1
|
Pompeiano M, Colonnese MT. cFOS as a biomarker of activity maturation in the hippocampal formation. Front Neurosci 2023; 17:929461. [PMID: 37521697 PMCID: PMC10374841 DOI: 10.3389/fnins.2023.929461] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/23/2023] [Indexed: 08/01/2023] Open
Abstract
We explored the potential for cFOS expression as a marker of functional development of "resting-state" waking activity in the extended network of the hippocampus and entorhinal cortex. We examined sleeping and awake mice at (P)ostnatal days 5, 9, 13, and 17 as well as in adulthood. We find that cFOS expression is state-dependent even at 5 days old, with reliable staining occurring only in the awake mice. Even during waking, cFOS expression was rare and weak at P5. The septal nuclei, entorhinal cortex layer (L)2, and anterodorsal thalamus were exceptional in that they had robust cFOS expression at P5 that was similar to or greater than in adulthood. Significant P5 expression was also observed in the dentate gyrus, entorhinal cortex L6, postsubiculum L4-6, ventral subiculum, supramammillary nucleus, and posterior hypothalamic nucleus. The expression in these regions grew stronger with age, and the expression in new regions was added progressively at P9 and P13 by which point the overall expression pattern in many regions was qualitatively similar to the adult. Six regions-CA1, dorsal subiculum, postsubiculum L2-3, reuniens nucleus, and perirhinal and postrhinal cortices-were very late developing, mostly achieving adult levels only after P17. Our findings support a number of developmental principles. First, early spontaneous activity patterns induced by muscle twitches during sleep do not induce robust cFOS expression in the extended hippocampal network. Second, the development of cFOS expression follows the progressive activation along the trisynaptic circuit, rather than birth date or cellular maturation. Third, we reveal components of the egocentric head-direction and theta-rhythm circuits as the earliest cFOS active circuits in the forebrain. Our results suggest that cFOS staining may provide a reliable and sensitive biomarker for hippocampal formation activity development, particularly in regard to the attainment of a normal waking state and synchronizing rhythms such as theta and gamma.
Collapse
Affiliation(s)
- Maria Pompeiano
- Department of Pharmacology and Physiology, The George Washington University, Washington, DC, United States
- Departamento de Bioingeniería, Universidad Carlos III de Madrid, Madrid, Spain
| | - Matthew T. Colonnese
- Department of Pharmacology and Physiology, The George Washington University, Washington, DC, United States
| |
Collapse
|
2
|
Kalinina A, Krekhno Z, Yee J, Lehmann H, Fournier NM. Effect of repeated seizures on spatial exploration and immediate early gene expression in the hippocampus and dentate gyrus. IBRO Neurosci Rep 2022; 12:73-80. [PMID: 35028638 PMCID: PMC8741423 DOI: 10.1016/j.ibneur.2021.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/25/2021] [Accepted: 12/30/2021] [Indexed: 12/05/2022] Open
Abstract
Immediate early genes (IEGs) are coordinately activated in response to neuronal activity and can cause activation of secondary response genes that modulate synaptic plasticity and mediate long-lasting changes in behaviour. Excessive neuronal stimulation induced by epileptic seizures induce rapid and dramatic changes in IEG expression. Although the impact of acute seizure activity on IEG expression has been well studied, less is known about the long-term effects of chronic seizures on IEG induction during seizure free periods where behavioural and cognitive impairments are frequently observed in people with epilepsy and in animal models of epilepsy. The present study sought out to examine the impact of chronic pentylenetetrazole evoked seizures (PTZ kindling) on spatial exploration induced in IEG expression (c-Fos, ΔFosB, Homer1a, Egr1, Npas4, Nr4a1) in the hippocampus (CA1 and CA3 subfields) and dentate gyrus of rats. Male rats underwent two weeks of PTZ kindling (every 2 days) or received vehicle injections and were placed into a novel open field arena for 30 min either 24 hrs or 4 weeks after the last treatment. Although exploratory activity was similar between PTZ kindled and vehicle controls when examined 24 hrs after the last treatment, we observed a significant reduction in spatial exploration induced expression of c-Fos, Egr1, and ΔFosB in the hippocampus and dentate gyrus, and reduced expression of Nr4a1 in the dentate gyrus and Homer1a in the hippocampus only. When testing was conducted after a 4-week recovery period, only c-Fos continued to show reduced expression after exposure a novel environment in previously PTZ kindled animals. Interestingly, these animals also showed reduced activity in the center region of the open field suggestive of heightened anxiety-like behaviour. Collectively, these results suggest that repeated seizures may lead to longterm downregulation in hippocampal IEG expression that can extend into seizure free periods thereby providing a critical mechanism for the development of cognitive and behavioural deficits that arise during chronic epilepsy
Collapse
Affiliation(s)
- Alena Kalinina
- Department of Psychology, Trent University, Peterborough, ON K9J 7B8, Canada
| | - Zakhar Krekhno
- Department of Psychology, Trent University, Peterborough, ON K9J 7B8, Canada
| | - Janet Yee
- Department of Psychology, Trent University, Peterborough, ON K9J 7B8, Canada
| | - Hugo Lehmann
- Department of Psychology, Trent University, Peterborough, ON K9J 7B8, Canada
| | - Neil M Fournier
- Department of Psychology, Trent University, Peterborough, ON K9J 7B8, Canada
| |
Collapse
|
3
|
Laham BJ, Diethorn EJ, Gould E. Newborn mice form lasting CA2-dependent memories of their mothers. Cell Rep 2021; 34:108668. [PMID: 33503421 PMCID: PMC7985754 DOI: 10.1016/j.celrep.2020.108668] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/26/2020] [Accepted: 12/29/2020] [Indexed: 01/02/2023] Open
Abstract
Some of the most enduring social connections begin when infants first recognize their caregivers, memories that form the basis of many family relationships. It remains unknown whether these early social memories persist into adulthood in mice and, if so, which brain regions support them. Here we show that mice form memories of their mother within days after birth and that these memories persist into adulthood. Pups display greater interest in the mother than in an unfamiliar dam before weaning, after which this preference reverses. Inhibition of CA2 neurons in the pup temporarily blocks the ability to discriminate between the mother and an unfamiliar dam, whereas doing so in adulthood prevents the formation of short-term memories about conspecifics, as well as social discrimination related to long-term memories of the mother. These results suggest that the CA2 supports memories of the mother during infancy and adulthood with a developmental switch in social preference.
Collapse
Affiliation(s)
- Blake J Laham
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Emma J Diethorn
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Elizabeth Gould
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
4
|
Ao Y, Yang B, Zhang C, Li S, Xu H. Application of quinpirole in the paraventricular thalamus facilitates emergence from isoflurane anesthesia in mice. Brain Behav 2021; 11:e01903. [PMID: 33128305 PMCID: PMC7821568 DOI: 10.1002/brb3.1903] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/06/2020] [Accepted: 09/30/2020] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND AND PURPOSE Dopamine is well-known to contribute to emergence from anesthesia. Previous studies have demonstrated that the paraventricular thalamus (PVT) in the midline nuclei is crucial for wakefulness. Moreover, the PVT receives dopaminergic projections from the brainstem. Therefore, we hypothesize that the dopaminergic signaling in the PVT plays a role in emergence from isoflurane anesthesia. METHODS We used c-Fos immunohistochemistry to reveal the activity of PVT neurons in three groups: The first group (iso+ EM- ) underwent the anesthesia protocol and was sacrificed before emergence. The second group (iso+ EM+ ) underwent passive emergence from the same anesthesia protocol. The last group (oxy+ ) received oxygen. D2-like agonist quinpirole (2 or 4 mM) or D2-like antagonist raclopride (2 or 5 mM) was microinjected into the PVT, and their effects on emergence and induction time were analyzed. Surface cortical electroencephalogram (EEG) recordings were used to explore the effects of quinpirole injection into the PVT on cortical excitability during isoflurane anesthesia. The activity of PVT neurons after quinpirole injection was assessed by c-Fos immunohistochemistry. RESULTS The number of c-Fos-positive nuclei for the iso+ EM+ group was significantly higher than the oxy+ and iso+ EM- groups. Application of quinpirole (4 mM) into the PVT shortened emergence time compared with the saline group (p < .01). In contrast, administration of raclopride (2 mM) delayed emergence time (p < .05). Neither quinpirole nor raclopride exerted an effect on induction time. EEG analyses showed that quinpirole (4 mM) decreased the burst suppression ratio during isoflurane anesthesia (p < .01). The number of c-Fos-positive nuclei for the quinpirole (4 mM) group was significantly higher than saline group (p < .01). CONCLUSIONS Our findings suggest that the activity of PVT neurons is enhanced after emergence from anesthesia, and the dopaminergic signaling in the PVT may facilitate emergence from isoflurane anesthesia.
Collapse
Affiliation(s)
- Yawen Ao
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Bo Yang
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Caiju Zhang
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Sirui Li
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Haibo Xu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| |
Collapse
|
5
|
Ye Y, Liu Q, Zhang W, Mastwal S, Wang KH. Developmental Exposure to Psychostimulant Primes Activity-dependent Gene Induction in Frontal Cortex. Dev Neurobiol 2018; 79:96-108. [PMID: 30548567 DOI: 10.1002/dneu.22660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 10/08/2018] [Accepted: 11/12/2018] [Indexed: 11/11/2022]
Abstract
Perinatal neurodevelopment involves extensive formation of neural connections and onset of activity-dependent gene expression for synaptic function and plasticity. Exposure to psychostimulants at this stage imposes significant risks for developing cognitive and affective disorders later in life. However, how developmental exposure to psychostimulants may induce long-lasting molecular changes relevant to neural circuit function remains incompletely understood. In this study, we investigated the impacts of psychostimulant amphetamine on the activity-dependent induction of synaptic adaptor molecule Arc in the frontal cortex of neonatal mice. We found that transient exposure to amphetamine not only amplifies activity-dependent Arc mRNA expression immediately, but also potentiates subsequent induction of Arc mRNA in the absence of amphetamine. This priming effect is associated with a rapid and persistent increase in histone mono-methylation (H3K4me1), a marker for transcriptionally permissive chromatin, at the Arc locus, but not any long-lasting change in the phosphorylation of upstream transcription factor CREB. Furthermore, the increase in H3K4me1 at the Arc locus requires dopamine receptor signaling, and the priming of Arc expression correlates with the dopaminergic innervation pattern in the frontal cortex. Together, our results demonstrate that developmental exposure to psychostimulant amphetamine induces long-lasting chromatin changes and primes activity-dependent Arc gene induction. These findings reveal the molecular targets of psychostimulant during perinatal development that may contribute to long-term psychiatric risks.
Collapse
Affiliation(s)
- Yizhou Ye
- Unit on Neural Circuits and Adaptive Behaviors, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892
| | - Qing Liu
- Unit on Neural Circuits and Adaptive Behaviors, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892
| | - Wenyu Zhang
- Unit on Neural Circuits and Adaptive Behaviors, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892
| | - Surjeet Mastwal
- Unit on Neural Circuits and Adaptive Behaviors, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892
| | - Kuan Hong Wang
- Unit on Neural Circuits and Adaptive Behaviors, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892
| |
Collapse
|
6
|
Apurinic endonuclease-1 preserves neural genome integrity to maintain homeostasis and thermoregulation and prevent brain tumors. Proc Natl Acad Sci U S A 2018; 115:E12285-E12294. [PMID: 30538199 DOI: 10.1073/pnas.1809682115] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Frequent oxidative modification of the neural genome is a by-product of the high oxygen consumption of the nervous system. Rapid correction of oxidative DNA lesions is essential, as genome stability is a paramount determinant of neural homeostasis. Apurinic/apyrimidinic endonuclease 1 (APE1; also known as "APEX1" or "REF1") is a key enzyme for the repair of oxidative DNA damage, although the specific role(s) for this enzyme in the development and maintenance of the nervous system is largely unknown. Here, using conditional inactivation of murine Ape1, we identify critical roles for this protein in the brain selectively after birth, coinciding with tissue oxygenation shifting from a placental supply to respiration. While mice lacking APE1 throughout neurogenesis were viable with little discernible phenotype at birth, rapid and pronounced brain-wide degenerative changes associated with DNA damage were observed immediately after birth leading to early death. Unexpectedly, Ape1 Nes-cre mice appeared hypothermic with persistent shivering associated with the loss of thermoregulatory serotonergic neurons. We found that APE1 is critical for the selective regulation of Fos1-induced hippocampal immediate early gene expression. Finally, loss of APE1 in combination with p53 inactivation resulted in a profound susceptibility to brain tumors, including medulloblastoma and glioblastoma, implicating oxidative DNA lesions as an etiologic agent in these diseases. Our study reveals APE1 as a major suppressor of deleterious oxidative DNA damage and uncovers specific and broad pathogenic consequences of respiratory oxygenation in the postnatal nervous system.
Collapse
|
7
|
Postnatal development ofHomer1ain the rat hippocampus. Hippocampus 2013; 23:890-902. [DOI: 10.1002/hipo.22146] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2013] [Indexed: 01/11/2023]
|
8
|
Bender RA, Zhou L, Wilkars W, Fester L, Lanowski JS, Paysen D, Konig A, Rune GM. Roles of 17 -Estradiol Involve Regulation of Reelin Expression and Synaptogenesis in the Dentate Gyrus. Cereb Cortex 2010; 20:2985-95. [DOI: 10.1093/cercor/bhq047] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
9
|
McKenna JT, Cordeira JW, Jeffrey BA, Ward CP, Winston S, McCarley RW, Strecker RE. c-Fos protein expression is increased in cholinergic neurons of the rodent basal forebrain during spontaneous and induced wakefulness. Brain Res Bull 2009; 80:382-8. [PMID: 19716862 PMCID: PMC2782706 DOI: 10.1016/j.brainresbull.2009.08.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Revised: 08/06/2009] [Accepted: 08/19/2009] [Indexed: 10/20/2022]
Abstract
It has been proposed that cholinergic neurons of the basal forebrain (BF) may play a role in vigilance state control. Since not all vigilance states have been studied, we evaluated cholinergic neuronal activation levels across spontaneously occurring states of vigilance, as well as during sleep deprivation and recovery sleep following sleep deprivation. Sleep deprivation was performed for 2h at the beginning of the light (inactive) period, by means of gentle sensory stimulation. In the rodent BF, we used immunohistochemical detection of the c-Fos protein as a marker for activation, combined with labeling for choline acetyl-transferase (ChAT) as a marker for cholinergic neurons. We found c-Fos activation in BF cholinergic neurons was highest in the group undergoing sleep deprivation (12.9% of cholinergic neurons), while the spontaneous wakefulness group showed a significant increase (9.2%), compared to labeling in the spontaneous sleep group (1.8%) and a sleep deprivation recovery group (0.8%). A subpopulation of cholinergic neurons expressed c-Fos during spontaneous wakefulness, when possible confounds of the sleep deprivation procedure were minimized (e.g., stress and sensory stimulation). Double-labeling in the sleep deprivation treatment group was significantly elevated in select subnuclei of the BF (medial septum/vertical limb of the diagonal band, horizontal limb of the diagonal band, and the magnocellular preoptic nucleus), when compared to spontaneous wakefulness. These findings support and provide additional confirming data of previous reports that cholinergic neurons of BF play a role in vigilance state regulation by promoting wakefulness.
Collapse
Affiliation(s)
- J. T. McKenna
- VA Boston Healthcare System and Harvard Medical School, Department of Psychiatry, Brockton, MA, USA
| | - J. W. Cordeira
- VA Boston Healthcare System and Harvard Medical School, Department of Psychiatry, Brockton, MA, USA
- Tufts University School of Medicine, Department of Neuroscience, Boston, MA, USA
| | - B. A. Jeffrey
- VA Boston Healthcare System and Harvard Medical School, Department of Psychiatry, Brockton, MA, USA
| | - C. P. Ward
- VA Boston Healthcare System and Harvard Medical School, Department of Psychiatry, Brockton, MA, USA
- Univeristy of Houston-Clear Lake, Department of Psychology, Houston, TX, USA
| | - S. Winston
- VA Boston Healthcare System and Harvard Medical School, Department of Psychiatry, Brockton, MA, USA
| | - R. W. McCarley
- VA Boston Healthcare System and Harvard Medical School, Department of Psychiatry, Brockton, MA, USA
| | - R. E. Strecker
- VA Boston Healthcare System and Harvard Medical School, Department of Psychiatry, Brockton, MA, USA
| |
Collapse
|
10
|
Im HI, Nakajima A, Gong B, Xiong X, Mamiya T, Gershon ES, Zhuo M, Tang YP. Post-training dephosphorylation of eEF-2 promotes protein synthesis for memory consolidation. PLoS One 2009; 4:e7424. [PMID: 19823585 PMCID: PMC2757674 DOI: 10.1371/journal.pone.0007424] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Accepted: 09/19/2009] [Indexed: 01/03/2023] Open
Abstract
Memory consolidation, which converts acquired information into long-term storage, is new protein synthesis-dependent. As protein synthesis is a dynamic process that is under the control of multiple translational mechanisms, however, it is still elusive how these mechanisms are recruited in response to learning for memory consolidation. Here we found that eukaryotic elongation factor-2 (eEF-2) was dramatically dephosphorylated within 0.5–2 hr in the hippocampus and amygdala of mice following training in a fear-conditioning test, whereas genome-wide microarrays did not reveal any significant change in the expression level of the mRNAs for translational machineries or their related molecules. Moreover, blockade of NMDA receptors with MK-801 immediately following the training significantly impeded both the post-training eEF-2 dephosphorylation and memory retention. Notably, with an elegant sophisticated transgenic strategy, we demonstrated that hippocampus-specific overexpression of eEF-2 kinase, a kinase that specifically phosphorylates and hence inactivates eEF-2, significantly inhibited protein synthesis in the hippocampus, and this effects was more robust during an “ongoing” protein synthesis process. As a result, late phase long-term potentiation (L-LTP) in the hippocampus and long-term hippocampus-dependent memory in the mice were significantly impaired, whereas short-term memory and long-term hippocampus-independent memory remained intact. These results reveal a novel translational underpinning for protein synthesis pertinent to memory consolidation in the mammalian brain.
Collapse
Affiliation(s)
- Heh-In Im
- Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Akira Nakajima
- Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Bo Gong
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Xiaoli Xiong
- Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Takayoshi Mamiya
- Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Elliot S. Gershon
- Departments of Psychiatry and Human Genetics, the University of Chicago, Chicago, Illinois, United States of America
| | - Min Zhuo
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Ya-Ping Tang
- Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
11
|
Wang GS, Chang NC, Wu SC, Chang AC. Regulated expression of ?2B adrenoceptor during development. Dev Dyn 2002; 225:142-52. [PMID: 12242714 DOI: 10.1002/dvdy.10141] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
There are three subtypes of alpha2 adrenoceptor, i.e., alpha2A, alpha2B, and alpha2C, mediating the specific effect of epinephrine and norepinephrine in various tissues by means of G protein-coupled signal transduction pathways. In an attempt to delineate the regulatory mechanism of the alpha2B receptor subtype (encoded by subtype gene Adra2b) expression in the central nervous system (CNS), we have established transgenic (Tg) mice lines in which the transgene (NN-lacZ) was composed of the promoter region of Adra2b (NcoI fragment, 4.7 kb immediately upstream from receptor coding region) and a reporter gene lacZ (encoding beta-galactosidase). The selective expression of alpha2B in brain as indexed by beta-galactosidase, under the direction of this promoter region, may be traced in situ by using X-gal staining. The expression pattern of Adra2b-NN-lacZ in CNS of Tg mice during development was examined. The temporal course of examination was from gestation day 9.5 (E9.5) to postnatal day 28 (P28). Significant X-gal staining was detected in the dorsal root ganglion and cranial nerves V and VII at E12.5. By E18.5, expression was noted in the cerebral cortex, anterior olfactory nucleus, hypothalamus, brainstem, and cerebellar Purkinje cells, among others, and persisted through postnatal development. Adra2b-NN-directed reporter expression was detected in the hippocampal dentate gyrus first at P4. The temporal course of expression up to P28 in this area is in accordance with the developmental profiles of granule neurons of dentate gyrus. From P7 on, transgene expression was detected in additional brain areas, including the septum and thalamus. The expression correlates well with the noradrenergic innervations as evidenced by colocalization by using tyrosine hydroxylase or dopamine-beta-hydroxylase immunocytochemistry.
Collapse
Affiliation(s)
- Guey-Shin Wang
- Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | | | | | | |
Collapse
|
12
|
Silveira DC, Sogawa Y, Holmes GL. The expression of Fos following kainic acid-induced seizures is age-dependent. Eur J Neurosci 2002; 15:329-44. [PMID: 11849299 DOI: 10.1046/j.0953-816x.2001.01849.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The expression of limbic seizures following kainic acid (KA) administration starts at approximately postnatal day (P) 19 in rats. In this study we investigated whether the expression of Fos-like immunoreactivity (Fos-IR) in limbic regions occurs concomitantly with the behavioural expression of limbic seizures. Immunohistochemistry for c-Fos protein was examined 1, 2, 4, 12 and 24 h following seizure onset (KA-treated rats) or saline injections (controls) in immature and adult rats at P7, P13, P20 and P60. The expression of Fos-IR in limbic structures following KA-induced seizures is age-dependent. There is a strong and selective induction of Fos-IR in the CA3 region of the hippocampus following KA-induced seizures in rats at P7. However, the expression of Fos-IR in KA-treated rats at P13, P20 and P60 involved other hippocampal structures in addition to CA3. Abundant induction of Fos-IR was found in the CA1, CA3 and dentate gyrus (DG) in KA-treated rats at P13, P20 and P60. While immature rats at P7 and P13 showed very few or no Fos-IR neurons in most amygdala nuclei, rat pups at P20 showed strong induction of Fos-IR in the amygdala. Our results demonstrated that the induction of Fos-IR in most amygdala nuclei and the full expression of behavioural limbic seizures occur at the same developmental age, which is consistent with the idea that the amygdala may play a role in the modulation of limbic seizures.
Collapse
Affiliation(s)
- Diosely C Silveira
- Department of Neurology, Children's Hospital Boston and Harvard Medical School, 300 Longwood Avenue, Enders # 320, Boston, Massachusetts 02115, USA.
| | | | | |
Collapse
|
13
|
Abstract
Neurons compute in part by integrating, on a time scale of milliseconds, many synaptic inputs and generating a digital output-the "action potential" of classic electrophysiology. Recent discoveries indicate that neurons also perform a second, much slower, integration operating on a time scale of minutes or even hours. The output of this slower integration involves a pulse of gene expression which may be likened to the electrophysiological action potential. Its function, however, is not directed toward immediate transmission of a synaptic signal but rather toward the experience-dependent modification of the underlying synaptic circuitry. Commonly termed the "immediate early gene" (IEG) response, this phenomenon is often assumed to be a necessary component of a linear, deterministic cascade of memory consolidation. Critical review of the large literature describing the phenomenon, however, leads to an alternative model of IEG function in the brain. In this alternative, IEG activation is not directed at the consolidation of memories of a specific inducing event; instead, it sets the overall gain or efficiency of memory formation and directs it to circuits engaged by behaviorally significant contexts. The net result is a sharpening of the selectivity of memory formation, a recruitment of temporally correlated associations, and an ultimate enhancement of long-term memory retrieval.
Collapse
Affiliation(s)
- D F Clayton
- Beckman Institute Neuronal Pattern Analysis Group, Department of Cell & Structural Biology and Neuroscience Program, University of Illinois, Urbana, Illinois, 61801, USA.
| |
Collapse
|
14
|
Greco MA, Lu J, Wagner D, Shiromani PJ. c-Fos expression in the cholinergic basal forebrain after enforced wakefulness and recovery sleep. Neuroreport 2000; 11:437-40. [PMID: 10718290 DOI: 10.1097/00001756-200002280-00002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The present study used c-Fos expression to examine cellular activity in cholinergic regions in the basal forebrain (BF) following enforced waking and recovery sleep. Cholinergic cells within the vertical and horizontal limbs of the diagonal band of Broca (VDB and HDB, respectively) showed significantly higher c-Fos immunoreactivity after prolonged waking than after recovery sleep. Cholinergic cells within the medial septal nucleus (MS), however, showed no change in c-Fos expression under these conditions. Consistent with our previous findings, c-Fos immunoreactivity in the ventral lateral preoptic area (VLPO) was increased after 1-2h of recovery sleep compared with enforced waking. These results indicate state-specific effects on transcription and subsequent protein expression in cell populations associated with behavioral state and further show that the HDB, VDB and VLPO are good candidates for the further study of intracellular events associated with sleep and wakefulness.
Collapse
Affiliation(s)
- M A Greco
- VA Medical Center, West Roxbury and Harvard Medical School, Research 151, MA 02132, USA
| | | | | | | |
Collapse
|