1
|
Eagleson GW, Selten MM, Roubos EW, Jenks BG. Pituitary melanotrope cells of Xenopus laevis are of neural ridge origin and do not require induction by the infundibulum. Gen Comp Endocrinol 2012; 178:116-22. [PMID: 22569169 DOI: 10.1016/j.ygcen.2012.04.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 04/16/2012] [Accepted: 04/17/2012] [Indexed: 10/28/2022]
Abstract
Classical studies in amphibians have concluded that the endocrine pituitary and pars intermedia are derived from epithelial buccal epidermis and do not require the infundibulum for their induction. These studies also assumed that the pituitary is not subsequently determined by infundibular induction. Our extirpation, auto-transplantation and immunohistochemical studies with Xenopus laevis were initiated to investigate early presumptive pituitary development. These studies were conducted especially with reference to the pars intermedia melanotrope cell's induction, and its production and release of α-melanophore stimulating hormone (α-MSH) from the precursor protein proopiomelanocortin (POMC). Auto-transplantation studies demonstrated that the pituitary POMC-producing cells are determined at a stage prior to pituitary-infundibular contact. The results of experiments involving the extirpation of the presumptive infundibulum also indicated that the infundibulum is not essential for the differentiation of POMC-producing cells. We also demonstrated that early pituitary development involves adherence to the prechiasmatic area of the diencephalon with the pituitary placode growing in a posterior direction toward the infundibulum where contact occurs at Xenopus stage 39/40. Overall, our studies provide a model for early tissue relations among presumptive pituitary, suprachiasmatic nucleus, pars tuberalis and infundibulum during neurulation and later neural tube stages of development. It is hypothesized that the overlying chiasmatic area suppresses pituitary differentiation.
Collapse
Affiliation(s)
- Gerald W Eagleson
- Dept. Cellular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Faculty of Science, Heyendaalseweg 135, Nijmegen, The Netherlands.
| | | | | | | |
Collapse
|
2
|
Kudo H, Liu J, Jansen EJR, Ozawa A, Panula P, Martens GJM, Lindberg I. Identification of proSAAS homologs in lower vertebrates: conservation of hydrophobic helices and convertase-inhibiting sequences. Endocrinology 2009; 150:1393-9. [PMID: 18948394 PMCID: PMC2654743 DOI: 10.1210/en.2008-1301] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The prohormone convertases (PCs) 1/3 and 2 accomplish the major proteolytic cleavage events in neuroendocrine tissues; each of these convertases has a small associated binding protein that inhibits convertase action in the secretory pathway. The proSAAS protein binds to PC1/3, whereas the 7B2 protein binds to PC2. However, both convertase-binding proteins are more widely expressed than their cognate enzymes, suggesting that they may perform other functions as well. All known mammalian proSAASs are over 85% conserved; thus, identifying functionally important segments has been impossible. Here, we report the first identification of nonmammalian proSAAS molecules, from Xenopus and zebrafish (Danio rerio). Although these two proteins show an overall amino acid sequence identity of only 29 and 30% with mouse proSAAS, two 14-16 residue hydrophobic segments (predicted to form alpha-helices) and two, nine through 11 residue sequences containing basic convertase cleavage sites are highly conserved; therefore, these sequences may be of functional importance. Confidence that these nonmammalian molecules represent authentic proSAAS is supported by the finding that both inhibit mouse PC1/3 with nanomolar inhibition constants; human furin was not inhibited. In vitro, the two proteins were cleaved by PC2 and furin to three or more peptide products. Both zebrafish and Xenopus proSAAS exhibited neural and endocrine distributions, as assessed by in situ and PCR experiments, respectively. In summary, the identification of proSAAS molecules in lower vertebrates provides clues as to functional regions within this widely expressed neuroendocrine protein.
Collapse
Affiliation(s)
- H Kudo
- Department of Anatomy and Neurobiology, University of Maryland-Baltimore, Baltimore, Maryland 21201, USA
| | | | | | | | | | | | | |
Collapse
|
3
|
Peinado JR, Cruz-García D, Vázquez-Martínez R, Anouar Y, Tonon MC, Vaudry H, Gracia-Navarro F, Castaño JP, Malagón MM. RT-PCR analysis of the expression of POMC and its processing enzyme PC1 in amphibian melanotropes. Gen Comp Endocrinol 2006; 147:222-30. [PMID: 16480985 DOI: 10.1016/j.ygcen.2006.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2005] [Revised: 12/22/2005] [Accepted: 01/02/2006] [Indexed: 11/24/2022]
Abstract
The frog intermediate lobe comprises two functionally distinct cell subtypes, referred to as secretory and storage melanotropes, which differ in their ultrastructure, secretory, and synthetic rates, and display dissimilar responses to hypothalamic regulatory factors. All these differences make melanotrope subtypes an excellent model to analyze the expression and regulation of genes involved in the control and maintenance of the secretory state of endocrine cells. However, quantification of the expression levels of genes involved in the secretory process requires the characterization of a gene whose expression remains constant irrespective of the secretory state of the cells. In this study, we have cloned the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene from frog pituitary and have evaluated its suitability as internal standard in gene expression studies in melanotropes. A semiquantitative RT-PCR system developed to this end revealed that secretory melanotropes and storage melanotropes possess similar expression levels of GAPDH, whereas, as expected, secretory melanotropes showed higher levels of POMC transcripts than storage cells. Furthermore, we found that the expression of the convertase PC1, an intracellular protease involved in POMC processing, parallels that of POMC, thus suggesting that the higher secretory rate of the POMC-derived peptide alpha-MSH exhibited by secretory melanotropes is supported by their higher PC1 expression levels. In addition, we have shown that both POMC and PC1 mRNAs are up-regulated by the hypothalamic factor TRH in melanotrope cell cultures. In contrast, the inhibitory factor NPY reduced the expression level of the convertase but did not modify that of POMC. Taken together, these results demonstrate that PC1 expression is regulated in melanotropes by both stimulatory (TRH) and inhibitory (NPY) hypothalamic signals, in a manner which essentially parallels that observed for the precursor POMC.
Collapse
Affiliation(s)
- J R Peinado
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14014 Cordoba, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
St Germain C, Croissandeau G, Mayne J, Baltz JM, Chrétien M, Mbikay M. Expression and transient nuclear translocation of proprotein convertase 1 (PC1) during mouse preimplantation embryonic development. Mol Reprod Dev 2005; 72:483-93. [PMID: 16163737 DOI: 10.1002/mrd.20271] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Preimplantation embryos express a number of hormones, neuropeptides, and membrane receptors known to derive from proteolytic activation of their precursors by the seven-member family of subtilisin-like, calcium-dependent serine proteinases known as proprotein convertases (PCs). The goal of this study was to determine the pattern of PC expression in mouse preimplantation embryos. Transcripts for all PCs, except PC2, were detected by reverse transcription-polymerase chain reaction (RT-PCR) in unfertilized and fertilized eggs. Furin, PACE4, PC1, and PC7 transcripts remained present at subsequent stages of preimplantation embryonic development, whereas the levels of transcripts for PC4 and PC5 gradually disappeared after the 2-cell stage. Proprotein convertase 1 (PC1) expression was further examined at the protein level. Immunoblotting revealed the presence of the zymogen and mature forms of this enzyme in eggs and embryos. Immunofluorescence laser confocal microscopy showed PC1-specific staining throughout the cytoplasm of unfertilized eggs. After fertilization, surprisingly, the staining was concentrated in pronuclei. It relocated to the cytoplasm at postzygotic stages and was particularly strong at junctions between blastomeres. The nuclear translocation of PC1 in fertilized eggs is probably mediated by its prodomain. Indeed, when transduced in human colon carcinoma LoVo cells, a mutant proPC1 incapable of cleaving off its prodomain was shown to accumulate in the nucleus. Furthermore, when N-terminally fused to green fluorescent protein, this domain was able to direct the reporter protein to the nucleus of these cells. Collectively, these data establish that eggs and preimplantation embryos express various PCs necessary for proteolytic activation of precursors of hormones and growth factors. They also raise the possibility of a nuclear function for PC1 during zygote formation.
Collapse
Affiliation(s)
- Carly St Germain
- Diseases of Aging Program, Ottawa Health Research Institute, The Ottawa Hospital, University of Ottawa, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
5
|
de Groot DM, Pol C, Martens GJM. Comparative analysis and expression of neuroserpin in Xenopus laevis. Neuroendocrinology 2005; 82:11-20. [PMID: 16319501 DOI: 10.1159/000090011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2005] [Accepted: 10/06/2005] [Indexed: 01/22/2023]
Abstract
Serine protease inhibitors form a diverse family of proteins of which most members inhibit target serine proteases. Neuroserpin is a member of this family. Here, we have characterized neuroserpin in the nonmammalian species Xenopus laevis and found a high degree of aminoacid sequence conservation, especially of the reactive center loop, of the Xenopus protein compared to mammalian and chicken neuroserpin sequences, suggesting a conserved target specificity. Neuroserpin mRNA and protein were expressed throughout Xenopus development, while in the adult frog high mRNA expression was found in neuronal and neuroendocrine tissues, and the reproductive organs, and the neuroserpin protein was detected mainly in brain and pituitary. More specifically, in Xenopus pituitary neuroserpin mRNA was expressed higher in the neurointermediate lobe than in the pars distalis. At the protein level, we detected a 55-kDa neuroserpin protein in the pars nervosa, two neuroserpin proteins of 44- and 50-kDa in the melanotrope cells of the pars intermedia, and a 46-kDa product in the pars distalis. On the basis of its relatively high degree of sequence conservation and its expression pattern, we conclude that Xenopus neuroserpin may play an important physiological role, e.g. as a serine protease inhibitor during development, and for proper neuronal and neuroendocrine cell functioning.
Collapse
Affiliation(s)
- Dorien M de Groot
- Department of Molecular Animal Physiology, Institute for Neuroscience, Nijmegen Center for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
| | | | | |
Collapse
|
6
|
Abstract
Recent studies using biotechnological methods have achieved significant advances in our knowledge of molecular mechanisms underlying pituitary gland development and the differentiation of pituitary cytotypes. A large number of neuropeptides have been reported in the adult pituitary gland as well as in the central and peripheral nervous system. The early presence of neuropeptides during pituitary development is reviewed here. Neuromedin U (NmU), galanin and the polypeptide 7B2 have been localised to different endocrine cells of the gland. Their expression seems to be manifold even though it is temporally and spatially regulated. There is now firm immunocytochemical evidence that neuropeptides are present during morphogenesis of the pituitary and can be present simultaneously with all pituitary hormones.
Collapse
Affiliation(s)
- Vincenzo Cimini
- Department of Biomorphological and Functional Sciences, Federico II University of Naples, Via Pansini 5, 80131 Naples, Italy.
| |
Collapse
|
7
|
Sarac MS, Windeatt S, Castro MG, Lindberg I. Intrapituitary adenoviral administration of 7B2 can extend life span and reverse endocrinological deficiencies in 7B2 null mice. Endocrinology 2002; 143:2314-23. [PMID: 12021196 DOI: 10.1210/endo.143.6.8811] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The prohormone convertase PC2 requires the aid of a helper protein, known as 7B2, for production of active enzyme. Deletion of 7B2 results in a lethal phenotype resembling Cushing's disease. In this study, we have investigated the effect of a single low dose of recombinant adenovirus vector encoding 7B2 and delivered directly to the pituitary of 7B2 nulls on pituitary ACTH, plasma ACTH, corticosterone, alpha MSH and glucose, and survival time. We show that after injection of recombinant adenovirus encoding 27-kDa 7B2 into 7B2 nulls, transgene expression, as measured by RIA for 7B2, exhibits a transient elevation in the pituitary and blood, with a slight but significant elevation of PC2 activity in pituitaries of 7B2 nulls and a drop in the level of circulating ACTH concomitant with a small increase in circulating alpha MSH. The level of circulating blood glucose was increased, and that of corticosterone was decreased. Lastly, slight but significantly prolonged survival times were observed. These data showing partial rescue of 7B2 nulls support the idea that adenoviral administration of 7B2 will represent an effective means to study the role of this interesting neuroendocrine protein on endocrine function in vivo.
Collapse
Affiliation(s)
- Miroslav S Sarac
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | | | | | |
Collapse
|
8
|
Jansen EJR, Holling TM, van Herp F, Martens GJM. Transgene-driven protein expression specific to the intermediate pituitary melanotrope cells of Xenopus laevis. FEBS Lett 2002; 516:201-7. [PMID: 11959133 DOI: 10.1016/s0014-5793(02)02523-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In the present study, we examined the amphibian Xenopus laevis as a model for stable transgenesis and in particular targeted transgene protein expression to the melanotrope cells in the intermediate pituitary. For this purpose, we have fused a Xenopus proopiomelanocortin (POMC) gene promoter fragment to the gene encoding the reporter green fluorescent protein (GFP). The transgene was integrated into the Xenopus genome as short concatemers at one to six different integration sites and at a total of one to approximately 20 copies. During early development the POMC gene promoter fragment gave rise to GFP expression in the total prosencephalon, whereas during further development expression became more restricted. In free-swimming stage 40 embryos, GFP was found to be primarily expressed in the melanotrope cells of the intermediate pituitary. Immunohistochemical analysis of cryosections of brains/pituitaries from juvenile transgenic frogs revealed the nearly exclusive expression of GFP in the intermediate pituitary. Metabolic labelling of intermediate and anterior pituitaries showed newly synthesized GFP protein to be indeed primarily expressed in the intermediate pituitary cells. Hence, stable Xenopus transgenesis with the POMC gene promoter is a powerful tool to study the physiological role of proteins in a well-defined neuroendocrine system and close to the in vivo situation.
Collapse
Affiliation(s)
- Eric J R Jansen
- Department of Molecular Animal Physiology, Nijmegen Centre for Molecular Life Sciences, University of Nijmegen, Geert Grooteplein Zuid 28, 6525GA, Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
9
|
Steiner DF. The Prohormone Convertases and Precursor Processing in Protein Biosynthesis. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s1874-6047(02)80008-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
10
|
Mbikay M, Seidah NG, Chrétien M. Neuroendocrine secretory protein 7B2: structure, expression and functions. Biochem J 2001; 357:329-42. [PMID: 11439082 PMCID: PMC1221959 DOI: 10.1042/0264-6021:3570329] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
7B2 is an acidic protein residing in the secretory granules of neuroendocrine cells. Its sequence has been elucidated in many phyla and species. It shows high similarity among mammals. A Pro-Pro-Asn-Pro-Cys-Pro polyproline motif is its most conserved feature, being carried by both vertebrate and invertebrate sequences. It is biosynthesized as a precursor protein that is cleaved into an N-terminal fragment and a C-terminal peptide. In neuroendocrine cells, 7B2 functions as a specific chaperone for the proprotein convertase (PC) 2. Through the sequence around its Pro-Pro-Asn-Pro-Cys-Pro motif, it binds to an inactive proPC2 and facilitates its transport from the endoplasmic reticulum to later compartments of the secretory pathway where the zymogen is proteolytically matured and activated. Its C-terminal peptide can inhibit PC2 in vitro and may contribute to keep the enzyme transiently inactive in vivo. The PC2-7B2 model defines a new neuroendocrine paradigm whereby proteolytic activation of prohormones and proneuropeptides in the secretory pathway is spatially and temporally regulated by the dynamics of interactions between converting enzymes and their binding proteins. Interestingly, unlike PC2-null mice, which are viable, 7B2-null mutants die early in life from Cushing's disease due to corticotropin ('ACTH') hypersecretion by the neurointermediate lobe, suggesting a possible involvement of 7B2 in secretory granule formation and in secretion regulation. The mechanism of this regulation is yet to be elucidated. 7B2 has been shown to be a good marker of several neuroendocrine cell dysfunctions in humans. The possibility that anomalies in its structure and expression could be aetiological causes of some of these dysfunctions warrants investigation.
Collapse
Affiliation(s)
- M Mbikay
- Diseases of Aging Program, Ottawa Health Research Institute, Ottawa Hospital, University of Ottawa, Ottawa, Ontario, Canada Y1K 4K9.
| | | | | |
Collapse
|
11
|
Holling TM, van Herp F, Martens GJ. Induction of proopiomelanocortin mRNA expression in animal caps of Xenopus laevis embryos. Dev Growth Differ 2000; 42:413-8. [PMID: 10969741 DOI: 10.1046/j.1440-169x.2000.00522.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To convert animal pole cells of a frog embryo from an ectodermal fate into a neural one, inductive signals are necessary. The alkalizing agent NH4Cl induces the expression of several anterior brain markers and the early pituitary marker XANF-2 in Xenopus animal caps. Here it is demonstrated that NH4Cl also induced proopiomelanocortin (POMC)-expressing cells (the first fully differentiated pituitary cell type) in stage 9 and 10 Xenopus animal caps, and that all-trans retinoic acid, a posteriorizing agent, was able to block this induction when it was administered within 2 h after the start of NH4Cl incubation. Thus, after 2 h, the fate of Xenopus animal cap cells was determined. Microinjection of ribonucleic acid (RNA) encoding noggin, an endogenous neural inducer, led to the induction of POMC gene expression in animal caps of stage 10 embryos, suggesting that noggin represents a candidate mesodermal signal leading to the POMC messenger (m) RNA producing cell type in uncommitted ectoderm. Hence, an alkalizing agent and a neural inducer can generate a fully differentiated POMC cell lineage from Xenopus animal caps.
Collapse
Affiliation(s)
- T M Holling
- Department of Animal Physiology, University of Nijmegen, The Netherlands
| | | | | |
Collapse
|