1
|
van de Wetering R, Bibi R, Biggerstaff A, Hong S, Pengelly B, Prisinzano TE, La Flamme AC, Kivell BM. Nalfurafine promotes myelination in vitro and facilitates recovery from cuprizone + rapamycin-induced demyelination in mice. Glia 2024; 72:1801-1820. [PMID: 38899723 DOI: 10.1002/glia.24583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/21/2024]
Abstract
The kappa opioid receptor has been identified as a promising therapeutic target for promoting remyelination. In the current study, we evaluated the ability of nalfurafine to promote oligodendrocyte progenitor cell (OPC) differentiation and myelination in vitro, and its efficacy in an extended, cuprizone-induced demyelination model. Primary mouse (C57BL/6J) OPC-containing cultures were treated with nalfurafine (0.6-200 nM), clemastine (0.01-100 μM), T3 (30 ng/mL), or vehicle for 5 days. Using immunocytochemistry and confocal microscopy, we found that nalfurafine treatment increased OPC differentiation, oligodendrocyte (OL) morphological complexity, and myelination of nanofibers in vitro. Adult male mice (C57BL/6J) were given a diet containing 0.2% cuprizone and administered rapamycin (10 mg/kg) once daily for 12 weeks followed by 6 weeks of treatment with nalfurafine (0.01 or 0.1 mg/kg), clemastine (10 mg/kg), or vehicle. We quantified the number of OLs using immunofluorescence, gross myelination using black gold staining, and myelin thickness using electron microscopy. Cuprizone + rapamycin treatment produced extensive demyelination and was accompanied by a loss of mature OLs, which was partially reversed by therapeutic administration of nalfurafine. We also assessed these mice for functional behavioral changes in open-field, horizontal bar, and mouse motor skill sequence tests (complex wheel running). Cuprizone + rapamycin treatment resulted in hyperlocomotion, poorer horizontal bar scores, and less distance traveled on the running wheels. Partial recovery was observed on both the horizontal bar and complex running wheel tests over time, which was facilitated by nalfurafine treatment. Taken together, these data highlight the potential of nalfurafine as a remyelination-promoting therapeutic.
Collapse
Affiliation(s)
- Ross van de Wetering
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Rabia Bibi
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Andy Biggerstaff
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Sheein Hong
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Bria Pengelly
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Thomas E Prisinzano
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Anne C La Flamme
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Bronwyn M Kivell
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
2
|
Tan KZ, Cunningham AM, Joshi A, Oei JL, Ward MC. Expression of kappa opioid receptors in developing rat brain - Implications for perinatal buprenorphine exposure. Reprod Toxicol 2018; 78:81-89. [PMID: 29635048 DOI: 10.1016/j.reprotox.2018.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 04/03/2018] [Accepted: 04/06/2018] [Indexed: 12/19/2022]
Abstract
Buprenorphine, a mu opioid receptor partial agonist and kappa opioid receptor (KOR) antagonist, is an emerging therapeutic agent for maternal opioid dependence in pregnancy and neonatal abstinence syndrome. However, the endogenous opioid system plays a critical role in modulating neurodevelopment and perinatal buprenorphine exposure may detrimentally influence this. To identify aspects of neurodevelopment vulnerable to perinatal buprenorphine exposure, we defined KOR protein expression and its cellular associations in normal rat brain from embryonic day 16 to postnatal day 23 with double-labelling immunohistochemistry. KOR was expressed on neural stem and progenitor cells (NSPCs), choroid plexus epithelium, subpopulations of cortical neurones and oligodendrocytes, and NSPCs and subpopulations of neurones in postnatal hippocampus. These distinct patterns of KOR expression suggest several pathways vulnerable to perinatal buprenorphine exposure, including proliferation, neurogenesis and neurotransmission. We thus suggest the cautious use of buprenorphine in both mothers and infants until its impact on neurodevelopment is better defined.
Collapse
Affiliation(s)
- Kathleen Z Tan
- School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Randwick, NSW 2031, Australia
| | - Anne M Cunningham
- School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Randwick, NSW 2031, Australia; Westfield Research Laboratories, Sydney Children's Hospital, High Street, Randwick, NSW 2031, Australia.
| | - Anjali Joshi
- School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Randwick, NSW 2031, Australia; Westfield Research Laboratories, Sydney Children's Hospital, High Street, Randwick, NSW 2031, Australia
| | - Ju Lee Oei
- School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Randwick, NSW 2031, Australia; The Royal Hospital for Women, Barker Street, Randwick, NSW 2031, Australia
| | - Meredith C Ward
- School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Randwick, NSW 2031, Australia; The Royal Hospital for Women, Barker Street, Randwick, NSW 2031, Australia; Westfield Research Laboratories, Sydney Children's Hospital, High Street, Randwick, NSW 2031, Australia.
| |
Collapse
|
3
|
Bouissac J, Garwood J, Girlanda-Jungès C, Luu B, Dollé P, Mohier E, Paschaki M. tCFA15, a trimethyl cyclohexenonic long-chain fatty alcohol, affects neural stem fate and differentiation by modulating Notch1 activity. Eur J Pharmacol 2013; 718:383-92. [PMID: 23978568 DOI: 10.1016/j.ejphar.2013.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 07/16/2013] [Accepted: 08/03/2013] [Indexed: 10/26/2022]
Abstract
We have investigated the effects of tCFA15, a non-peptidic compound, on the differentiation of neural stem cell-derived neurospheres, and have found that tCFA15 promotes their differentiation into neurons and reduces their differentiation into astrocytes, in a dose-dependent manner. This response is reminiscent of that resulting from the loss-of-function of Notch signaling after inactivation of the Delta-like 1 (Dll1) gene. Further analysis of the expression of genes from the Notch pathway by reverse transcriptase-PCR revealed that tCFA15 treatment results in a consistent decrease in the level of Notch1 mRNA. We have confirmed this result in other cell lines and propose that it reflects a general effect of the tCFA15 molecule. We discuss the implications of this finding with respect to regulation of Notch activity in neural stem cells, and the possible use of tCFA15 as a therapeutic tool for various pathologies that result from impairment of Notch signaling.
Collapse
Affiliation(s)
- Julien Bouissac
- CNRS, UPR 3212, INCI, 5 rue Blaise Pascal, 67084 Strasbourg, France
| | | | | | | | | | | | | |
Collapse
|
4
|
Hutchinson MR, Shavit Y, Grace PM, Rice KC, Maier SF, Watkins LR. Exploring the neuroimmunopharmacology of opioids: an integrative review of mechanisms of central immune signaling and their implications for opioid analgesia. Pharmacol Rev 2011; 63:772-810. [PMID: 21752874 DOI: 10.1124/pr.110.004135] [Citation(s) in RCA: 291] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Vastly stimulated by the discovery of opioid receptors in the early 1970s, preclinical and clinical research was directed at the study of stereoselective neuronal actions of opioids, especially those played in their crucial analgesic role. However, during the past decade, a new appreciation of the non-neuronal actions of opioids has emerged from preclinical research, with specific appreciation for the nonclassic and nonstereoselective sites of action. Opioid activity at Toll-like receptors, newly recognized innate immune pattern recognition receptors, adds substantially to this unfolding story. It is now apparent from molecular and rodent data that these newly identified signaling events significantly modify the pharmacodynamics of opioids by eliciting proinflammatory reactivity from glia, the immunocompetent cells of the central nervous system. These central immune signaling events, including the release of cytokines and chemokines and the associated disruption of glutamate homeostasis, cause elevated neuronal excitability, which subsequently decreases opioid analgesic efficacy and leads to heightened pain states. This review will examine the current preclinical literature of opioid-induced central immune signaling mediated by classic and nonclassic opioid receptors. A unification of the preclinical pharmacology, neuroscience, and immunology of opioids now provides new insights into common mechanisms of chronic pain, naive tolerance, analgesic tolerance, opioid-induced hyperalgesia, and allodynia. Novel pharmacological targets for future drug development are discussed in the hope that disease-modifying chronic pain treatments arising from the appreciation of opioid-induced central immune signaling may become practical.
Collapse
Affiliation(s)
- Mark R Hutchinson
- Discipline of Pharmacology, School of Medical Science, University of Adelaide, South Australia, Australia, 5005.
| | | | | | | | | | | |
Collapse
|
5
|
Kao TK, Ou YC, Liao SL, Chen WY, Wang CC, Chen SY, Chiang AN, Chen CJ. Opioids modulate post-ischemic progression in a rat model of stroke. Neurochem Int 2008; 52:1256-65. [PMID: 18294735 DOI: 10.1016/j.neuint.2008.01.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Revised: 12/29/2007] [Accepted: 01/14/2008] [Indexed: 01/12/2023]
Abstract
Alterations in the opioidergic system have been found in cerebral ischemia. Neuroprotection studies have demonstrated the involvement of the opioidergic system in cerebral ischemia/reperfusion (I/R). However, the neuroprotective mechanisms remain largely unclear. This study was conducted to investigate whether intracerebroventricular administration of opioidergic agonists has a neuroprotective effect against cerebral ischemia in rats and, if this proved to be the case, to determine the potential neuroprotective mechanisms. Using a focal cerebral I/R rat model, we demonstrated that the opioidergic agents, BW373U86 (delta agonist) and Dynorphin A 1-13 (kappa agonist), but not TAPP (mu agonist), attenuated cerebral ischemic injury as manifested in the reduction of cerebral infarction and preservation of neurons. The antagonism assay showed that the neuroprotective effect of Dynorphin A was attenuated by nor-Binaltorphimine (kappa antagonist). Surprisingly, BW373U86-induced neuroprotection was not changed by Naltrindole (delta antagonist). These findings indicate that BW373U86 and Dynorphin A exerted distinct neuroprotection against ischemia via opioid-independent and -dependent mechanisms, respectively. The post-ischemic protection in beneficial treatments was accompanied by alleviations in brain edema, inflammatory cell infiltration, and pro-inflammatory cytokine interleukin 6 (IL-6) expression. In vitro cell study further demonstrated that the opioidergic agonists, delta and kappa, but not mu, attenuated IL-6 production from stimulated glial cells. Our findings indicate that opioidergic agents have a role in post-ischemic progression through both opioid-dependent and -independent mechanisms. In spite of the distinct-involved action mechanism, the potential neuroprotective effect of opioidergic compounds was associated with immune suppression. Taken together, these findings suggest a potential role for opioidergic agents in the therapeutic consideration of neuroinflammatory diseases. However, a better understanding of the mechanisms involved is necessary before this therapeutic potential can be realized.
Collapse
Affiliation(s)
- Tsung-Kuei Kao
- Department of Nursing, Tajen Institute of Technology, Pingtung 907, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Watkins LR, Wieseler-Frank J, Milligan ED, Johnston I, Maier SF. Chapter 22 Contribution of glia to pain processing in health and disease. HANDBOOK OF CLINICAL NEUROLOGY 2006; 81:309-23. [PMID: 18808844 DOI: 10.1016/s0072-9752(06)80026-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
7
|
Dimitriou H, Bakogeorgou E, Kampa M, Notas G, Stiakaki E, Kouroumalis E, Kalmanti M, Castanas E. κ-opioids induce a reversible inhibition of CFU-GM from CD133+ cord blood cells. Cytotherapy 2006; 8:367-74. [PMID: 16923612 DOI: 10.1080/14653240600847183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Opioid agonists have been shown to exert an inhibitory action on a number of malignant and non-malignant cell types. However, there are no reports dealing with their effect on hemopoietic progenitors. Based upon our previous experience of opioid agonists we examined whether opioids could interfere with the growth of CFU-GM from CD133(+) cord blood cells. METHODS Cord blood samples were subjected to CD133(+) column selection, with subsequent exposure to opioid agonists and antagonists or both, in semi-solid cultures for CFU-GM growth. Colonies of day 7 of culture were replated in fresh medium in the absence of opioids. The colonies were evaluated at 7 and 14 days of culture. RT-PCR was performed for the detection of opioid and somatostatin receptors. Apoptosis tests and immunophenotypic evaluations were employed in liquid cultures in conditions identical to those of the semi-solid ones. RESULTS AND DISCUSSION Our results suggest that opioids can induce a significant inhibition of CFU-GM growth, which is reversible and not mediated through opioid or somatostatin receptors, while apoptosis is not implicated. Whether this finding could be used for clinical intervention remains to be examined.
Collapse
MESH Headings
- AC133 Antigen
- Analgesics, Opioid/agonists
- Analgesics, Opioid/antagonists & inhibitors
- Analgesics, Opioid/pharmacology
- Antigens, CD/metabolism
- Apoptosis
- Cells, Cultured
- Female
- Fetal Blood/cytology
- Glycoproteins/metabolism
- Hematopoietic Stem Cells/cytology
- Hematopoietic Stem Cells/drug effects
- Hematopoietic Stem Cells/physiology
- Humans
- Immunophenotyping
- Peptides/metabolism
- Receptors, Opioid, kappa/genetics
- Receptors, Opioid, kappa/metabolism
- Receptors, Somatostatin/genetics
- Receptors, Somatostatin/metabolism
Collapse
Affiliation(s)
- H Dimitriou
- Department of Pediatric Hematology-Oncology, University of Crete Medical School, Heraklion, Crete, Greece.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Svensson CI, Hua XY, Powell HC, Lai J, Porreca F, Yaksh TL. Prostaglandin E2 release evoked by intrathecal dynorphin is dependent on spinal p38 mitogen activated protein kinase. Neuropeptides 2005; 39:485-94. [PMID: 16176831 DOI: 10.1016/j.npep.2005.08.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2005] [Accepted: 07/29/2005] [Indexed: 12/30/2022]
Abstract
Spinal dynorphin has been hypothesized to play a pivotal role in spinal sensitization. Although the mechanism of this action is not clear, several lines of evidence suggest that spinal dynorphin-induced hyperalgesia is mediated through an increase in spinal cyclooxygenase products via an enhanced N-methyl-D-aspartate (NMDA) receptor function. Spinal NMDA-evoked prostaglandin release and nociception has been linked to the activation of p38 mitogen activated protein kinase (p38). In the present work, we show that intrathecal delivery of an N-truncated fragment of dynorphin A, dynorphin A 2-17 (dyn2-17), which has no activity at opioid receptors, induced a 8-10-fold increase in phosphorylation of p38 in the spinal cord. The increase in phosphorylated p38 was detected in laminae I-IV of the dorsal horn. Moreover, confocal microscopy showed that the activation of p38 occurred in microglia, but not in neurons or astrocytes. In awake rats, prepared with chronically placed intrathecal loop dialysis catheters, the concentration of prostaglandin E2 in lumbar cerebrospinal fluid was increased 5-fold by intrathecal administration of dyn2-17. Injection of SD-282, a selective p38 inhibitor, but not PD98059, an ERK1/2 inhibitor, attenuated the prostaglanin E2 release. These data, taken together, support the hypothesis that dynorphin, independent of effects mediated by opioid receptors, has properties that can induce spinal sensitization and indicates that dyn2-17 effects may be mediated through activation of the p38 pathway. These studies provide an important downstream linkage where by dynorphin may act through a non-neuronal link to induce a facilitation of spinal nociceptive processing.
Collapse
Affiliation(s)
- Camilla I Svensson
- Department of Anesthesiology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0818, USA.
| | | | | | | | | | | |
Collapse
|
9
|
Persson AI, Thorlin T, Bull C, Eriksson PS. Opioid-induced proliferation through the MAPK pathway in cultures of adult hippocampal progenitors. Mol Cell Neurosci 2003; 23:360-72. [PMID: 12837621 DOI: 10.1016/s1044-7431(03)00061-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Administration of opioid agonists or antagonists has been reported to regulate proliferation or survival of neural progenitors in vivo. Here we report that beta-endorphin and selective mu-opioid receptor (MOR) and delta-opioid receptor (DOR) agonists stimulate proliferation of isolated rat adult hippocampal progenitors (AHPs). The AHPs were found to express DORs and MORs, but not kappa-opioid receptors. Incubation with beta-endorphin for 48 h increased the number of AHPs found in mitosis, the total DNA content, and the expression of proliferating cell nuclear antigen. This proliferative effect from beta-endorphin on AHPs was antagonized by naloxone. The beta-endorphin-induced proliferation was mediated through phosphorylation of extracellular signal-regulated kinases 1 and 2 and dependent on phosphatidylinositol 3-kinase and both intra- and extracellular calcium. These data suggest a role for the opioid system in the regulation of proliferation in progenitors from the adult hippocampus.
Collapse
Affiliation(s)
- Anders I Persson
- The Arvid Carlsson Institute for Neuroscience at Institute of Clinical Neuroscience, Sahlgrenska University Hospital, Göteborg University, Göteborg, Sweden
| | | | | | | |
Collapse
|
10
|
Knapp PE, Itkis OS, Zhang L, Spruce BA, Bakalkin G, Hauser KF. Endogenous opioids and oligodendroglial function: possible autocrine/paracrine effects on cell survival and development. Glia 2001; 35:156-65. [PMID: 11460271 DOI: 10.1002/glia.1080] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Previous work has shown that oligodendrocytes (OLs) express both micro- and kappa-opioid receptors. In developing OLs, micro receptor activation increases OL proliferation, while the kappa-antagonist nor-binaltorphimine (NorBNI) affects OL differentiation. Because exogenous opioids were not present in our defined culture medium, we hypothesized that NorBNI blocked endogenous opioids produced by the OLs themselves. To test this, intact and partially processed proenkephalin and prodynorphin-derived peptides were assessed in OLs using immunocytochemistry or Western blot analysis, or both. Immature OLs possessed large amounts of intact and partially processed proenkephalin precursors, as well as posttranslational products of prodynorphin including dynorphin A (1-17). With maturation, however, intact or partially processed proenkephalin was expressed by only about 50% of OLs, while dynorphin A (1-17) was undetectable. To assess the function of OL-derived opioids, the effect of kappa-agonists/antagonists on OL differentiation and death was explored. kappa-Agonists alone had no effect. In contrast, NorBNI significantly increased OL death. Additive OL losses were evident when NorBNI was paired with toxic levels of glutamate, suggesting that kappa-receptor blockade alone is sufficient to induce OL death. Thus, the results indicate that OLs express proenkephalin and prodynorphin peptides in a developmentally regulated manner, and further suggest that opioids produced by OLs modulate OL maturation and survival through local (i.e., autocrine and/or paracrine) mechanisms.
Collapse
Affiliation(s)
- P E Knapp
- Department of Anatomy and Neurobiology, University of Kentucky College of Medicine, Lexington, Kentucky 40536-0298, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Stiene-Martin A, Knapp PE, Martin K, Gurwell JA, Ryan S, Thornton SR, Smith FL, Hauser KF. Opioid system diversity in developing neurons, astroglia, and oligodendroglia in the subventricular zone and striatum: Impact on gliogenesis in vivo. Glia 2001. [DOI: 10.1002/glia.1097] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
12
|
Abstract
Cloning of multiple opioid receptors has presented opportunities to investigate the mechanisms of multiple opioid receptor signaling and the regulation of these signals. The subsequent identification of receptor gene structures has also provided opportunities to study the regulation of receptor gene expression and to manipulate the concentration of the gene products in vivo. Thus, in the current review, we examine recent advances in the delineation basis for the multiple opioid receptor signaling, and their regulation at multiple levels. We discuss the use of receptor knockout animals to investigate the function and the pharmacology of these multiple opioid receptors. The reasons and basis for the multiple opioid receptor are addressed.
Collapse
Affiliation(s)
- P Y Law
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis 55455, USA.
| | | | | |
Collapse
|
13
|
Liu B, Du L, Kong LY, Hudson PM, Wilson BC, Chang RC, Abel HH, Hong JS. Reduction by naloxone of lipopolysaccharide-induced neurotoxicity in mouse cortical neuron-glia co-cultures. Neuroscience 2000; 97:749-56. [PMID: 10842020 DOI: 10.1016/s0306-4522(00)00057-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
An inflammatory response in the CNS mediated by activation of microglia is a key event in the early stages of the development of neurodegenerative diseases. Using mouse cortical mixed glia cultures, we have previously demonstrated that the bacterial endotoxin lipopolysaccharide induces the activation of microglia and the production of proinflammatory factors. Naloxone, an opioid receptor antagonist, inhibits the lipopolysaccharide-induced activation of microglia and the production of proinflammatory factors. Using neuron-glia co-cultures, we extended our study to determine if naloxone has a neuroprotective effect against lipopolysaccharide-induced neuronal damage and analysed the underlying mechanism of action for its potential neuroprotective effect. Pretreatment of cultures with naloxone (1 microM) followed by treatment with lipopolysaccharide significantly inhibited the lipopolysaccharide-induced production of nitric oxide and the release of tumor necrosis factor-alpha, and significantly reduced the lipopolysaccharide-induced damage to neurons. More importantly, both naloxone and its opioid-receptor ineffective enantiomer (+)-naloxone were equally effective in inhibiting the lipopolysaccharide-induced generation of proinflammatory factors and the activation of microglia, as well as in the protection of neurons. These results indicate that the neuroprotective effect of naloxone is mediated by its inhibition of microglial activity and may be unrelated to its binding to the classical opioid receptors.
Collapse
Affiliation(s)
- B Liu
- Neuropharmacology Section, Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, NC 27709, Research Triangle Park, USA.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Tryoen-Toth P, Gavériaux-Ruff C, Labourdette G. Down-regulation of mu-opioid receptor expression in rat oligodendrocytes during their development in vitro. J Neurosci Res 2000; 60:10-20. [PMID: 10723064 DOI: 10.1002/(sici)1097-4547(20000401)60:1<10::aid-jnr2>3.0.co;2-o] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In the central nervous system, opioid receptors are found in neurons and also in glial cells. To gain more information on their presence and possibly on their function, we investigated the expression of mu-opioid receptors (MOR) during oligodendroglial cell development in two culture systems. In these models, during the first days, the cells are O-2A bipotential progenitor cells (also called OPCs; oligodendrocyte precursor cells), and then they differentiate into oligodendrocytes, which mature. In the first system, oligodendroglial cells, derived from newborn rat brain hemispheres, are grown in primary culture in the presence of a confluent layer of astrocytes, and they differentiate slowly. In the second, cells are specifically detached from the mixed cultures of the first system and are grown thereafter alone in secondary culture, a condition allowing a rapid cell differentiation. Under both conditions OPCs and immature oligodendrocytes were found to express a high level of MOR mRNA, whereas mature oligodendrocytes did not express it at all. The decrease of MOR expression during oligodendrocyte maturation was progressive, suggesting that it was not a primary effect of differentiation but an indirect secondary effect. Our study also shows that basic fibroblast growth factor (bFGF), which has been claimed by some authors to induce a dedifferentiation of the mature oligodendrocytes, and retinoic acid (RA), which had not been tested before, were not able to restore MOR expression in mature oligodendrocytes. These results indicate that bFGF and RA neither reverse the maturation process nor dedifferentiate the cells. However, RA was found to inhibit almost completely the expression of the myelin basic protein. The main result of this study is that MOR is expressed in progenitors and in immature oligodendrocytes, but not in mature oligodendrocytes. This suggests that MOR could be involved in some developmental process of the cells of the oligodendroglial lineage.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Blotting, Northern
- Blotting, Southern
- Cells, Cultured
- Down-Regulation
- Fibroblast Growth Factor 2/pharmacology
- Gene Expression Regulation, Developmental
- Oligodendroglia/metabolism
- RNA, Messenger/metabolism
- Rats
- Rats, Wistar
- Receptors, Opioid, mu/genetics
- Receptors, Opioid, mu/metabolism
- Tretinoin/pharmacology
Collapse
Affiliation(s)
- P Tryoen-Toth
- Laboratory of Neurobiology of Development and Regeneration, UPR 1352 CNRS, Centre of Neurochemistry, Strasbourg, France
| | | | | |
Collapse
|