1
|
Kalinina A, Krekhno Z, Yee J, Lehmann H, Fournier NM. Effect of repeated seizures on spatial exploration and immediate early gene expression in the hippocampus and dentate gyrus. IBRO Neurosci Rep 2022; 12:73-80. [PMID: 35028638 PMCID: PMC8741423 DOI: 10.1016/j.ibneur.2021.12.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/25/2021] [Accepted: 12/30/2021] [Indexed: 12/05/2022] Open
Abstract
Immediate early genes (IEGs) are coordinately activated in response to neuronal activity and can cause activation of secondary response genes that modulate synaptic plasticity and mediate long-lasting changes in behaviour. Excessive neuronal stimulation induced by epileptic seizures induce rapid and dramatic changes in IEG expression. Although the impact of acute seizure activity on IEG expression has been well studied, less is known about the long-term effects of chronic seizures on IEG induction during seizure free periods where behavioural and cognitive impairments are frequently observed in people with epilepsy and in animal models of epilepsy. The present study sought out to examine the impact of chronic pentylenetetrazole evoked seizures (PTZ kindling) on spatial exploration induced in IEG expression (c-Fos, ΔFosB, Homer1a, Egr1, Npas4, Nr4a1) in the hippocampus (CA1 and CA3 subfields) and dentate gyrus of rats. Male rats underwent two weeks of PTZ kindling (every 2 days) or received vehicle injections and were placed into a novel open field arena for 30 min either 24 hrs or 4 weeks after the last treatment. Although exploratory activity was similar between PTZ kindled and vehicle controls when examined 24 hrs after the last treatment, we observed a significant reduction in spatial exploration induced expression of c-Fos, Egr1, and ΔFosB in the hippocampus and dentate gyrus, and reduced expression of Nr4a1 in the dentate gyrus and Homer1a in the hippocampus only. When testing was conducted after a 4-week recovery period, only c-Fos continued to show reduced expression after exposure a novel environment in previously PTZ kindled animals. Interestingly, these animals also showed reduced activity in the center region of the open field suggestive of heightened anxiety-like behaviour. Collectively, these results suggest that repeated seizures may lead to longterm downregulation in hippocampal IEG expression that can extend into seizure free periods thereby providing a critical mechanism for the development of cognitive and behavioural deficits that arise during chronic epilepsy
Collapse
Affiliation(s)
- Alena Kalinina
- Department of Psychology, Trent University, Peterborough, ON K9J 7B8, Canada
| | - Zakhar Krekhno
- Department of Psychology, Trent University, Peterborough, ON K9J 7B8, Canada
| | - Janet Yee
- Department of Psychology, Trent University, Peterborough, ON K9J 7B8, Canada
| | - Hugo Lehmann
- Department of Psychology, Trent University, Peterborough, ON K9J 7B8, Canada
| | - Neil M Fournier
- Department of Psychology, Trent University, Peterborough, ON K9J 7B8, Canada
| |
Collapse
|
2
|
Zhao Y, Spigolon G, Bonny C, Culman J, Vercelli A, Herdegen T. The JNK inhibitor D-JNKI-1 blocks apoptotic JNK signaling in brain mitochondria. Mol Cell Neurosci 2011; 49:300-10. [PMID: 22206897 DOI: 10.1016/j.mcn.2011.12.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 11/19/2011] [Accepted: 12/14/2011] [Indexed: 02/08/2023] Open
Abstract
Kainic acid (KA) induced seizures provokes an extensive neuronal degeneration initiated by c-Jun N-terminal kinases (JNK) as central mediators of excitotoxicity. However, the actions of their individual isoforms in cellular organelles including mitochondria remain to be elucidated. Here, we have studied the activation of JNK1, JNK2 and JNK3 and their activators, mitogen-activated protein kinase kinase (MKK) 4/7, in brain mitochondria, cytosolic and nuclear fractions after KA seizures. In the mitochondrial fraction, KA significantly increased the presence of JNK1, JNK3 and MKK4 and stimulated their phosphorylation i.e. activation. The pro-apoptotic proteins, Bim and Bax were induced and, consequently, the ratio Bcl-2-Bax decreased. These changes were paralleled by the release of cytochrome c and cleavage of poly(ADP-ribose)-polymerase (PARP). The JNK peptide inhibitor, D-JNKI-1 (XG-102) reversed these pathological events in the mitochondria and almost completely abolished cytochrome c release and PARP cleavage. Importantly, JNK3, but not JNK1 or JNK2, was associated with Bim in mitochondria and D-JNKI-1 prevented the formation of this apoptotic complex. Apart from of the attenuation of c-Jun phosphorylation in the nucleus, D-JNKI-1 did not affect the level of JNK3 isoform in the nuclear and cytosolic fractions. These findings provide novel insights into the mode of action of individual JNK isoforms in cell organelles and points to the JNK3 pool in mitochondria as a target of the JNK inhibitor D-JNKI-1 to confer neuroprotection.
Collapse
Affiliation(s)
- Yi Zhao
- Institute for Experimental and Clinical Pharmacology, University Hospital of Schleswig-Holstein, Campus Kiel, Hospital Strasse 4, 24105 Kiel, Germany
| | | | | | | | | | | |
Collapse
|
3
|
Chen X, Wu J, Hua D, Shu K, Wang JZ, Li L, Lei T. The c-Jun N-terminal kinase inhibitor SP600125 is neuroprotective in amygdala kindled rats. Brain Res 2010; 1357:104-14. [PMID: 20692238 DOI: 10.1016/j.brainres.2010.07.082] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2010] [Revised: 07/21/2010] [Accepted: 07/22/2010] [Indexed: 11/25/2022]
Abstract
c-Jun N-terminal kinase (JNK) is implicated in cell death in neurodegenerative disorders and has been taken as a critical point between the physiological and pathological status. JNK specific inhibitor SP600125 has been found to have a protective effect against transient brain ischemia/reperfusion-induced neuronal death in rat hippocampal CA1 region. Former studies have shown the relation between JNK phosphorylation and neuronal damage in models of brain ischemia or in chemically or acute electrically kindled animal in which the stimulus-induced JNK phosphorylation was temporary or transient. In this study, the effect of repeated activation of JNK was examined in the amygdala kindled rats, under or without intraventrical infusion of SP600125, compared with the sham control. JNK phosphorylation was detected by Western blot and immunofluorescent staining in hippocampal extracts and in slices respectively. Nissl staining was performed to detect the neuronal defect. We found that the level of JNK phosphorylation (46KD) in the hippocampus increased in the amygdala kindled rats, whereas such JNK phosphorylation could be inhibited by SP600125. Expression of total JNK in the hippocampus remained unchanged in kindled rats compared with the sham control, and was not affected by SP600125. Neuronal defect was marked in the kindling group and in the vehicle DMSO group, and was alleviated under the administration of SP600125. These findings suggest that JNK phosphorylation is involved in the process of hippocampal sclerosis in the mesial temporal lobe epilepsy (TLE). JNK signaling pathway may be a new target to interfere with the development of hippocampal sclerosis in the temporal lobe epilepsy. The JNK inhibitor SP600125 can show a protective effect on hippocampal neurons in TLE by inhibiting JNK activation.
Collapse
Affiliation(s)
- Xu Chen
- Department of Neurosurgery, Tongji Hospital, Huazhong University of Science and Technology, Jiefang Ave 1095, 430030 Wuhan, China
| | | | | | | | | | | | | |
Collapse
|
4
|
Ahn YM, Seo MS, Kim SH, Jeon WJ, Kim Y, Kang UG, Juhnn YS, Kim YS. Reduction in the protein level of c-Jun and phosphorylation of Ser73-c-Jun in rat frontal cortex after repeated MK-801 treatment. Psychiatry Res 2009; 167:80-7. [PMID: 19342105 DOI: 10.1016/j.psychres.2007.12.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Revised: 08/07/2007] [Accepted: 12/28/2007] [Indexed: 10/21/2022]
Abstract
Repeated administration of NMDA antagonists can induce behavioral alterations that mimic symptoms of psychosis, as seen in schizophrenia. JNK, one of the MAPKs, and c-Jun, its downstream target molecule, play important roles in regulating apoptosis in neural cells, and have been suggested as being associated with the pathophysiology of psychosis and the mechanism of action of some antipsychotics. We investigated changes in the JNK-c-Jun pathway and other Jun family proteins in the rat frontal cortex after single and repeated administration of MK-801 to examine acute and chronic responses. Neither the protein level nor the phosphorylation of JNK changed after single or repeated doses of MK-801. However, after repeated treatments, but not a single treatment, with MK-801, a down-regulation occurred in the protein level and of Ser73 phosphorylation of c-Jun in the rat frontal cortex. Other members of the Jun family, JunB and JunD, were unchanged. Repeated exposure to MK-801 down-regulated the phosphorylation and protein level of c-Jun in the rat frontal cortex, which may be related to the long-term effects of chronic treatment with MK-801.
Collapse
Affiliation(s)
- Yong Min Ahn
- Department of Psychiatry and Behavioral Science and Institute of Human Behavioral Medicine, Seoul National University College of Medicine, 28 Yongon-Dong, Chongno-Gu, Seoul 110-744, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Abstract
Transcription is a molecular requisite for long-term synaptic plasticity and long-term memory formation. Thus, in the last several years, one main interest of molecular neuroscience has been the identification of families of transcription factors that are involved in both of these processes. Transcription is a highly regulated process that involves the combined interaction and function of chromatin and many other proteins, some of which are essential for the basal process of transcription, while others control the selective activation or repression of specific genes. These regulated interactions ultimately allow a sophisticated response to multiple environmental conditions, as well as control of spatial and temporal differences in gene expression. Evidence based on correlative changes in expression, genetic mutations, and targeted molecular inhibition of gene expression have shed light on the function of transcription in both synaptic plasticity and memory formation. This review provides a brief overview of experimental work showing that several families of transcription factors, including CREB, C/EBP, Egr, AP-1, and Rel, have essential functions in both processes. The results of this work suggest that patterns of transcription regulation represent the molecular signatures of long-term synaptic changes and memory formation.
Collapse
Affiliation(s)
- Cristina M Alberini
- Department of Neuroscience, Mount Sinai School of Medicine, New York, NY 10029, USA.
| |
Collapse
|
6
|
Kwon MS, Seo YJ, Shim EJ, Choi SS, Lee JY, Suh HW. The effect of single or repeated restraint stress on several signal molecules in paraventricular nucleus, arcuate nucleus and locus coeruleus. Neuroscience 2006; 142:1281-92. [PMID: 16938401 DOI: 10.1016/j.neuroscience.2006.07.027] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Revised: 07/12/2006] [Accepted: 07/17/2006] [Indexed: 01/17/2023]
Abstract
The effect of single or repeated restraint stress on several signal molecules in the hypothalamus was studied in ICR mice. Single restraint stress was induced for 30, 60, and 120 min. A repeated restraint stress was induced for 2 h daily during four consecutive days, and then induced in the same time course on the fifth day. In the immunoblot assay, we observed that the signal molecules c-Fos, phosphorylated extracellular cell-regulated protein kinase (pERK), phosphorylated calcium/calmodulin dependent protein kinase II (pCaMKII) and phosphorylated cyclic-AMP response element binding protein (pCREB) in the hypothalamus were increased by single restraint, and the increased c-Fos and pERK levels were attenuated by repeated restraint stress. However, pCaMKII and pCREB levels were increased by both single and repeated restraint stress. We also observed in the immunohistochemistry study that immunoreactivities (IR) of these signal molecules were changed in paraventricular (PVN) and arcuate nuclei (ArcN) of the hypothalamus in accordance with immunoblot results. Furthermore, in confocal immunofluorescence, the pCaMKII and pCREB up-regulated by repeated restraint stress were co-localized within many neurons of PVN and ArcN. In addition, we found that c-Fos and pCaMKII IR in locus coeruleus (LC) were increased by single restraint, and were attenuated by repeated restraint stress. However, the pERK and pCREB IR were increased by both single and repeated restraint stress. The confocal study revealed that pERK and pCREB up-regulated by repeated restraint stress were co-localized within many neurons of LC. Our results suggest that single and repeated restraint stress differentially triggers the induction and phosphorylation of several signal molecules in the PVN, ArcN, and LC. In addition, single and repeated stress stimuli elicited the brain-region specific changes of signal molecules examined. Furthermore, the upstream signal molecule activating CREB may be also brain-region specific, especially in repeated stress stimuli.
Collapse
Affiliation(s)
- M-S Kwon
- Department of Pharmacology, College of Medicine, and Institute of Natural Medicine, Hallym University, 1 Okchundong, Chuncheon, Gangwon-Do 200-702, South Korea.
| | | | | | | | | | | |
Collapse
|
7
|
Cole-Edwards KK, Musto AE, Bazan NG. c-Jun N-terminal kinase activation responses induced by hippocampal kindling are mediated by reactive astrocytes. J Neurosci 2006; 26:8295-304. [PMID: 16899724 PMCID: PMC6673801 DOI: 10.1523/jneurosci.1986-05.2006] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hippocampal kindling, a model of mesial temporal lobe epilepsy, is developed through repetitive stimulation of the hippocampus and leads to increased after-discharges as measured by EEG and an enduring seizure-prone state. Synthesis of new proteins is thought to form the basis for sustained seizure-induced physiological and/or pathological changes in synaptic reorganization and apoptotic/necrotic neuronal death. Here we examined the effect of kindling on stimulus-induced c-Jun N-terminal kinase (JNK) and p38 phosphorylation, events postulated to lie upstream of seizure-induced changes in gene transcription. We found that stimulus-induced phosphorylation of JNK, but not of p38, is significantly enhanced in kindled animals compared with their naive counterparts in the CA1 subregion of the hippocampus. Immunofluorescent staining confirmed this region-specific pattern of JNK activation and revealed that reactive astrocytes mediate this effect. Astrocyte proliferation and hypertrophy, as well as upregulation of vimentin protein levels, common markers of astrogliosis, were present after 4 d of kindling. Moreover, this reactive astrogliosis was associated with neuronal death as visualized with Fluoro-jade B and anti-active caspase-3 staining. Stimulus-induced phosphorylation of the JNK substrate paxillin was enhanced in kindled animals, but not that of c-Jun. Moreover, a pan-antibody against MAPK/CDK (mitogen-activated protein kinases/cyclin-dependent kinase) substrates indicated the presence of phosphorylated proteins in cytosolic, membrane, and nuclear fractions. The consequence of these phosphorylation events is not completely understood, but these findings suggest a selective astrocytic signaling response to aberrant synaptic activity, signaling that may modulate kindling progression and/or neuronal death.
Collapse
|
8
|
Bignotto M, Benedito MAC. Repeated electroconvulsive shock induces changes in high-affinity [3H]-ouabain binding to rat striatal membranes. Neurochem Res 2006; 31:515-21. [PMID: 16758360 DOI: 10.1007/s11064-006-9046-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2006] [Indexed: 02/03/2023]
Abstract
Repeated electroconvulsive shock is an effective treatment for affective disorders. Striatum, hippocampus and brainstem are involved in affective disorders. Sodium-potassium/ATPase is of paramount importance for the proper functioning of the brain and its involvement in the affective disorders has been claimed for a long time. Sodium-potassium/ATPase has an extracellular regulatory binding site to which cardiotonic glycosides, such as ouabain, bind to, thus regulating the activity of the enzyme. Endogenous "ouabain-like" substances exist in the brain and their actions on the sodium-potassium/ATPase resemble ouabain biological properties. The aim of this work was to determine if electroconvulsive shock (ECS) would induce changes in the high-affinity binding of ouabain to the sodium-potassium/ATPase from rat brain regions. Adult, male Wistar rats received one (ECSx1 group) or seven electroshocks (ECSx7 group) delivered daily through ear-clips electrodes. Control rats received the same manipulations; however, no current was delivered through the electrodes (SHAMx1 and SHAMx7 groups). All groups were sacrificed 24 h after the last ECS session. The B (max) and K (D) of high-affinity [(3)H]-ouabain binding were determined in crude membrane preparations from the striatum, hippocampus and brainstem. The results obtained showed a statistically significant increase in the affinity of [(3)H]-ouabain (lower K (D)) to striatal membranes in those rats receiving seven ECS. In the striatum there was no change in the K (D) after one ECS; as well as there was no change in the B (max) after a single or seven ECS. High-affinity [(3)H]-ouabain binding to hippocampus and brainstem did not reveal any significant differences either in K (D) or B (max) after one or seven ECS. The increased affinity of ouabain to the striatal sodium-potassium/ATPase induced by repeated ECS suggests an increased interaction in vivo of the endogenous "ouabain-like" substances with the enzyme and the involvement of the extracellular regulatory allosteric ouabain binding site in the striatal sodium-potassium/ATPase in the effects of electroconvulsive shock.
Collapse
Affiliation(s)
- Magda Bignotto
- Departamento de Psicobiologia, Universidade Federal de São Paulo, Brazil
| | | |
Collapse
|
9
|
Hayley S, Poulter MO, Merali Z, Anisman H. The pathogenesis of clinical depression: stressor- and cytokine-induced alterations of neuroplasticity. Neuroscience 2005; 135:659-78. [PMID: 16154288 DOI: 10.1016/j.neuroscience.2005.03.051] [Citation(s) in RCA: 235] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2004] [Revised: 03/11/2005] [Accepted: 03/22/2005] [Indexed: 11/18/2022]
Abstract
Stressful events promote neurochemical changes that may be involved in the provocation of depressive disorder. In addition to neuroendocrine substrates (e.g. corticotropin releasing hormone, and corticoids) and central neurotransmitters (serotonin and GABA), alterations of neuronal plasticity or even neuronal survival may play a role in depression. Indeed, depression and chronic stressor exposure typically reduce levels of growth factors, including brain-derived neurotrophic factor and anti-apoptotic factors (e.g. bcl-2), as well as impair processes of neuronal branching and neurogenesis. Although such effects may result from elevated corticoids, they may also stem from activation of the inflammatory immune system, particularly the immune signaling cytokines. In fact, several proinflammatory cytokines, such as interleukin-1, tumor necrosis factor-alpha and interferon-gamma, influence neuronal functioning through processes involving apoptosis, excitotoxicity, oxidative stress and metabolic derangement. Support for the involvement of cytokines in depression comes from studies showing their elevation in severe depressive illness and following stressor exposure, and that cytokine immunotherapy (e.g. interferon-alpha) elicited depressive symptoms that were amenable to antidepressant treatment. It is suggested that stressors and cytokines share a common ability to impair neuronal plasticity and at the same time altering neurotransmission, ultimately contributing to depression. Thus, depressive illness may be considered a disorder of neuroplasticity as well as one of neurochemical imbalances, and cytokines may act as mediators of both aspects of this illness.
Collapse
Affiliation(s)
- S Hayley
- Institute of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada K1S 5B6.
| | | | | | | |
Collapse
|
10
|
Kodama M, Russell DS, Duman RS. Electroconvulsive seizures increase the expression of MAP kinase phosphatases in limbic regions of rat brain. Neuropsychopharmacology 2005; 30:360-71. [PMID: 15496935 DOI: 10.1038/sj.npp.1300588] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The mitogen-activated protein (MAP) kinase cascades regulate a variety of cellular activities, including cell growth, proliferation, and apoptosis, and are reported to play a role in the actions of antidepressant treatment. There are a number of different classes of protein phosphatases that could influence the MAP kinase cascade. One of these, the MAP kinase phosphatase (MKP) family, is known to play a key role in dephosphorylation of activated MAP kinase. In the present study, we analyzed the expression of the MKP1, MKP2, and MKP3 isoforms in rat brain after electroconvulsive seizure (ECS), considered the most effective treatment for depression. In situ hybridization analysis demonstrates that ECS differentially regulates the expression of the MKP isoforms. Expression of MKP1 mRNA is robustly increased by acute ECS in the major cell layers of the hippocampus, including the dentate gyrus granule cell layer and the CA1 and CA3 pyramidal cell layers. In contrast, MKP2 is induced mainly in the dentate gyrus and MKP3 is preferentially increased in the CA1 and CA3 cell layers. In the prefrontal cortex, all three MKP isoforms are upregulated by acute ECS administration. Chronic ECS resulted in a similar pattern of induction for each of the MKP subtypes, demonstrating that there is little or no desensitization of the response to repeated ECS. The induction of MKP expression serves as negative feedback control for the MAP kinase cascades. Upregulation of MKP expression could dampen the actions of ECS, indicating that blockade of the MKPs could enhance the actions of antidepressant treatment.
Collapse
Affiliation(s)
- Masafumi Kodama
- Department of Psychiatry, Division of Molecular Psychiatry, Yale University School of Medicine, New Haven, CT 06508, USA
| | | | | |
Collapse
|
11
|
Zhu X, Perry G, Smith MA. Amyotrophic lateral sclerosis: a novel hypothesis involving a gained 'loss of function' in the JNK/SAPK pathway. Redox Rep 2004; 8:129-33. [PMID: 12935309 DOI: 10.1179/135100003225001494] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive and fatal neurodegenerative disease that mainly affects motor neurons. Despite intensive research efforts inspired by the mile-stone discovery linking the Cu/Zn superoxide dismutase 1 (SOD1) gene to a subset of familial cases, the mechanisms underlying disease pathogenesis are still largely unknown. Nonetheless, the recent finding of a second gene associated with familial form of the disease, ALS2, is likely to be of great help in elucidating the key pathways involved in motor neuron degeneration. Here, we provide evidence that the JNK/SAPK pathway plays a critical neuroprotective role in susceptible motor neurons in ALS. The involvement of the JNK/SAPK pathway integrates our knowledge about these two known genetic factors into a single pathogenic pathway involved in both sporadic and familial ALS.
Collapse
Affiliation(s)
- Xiongwei Zhu
- Institute of Pathology, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| | | | | |
Collapse
|
12
|
Ahn YM, Kang UG, Oh SW, Juhnn YS, Joo YH, Park JB, Kim YS. Region-specific phosphorylation of ATF-2, Elk-1 and c-Jun in rat hippocampus and cerebellum after electroconvulsive shock. Neurosci Lett 2002; 329:9-12. [PMID: 12161250 DOI: 10.1016/s0304-3940(02)00568-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
There have been reports of regional differences in the activation of mitogen activated protein kinases (MAPKs) and in the induction of immediate early genes after electroconvulsive shock (ECS) in the rat brain. This study was performed to determine whether ECS induce the region-specific phosphorylation of MAPK-downstream transcription factors, ATF-2, Elk-1, c-Jun, in rat hippocampus and cerebellum. Following ECS, the phosphorylation of ATF-2 was highly increased in the hippocampus but slightly in the cerebellum. The phosphorylation of Elk-1 was increased in the cerebellum but not in the hippocampus. In contrast, the phosphorylation of c-Jun was increased only in the hippocampus. These results indicate that ECS can induce the region-specific phosphorylation of MAPK-downstream transcription factors in rat hippocampus and cerebellum.
Collapse
Affiliation(s)
- Yong Min Ahn
- Department of Neuropsychiatry, Eulji University School of Medicine, Seoul 139-711, South Korea
| | | | | | | | | | | | | |
Collapse
|
13
|
Klettner A, Baumgrass R, Zhang Y, Fischer G, Bürger E, Herdegen T, Mielke K. The neuroprotective actions of FK506 binding protein ligands: neuronal survival is triggered by de novo RNA synthesis, but is independent of inhibition of JNK and calcineurin. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2001; 97:21-31. [PMID: 11744159 DOI: 10.1016/s0169-328x(01)00286-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The immunosuppressant FK506 displays substantial neuroprotective and neuroregenerative effects. It is not fully understood to which extent these effects depend on the inhibition of the calcineurin phosphatase (PP2B). The present study has re-addressed this issue using Lie120, a novel highly specific inhibitor of calcineurin, which does not block the enzymatic activity of FKBPs or cyclophilins, respectively. We have determined the effect of FK506 (10-500 nM), V-10,367 (a FK506 derivative which does not block calcineurin; 1-5 microM) and Lie120 (a novel specific inhibitor of calcineurin, 0.1-5 microM) on the cellular survival and the pro-degenerative JNK activity of PC12 and Neuro2A cells following application of 200 microM H(2)O(2). FK506 and V-10,367, but not Lie120, protected both cell lines against H(2)O(2)-mediated death, whereas an increase in JNK1 activity was blocked by FK506 and Lie120, but not by V-10,367. Co-incubation of FK506 and V-10,367 with the mRNA synthesis inhibitor actinomycin D abolished the protective effect of FK506 and V-10,367. This antagonization was effective when actinomycin D was applied 30 min or 1 h, but not 2 or 4 h, after H(2)O(2) suggesting that FKBP-ligands confer their neuroprotection by rapid de novo synthesis of (functionally) anti-apoptotic proteins. The search for the corresponding effector genes revealed that the expression of FKBP25, FKBP38 and FKBP52 (analysis by reverse transcription-polymerase chain reaction (RT-PCR) did not change following H(2)O(2) or FK506, and this was also true for the expression of apoptosis-related genes caspase 3, bax, bcl-2 and bcl-xL (analysis by Multiplex-PCR). Summarizing, neuronal protection by FKBP-ligands is not mediated either by calcineurin or by JNK1 in this experimental set-up, whereas the FK506 mediated inhibition of JNK1 is realized by the inhibition of calcineurin, an effective activator of JNK1 in neurons.
Collapse
Affiliation(s)
- A Klettner
- Institute of Pharmacology, Christian-Albrechts-University, Hospitalstrasse 4, 24105, Kiel, Germany
| | | | | | | | | | | | | |
Collapse
|
14
|
Herdegen T, Waetzig V. AP-1 proteins in the adult brain: facts and fiction about effectors of neuroprotection and neurodegeneration. Oncogene 2001; 20:2424-37. [PMID: 11402338 DOI: 10.1038/sj.onc.1204387] [Citation(s) in RCA: 158] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Jun and Fos proteins are induced and activated following most physiological and pathophysiological stimuli in the brain. Only few data allow conclusions about distinct functions of AP-1 proteins in neurodegeneration and neuroregeneration, and these functions mainly refer to c-Jun and its activation by JNKs. Apoptotic functions of activated c-Jun affect hippocampal, nigral and primary cultured neurons following excitotoxic stimulation and destruction of the neuron-target-axis including withdrawal of trophic molecules. The inhibition of JNKs might exert neuroprotection by subsequent omission of c-Jun activation. Besides endogenous neuronal functions, the c-Jun/AP-1 proteins can damage the nervous system by upregulation of harmful programs in non-neuronal cells (e.g. microglia) with release of neurodegenerative molecules. In contrast, the differentiation with neurite extension and maturation of neural cells in vitro indicate physiological and potentially neuroprotective functions of c-Jun and JNKs including sensoring for alterations in the cytoskeleton. This review summarizes the multiple molecular interfunctions which are involved in the shift from the physiological role to degenerative effects of the Jun/JNK-axis such as cell type-specific expression and intracellular localization of scaffold proteins and upstream activators, antagonistic phosphatases, interaction with other kinase systems, or the activation of transcription factors competing for binding to JNK proteins and AP-1 DNA elements.
Collapse
Affiliation(s)
- T Herdegen
- Institute of Pharmacology, Hospitalstrasse 4, 24105 Kiel, Germany
| | | |
Collapse
|
15
|
Abstract
Sleep and waking differ significantly in terms of behavior, metabolism, and neuronal activity. Recent evidence indicates that sleep and waking also differ with respect to the expression of certain genes. To systematically investigate such changes, we used mRNA differential display and cDNA microarrays to screen approximately 10000 transcripts expressed in the cerebral cortex of rats after 8 h of sleep, spontaneous waking, or sleep deprivation. We found that 44 genes had higher mRNA levels after waking and/or sleep deprivation relative to sleep, while 10 were upregulated after sleep. Known genes that were upregulated in waking and sleep deprivation can be grouped into the following categories: immediate early genes/transcription factors (Arc, CHOP, IER5, NGFI-A, NGFI-B, N-Ras, Stat3), genes related to energy metabolism (glucose type I transporter Glut1, Vgf), growth factors/adhesion molecules (BDNF, TrkB, F3 adhesion molecule), chaperones/heat shock proteins (BiP, ERP72, GRP75, HSP60, HSP70), vesicle- and synapse-related genes (chromogranin C, synaptotagmin IV), neurotransmitter/hormone receptors (adrenergic receptor alpha(1A) and beta(2), GABA(A) receptor beta(3), glutamate NMDA receptor 2A, glutamate AMPA receptor GluR2 and GluR3, nicotinic acetylcholine receptor beta(2), thyroid hormone receptor TRbeta), neurotransmitter transporters (glutamate/aspartate transporter GLAST, Na(+)/Cl(-) transporter NTT4/Rxt1), enzymes (aryl sulfotransferase, c-jun N-terminal kinase 1, serum/glucocorticoid-induced serine/threonine kinase), and a miscellaneous group (calmodulin, cyclin D2, LMO-4, metallothionein 3). Several other genes that were upregulated in waking and all the genes upregulated in sleep, with the exception of the one coding for membrane protein E25, did not match any known sequence. Thus, significant changes in gene expression occur across behavioral states, which are likely to affect basic cellular functions such as RNA and protein synthesis, neural plasticity, neurotransmission, and metabolism.
Collapse
Affiliation(s)
- C Cirelli
- The Neurosciences Institute, 10640 John J. Hopkins Drive, San Diego, CA 92121, USA
| | | |
Collapse
|
16
|
Hebert MA, O'Callaghan JP. Protein phosphorylation cascades associated with methamphetamine-induced glial activation. Ann N Y Acad Sci 2000; 914:238-62. [PMID: 11085325 DOI: 10.1111/j.1749-6632.2000.tb05200.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Reactive gliosis is the most prominent response to diverse forms of central nervous system (CNS) injury. The signaling events that mediate this characteristic response to neural injury are under intense investigation. Several studies have demonstrated the activation of phosphoproteins within the mitogen-activated protein kinase (MAPK) and Janus kinase (JAK) pathways following neural insult. These signaling pathways may be involved or responsible for the glial response following injury, by virtue of their ability to phosphorylate and dynamically regulate the activity of various transcription factors. This study sought to delineate, in vivo, the relative contribution of MAPK- and JAK-signaling components to reactive gliosis as measured by induction of glial-fibrillary acidic protein (GFAP), following chemical-induced neural damage. At time points (6, 24, and 48 h) following methamphetamine (METH, 10 mg/kg x 4, s.c.) administration, female C57BL/6J mice were sacrificed by focused microwave irradiation, a technique that preserves steady-state phosphorylation. Striatal (target) and nontarget (hippocampus) homogenates were assayed for METH-induced changes in markers of dopamine (DA) neuron integrity as well as differences in the levels of activated phosphoproteins. GFAP upregulation occurred as early as 6 h, reaching a threefold induction 48 h following METH exposure. Neurotoxicant-induced reductions in striatal levels of DA and tyrosine hydroxylase (TH) paralleled the temporal profile of GFAP induction. Blots of striatal homogenates, probed with phosphorylation-state specific antibodies, demonstrated significant changes in activated forms of extracellular-regulated kinase 1/2 (ERK 1/2), c-jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK), MAPK/ERK kinase (MEK1/2), 70-kDa ribosomal S6 kinase (p70 S6), cAMP responsive element binding protein (CREB), and signal transducer and activator of transcription 3 (STAT3). MAPK-related phosphoproteins exhibited an activation profile that peaked at 6 h, remained significantly increased at 24, and fell to baseline levels 48 h following neurotoxicant treatment. The ribosomal S6 kinase was enhanced over 60% for all time points examined. Immunoreactivity profiles for the transcription factors CREB and STAT3 indicated maximal increases in phosphorylation occurring at 24 h, and measuring greater than 2- or 17-fold, respectively. Specific signaling events were found to occur with a time course suggestive of their involvement in the gliotic response. The toxicant-induced activation of these growth-associated signaling cascades suggests that these pathways could be obligatory for the triggering and/or persistence of reactive gliosis and may therefore serve as potential targets for modulation of glial response to neural damage.
Collapse
Affiliation(s)
- M A Hebert
- Department of Health & Human Services, Public Health Service, Centers for Disease Control and Prevention, Morgantown, West Virginia 26505-2888, USA
| | | |
Collapse
|
17
|
JNK and p38 are activated by erythropoietin (EPO) but are not induced in apoptosis following EPO withdrawal in EPO-dependent HCD57 cells. Blood 2000. [DOI: 10.1182/blood.v96.3.933.015k52_933_940] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Jun N-terminal kinase (JNK) and p38, members of the mitogen-activated protein kinase family of serine/threonine kinases, are activated as a result of cellular stress but may also play a role in growth factor-induced proliferation and/or survival or differentiation of many cells. A recent report has implicated JNK and p38 in the induction of apoptosis in the erythropoietin (EPO)-dependent erythroid cell line HCD57 following EPO withdrawal, whereas our previously reported data did not support a role for JNK in growth factor withdrawal-induced apoptosis in HCD57 cells. Therefore, further testing was done to see if JNK was activated in EPO withdrawal-induced apoptosis; the study was extended to p38 and characterized the effect of EPO on JNK and p38 activities. Treatment of HCD57 cells with EPO resulted in a gradual and sustained activation of both JNK and p38 activity; these activities decreased on EPO withdrawal. Transient activation of p42/p44 extracellular signal-related kinases (ERK) was also detected. Inhibition of ERK activity inhibited proliferation in EPO-treated cells but neither induced apoptosis nor activated JNK. Inhibition of p38 activity inhibited proliferation but did not protect HCD57 cells from apoptosis induced by EPO withdrawal. Treatment of HCD57 cells with tumor necrosis factor-alpha induced JNK activation but did not induce apoptosis. These results implicate JNK, p38, and ERK in EPO-induced proliferation and/or survival of erythroid cells but do not support a role for JNK or p38 in apoptosis induced by EPO withdrawal from erythroid cells.
Collapse
|
18
|
JNK and p38 are activated by erythropoietin (EPO) but are not induced in apoptosis following EPO withdrawal in EPO-dependent HCD57 cells. Blood 2000. [DOI: 10.1182/blood.v96.3.933] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractJun N-terminal kinase (JNK) and p38, members of the mitogen-activated protein kinase family of serine/threonine kinases, are activated as a result of cellular stress but may also play a role in growth factor-induced proliferation and/or survival or differentiation of many cells. A recent report has implicated JNK and p38 in the induction of apoptosis in the erythropoietin (EPO)-dependent erythroid cell line HCD57 following EPO withdrawal, whereas our previously reported data did not support a role for JNK in growth factor withdrawal-induced apoptosis in HCD57 cells. Therefore, further testing was done to see if JNK was activated in EPO withdrawal-induced apoptosis; the study was extended to p38 and characterized the effect of EPO on JNK and p38 activities. Treatment of HCD57 cells with EPO resulted in a gradual and sustained activation of both JNK and p38 activity; these activities decreased on EPO withdrawal. Transient activation of p42/p44 extracellular signal-related kinases (ERK) was also detected. Inhibition of ERK activity inhibited proliferation in EPO-treated cells but neither induced apoptosis nor activated JNK. Inhibition of p38 activity inhibited proliferation but did not protect HCD57 cells from apoptosis induced by EPO withdrawal. Treatment of HCD57 cells with tumor necrosis factor-alpha induced JNK activation but did not induce apoptosis. These results implicate JNK, p38, and ERK in EPO-induced proliferation and/or survival of erythroid cells but do not support a role for JNK or p38 in apoptosis induced by EPO withdrawal from erythroid cells.
Collapse
|
19
|
Mielke K, Herdegen T. JNK and p38 stresskinases--degenerative effectors of signal-transduction-cascades in the nervous system. Prog Neurobiol 2000; 61:45-60. [PMID: 10759064 DOI: 10.1016/s0301-0082(99)00042-8] [Citation(s) in RCA: 384] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The c-Jun N-terminal kinases (JNKs, also called stress activated protein kinases. SAPKs) and p38 kinases constitute together with extracellular signal-regulated kinases (ERKs) the family of MAP kinases. Whereas the functions of JNKs under physiological conditions are largely unknown, there is raising evidence that JNKs are potent effectors of apoptosis or degeneration of neurons in vitro and in the brain. The activation of the inducible transcription factor c-Jun by N-terminal phosphorylation is a central event in JNK-mediated degenerative processes that depend on de novo protein synthesis. At the post-translational level, cytoplasmic degenerative actions of JNKs might comprise inhibition of Bcl-2 and steroid hormone-receptor signaling or hyperphosphorylation of tau; and at transcriptional level, JNKs might trigger the induction of the apoptotic effectors p53 and Fas-Ligand by phosphorylation of c-Jun. The role of p38 is the nervous system is poorly understood, but its activation is also considered as part of the neuronal stress response. This review informs about the genetic processing, the regulation of activity and the biochemical actions of JNK and p38 isoforms in general. In the second part, we summarize the findings on expression and activation of JNKs and p38 under neurodegenerative condition. A particular focus is also put on the putative function of JNK under physiological conditions and for neuroprotection.
Collapse
Affiliation(s)
- K Mielke
- Department of Pharmacology, University of Kiel, Germany
| | | |
Collapse
|
20
|
Mielke K, Damm A, Yang DD, Herdegen T. Selective expression of JNK isoforms and stress-specific JNK activity in different neural cell lines. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2000; 75:128-37. [PMID: 10648896 DOI: 10.1016/s0169-328x(99)00308-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The function of c-Jun N-terminal kinases (JNKs) in the nervous system is poorly understood and the majority of the data has been gained in neuronal and non-neuronal cell lines. Thus, it is not clear to which extent the expression pattern and the degree of activation of the three JNK isoforms in different cell lines are representative for their activation in the adult brain. In the present study, the expression of JNK isoforms and the activity of JNK1 were determined following UV irradiation and exposure to H(2)O(2) and TNFalpha in three neural cell lines, rat PC12, murine Neuro2A and human SHSY5Y. These cell lines differ in their expression of JNK isoforms: PC12 cells express JNK1 and JNK2, whereas Neuro2A and SHSY5Y cells displays the expression of JNK1, JNK2 and JNK3. JNK3 was not inducible following stress and differentiation in PC12 cells. The stimulation paradigms evoked different degree of cell death: UV irradiation resulted in death of around 50% in all three cell lines; exposure to 200 microM H(2)O(2) for 6 h resulted in the death of 43% Neuro2A cells and 31% PC12 cells, SHSY5Y cells are less sensitive to H(2)O(2) since only 5 mM H(2)O(2) killed 59% of SHSY5Y cells after 6 h. Exposure to 50 ng/ml TNFalpha did not induce cell death in SHSY5Y, Neuro2A and naive PC12 cells. Although differentiated PC12 cells exhibit a similar activation of JNK1 compared to naive PC12 cells after exposure to TNFalpha, 42% of differentiated PC12 cells died after 24 h. H(2)O(2) that evoked only a moderate JNK1 activity in Neuro2A and PC12 cells induced only a moderate cell death. In contrast, SHSY5Y cells exhibit a much stronger JNK1 activation accompanied with a higher degree in cell death after exposure to H(2)O(2). JNK1 activity induced by UV irradiation, however, could not be correlated with the extend of cell death. These data clearly demonstrate that expression and activation of JNK depends on the neuronal cell type and the applied stress paradigms, and that JNK activity is not simply linked to cell death.
Collapse
Affiliation(s)
- K Mielke
- Department of Pharmacology, University of Kiel, Hospitalstrasse 4, 24105, Kiel, Germany.
| | | | | | | |
Collapse
|