of late-born striatal neurons. Our results show that Ikaros-1 is expressed in the boundary of the striatal germinal zone (GZ)/mantle zone (MZ), where it induces cell cycle arrest of neural progenitors by up-regulation of the cyclin-dependent kinase inhibitor (CDKi) p21(Cip1/Waf1). This effect is coupled with the neuronal differentiation of late precursors, which in turn is critical for the second wave of striatal neurogenesis that gives rise to matrix neurons. Consistently, Ikaros(-/-) mice had fewer striatal projecting neurons and, in particular, enkephalin (ENK)-positive neurons. In addition, overexpression of Ikaros-1 in primary striatal cultures increases the number of calbindin- and ENK-positive neurons. Our results also show that Ikaros-1 acts downstream of the Dlx family of transcription factors, insofar as its expression is lost in Dlx1/2 double knockout mice. However, we demonstrate that Ikaros-1 and Ebf-1 independently regulate the final determination of the two populations of striatal projection neurons of the matrix compartment, ENK- and substance P-positive neurons. In conclusion, our findings identify Ikaros-1 as a modulator of cell cycle exit of neural progenitors that gives rise to the neurogenesis of ENK-positive striatal neurons.
Collapse
Affiliation(s)
- Raquel Martín-Ibáñez
- Departament de Biologia Cellular, Immunologia i Neurociències, Facultat de Medicina, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Gyorgy AB, Szemes M, de Juan Romero C, Tarabykin V, Agoston DV. SATB2 interacts with chromatin-remodeling molecules in differentiating cortical neurons. Eur J Neurosci 2008; 27:865-73. [PMID: 18333962 DOI: 10.1111/j.1460-9568.2008.06061.x] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
During our search for developmental regulators of neuronal differentiation, we identified special AT-rich sequence-binding protein (SATB)2 that is specifically expressed in the developing rat neocortex and binds to AT-rich DNA elements. Here we investigated whether the regulatory function of SATB2 involves chromatin remodeling at the AT-rich DNA site. In-vitro and in-vivo assays using a DNA affinity pre-incubation specificity test of recognition and chromatin immunoprecipitation showed that SATB2 specifically binds to histone deacetylase 1 and metastasis-associated protein 2, members of the nucleosome-remodeling and histone deacetylase complex. Double immunohistochemistry showed that, in the developing rat neocortex, SATB2 is coexpressed with both proteins. Using a cell culture model, we showed that trichostatin A treatment, which blocks the activities of histone deacetylases, reverses the AT-rich dsDNA-dependent repressor effect of SATB2. These findings suggested that the molecular regulatory function of SATB2 involves modification of the chromatin structure. Semi-quantitative chromatin immunoprecipitation analysis of cortices from SATB2 mutant and wild-type animals indicated that, in the knock-out brains, SATB2 is replaced in the chromatin-remodeling complex by AU-rich element RNA binding protein 1, another AT-rich DNA binding protein also expressed in differentiating cortical neurons. These results suggested that an altered chromatin structure, due to the presence of different AT-rich DNA binding proteins in the chromatin-remodeling complex, may contribute to the developmental abnormalities observed in the SATB2 mutant animals. These findings also raised the interesting possibility that SATB2, along with other AT-rich DNA binding proteins, is involved in mediating epigenetic influences during cortical development.
Collapse
Affiliation(s)
- Andrea B Gyorgy
- Department of Anatomy, Physiology and Genetics, School of Medicine USU, Bethesda, MD 20814, USA
| | | | | | | | | |
Collapse
|
4
|
Mice lacking the transcription factor Ikaros display behavioral alterations of an anti-depressive phenotype. Exp Neurol 2008; 211:107-14. [DOI: 10.1016/j.expneurol.2008.01.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Accepted: 01/11/2008] [Indexed: 11/23/2022]
|
5
|
Agoston DV, Szemes M, Dobi A, Palkovits M, Georgopoulos K, Gyorgy A, Ring MA. Ikaros is expressed in developing striatal neurons and involved in enkephalinergic differentiation. J Neurochem 2007; 102:1805-1816. [PMID: 17504264 DOI: 10.1111/j.1471-4159.2007.04653.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Ikaros (Ik) gene encodes alternatively spliced zinc-finger proteins originally identified in developing hematopoietic organs and acts as master regulator of lymphoid development. During our search for transcription factors that control the developmental expression of the enkephalin (ENK) gene we found that Ik-1 and Ik-2 isoforms are specifically expressed in the embryonic striatum and bind the Ik-like cis-regulatory DNA element present on the ENK gene. Ik proteins are expressed by both proliferating (BrdU+/nestin+) and by post-mitotic differentiating (MAP2+) cells in the developing striatum between embryonic day 12 and post-natal day 2 and mRNAs encoding for the Ik and ENK genes are co-expressed by a subset of differentiating striatal neurons. Blocking the DNA binding of Ik proteins in differentiating embryonic striatal neuronal cultures resulted in decreased ENK expression and mutant animals lacking the DNA-binding domain of Ik had a deficit in the number of ENK but not in dynorphin or substance P mRNA+ cells. Animals lacking the protein interaction domain of Ik showed no deficit. These results demonstrate that Ik-1 and Ik-2 proteins through their DNA binding act as positive regulators of ENK gene expression in the developing striatum and participate in regulating enkephalinergic differentiation.
Collapse
Affiliation(s)
- Denes V Agoston
- Department of Anatomy, Physiology and Genetics, USUHS, Bethesda, Maryland, USALCB, NIMH, NIH, Bethesda, Maryland, USACutaneous Biology Research Center, MGH, Harvard Medical School, Charlestown, Massachusetts, USAGraduate Program in Genetics, The George Washington University, Washington, District of Columbia, USA
| | - Marianna Szemes
- Department of Anatomy, Physiology and Genetics, USUHS, Bethesda, Maryland, USALCB, NIMH, NIH, Bethesda, Maryland, USACutaneous Biology Research Center, MGH, Harvard Medical School, Charlestown, Massachusetts, USAGraduate Program in Genetics, The George Washington University, Washington, District of Columbia, USA
| | - Albert Dobi
- Department of Anatomy, Physiology and Genetics, USUHS, Bethesda, Maryland, USALCB, NIMH, NIH, Bethesda, Maryland, USACutaneous Biology Research Center, MGH, Harvard Medical School, Charlestown, Massachusetts, USAGraduate Program in Genetics, The George Washington University, Washington, District of Columbia, USA
| | - Miklos Palkovits
- Department of Anatomy, Physiology and Genetics, USUHS, Bethesda, Maryland, USALCB, NIMH, NIH, Bethesda, Maryland, USACutaneous Biology Research Center, MGH, Harvard Medical School, Charlestown, Massachusetts, USAGraduate Program in Genetics, The George Washington University, Washington, District of Columbia, USA
| | - Katia Georgopoulos
- Department of Anatomy, Physiology and Genetics, USUHS, Bethesda, Maryland, USALCB, NIMH, NIH, Bethesda, Maryland, USACutaneous Biology Research Center, MGH, Harvard Medical School, Charlestown, Massachusetts, USAGraduate Program in Genetics, The George Washington University, Washington, District of Columbia, USA
| | - Andrea Gyorgy
- Department of Anatomy, Physiology and Genetics, USUHS, Bethesda, Maryland, USALCB, NIMH, NIH, Bethesda, Maryland, USACutaneous Biology Research Center, MGH, Harvard Medical School, Charlestown, Massachusetts, USAGraduate Program in Genetics, The George Washington University, Washington, District of Columbia, USA
| | - Mary A Ring
- Department of Anatomy, Physiology and Genetics, USUHS, Bethesda, Maryland, USALCB, NIMH, NIH, Bethesda, Maryland, USACutaneous Biology Research Center, MGH, Harvard Medical School, Charlestown, Massachusetts, USAGraduate Program in Genetics, The George Washington University, Washington, District of Columbia, USA
| |
Collapse
|
6
|
Dobi A, Szemes M, Lee C, Palkovits M, Lim F, Gyorgy A, Mahan MA, Agoston DV. AUF1 is expressed in the developing brain, binds to AT-rich double-stranded DNA, and regulates enkephalin gene expression. J Biol Chem 2006; 281:28889-900. [PMID: 16769718 DOI: 10.1074/jbc.m511858200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During our search for transcriptional regulators that control the developmentally regulated expression of the enkephalin (ENK) gene, we identified AUF1. ENK, a peptide neurotransmitter, displays precise cell-specific expression in the adult brain. AUF1 (also known as heterogeneous nuclear ribonucleoprotein D) has been known to regulate gene expression through altering the stability of AU-rich mRNAs. We show here that in the developing brain AUF1 proteins are expressed in a spatiotemporally defined manner, and p37 and p40/42 isoforms bind to an AT-rich double-stranded (ds) DNA element of the rat ENK (rENK) gene. This AT-rich dsDNA sequence acts as a cis-regulatory DNA element and is involved in regulating the cell-specific expression of the ENK gene in primary neuronal cultures. The AT-rich dsDNA elements are present at approximately 2.5 kb 5'upstream of the rat, human, and mouse ENK genes. AUF1 proteins are shown here to provide direct interaction between these upstream AT-rich DNA sequences and the TATA region of the rENK gene. Double immunohistochemistry demonstrated that in the developing brain AUF1 proteins are expressed by proliferating neural progenitors and by differentiating neurons populating brain regions, which will not express the ENK gene in the adult, suggesting a repressor role for AUF1 proteins during enkephalinergic differentiation. Their subnuclear distribution and interactions with AT-rich DNA suggest that in the developing brain they can be involved in complex nuclear regulatory mechanisms controlling the development- and cell-specific expression of the ENK gene.
Collapse
Affiliation(s)
- Albert Dobi
- Department of Anatomy, Physiology, and Genetics, School of Medicine, Uniformed Services University, Bethesda, Maryland 20814, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Szemes M, Gyorgy A, Paweletz C, Dobi A, Agoston DV. Isolation and characterization of SATB2, a novel AT-rich DNA binding protein expressed in development- and cell-specific manner in the rat brain. Neurochem Res 2006; 31:237-46. [PMID: 16604441 DOI: 10.1007/s11064-005-9012-8] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2005] [Indexed: 11/24/2022]
Abstract
AT-rich DNA elements play an important role in regulating cell-specific gene expression. One of the AT-rich DNA binding proteins, SATB1 is a novel type of transcription factor that regulates gene expression in the hematopoietic lineage through chromatin modification. Using DNA-affinity purification followed by mass spectrometry we identified and isolated a related protein, SATB2 from the developing rat cerebral cortex. SATB2 shows homology to SATB1 and the rat protein is practically identical to the mouse and human SATB2. Using competitive EMSA, we show that recombinant SATB2 protein binds with high affinity and specificity to AT-rich dsDNA. Using RT-PCR, Western analysis and immunohistochemistry we demonstrate that SATB2 expression is restricted to a subset of postmitotic, differentiating neurons in the rat neocortex at ages E16 and P4. We suggest that similar to its homologue SATB1, SATB2 is also involved in regulating gene expression through altering chromatin structure in differentiating cortical neurons.
Collapse
Affiliation(s)
- Marianna Szemes
- Department of Anatomy, Physiology and Genetics, USUHS, Bethesda, MD 20814, USA
| | | | | | | | | |
Collapse
|
8
|
Borges K, Myers SJ, Zhang S, Dingledine R. Activity of the rat GluR4 promoter in transfected cortical neurons and glia. J Neurochem 2003; 86:1162-73. [PMID: 12911624 DOI: 10.1046/j.1471-4159.2003.01926.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AMPA (alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate) receptors are assembled from four subunits, GluR1-4. Although GluR4 is widely expressed in brain its abundance is less than GluR1-3. We have isolated approximately 5 kb of the rat GluR4 promoter region and analyzed its capacity to drive expression of a luciferase reporter gene in transfected rat cortical neurons and glia, and C6 glioma cells. Multiple transcriptional start sites were identified in a GC-rich region lacking TATA-boxes between -1090 and -1011 bp from ATG. In transfected mixed cortical cultures, luciferase expression driven by GluR4 promoter segments were found predominantly in TuJ1-positive neurons, indicating neuronal preference of GluR4. The GluR4 promoter fragments were 6-12-fold more active in neurons than glia, compared with a 30-fold neuronal selectivity of GluR2. Deletion of the GluR4 transcriptional initiation region decreased luciferase activity in neurons, but increased activity in C6 cells, suggesting that regulatory elements governing neuronal expression reside in this region. An intron within the 5'-untranslated region and Sp1, IK2 and E-box sites are conserved in the rat, mouse and human GluR4 promoters. The relative activity of GluR4 and GluR2 promoters in transfected cells correlates with their expression in brain, and in both promoters regulatory elements for neuronal expression reside near the initiation sites.
Collapse
Affiliation(s)
- Karin Borges
- Department of Pharmacology, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA.
| | | | | | | |
Collapse
|
9
|
Le Y, Gagneten S, Larson T, Santha E, Dobi A, v Agoston D, Sauer B. Far-upstream elements are dispensable for tissue-specific proenkephalin expression using a Cre-mediated knock-in strategy. J Neurochem 2003; 84:689-97. [PMID: 12562513 DOI: 10.1046/j.1471-4159.2003.01573.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Several cis-regulatory DNA elements are present in the 5' upstream regulatory region of the enkephalin gene (ENK) promoter. To determine their role in conferring organ-specificity of ENK expression in mice and to circumvent the position effects from random gene insertion that are known to often frustrate such analysis in transgenic mice, we used a Cre-mediated gene knock-in strategy to target reporter constructs to a "safe haven" loxP-tagged locus in the hypoxanthine phosphoribosyltransferase (HPRT) gene. Here we report reliable and reproducible reporter gene expression under the control of the 5' upstream regulatory region of the mouse ENK gene in gene-modified mice using this Cre-mediated knock-in strategy. Comparison of two 5'ENK regulatory regions (one with and the other without known cis-regulatory DNA elements) in the resulting adult mice showed that conserved far-upstream cis-regulatory DNA elements are dispensable for correct organ-specific gene expression. Thus the proximal 1.4 kb of the murine ENK promoter region is sufficient for organ-specificity of ENK gene expression when targeted to a safe-haven genomic locus. These results suggest that conservation of the far-upstream DNA elements serves more subtle roles, such as the developmental or cell-specific expression of the ENK gene.
Collapse
Affiliation(s)
- Yunzheng Le
- Laboratory of Biochemistry and Metabolism, National Institute of Diabetes, Digestive and Kidney Diseases/NIH, Bethesda, Maryland, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Meloni R, Biguet NF, Mallet J. Post-genomic era and gene discovery for psychiatric diseases: there is a new art of the trade? The example of the HUMTH01 microsatellite in the Tyrosine Hydroxylase gene. Mol Neurobiol 2002; 26:389-403. [PMID: 12428766 DOI: 10.1385/mn:26:2-3:389] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The microsatellite HUMTH01, located in the first intron of the Tyrosine Hydroxylase (TH) gene (encoding the rate-limiting enzyme in the synthesis of catecholamines), is characterized by a TCAT repeated motif and has been used in genetic studies of neuropsychiatric and other complex diseases, in which catecholaminergic neurotransmission is implicated. After reporting a positive association between HUMTH01 and bipolar disorder as well as schizophrenia, the authors established that HUMTH01 alleles display the features of regulatory elements. Thereafter, they cloned two proteins (ZNF191 and HBP1), specifically binding to HUMTH01, and demonstrated that allelic variations of HUMTH01 have a quantitative silencing effect on TH gene expression in vitro, and correlate with quantitative and qualitative changes in the binding by ZNF191. The authors aim to characterize the transduction pathway impinging on the HUMTH01 microsatellite and establish its relevance for TH gene regulation in vivo. Since the TCAT repeated sequence is widespread throughout the genome, their approach may lead to the dissection of the mechanisms underlying the quantitative expression of several genes implicated in complex genetic traits, both normal and pathological. Thus, these investigations on the possible contribution and potential role of the HUMTH01 microsatellite in neuro-pathological conditions may represent an example of the different approaches needed to validate genetic targets in the "post-genomic era."
Collapse
Affiliation(s)
- Rolando Meloni
- Laboratoire de Génétique de la Neurotransmissionet des Processus Neurodégénératifs (LGN), CNRS UMR 7091, Bât CERVI Hĵpital de la Pitié Salpêtrière, Paris, France.
| | | | | |
Collapse
|
11
|
Ito T, Nomura S, Okada M, Katsumata Y, Kikkawa F, Rogi T, Tsujimoto M, Mizutani S. Ap-2 and Ikaros regulate transcription of human placental leucine aminopeptidase/oxytocinase gene. Biochem Biophys Res Commun 2002; 290:1048-53. [PMID: 11798181 DOI: 10.1006/bbrc.2001.6325] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
P-LAP is identical with cystine aminopeptidase as oxytocinase. We previously located on the placental leucine aminopeptidase (P-LAP) gene the footprint site with the high promoter activity (FP3: -214 to -183) and found a possible interaction between it and AP-2 in choriocarcinoma cells. Here, we investigated FP3 in detail and identified the elements responsible for the high basal rate of transcription. Electrophoretic mobility shift assays demonstrated that FP3 would interact with Ikaros as well as AP-2. Further analysis using antibody against Ikaros confirmed that Ikaros was indeed present and bound to FP3. In addition, AP-2alpha and AP-2gamma antibodies supershifted the second complex at FP3. Functionally, mutations that eliminate AP-2 binding reduced promoter activity significantly, while those that eliminate Ikaros binding reduced promoter activity insignificantly. Double mutations of AP-2 and Ikaros decreased promoter activity progressively. We conclude that AP-2 is the main activator and Ikaros functions cooperatively with it for maximal expression of the human P-LAP gene.
Collapse
Affiliation(s)
- Tomomi Ito
- Department of Obstetrics and Gynecology, Nagoya University School of Medicine, Nagoya, 466-8550, Japan
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Differentiation of progenitors into neurons and glia is regulated by interactions between regulatory DNA elements of neuron- and glia-specific genes and transcription factors that are differentially expressed by progenitors at progressive stages of neural development. We have identified a novel DNA regulatory element (TTTGCAT = septamer) present on the enkephalin (ENK), neuronal cell adhesion molecule, neurofilament of 68 kDa (NF68), growth-associated protein of 43 kDa, glial high-affinity glutamine transporter, tyrosine hydroxylase, etc., genes. When septamer function was blocked by introducing septamer competitor DNA into primary differentiating neural cultures, mRNA levels of ENK, NF68, and glial fibrillary acidic protein decreased by 50-80%, whereas no effect was seen using a control DNA. Septamer elements serve as binding sites for lineage-specific multimeric complexes assembled from three distinct nuclear proteins. Progenitors express a 16 kDa protein (p-sept) which binds to DNA as a homodimer (detected as the 32 kDa P-band). Cells that entered the neuronal lineage express an additional 29 kDa protein (n-sept) that binds to the homodimerized p-sept, and together they form a 62 kDa multimer (detected as N-band). Cells that entered the glial lineage express a distinct 23 kDa protein (g-sept), which along with the homodimerized p-sept form a 56 kDa multimer (observed as G-band). The binding of the distinct protein complexes (P, G, and N) to the septamer site causes a lineage-specific DNA bending (P = 53 degrees; G = 72 degrees; and N = 90 degrees ), which may contribute to the regulatory effect of the septamer interaction. In summary, septamer and its binding proteins represent novel protein-DNA interactions that may contribute to the regulation of neuroglial differentiation in the developing mammalian CNS.
Collapse
|
13
|
v Agoston D, Santha E, Shieh G, Lala R, Dobi A. Isolation and structural and genetic analysis of the mouse enkephalin gene and its d(AC/TG)n repeats. DNA SEQUENCE : THE JOURNAL OF DNA SEQUENCING AND MAPPING 1999; 9:217-26. [PMID: 10520752 DOI: 10.3109/10425179809105208] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Enkephalins, the endogenous opioids, mediate a wide variety of intercellular communications through ontogeny and their involvement has been suggested in drug addiction and alcohol abuse as well as in various neuropsychiatric disorders. In order to generate a genetic model, we have isolated the mouse enkephalin (mENK) gene, analyzed its regulatory region and compared its structure to the well characterized rat ENK (rENK) gene. We analyzed 2600 bp and found 3 highly homologous regions: The highest level (98%) of positional and sequence homology between mice and rats was in the TATA/proximal regulatory region. This region contains all the inducible regulatory elements (enkCRE1, NF1, AP-2, NFkappaB, etc.) and also an octamer-like element at -543 bp. This high homology is interrupted in both mice and rats by the typically polymorphic d(AC/TG)n and d(TC/GA)n dinucleotide repeats positioned between nucleotides -670 and -950. The position and orientation of these repetitive elements differ substantially in the two species. Genomic PCR analysis of the d(AC/TG)n repeat in various mouse strains, including aberrant behavioral or neurological phenotypes, showed lack of polymorphism at this repeat. The positional and sequence homologies between the rat and the mouse ENK genes decrease in more upstream regions due to the presence of nonhomologues repetititve DNA sequences.
Collapse
Affiliation(s)
- D v Agoston
- Molecular Control of Neurodifferentiation, NICHD, NIH, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
14
|
Honma Y, Kiyosawa H, Mori T, Oguri A, Nikaido T, Kanazawa K, Tojo M, Takeda J, Tanno Y, Yokoya S, Kawabata I, Ikeda H, Wanaka A. Eos: a novel member of the Ikaros gene family expressed predominantly in the developing nervous system. FEBS Lett 1999; 447:76-80. [PMID: 10218586 DOI: 10.1016/s0014-5793(99)00265-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We identified a novel member of the Ikaros gene family, which has critical roles in the development of lymphoid lineages. This gene, which we named Eos, was expressed predominantly in the developing central and peripheral nervous system. Eos protein could interact with itself and Ikaros protein through its C-terminal portion in the yeast two hybrid assay. These findings suggested that Eos may have important roles in neural development similarly to the Ikaros family in the development of hemolymphoid tissue.
Collapse
Affiliation(s)
- Y Honma
- Department of Cell Science, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima City, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|