1
|
Chen Y, Li R, Fu X, Guo Y, Yan S, Tian L, Zhou Q, Diao Y, Chen W. "All in one" lipid-polymer nanodelivery system for gene therapy of ischemic diseases. Biomaterials 2025; 313:122799. [PMID: 39243671 DOI: 10.1016/j.biomaterials.2024.122799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/04/2024] [Accepted: 08/31/2024] [Indexed: 09/09/2024]
Abstract
Gene therapy offers a promising avenue for treating ischemic diseases, yet its clinical efficacy is hindered by the limitations of single gene therapy and the high oxidative stress microenvironment characteristic of such conditions. Lipid-polymer hybrid vectors represent a novel approach to enhance the effectiveness of gene therapy by harnessing the combined advantages of lipids and polymers. In this study, we engineered lipid-polymer hybrid nanocarriers with tailored structural modifications to create a versatile membrane fusion lipid-nuclear targeted polymer nanodelivery system (FLNPs) optimized for gene delivery. Our results demonstrate that FLNPs facilitate efficient cellular uptake and gene transfection via membrane fusion, lysosome avoidance, and nuclear targeting mechanisms. Upon encapsulating Hepatocyte Growth Factor plasmid (pHGF) and Catalase plasmid (pCAT), HGF/CAT-FLNPs were prepared, which significantly enhanced the resistance of C2C12 cells to H2O2-induced injury in vitro. In vivo studies further revealed that HGF/CAT-FLNPs effectively alleviated hindlimb ischemia-induced gangrene, restored motor function, and promoted blood perfusion recovery in mice. Metabolomics analysis indicated that FLNPs didn't induce metabolic disturbances during gene transfection. In conclusion, FLNPs represent a versatile platform for multi-dimensional assisted gene delivery, significantly improving the efficiency of gene delivery and holding promise for effective synergistic treatment of lower limb ischemia using pHGF and pCAT.
Collapse
Affiliation(s)
- Youlu Chen
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, 350004, China
| | - Ruihao Li
- Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Xue Fu
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, 300192, China
| | - Yaming Guo
- Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Suling Yan
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, 350004, China
| | - Lei Tian
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, 350004, China
| | - Qinxia Zhou
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, 350004, China
| | - Yongpeng Diao
- Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China.
| | - Wei Chen
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, 350004, China.
| |
Collapse
|
2
|
Pradeep SP, Kumar V, Malik S, Slack FJ, Gupta A, Bahal R. Enhancing RNA inhibitory activity using clamp-G-modified nucleobases. CELL REPORTS. PHYSICAL SCIENCE 2024; 5:102120. [PMID: 39421604 PMCID: PMC11484553 DOI: 10.1016/j.xcrp.2024.102120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
We explore the potential of clamp-G nucleobase-modified peptide nucleic acids (cGPNAs) as microRNA and messenger RNA inhibitors. For proof of concept, we target miR-155, which is upregulated in diffuse large B cell lymphoma. cGPNA shows significant downregulation of miR-155 and the upregulation of its downstream targets in multiple lymphoma cell lines. Also, cGPNA treatment in vivo reduced tumor growth and improved survival in the U2932 cell-derived xenograft mouse model. To assess the broad application of cGPNA as an antisense modality, we also target transthyretin (TTR) mRNA. We establish a dose-dependent effect of antisense cGPNA on TTR mRNA levels. For in vivo studies, we conjugated cGPNA-based TTR antisense with lactobionic acid-based targeting ligand for in vivo liver delivery. We establish that cGPNA exhibits significant TTR protein knockdown compared to unmodified peptide nucleic acid (PNA) in vivo. Overall, we confirm that clamp-G-modified PNA analogs are a robust antisense therapy platform.
Collapse
Affiliation(s)
- Sai Pallavi Pradeep
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Vikas Kumar
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Shipra Malik
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Frank J. Slack
- Department of Pathology, HMS Initiative for RNA Medicine, BIDMC Cancer Center, Harvard Medical School, Boston, MA 02115, USA
| | - Anisha Gupta
- Department of Pharmaceutical Science, University of Saint Joseph, Hartford, CT 06117, USA
| | - Raman Bahal
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA
- Lead contact
| |
Collapse
|
3
|
Giancola JB, Raines RT. Endosomolytic Peptides Enable the Cellular Delivery of Peptide Nucleic Acids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.18.599558. [PMID: 38948866 PMCID: PMC11213006 DOI: 10.1101/2024.06.18.599558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Precision genetic medicine enlists antisense oligonucleotides (ASOs) to bind to nucleic acid targets important for human disease. Peptide nucleic acids (PNAs) have many desirable attributes as ASOs but lack cellular permeability. Here, we use an assay based on the corrective splicing of an mRNA to assess the ability of synthetic peptides to deliver a functional PNA into a human cell. We find that the endosomolytic peptides L17E and L17ER 4 are highly efficacious delivery vehicles. Co-treatment of a PNA with low micromolar L17E or L17ER 4 enables robust corrective splicing in nearly all treated cells. Peptide-PNA conjugates are even more effective. These results enhance the utility of PNAs as research tools and potential therapeutic agents.
Collapse
|
4
|
Katkevics M, MacKay JA, Rozners E. Triplex-forming peptide nucleic acids as emerging ligands to modulate structure and function of complex RNAs. Chem Commun (Camb) 2024; 60:1999-2008. [PMID: 38259187 PMCID: PMC10922694 DOI: 10.1039/d3cc05409h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Over the last three decades, our view of RNA has changed from a simple intermediate supporting protein synthesis to a major regulator of biological processes. In the expanding area of RNA research, peptide nucleic acid (PNA) is emerging as a promising ligand for triple-helical recognition of complex RNAs. As discussed in this feature article, the key advantages of PNAs are high sequence specificity and affinity for RNA (>10 fold higher than for DNA) that are difficult to achieve with small molecule ligands. Emerging studies demonstrate that triple-helical binding of PNAs can modulate biological function and control dynamic conformational equilibria of complex folded RNAs. These results suggest that PNA has a unique potential as a research tool and therapeutic compound targeting RNA. The remaining problems hampering advances in these directions are limitations of sequences that can be recognized by Hoogsteen triplexes (typically purine rich tracts), poor cellular uptake and bioavailability of PNA, and potential off-target effects in biological systems. Recent exciting studies are discussed that illustrate how synthetic nucleic acid chemistry provides innovative solutions for these problems.
Collapse
Affiliation(s)
- Martins Katkevics
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, LV-1006, Latvia
| | - James A MacKay
- Department of Chemistry and Biochemistry, Elizabethtown College, Elizabethtown, PA 17022, USA
| | - Eriks Rozners
- Department of Chemistry, Binghamton University, Binghamton, NY 13902, USA.
| |
Collapse
|
5
|
Öztürk Ö, Lessl AL, Höhn M, Wuttke S, Nielsen PE, Wagner E, Lächelt U. Peptide nucleic acid-zirconium coordination nanoparticles. Sci Rep 2023; 13:14222. [PMID: 37648689 PMCID: PMC10469198 DOI: 10.1038/s41598-023-40916-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 08/18/2023] [Indexed: 09/01/2023] Open
Abstract
Ideal drug carriers feature a high loading capacity to minimize the exposure of patients with excessive, inactive carrier materials. The highest imaginable loading capacity could be achieved by nanocarriers, which are assembled from the therapeutic cargo molecules themselves. Here, we describe peptide nucleic acid (PNA)-based zirconium (Zr) coordination nanoparticles which exhibit very high PNA loading of [Formula: see text] w/w. This metal-organic hybrid nanomaterial class extends the enormous compound space of coordination polymers towards bioactive oligonucleotide linkers. The architecture of single- or double-stranded PNAs was systematically varied to identify design criteria for the coordination driven self-assembly with Zr(IV) nodes at room temperature. Aromatic carboxylic acid functions, serving as Lewis bases, and a two-step synthesis process with preformation of [Formula: see text] turned out to be decisive for successful nanoparticle assembly. Confocal laser scanning microscopy confirmed that the PNA-Zr nanoparticles are readily internalized by cells. PNA-Zr nanoparticles, coated with a cationic lipopeptide, successfully delivered an antisense PNA sequence for splicing correction of the [Formula: see text]-globin intron mutation IVS2-705 into a functional reporter cell line and mediated splice-switching via interaction with the endogenous mRNA splicing machinery. The presented PNA-Zr nanoparticles represent a bioactive platform with high design flexibility and extraordinary PNA loading capacity, where the nucleic acid constitutes an integral part of the material, instead of being loaded into passive delivery systems.
Collapse
Affiliation(s)
- Özgür Öztürk
- Department of Pharmacy and Center for NanoScience (CeNS), LMU Munich, 81377, Munich, Germany
- Department of Genetic and Bio Engineering, Alanya Alaaddin Keykubat University, Antalya, Türkiye
| | - Anna-Lina Lessl
- Department of Pharmacy and Center for NanoScience (CeNS), LMU Munich, 81377, Munich, Germany
| | - Miriam Höhn
- Department of Pharmacy and Center for NanoScience (CeNS), LMU Munich, 81377, Munich, Germany
| | - Stefan Wuttke
- Basque Center for Materials (BCMaterials), Leioa, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Peter E Nielsen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Ernst Wagner
- Department of Pharmacy and Center for NanoScience (CeNS), LMU Munich, 81377, Munich, Germany
| | - Ulrich Lächelt
- Department of Pharmacy and Center for NanoScience (CeNS), LMU Munich, 81377, Munich, Germany.
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria.
| |
Collapse
|
6
|
Dalla Pozza M, Abdullrahman A, Cardin CJ, Gasser G, Hall JP. Three's a crowd - stabilisation, structure, and applications of DNA triplexes. Chem Sci 2022; 13:10193-10215. [PMID: 36277639 PMCID: PMC9473520 DOI: 10.1039/d2sc01793h] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/02/2022] [Indexed: 12/16/2022] Open
Abstract
DNA is a strikingly flexible molecule and can form a variety of secondary structures, including the triple helix, which is the subject of this review. The DNA triplex may be formed naturally, during homologous recombination, or can be formed by the introduction of a synthetic triplex forming oligonucleotide (TFO) to a DNA duplex. As the TFO will bind to the duplex with sequence specificity, there is significant interest in developing TFOs with potential therapeutic applications, including using TFOs as a delivery mechanism for compounds able to modify or damage DNA. However, to combine triplexes with functionalised compounds, a full understanding of triplex structure and chemical modification strategies, which may increase triplex stability or in vivo degradation, is essential - these areas will be discussed in this review. Ruthenium polypyridyl complexes, which are able to photooxidise DNA and act as luminescent DNA probes, may serve as a suitable photophysical payload for a TFO system and the developments in this area in the context of DNA triplexes will also be reviewed.
Collapse
Affiliation(s)
- Maria Dalla Pozza
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology F-75005 Paris France www.gassergroup.com
| | - Ahmad Abdullrahman
- Department of Pharmacy, Chemistry and Pharmacy Building, University of Reading Whiteknights Campus Reading Berkshire RG6 6AD UK
| | - Christine J Cardin
- Department of Chemistry, University of Reading Whiteknights Reading RG6 6AD UK
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology F-75005 Paris France www.gassergroup.com
| | - James P Hall
- Department of Pharmacy, Chemistry and Pharmacy Building, University of Reading Whiteknights Campus Reading Berkshire RG6 6AD UK
| |
Collapse
|
7
|
Patil NA, Thombare VJ, Li R, He X, Lu J, Yu HH, Wickremasinghe H, Pamulapati K, Azad MAK, Velkov T, Roberts KD, Li J. An Efficient Approach for the Design and Synthesis of Antimicrobial Peptide-Peptide Nucleic Acid Conjugates. Front Chem 2022; 10:843163. [PMID: 35372270 PMCID: PMC8964499 DOI: 10.3389/fchem.2022.843163] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/16/2022] [Indexed: 01/23/2023] Open
Abstract
Peptide-Peptide Nucleic Acid (PNA) conjugates targeting essential bacterial genes have shown significant potential in developing novel antisense antimicrobials. The majority of efforts in this area are focused on identifying different PNA targets and the selection of peptides to deliver the peptide-PNA conjugates to Gram-negative bacteria. Notably, the selection of a linkage strategy to form peptide-PNA conjugate plays an important role in the effective delivery of PNAs. Recently, a unique Cysteine- 2-Cyanoisonicotinamide (Cys-CINA) click chemistry has been employed for the synthesis of cyclic peptides. Considering the high selectivity of this chemistry, we investigated the efficiency of Cys-CINA conjugation to synthesize novel antimicrobial peptide-PNA conjugates. The PNA targeting acyl carrier protein gene (acpP), when conjugated to the membrane-active antimicrobial peptides (polymyxin), showed improvement in antimicrobial activity against multidrug-resistant Gram-negative Acinetobacter baumannii. Thus, indicating that the Cys-CINA conjugation is an effective strategy to link the antisense oligonucleotides with antimicrobial peptides. Therefore, the Cys-CINA conjugation opens an exciting prospect for antimicrobial drug development.
Collapse
Affiliation(s)
- Nitin A. Patil
- Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
- *Correspondence: Nitin A. Patil,
| | - Varsha J. Thombare
- Department of Biochemistry and Pharmacology, The University of Melbourne, Melbourne, VIC, Australia
| | - Rong Li
- Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Xiaoji He
- Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Jing Lu
- Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Melbourne, VIC, Australia
| | - Heidi H. Yu
- Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Hasini Wickremasinghe
- Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Kavya Pamulapati
- Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Mohammad A. K. Azad
- Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Tony Velkov
- Department of Biochemistry and Pharmacology, The University of Melbourne, Melbourne, VIC, Australia
| | - Kade D. Roberts
- Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Jian Li
- Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
8
|
Shai A, Galouk E, Miari R, Tareef H, Sammar M, Zeidan M, Rayan A, Falah M. Inhibiting mutant KRAS G12D gene expression using novel peptide nucleic acid‑based antisense: A potential new drug candidate for pancreatic cancer. Oncol Lett 2022; 23:130. [PMID: 35251350 PMCID: PMC8895471 DOI: 10.3892/ol.2022.13250] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 02/02/2022] [Indexed: 11/22/2022] Open
Abstract
KRAS mutations, which are the main cause of the pathogenesis of lethal pancreatic adenocarcinomas, impair the functioning of the GTPase subunit, thus rendering it constitutively active and signaling intracellular pathways that end with cell transformation. In the present study, the AsPC-1 cell line, which has a G12D-mutated KRAS gene sequence, was utilized as a cellular model to test peptide nucleic acid-based antisense technology. The use of peptide nucleic acids (PNAs) that are built to exhibit improved hybridization specificity and have an affinity for complementary RNA and DNA sequences, as well as a simple chemical structure and high biological stability that affords resistance to nucleases and proteases, enabled targeting of the KRAS-mutated gene to inhibit its expression at the translation level. Because PNA-based antisense molecules should be capable of binding to KRAS mRNA sequences, PNAs were utilized to target the mRNA of the mutated KRAS gene, a strategy that could lead to the development of a novel drug for pancreatic cancer. Moreover, it was demonstrated that introducing new PNA to cells inhibited the growth of cancer cells and induced apoptotic death and, notably, that it can inhibit G12D-mutated KRAS gene expression, as demonstrated by RT-PCR and western blotting. Altogether, these data strongly suggest that the use of PNA-based antisense agents is an attractive therapeutic approach to treating KRAS-driven cancers and may lead to the development of novel drugs that target the expression of other mutated genes.
Collapse
Affiliation(s)
- Ayelet Shai
- Oncology Department, Galilee Medical Center, Nahariya 2210001, Israel
| | - Evleen Galouk
- Oncology Department, Galilee Medical Center, Nahariya 2210001, Israel
| | - Reem Miari
- Oncology Department, Galilee Medical Center, Nahariya 2210001, Israel
| | - Hala Tareef
- Oncology Department, Galilee Medical Center, Nahariya 2210001, Israel
| | - Marei Sammar
- Ephraim Katzir Department of Biotechnology Engineering, ORT Braude College, Karmiel 2161002, Israel
| | - Mouhammad Zeidan
- Molecular Genetics and Virology Laboratory, Al‑Qasemi Center of Research Excellence, Baka EL‑Garbiah 30100, Israel
| | - Anwar Rayan
- Faculty of Science, Al‑Qasemi Academic College, Baka EL‑Garbiah 30100, Israel
| | - Mizied Falah
- Oncology Department, Galilee Medical Center, Nahariya 2210001, Israel
| |
Collapse
|
9
|
Preetham HD, Umashankara M, Kumar KSS, Rangappa S, Rangappa KS. Pyrrolidine-based cationic γ-peptide: a DNA-binding molecule works as a potent anti-gene agent. Med Chem Res 2022. [DOI: 10.1007/s00044-021-02833-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Brodyagin N, Kataoka Y, Kumpina I, McGee DW, Rozners E. Cellular uptake of 2-aminopyridine-modified peptide nucleic acids conjugated with cell-penetrating peptides. Biopolymers 2021; 113:e23484. [PMID: 34914092 DOI: 10.1002/bip.23484] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 01/31/2023]
Abstract
Cell-penetrating peptides (CPPs) have been extensively used to deliver peptide nucleic acid (PNA) in cells. We have previously found that replacement of cytosine in triplex-forming PNAs with 2-aminopyridine (M) not only enhanced RNA binding, but also improved cellular uptake of PNAs. In this study, we used confocal fluorescence microscopy to evaluate the ability of CPPs to further improve cellular uptake of M-modified PNAs. We found that PNAs conjugated with Tat and octa-arginine peptides were effectively taken up in MCF7 cells when supplied in cell media at 1 μM. Remarkably, M-modified PNA without any CPP conjugation also showed strong uptake when the concentration was increased to 5 μM. Majority of PNA conjugates remained localized in distinct cytoplasmic vesicles, as judged by dot-like fluorescence patterns. However, M-modified PNAs conjugated with Tat, octa-arginine, and even a simple tri-lysine peptide also showed dispersed fluorescence in cytoplasm and were taken up in nuclei where they localized in larger vesicles, most likely nucleoli. Endosomolytic peptides or chemicals (chloroquine and CaCl2 ) did not release the conjugates from cytosolic vesicles, which suggested that the PNAs were not entrapped in endosomes. We hypothesize that M-modified PNAs escape endosomes and accumulate in cellular compartments rich in RNA, such as nucleoli, stress granules, and P-bodies.
Collapse
Affiliation(s)
- Nikita Brodyagin
- Department of Chemistry, Binghamton University, The State University of New York, Binghamton, New York, USA
| | - Yuka Kataoka
- Department of Chemistry, Binghamton University, The State University of New York, Binghamton, New York, USA
| | - Ilze Kumpina
- Department of Chemistry, Binghamton University, The State University of New York, Binghamton, New York, USA
| | - Dennis W McGee
- Department of Biological Sciences, Binghamton University, The State University of New York, Binghamton, New York, USA
| | - Eriks Rozners
- Department of Chemistry, Binghamton University, The State University of New York, Binghamton, New York, USA
| |
Collapse
|
11
|
De Fazio AF, Misatziou D, Baker YR, Muskens OL, Brown T, Kanaras AG. Chemically modified nucleic acids and DNA intercalators as tools for nanoparticle assembly. Chem Soc Rev 2021; 50:13410-13440. [PMID: 34792047 PMCID: PMC8628606 DOI: 10.1039/d1cs00632k] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Indexed: 12/26/2022]
Abstract
The self-assembly of inorganic nanoparticles to larger structures is of great research interest as it allows the fabrication of novel materials with collective properties correlated to the nanoparticles' individual characteristics. Recently developed methods for controlling nanoparticle organisation have enabled the fabrication of a range of new materials. Amongst these, the assembly of nanoparticles using DNA has attracted significant attention due to the highly selective recognition between complementary DNA strands, DNA nanostructure versatility, and ease of DNA chemical modification. In this review we discuss the application of various chemical DNA modifications and molecular intercalators as tools for the manipulation of DNA-nanoparticle structures. In detail, we discuss how DNA modifications and small molecule intercalators have been employed in the chemical and photochemical DNA ligation in nanostructures; DNA rotaxanes and catenanes associated with reconfigurable nanoparticle assemblies; and DNA backbone modifications including locked nucleic acids, peptide nucleic acids and borane nucleic acids, which affect the stability of nanostructures in complex environments. We conclude by highlighting the importance of maximising the synergy between the communities of DNA chemistry and nanoparticle self-assembly with the aim to enrich the library of tools available for the manipulation of nanostructures.
Collapse
Affiliation(s)
- Angela F De Fazio
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
- Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Doxi Misatziou
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
| | - Ysobel R Baker
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Otto L Muskens
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Tom Brown
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Antonios G Kanaras
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| |
Collapse
|
12
|
Epple S, El-Sagheer AH, Brown T. Artificial nucleic acid backbones and their applications in therapeutics, synthetic biology and biotechnology. Emerg Top Life Sci 2021; 5:691-697. [PMID: 34297063 PMCID: PMC8726046 DOI: 10.1042/etls20210169] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/07/2021] [Accepted: 07/14/2021] [Indexed: 11/18/2022]
Abstract
The modification of DNA or RNA backbones is an emerging technology for therapeutic oligonucleotides, synthetic biology and biotechnology. Despite a plethora of reported artificial backbones, their vast potential is not fully utilised. Limited synthetic accessibility remains a major bottleneck for the wider application of backbone-modified oligonucleotides. Thus, a variety of readily accessible artificial backbones and robust methods for their introduction into oligonucleotides are urgently needed to utilise their full potential in therapeutics, synthetic biology and biotechnology.
Collapse
Affiliation(s)
- Sven Epple
- Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, U.K
| | - Afaf H. El-Sagheer
- Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, U.K
- Chemistry Branch, Department of Science and Mathematics, Faculty of Petroleum and Mining Engineering, Suez University, Suez 43721, Egypt
| | - Tom Brown
- Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, U.K
| |
Collapse
|
13
|
Exner RM, Paisey SJ, Redman JE, Pascu SI. Explorations into Peptide Nucleic Acid Contrast Agents as Emerging Scaffolds for Breakthrough Solutions in Medical Imaging and Diagnosis. ACS OMEGA 2021; 6:28455-28462. [PMID: 34746541 PMCID: PMC8569549 DOI: 10.1021/acsomega.1c03994] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/23/2021] [Indexed: 05/11/2023]
Abstract
Peptide nucleic acids (PNAs, nucleic acid analogues with a peptide backbone rather than a phosphoribosyl backbone) have emerged as promising chemical agents in antigene or antisense therapeutics, as splicing modulators or in gene editing. Their main benefits, compared to DNA or RNA agents, are their biochemical stability and the lack of negative charges throughout the backbone, leading to negligible electrostatic interaction with the strand with which they are hybridizing. As a result, hybridization of PNA strands with DNA or RNA strands leads to higher binding energies and melting temperatures. A lack of natural transporters, however, necessitates the formation of PNA-containing chimeras or the formulation of nanoparticular cell delivery methods. Here, we set out to explore the progress made in using imaging agents based on PNAs in diagnostic applications and highlight selected developments and challenges.
Collapse
Affiliation(s)
- Rüdiger M. Exner
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Stephen J. Paisey
- Wales
Research & Diagnostic Positron Emission Tomography Imaging Centre
(PETIC), School of Medicine, Cardiff University,
University Hospital of Wales, Heath Park, Cardiff CF14 4XN, United Kingdom
| | - James E. Redman
- School
of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Sofia I. Pascu
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
- Centre
for Sustainable and Circular Technologies, 1 South, University of Bath, Claverton Down, Bath BA2
7AY, United Kingdom
- Centre
for Therapeutic Innovation, 3 West 2.03, University of Bath, Claverton Down, Bath BA2
7AY, United Kingdom
| |
Collapse
|
14
|
Lai Q, Chen W, Zhang Y, Liu Z. Application strategies of peptide nucleic acids toward electrochemical nucleic acid sensors. Analyst 2021; 146:5822-5835. [PMID: 34581324 DOI: 10.1039/d1an00765c] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Peptide nucleic acids (PNAs) have attracted tremendous interest in the fabrication of highly sensitive electrochemical nucleic acid biosensors due to their higher stability and increased sensitivity than common DNA probes. The neutral pseudopeptide backbone of PNAs not only makes the PNA/DNA duplexes more stable but also provides many opportunities to construct ultrasensitive nucleic acid sensors. This review presents the details of various protocols for the construction of PNA-based electrochemical nucleic acid sensors. The crucial factors, origin, and development of PNA, immobilization methods of PNA probes and signal generation mechanisms, are discussed. This review aims to provide a reference for ultrasensitive PNA electrochemical biosensor preparation.
Collapse
Affiliation(s)
- Qingteng Lai
- Hunan Key Laboratory of Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083, China.
| | - Wei Chen
- Hunan Key Laboratory of Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083, China. .,Department of Clinical Laboratory, Xiangya Hospital of Central South University, Changsha 410008, China
| | - Yanke Zhang
- Hunan Key Laboratory of Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083, China.
| | - Zhengchun Liu
- Hunan Key Laboratory of Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083, China.
| |
Collapse
|
15
|
Bhingardeve P, Jain P, Ganesh KN. Molecular Assembly of Triplex of Duplexes from Homothyminyl-Homocytosinyl Cγ( S/ R)-Bimodal Peptide Nucleic Acids with dA 8/dG 6 and the Cell Permeability of Bimodal Peptide Nucleic Acids. ACS OMEGA 2021; 6:19757-19770. [PMID: 34368563 PMCID: PMC8340421 DOI: 10.1021/acsomega.1c02451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 07/05/2021] [Indexed: 05/08/2023]
Abstract
Peptide nucleic acids (PNAs) are analogues of DNA with a neutral acyclic polyamide backbone containing nucleobases attached through a t-amide link on repeating units of aminoethylglycine (aeg). They bind to complementary DNA or RNA in a sequence-specific manner to form duplexes with higher stablity than DNA:DNA and DNA:RNA hybrids. We have recently explored a new type of PNA termed bimodal PNA (bm-PNA) designed with two nucleobases per aeg repeating unit of PNA oligomer and attached at Cα or Cγ of each aeg unit through a spacer sidechain. We demonstrated that Cγ-bimodal PNA oligomers with mixed nucleobase sequences bind concurrently two different complementary DNAs, forming double duplexes, one from each t-amide and Cγ face, sharing a common PNA backbone. In such bm-PNA:DNA ternary complexes, the two duplexes show higher thermal stability than individual duplexes. Herein, we show that Cγ(S/R)-bimodal PNAs with homothymines (T8) on a t-amide face and homocytosine (C6) on a Cγ-face form a conjoined pentameric complex consisting of a triplex (bm-PNA-T8)2:dA8 and two duplexes of bm-PNA-C6:dG6. The pentameric complex [dG6:Cγ(S/R)-bm-PNA:dA8:Cγ(S/R)-bm-PNA:dG6] exhibits higher thermal stability than the individual triplex and duplex, with Cγ(S)-bm-PNA complexes being more stable than Cγ(R)-bm-PNA complexes. The conjoined duplexes of Cγ-bimodal PNAs can be used to generate novel higher-order assemblies with DNA and RNA. The Cγ(S/R)-bimodal PNAs are shown to enter MCF7 and NIH 3T3 cells and exhibit low toxicity to cells.
Collapse
Affiliation(s)
- Pramod Bhingardeve
- Indian
Institute of Science Education and Research (IISER) Pune, Dr Homi Bhabha Road, Pune 411008, India
| | - Prashant Jain
- Indian
Institute of Science Education and Research (IISER) Pune, Dr Homi Bhabha Road, Pune 411008, India
| | - Krishna N. Ganesh
- Indian
Institute of Science Education and Research (IISER) Pune, Dr Homi Bhabha Road, Pune 411008, India
- Indian
Institute of Science Education and Research (IISER) Tirupati, Karkambadi Road, Mangalam, Tirupati 517507, India
| |
Collapse
|
16
|
Brodyagin N, Katkevics M, Kotikam V, Ryan CA, Rozners E. Chemical approaches to discover the full potential of peptide nucleic acids in biomedical applications. Beilstein J Org Chem 2021; 17:1641-1688. [PMID: 34367346 PMCID: PMC8313981 DOI: 10.3762/bjoc.17.116] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/28/2021] [Indexed: 12/23/2022] Open
Abstract
Peptide nucleic acid (PNA) is arguably one of the most successful DNA mimics, despite a most dramatic departure from the native structure of DNA. The present review summarizes 30 years of research on PNA's chemistry, optimization of structure and function, applications as probes and diagnostics, and attempts to develop new PNA therapeutics. The discussion starts with a brief review of PNA's binding modes and structural features, followed by the most impactful chemical modifications, PNA enabled assays and diagnostics, and discussion of the current state of development of PNA therapeutics. While many modifications have improved on PNA's binding affinity and specificity, solubility and other biophysical properties, the original PNA is still most frequently used in diagnostic and other in vitro applications. Development of therapeutics and other in vivo applications of PNA has notably lagged behind and is still limited by insufficient bioavailability and difficulties with tissue specific delivery. Relatively high doses are required to overcome poor cellular uptake and endosomal entrapment, which increases the risk of toxicity. These limitations remain unsolved problems waiting for innovative chemistry and biology to unlock the full potential of PNA in biomedical applications.
Collapse
Affiliation(s)
- Nikita Brodyagin
- Department of Chemistry, Binghamton University, The State University of New York, Binghamton, New York 13902, United States
| | - Martins Katkevics
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, LV-1006, Latvia
| | - Venubabu Kotikam
- Department of Chemistry, Binghamton University, The State University of New York, Binghamton, New York 13902, United States
| | - Christopher A Ryan
- Department of Chemistry, Binghamton University, The State University of New York, Binghamton, New York 13902, United States
| | - Eriks Rozners
- Department of Chemistry, Binghamton University, The State University of New York, Binghamton, New York 13902, United States
| |
Collapse
|
17
|
Kumar S, Dhami I, Thadke SA, Ly DH, Taylor RE. Rapid self-assembly of γPNA nanofibers at constant temperature. Biopolymers 2021; 112:e23463. [PMID: 34214178 DOI: 10.1002/bip.23463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 11/07/2022]
Abstract
Peptide nucleic acids (PNAs) have primarily been used to achieve therapeutic gene modulation through antisense strategies since their design in the 1990s. However, the application of PNAs as a functional nanomaterial has been more recent. We recently reported that γ-modified peptide nucleic acids (γPNAs) could be used to enable formation of complex, self-assembling nanofibers in select polar aprotic organic solvent mixtures. Here we demonstrate that distinct γPNA strands, each with a high density of γ-modifications can form complex nanostructures at constant temperatures within 30 minutes. Additionally, we demonstrate DNA-assisted isothermal growth of γPNA nanofibers, thereby overcoming a key hurdle for future scale-up of applications related to nanofiber growth and micropatterning.
Collapse
Affiliation(s)
- Sriram Kumar
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Isha Dhami
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Shivaji A Thadke
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Danith H Ly
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Rebecca E Taylor
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA.,Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA.,Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
18
|
Tian W, Zhang T, Gu S, Guo Y, Gao X, Zhang Y. OBP14 (Odorant-Binding Protein) Sensing in Adelphocoris lineolatus Based on Peptide Nucleic Acid and Graphene Oxide. INSECTS 2021; 12:insects12050422. [PMID: 34066819 PMCID: PMC8151863 DOI: 10.3390/insects12050422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/01/2021] [Accepted: 05/02/2021] [Indexed: 02/04/2023]
Abstract
OBPs play a crucial role in the recognition of ligands and are involved in the initial steps of semiochemical perception. The diverse expression of OBP genes allows them to participate in different physiological functions in insects. In contrast to classic OBPs with typical olfactory roles in A. lineolatus, the physiological functions of Plus-C OBPs remain largely unknown. In addition, detection of the expression of insect OBP genes by conventional methods is difficult in vitro. Here, we focused on AlinOBP14, a Plus-C OBP from A. lineolatus, and we developed a PNA-GO-based mRNA biosensor to detect the expression of AlinOBP14. The results demonstrated that AlinOBP14 plays dual roles in A. lineolatus. The AlinOBP14 is expressed beneath the epidermis of the vertex and gena in heads of A. lineolatus, and it functions as a carrier for three terpenoids, while AlinOBP14 is also expressed in the peripheral antennal lobe and functions as a carrier for endogenous compounds such as precursors for juvenile hormone (JH) and JHⅢ. Our investigation provides a new method to detect the expression of OBP genes in insects, and the technique will facilitate the use of these genes as potential targets for novel insect behavioral regulation strategies against the pest.
Collapse
Affiliation(s)
- Wenhua Tian
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (W.T.); (S.G.); (X.G.)
| | - Tao Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (T.Z.); (Y.G.)
| | - Shaohua Gu
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (W.T.); (S.G.); (X.G.)
| | - Yuyuan Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (T.Z.); (Y.G.)
| | - Xiwu Gao
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (W.T.); (S.G.); (X.G.)
| | - Yongjun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (T.Z.); (Y.G.)
- Correspondence: ; Tel.: +86-10-6281-5929
| |
Collapse
|
19
|
Comegna M, Conte G, Falanga AP, Marzano M, Cernera G, Di Lullo AM, Amato F, Borbone N, D'Errico S, Ungaro F, d'Angelo I, Oliviero G, Castaldo G. Assisting PNA transport through cystic fibrosis human airway epithelia with biodegradable hybrid lipid-polymer nanoparticles. Sci Rep 2021; 11:6393. [PMID: 33737583 PMCID: PMC7973768 DOI: 10.1038/s41598-021-85549-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/01/2021] [Indexed: 12/11/2022] Open
Abstract
Cystic fibrosis (CF) is characterized by an airway obstruction caused by a thick mucus due to a malfunctioning Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) protein. The sticky mucus restricts drugs in reaching target cells limiting the efficiency of treatments. The development of new approaches to enhance drug delivery to the lungs represents CF treatment's main challenge. In this work, we report the production and characterization of hybrid core–shell nanoparticles (hNPs) comprising a PLGA core and a dipalmitoylphosphatidylcholine (DPPC) shell engineered for inhalation. We loaded hNPs with a 7-mer peptide nucleic acid (PNA) previously considered for its ability to modulate the post-transcriptional regulation of the CFTR gene. We also investigated the in vitro release kinetics of hNPs and their efficacy in PNA delivery across the human epithelial airway barrier using an ex vivo model based on human primary nasal epithelial cells (HNEC) from CF patients. Confocal analyses and hNPs transport assay demonstrated the ability of hNPs to overcome the mucus barrier and release their PNA cargo within the cytoplasm, where it can exert its biological function.
Collapse
Affiliation(s)
- Marika Comegna
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, 80131, Naples, Italy.,CEINGE-Biotecnologie Avanzate S.c.a.r.l., 80145, Naples, Italy
| | - Gemma Conte
- Di.S.T.A.Bi.F., University of Campania Luigi Vanvitelli, 81100, Caserta, Italy
| | | | - Maria Marzano
- Institute of Crystallography, National Research Council, 70126, Bari, Italy
| | - Gustavo Cernera
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, 80131, Naples, Italy.,CEINGE-Biotecnologie Avanzate S.c.a.r.l., 80145, Naples, Italy
| | - Antonella Miriam Di Lullo
- ENT Section, Department of Neuroscience, Reproductive and Odontostomatological Sciences, University of Naples Federico II, 80131, Naples, Italy
| | - Felice Amato
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, 80131, Naples, Italy.,CEINGE-Biotecnologie Avanzate S.c.a.r.l., 80145, Naples, Italy
| | - Nicola Borbone
- Department of Pharmacy, University of Naples Federico II, 80131, Naples, Italy
| | - Stefano D'Errico
- Department of Pharmacy, University of Naples Federico II, 80131, Naples, Italy
| | - Francesca Ungaro
- Department of Pharmacy, University of Naples Federico II, 80131, Naples, Italy
| | - Ivana d'Angelo
- Di.S.T.A.Bi.F., University of Campania Luigi Vanvitelli, 81100, Caserta, Italy.
| | - Giorgia Oliviero
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, 80131, Naples, Italy.
| | - Giuseppe Castaldo
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, 80131, Naples, Italy.,CEINGE-Biotecnologie Avanzate S.c.a.r.l., 80145, Naples, Italy
| |
Collapse
|
20
|
Eller KA, Aunins TR, Courtney CM, Campos JK, Otoupal PB, Erickson KE, Madinger NE, Chatterjee A. Facile accelerated specific therapeutic (FAST) platform develops antisense therapies to counter multidrug-resistant bacteria. Commun Biol 2021; 4:331. [PMID: 33712689 PMCID: PMC7955031 DOI: 10.1038/s42003-021-01856-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/11/2021] [Indexed: 02/08/2023] Open
Abstract
Multidrug-resistant (MDR) bacteria pose a grave concern to global health, which is perpetuated by a lack of new treatments and countermeasure platforms to combat outbreaks or antibiotic resistance. To address this, we have developed a Facile Accelerated Specific Therapeutic (FAST) platform that can develop effective peptide nucleic acid (PNA) therapies against MDR bacteria within a week. Our FAST platform uses a bioinformatics toolbox to design sequence-specific PNAs targeting non-traditional pathways/genes of bacteria, then performs in-situ synthesis, validation, and efficacy testing of selected PNAs. As a proof of concept, these PNAs were tested against five MDR clinical isolates: carbapenem-resistant Escherichia coli, extended-spectrum beta-lactamase Klebsiella pneumoniae, New Delhi Metallo-beta-lactamase-1 carrying Klebsiella pneumoniae, and MDR Salmonella enterica. PNAs showed significant growth inhibition for 82% of treatments, with nearly 18% of treatments leading to greater than 97% decrease. Further, these PNAs are capable of potentiating antibiotic activity in the clinical isolates despite presence of cognate resistance genes. Finally, the FAST platform offers a novel delivery approach to overcome limited transport of PNAs into mammalian cells by repurposing the bacterial Type III secretion system in conjunction with a kill switch that is effective at eliminating 99.6% of an intracellular Salmonella infection in human epithelial cells.
Collapse
Affiliation(s)
- Kristen A Eller
- Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Thomas R Aunins
- Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Colleen M Courtney
- Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- Sachi Bioworks, Inc, Boulder, CO, 80301, USA
| | - Jocelyn K Campos
- Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Peter B Otoupal
- Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Keesha E Erickson
- Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Nancy E Madinger
- Division of Infectious Diseases, University of Colorado Denver, Aurora, CO, 80045, USA
| | - Anushree Chatterjee
- Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA.
- Sachi Bioworks, Inc, Boulder, CO, 80301, USA.
- Biomedical Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA.
- Antimicrobial Regeneration Consortium, Boulder, CO, 80301, USA.
| |
Collapse
|
21
|
Facile Preparation of PNA-Peptide Conjugates with a Polar Maleimide-Thioether Linkage. Methods Mol Biol 2021; 2105:97-118. [PMID: 32088866 DOI: 10.1007/978-1-0716-0243-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Conjugation of a delivery peptide containing a thiol functionality (e.g., a cysteine residue) with a PNA oligomer displaying a single unprotected aliphatic primary amine (e.g., the N-terminus or a C-terminal lysine residue) can be achieved via a one-pot modification with a bisfunctional maleimide linker also displaying a reactive N-hydroxysuccinimidyl ester group (e.g., Mal-PEG2-OSu). Here, an optimized protocol with respect to ratios between the reactants as well as recommended reaction times is presented. Formation and conversion of the maleimide-PNA intermediate was followed by analytical HPLC as exemplified by its conjugation to (KFF)3K-Cys-NH2. In addition, the reaction time required for direct conversion of a preformed Mal-(CH2)2-(C=O)-PNA oligomer in the presence of a slight excess of thiol-modified peptide (with a varying degree of sterical hindrance: HS-(CH2)2-CONH-(KFF)3K-NH2, (KFF)3K-hCys-NH2 and (KFF)3K-Cys-NH2) is provided.
Collapse
|
22
|
Volpi S, Cancelli U, Neri M, Corradini R. Multifunctional Delivery Systems for Peptide Nucleic Acids. Pharmaceuticals (Basel) 2020; 14:14. [PMID: 33375595 PMCID: PMC7823687 DOI: 10.3390/ph14010014] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 02/07/2023] Open
Abstract
The number of applications of peptide nucleic acids (PNAs)-oligonucleotide analogs with a polyamide backbone-is continuously increasing in both in vitro and cellular systems and, parallel to this, delivery systems able to bring PNAs to their targets have been developed. This review is intended to give to the readers an overview on the available carriers for these oligonucleotide mimics, with a particular emphasis on newly developed multi-component- and multifunctional vehicles which boosted PNA research in recent years. The following approaches will be discussed: (a) conjugation with carrier molecules and peptides; (b) liposome formulations; (c) polymer nanoparticles; (d) inorganic porous nanoparticles; (e) carbon based nanocarriers; and (f) self-assembled and supramolecular systems. New therapeutic strategies enabled by the combination of PNA and proper delivery systems are discussed.
Collapse
Affiliation(s)
| | | | | | - Roberto Corradini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (S.V.); (U.C.); (M.N.)
| |
Collapse
|
23
|
Bhingardeve P, Madhanagopal BR, Ganesh KN. Cγ( S/ R)-Bimodal Peptide Nucleic Acids (Cγ- bm-PNA) Form Coupled Double Duplexes by Synchronous Binding to Two Complementary DNA Strands. J Org Chem 2020; 85:13680-13693. [PMID: 32985197 DOI: 10.1021/acs.joc.0c01853] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Peptide nucleic acids (PNAs) are linear equivalents of DNA with a neutral acyclic polyamide backbone that has nucleobases attached via tert-amide link on repeating units of aminoethylglycine. They bind complementary DNA or RNA with sequence specificity to form hybrids that are more stable than the corresponding DNA/RNA self-duplexes. A new type of PNA termed bimodal PNA [Cγ(S/R)-bm-PNA] is designed to have a second nucleobase attached via amide spacer to a side chain at Cγ on the repeating aeg units of PNA oligomer. Cγ-bimodal PNA oligomers that have two nucleobases per aeg unit are demonstrated to concurrently bind two different complementary DNAs, to form duplexes from both tert-amide side and Cγ side. In such PNA:DNA ternary complexes, the two duplexes share a common PNA backbone. The ternary DNA 1:Cγ(S/R)-bm-PNA:DNA 2 complexes exhibit better thermal stability than the isolated duplexes, and the Cγ(S)-bm-PNA duplexes are more stable than Cγ(R)-bm-PNA duplexes. Bimodal PNAs are first examples of PNA analogues that can form DNA2:PNA:DNA1 double duplexes via recognition through natural bases. The conjoined duplexes of Cγ-bimodal PNAs can be used to generate novel higher-level assemblies.
Collapse
Affiliation(s)
- Pramod Bhingardeve
- Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pune 411008, India
| | - Bharath Raj Madhanagopal
- Indian Institute of Science Education and Research (IISER) Tirupati, Karkambadi Road, Mangalam, Tirupati 517507, India
| | - Krishna N Ganesh
- Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pune 411008, India.,Indian Institute of Science Education and Research (IISER) Tirupati, Karkambadi Road, Mangalam, Tirupati 517507, India
| |
Collapse
|
24
|
Fabbri E, Tamanini A, Jakova T, Gasparello J, Manicardi A, Corradini R, Finotti A, Borgatti M, Lampronti I, Munari S, Dechecchi MC, Cabrini G, Gambari R. Treatment of human airway epithelial Calu-3 cells with a peptide-nucleic acid (PNA) targeting the microRNA miR-101-3p is associated with increased expression of the cystic fibrosis Transmembrane Conductance Regulator () gene. Eur J Med Chem 2020; 209:112876. [PMID: 33127171 DOI: 10.1016/j.ejmech.2020.112876] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 09/17/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023]
Abstract
Since the identification of microRNAs (miRNAs) involved in the regulation of Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene, miRNAs known to down-regulate the expression of the CFTR and associated proteins have been investigated as potential therapeutic targets. Here we show that miR-101-3p, targeting the 3'-UTR sequence of the CFTR mRNA, can be selectively inhibited by a peptide nucleic acid (PNA) carrying a full complementary sequence. With respect to clinical relevance of microRNA targeting, it is expected that reduction in concentration of miRNAs (the anti-miRNA approach) could be associated with increasing amounts of target mRNAs. Consistently to this hypothesis, we report that PNA-mediated inhibition of miR-101-3p was accompanied by CFTR up-regulation. Next Generation Sequencing (NGS) was performed in order to verify the effects of the anti-miR-101-3p PNA on the Calu-3 miRNome. Upon inhibition of miR-101-3p we observed a fold change (FC) expression <2 of the majority of miRNAs (403/479, 84.13%), whereas we identified a list of dysregulated miRNAs, suggesting that specific miRNA inhibition (in our case miR-101-3p) might be accompanied by alteration of expression of other miRNAs, some of them known to be involved in Cystic Fibrosis (CF), such as miR-155-5p and miR-125b-5p.
Collapse
Affiliation(s)
- Enrica Fabbri
- Department of Life Sciences and Biotechnology, University of Ferrara, Italy
| | - Anna Tamanini
- Laboratory of Molecular Pathology, Department of Pathology and Diagnostics, University Hospital of Verona, Italy
| | - Tiziana Jakova
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Section of Clinical Biochemistry, Italy
| | - Jessica Gasparello
- Department of Life Sciences and Biotechnology, University of Ferrara, Italy
| | - Alex Manicardi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Section of Clinical Biochemistry, Italy; Department of Organic and Macromolecular Chemistry, University of Ghent, Belgium
| | - Roberto Corradini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Section of Clinical Biochemistry, Italy
| | - Alessia Finotti
- Department of Life Sciences and Biotechnology, University of Ferrara, Italy
| | - Monica Borgatti
- Department of Life Sciences and Biotechnology, University of Ferrara, Italy
| | - Ilaria Lampronti
- Department of Life Sciences and Biotechnology, University of Ferrara, Italy
| | - Silvia Munari
- Laboratory of Molecular Pathology, Department of Pathology and Diagnostics, University Hospital of Verona, Italy
| | | | - Giulio Cabrini
- Department of Neurosciences, Biomedicine and Movement, University of Verona, Verona, Italy; Research Center for Innovative Therapies of Cystic Fibrosis, University of Ferrara, Italy
| | - Roberto Gambari
- Research Center for Innovative Therapies of Cystic Fibrosis, University of Ferrara, Italy.
| |
Collapse
|
25
|
Singh KRB, Sridevi P, Singh RP. Potential applications of peptide nucleic acid in biomedical domain. ENGINEERING REPORTS : OPEN ACCESS 2020; 2:e12238. [PMID: 32838227 PMCID: PMC7404446 DOI: 10.1002/eng2.12238] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 06/19/2020] [Accepted: 06/19/2020] [Indexed: 05/03/2023]
Abstract
Peptide Nucleic Acid (PNA) are DNA/RNA synthetic analogs with 2-([2-aminoethyl] amino) acetic acid backbone. They partake unique antisense and antigene properties, just due to its inhibitory effect on transcription and translation; they also undergo complementary binding to RNA/DNA with high affinity and specificity. Hence, to date, many methods utilizing PNA for diagnosis and treatment of various diseases namely cancer, AIDS, human papillomavirus, and so on, have been designed and developed. They are being used widely in polymerase chain reaction modulation/mutation, fluorescent in-situ hybridization, and in microarray as a probe; they are also utilized in many in-vitro and in-vivo assays and for developing micro and nano-sized biosensor/chip/array technologies. Earlier reviews, focused only on PNA properties, structure, and modifications related to diagnostics and therapeutics; our review emphasizes on PNA properties and synthesis along with its potential applications in diagnosis and therapeutics. Furthermore, prospects in biomedical applications of PNAs are being discussed in depth.
Collapse
Affiliation(s)
- Kshitij RB Singh
- Department of Biotechnology, Faculty of ScienceIndira Gandhi National Tribal UniversityAmarkantakMadhya Pradesh484887India
| | - Parikipandla Sridevi
- Department of Biotechnology, Faculty of ScienceIndira Gandhi National Tribal UniversityAmarkantakMadhya Pradesh484887India
| | - Ravindra Pratap Singh
- Department of Biotechnology, Faculty of ScienceIndira Gandhi National Tribal UniversityAmarkantakMadhya Pradesh484887India
| |
Collapse
|
26
|
Lu Z, Paolella BR, Truex NL, Loftis AR, Liao X, Rabideau AE, Brown MS, Busanovich J, Beroukhim R, Pentelute BL. Targeting Cancer Gene Dependencies with Anthrax-Mediated Delivery of Peptide Nucleic Acids. ACS Chem Biol 2020; 15:1358-1369. [PMID: 32348107 PMCID: PMC7521945 DOI: 10.1021/acschembio.9b01027] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Antisense oligonucleotide therapies are important cancer treatments, which can suppress genes in cancer cells that are critical for cell survival. SF3B1 has recently emerged as a promising gene target that encodes a key splicing factor in the SF3B protein complex. Over 10% of cancers have lost one or more copies of the SF3B1 gene, rendering these cancers vulnerable after further suppression. SF3B1 is just one example of a CYCLOPS (Copy-number alterations Yielding Cancer Liabilities Owing to Partial losS) gene, but over 120 additional candidate CYCLOPS genes are known. Antisense oligonucleotide therapies for cancer offer the promise of effective suppression for CYCLOPS genes, but developing these treatments is difficult due to their limited permeability into cells and poor cytosolic stability. Here, we develop an effective approach to suppress CYCLOPS genes by delivering antisense peptide nucleic acids (PNAs) into the cytosol of cancer cells. We achieve efficient cytosolic PNA delivery with the two main nontoxic components of the anthrax toxin: protective antigen (PA) and the 263-residue N-terminal domain of lethal factor (LFN). Sortase-mediated ligation readily enables the conjugation of PNAs to the C terminus of the LFN protein. LFN and PA work together in concert to translocate PNAs into the cytosol of mammalian cells. Antisense SF3B1 PNAs delivered with the LFN/PA system suppress the SF3B1 gene and decrease cell viability, particularly of cancer cells with partial copy-number loss of SF3B1. Moreover, antisense SF3B1 PNAs delivered with a HER2-binding PA variant selectively target cancer cells that overexpress the HER2 cell receptor, demonstrating receptor-specific targeting of cancer cells. Taken together, our efforts illustrate how PA-mediated delivery of PNAs provides an effective and general approach for delivering antisense PNA therapeutics and for targeting gene dependencies in cancer.
Collapse
Affiliation(s)
- Zeyu Lu
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Brenton R. Paolella
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02139, USA
| | - Nicholas L. Truex
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Alexander R. Loftis
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Xiaoli Liao
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Amy E. Rabideau
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Meredith S. Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02139, USA
| | - John Busanovich
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02139, USA
| | - Rameen Beroukhim
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02139, USA
| | - Bradley L. Pentelute
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
27
|
Gupta MK, Madhanagopal BR, Datta D, Ganesh KN. Structural Design and Synthesis of Bimodal PNA That Simultaneously Binds Two Complementary DNAs To Form Fused Double Duplexes. Org Lett 2020; 22:5255-5260. [PMID: 32551691 DOI: 10.1021/acs.orglett.0c01950] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bimodal PNAs are new PNA constructs designed to bind two different cDNA sequences synchronously to form double duplexes. They are synthesized on solid phase using sequential coupling and click reaction to introduce a second base in each monomer at Cα via alkyltriazole linker. The ternary bimodal PNA:DNA complexes show stability higher than that of individual duplexes. Bimodal PNAs are appropriate to create higher-order fused nucleic acid assemblies.
Collapse
Affiliation(s)
- Manoj Kumar Gupta
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr Homi Bhabha Road, Pune 411008, India
| | - Bharath Raj Madhanagopal
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Karkambadi Road, Tirupati 517507, India
| | - Dhrubajyoti Datta
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr Homi Bhabha Road, Pune 411008, India
| | - Krishna N Ganesh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr Homi Bhabha Road, Pune 411008, India.,Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Karkambadi Road, Tirupati 517507, India
| |
Collapse
|
28
|
Demchuk AM, Patel TR. The biomedical and bioengineering potential of protein nanocompartments. Biotechnol Adv 2020; 41:107547. [PMID: 32294494 DOI: 10.1016/j.biotechadv.2020.107547] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 03/21/2020] [Accepted: 04/03/2020] [Indexed: 12/18/2022]
Abstract
Protein nanocompartments (PNCs) are self-assembling biological nanocages that can be harnessed as platforms for a wide range of nanobiotechnology applications. The most widely studied examples of PNCs include virus-like particles, bacterial microcompartments, encapsulin nanocompartments, enzyme-derived nanocages (such as lumazine synthase and the E2 component of the pyruvate dehydrogenase complex), ferritins and ferritin homologues, small heat shock proteins, and vault ribonucleoproteins. Structural PNC shell proteins are stable, biocompatible, and tolerant of both interior and exterior chemical or genetic functionalization for use as vaccines, therapeutic delivery vehicles, medical imaging aids, bioreactors, biological control agents, emulsion stabilizers, or scaffolds for biomimetic materials synthesis. This review provides an overview of the recent biomedical and bioengineering advances achieved with PNCs with a particular focus on recombinant PNC derivatives.
Collapse
Affiliation(s)
- Aubrey M Demchuk
- Department of Neuroscience, University of Lethbridge, 4401 University Drive West, Lethbridge, AB, Canada.
| | - Trushar R Patel
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, AB, Canada; Department of Microbiology, Immunology and Infectious Diseases, Cumming, School of Medicine, University of Calgary, 2500 University Dr. N.W., Calgary, AB T2N 1N4, Canada; Li Ka Shing Institute of Virology and Discovery Lab, Faculty of Medicine & Dentistry, University of Alberta, 6-010 Katz Center for Health Research, Edmonton, AB T6G 2E1, Canada.
| |
Collapse
|
29
|
Abstract
The growing interest in G-quadruplex (G4) structure and function is motivating intense efforts to develop G4-binding ligands. This chapter describes the design and testing of peptide nucleic acid (PNA) oligomers, which can bind to G4 DNA or RNA in two distinct ways, leading to formation of heteroduplexes or heteroquadruplexes. Guidelines for designing G4-targeting PNAs and step-by-step protocols for characterizing their binding through biophysical or biochemical methods are provided.
Collapse
|
30
|
Ghavami M, Shiraishi T, Nielsen PE. Enzyme-Triggered Release of the Antisense Octaarginine-PNA Conjugate from Phospholipase A2 Sensitive Liposomes. ACS APPLIED BIO MATERIALS 2020; 3:1018-1025. [DOI: 10.1021/acsabm.9b01022] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Mahdi Ghavami
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark
| | - Takehiko Shiraishi
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark
| | - Peter E. Nielsen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark
| |
Collapse
|
31
|
Mironova NL, Kupryushkin MS, Khlusevitch YA, Matveev AL, Tikunova NV, Pyshnyi DV, Zenkova MA. Algorithm for Searching and Testing the Activity of Antisense Oligonucleotides Exemplified by the mRNA of the rpoD Gene Encoding Staphylococcus aureus RNA Polymerase Sigma Factor. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2019. [DOI: 10.1134/s106816201906027x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Saarbach J, Sabale PM, Winssinger N. Peptide nucleic acid (PNA) and its applications in chemical biology, diagnostics, and therapeutics. Curr Opin Chem Biol 2019; 52:112-124. [PMID: 31541865 DOI: 10.1016/j.cbpa.2019.06.006] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/07/2019] [Accepted: 06/06/2019] [Indexed: 12/11/2022]
Abstract
Peptide nucleic acid (PNA) stands as one of the most successful artificial oligonucleotide mimetics. Salient features include the stability of hybridization complexes (either as duplexes or triplexes), metabolic stability, and ease of chemical modifications. These features have enabled important applications such as antisense agents, gene editing, nucleic acid sensing and as a platform to program the assembly of PNA-tagged molecules. Here, we review recent advances in these areas.
Collapse
Affiliation(s)
- Jacques Saarbach
- Faculty of Science, Department of Organic Chemistry, NCCR Chemical Biology, University of Geneva 30 quai Ernest Ansermet, CH-1205 Geneva, Switzerland
| | - Pramod M Sabale
- Faculty of Science, Department of Organic Chemistry, NCCR Chemical Biology, University of Geneva 30 quai Ernest Ansermet, CH-1205 Geneva, Switzerland
| | - Nicolas Winssinger
- Faculty of Science, Department of Organic Chemistry, NCCR Chemical Biology, University of Geneva 30 quai Ernest Ansermet, CH-1205 Geneva, Switzerland.
| |
Collapse
|
33
|
Dong B, Nie K, Shi H, Yao X, Chao L, Liang B, Liu Z. Synthesis and characterization of (R)-miniPEG-containing chiral γ-peptide nucleic acids using the Fmoc strategy. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.04.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
Karunakaran I, Angamuthu A, Gopalan P. Impact of N-(2-aminoethyl) Glycine Unit on Watson-Crick Base Pairs. Z PHYS CHEM 2019. [DOI: 10.1515/zpch-2017-1095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Abstract
We aim to understand the structure and stability of the backbone tailored Watson-Crick base pairs, Guanine-Cytosine (GC), Adenine-Thymine (AT) and Adenine-Uracil (AU) by incorporating N-(2-aminoethyl) glycine units (linked by amide bonds) at the purine and pyrimidine sites of the nucleobases. Density functional theory (DFT) is employed in which B3LYP/6-311++G∗
∗ level of theory has been used to optimize all the structures. The peptide attached base pairs are compared with the natural deoxyribose nucleic acid (DNA)/ribonucleic acid (RNA) base pairs and the calculations are carried out in both the gas and solution phases. The structural propensities of the optimized base pairs are analyzed using base pair geometries, hydrogen bond distances and stabilization energies and, compared with the standard reference data. The structural parameters were found to correlate well with the available data. The addition of peptide chain at the back bone of the DNA/RNA base pairs results only with a minimal distortion and hence does not alter the structural configuration of the base pairs. Also enhanced stability of the base pairs is spotted while adding peptidic chain at the purine site rather than the pyrimidine site of the nucleobases. The stability of the complexes is further interpreted by considering the hydrogen bonded N–H stretching frequencies of the respective base pairs. The discrimination in the interaction energies observed in both gas and solution phases are resulted due to the existence of distinct lowest unoccupied molecular orbitals (LUMO) in the solution phase. The reactivity of the base pairs is also analyzed through the in-depth examinations on the highest occupied molecular orbital (HOMO)-LUMO orbitals.
Collapse
Affiliation(s)
- Indumathi Karunakaran
- Department of Physics , PSGR Krishnammal College for Women , Coimbatore 641004, Tamilnadu , India
| | - Abiram Angamuthu
- Department of Physics , Karunya Institute of Technology and Sciences , Coimbatore 641114, Tamilnadu , India
| | - Praveena Gopalan
- Department of Physics , PSGR Krishnammal College for Women , Coimbatore 641004, Tamilnadu , India , Tel.: +91-7812844344
| |
Collapse
|
35
|
Falanga AP, Cerullo V, Marzano M, Feola S, Oliviero G, Piccialli G, Borbone N. Peptide Nucleic Acid-Functionalized Adenoviral Vectors Targeting G-Quadruplexes in the P1 Promoter of Bcl-2 Proto-Oncogene: A New Tool for Gene Modulation in Anticancer Therapy. Bioconjug Chem 2019; 30:572-582. [PMID: 30620563 DOI: 10.1021/acs.bioconjchem.8b00674] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The B-cell lymphoma 2 (Bcl-2) gene encodes for an antiapoptotic protein associated with the onset of many human tumors. Several oligonucleotides (ONs) and ON analogues are under study as potential tools to counteract the Bcl-2 expression. Among these are Peptide Nucleic Acids (PNAs). The absence of charges on PNA backbones allows the formation of PNA/DNA complexes provided with higher stability than the corresponding natural DNA/DNA counterparts. To date, the use of PNAs in antigene or antisense strategies is strongly limited by their inability to efficiently cross the cellular membranes. With the aim of downregulating the expression of Bcl-2, we propose here a novel antigene approach which uses oncolytic adenoviral vectors (OAds) as a new cancer cell-targeted PNA delivery system. The ability of oncolytic Ad5D24 vectors to selectively infect and kill cancer cells was exploited to transfect with high efficiency and selectivity a short cytosine-rich PNA complementary to the longest loop of the main G-quadruplex formed by the 23-base-long bcl2midG4 sequence located 52-30 bp upstream of the P1 promoter of Bcl-2 gene. Physico-chemical and biological investigations confirmed the ability of the PNA-conjugated Ad5D24 vectors to load and transfect their PNA cargo into human A549 and MDA-MB-436 cancer cell lines, as well as the synergistic (OAd+PNA) cytotoxic effect against the same cell lines. This approach holds promise for safer chemotherapy because of reduced toxicity to healthy tissues and organs.
Collapse
Affiliation(s)
- Andrea Patrizia Falanga
- Department of Pharmacy , University of Naples Federico II , Via Domenico Montesano 49 , 80131 Naples , Italy
| | - Vincenzo Cerullo
- Department of Molecular Medicine and Medical Biotechnologies , University of Naples Federico II , Via Sergio Pansini 5 , 80131 Naples , Italy
| | - Maria Marzano
- Department of Pharmacy , University of Naples Federico II , Via Domenico Montesano 49 , 80131 Naples , Italy
| | | | - Giorgia Oliviero
- Department of Molecular Medicine and Medical Biotechnologies , University of Naples Federico II , Via Sergio Pansini 5 , 80131 Naples , Italy
| | - Gennaro Piccialli
- Department of Pharmacy , University of Naples Federico II , Via Domenico Montesano 49 , 80131 Naples , Italy
| | - Nicola Borbone
- Department of Pharmacy , University of Naples Federico II , Via Domenico Montesano 49 , 80131 Naples , Italy
| |
Collapse
|
36
|
Campbell B, Hood T, Shank N. Synthesis of a new disulfide Fmoc monomer for creating biologically susceptible linkages in peptide nucleic acid oligomers. Bioorg Chem 2018; 84:394-398. [PMID: 30551065 DOI: 10.1016/j.bioorg.2018.11.056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/29/2018] [Accepted: 11/30/2018] [Indexed: 11/28/2022]
Abstract
Peptide nucleic acids (PNA) are one of many synthetic mimics of DNA and RNA that have found applications as biological probes, as nano-scaffold components, and in diagnostics. In an effort to use PNA as constructs for cellular delivery we investigated the possibility of installing a biologically susceptible disulfide bond in the backbone of a PNA oligomer. Here we report the synthesis of a new abasic Fmoc monomer containing a disulfide bond that can be incorporated into a PNA oligomer (DS-PNA) using standard solid phase peptide synthesis. The disulfide bond survives cleavage from the resin and DS-PNA forms duplexes with complementary PNA oligomers. Initial studies aimed at determining if the disulfide bond is cleavable to reducing agents while in a duplex are explored using UV thermal analysis and HPLC.
Collapse
Affiliation(s)
- Brandon Campbell
- Department of Chemistry and Biochemistry, Georgia Southern University, Savannah, GA, USA
| | - Taylor Hood
- Department of Chemistry and Biochemistry, Georgia Southern University, Savannah, GA, USA
| | - Nathaniel Shank
- Department of Chemistry and Biochemistry, Georgia Southern University, Savannah, GA, USA.
| |
Collapse
|
37
|
Liu C, Wang J, Huang S, Yu L, Wang Y, Chen H, Wang D. Self-assembled nanoparticles for cellular delivery of peptide nucleic acid using amphiphilic N,N,N-trimethyl-O-alkyl chitosan derivatives. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2018; 29:114. [PMID: 30019119 DOI: 10.1007/s10856-018-6120-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 07/04/2018] [Indexed: 06/08/2023]
Abstract
Peptide nucleic acid (PNA) holds enormous potentials as antisense/antigenic drug due to its specific binding ability and biostability with DNA or RNA. However, the poor cellular delivery is the key obstacle in development of PNA therapy. To overcome this difficulty, we developed self-assembled nanoparticles (NPs) for delivery of PNA to living cells using amphiphilic CS derivatives. A series of N,N,N-trimethyl-O-alkyl chitosans (TMACs) with different lengths of alkyl chains were synthesized. The structures of these synthesized chemicals were characterized with FT-IR and 1H NMR. We found that the TMACs were all able to self-assemble in aqueous condition to form nano-size NPs. These nano-size NPs are spherical shape with a size range of around 100 nm and a zeta potential above +30 mV. PNA was easily encapsulated into chitosan derivative NPs by an ultrasonic method with entrapment efficiency up to 75%. The PNA-loaded TMAC NPs released the drug in a sustained manner in PBS (pH 7.4) at 37 °C. N,N,N-trimethyl-O-cetyl chitosan (TMCC) showed the best in vitro hemocompatibility and cell viability. These TMCC based NPs were able to dramatically increase the cellular uptake of PNA, specifically, 66-fold higher compared to without using these nanoparticles. The results suggest that the designed TMCC NPs might be a promising solution for improving cellular delivery of PNA.
Collapse
Affiliation(s)
- Chundong Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, 400044, Chongqing, China
| | - Jianhua Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, 400044, Chongqing, China.
| | - Sheng Huang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, 400044, Chongqing, China
| | - Lin Yu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, 400044, Chongqing, China
| | - Yan Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, 400044, Chongqing, China
| | - Hang Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, 400044, Chongqing, China
| | - Dong Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, 400044, Chongqing, China
| |
Collapse
|
38
|
Jasiński M, Feig M, Trylska J. Improved Force Fields for Peptide Nucleic Acids with Optimized Backbone Torsion Parameters. J Chem Theory Comput 2018; 14:3603-3620. [PMID: 29791152 DOI: 10.1021/acs.jctc.8b00291] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Peptide nucleic acids are promising nucleic acid analogs for antisense therapies as they can form stable duplex and triplex structures with DNA and RNA. Computational studies of PNA-containing duplexes and triplexes are an important component for guiding their design, yet existing force fields have not been well validated and parametrized with modern computational capabilities. We present updated CHARMM and Amber force fields for PNA that greatly improve the stability of simulated PNA-containing duplexes and triplexes in comparison with experimental structures and allow such systems to be studied on microsecond time scales. The force field modifications focus on reparametrized PNA backbone torsion angles to match high-level quantum mechanics reference energies for a model compound. The microsecond simulations of PNA-PNA, PNA-DNA, PNA-RNA, and PNA-DNA-PNA complexes also allowed a comprehensive analysis of hydration and ion interactions with such systems.
Collapse
Affiliation(s)
- Maciej Jasiński
- Department of Biochemistry and Molecular Biology , Michigan State University , East Lansing , Michigan 48824 , United States.,Centre of New Technologies , University of Warsaw , Warsaw , Poland
| | - Michael Feig
- Department of Biochemistry and Molecular Biology , Michigan State University , East Lansing , Michigan 48824 , United States
| | - Joanna Trylska
- Centre of New Technologies , University of Warsaw , Warsaw , Poland
| |
Collapse
|
39
|
Jayarathna DR, Stout HD, Achim C. Metal Coordination to Ligand-Modified Peptide Nucleic Acid Triplexes. Inorg Chem 2018; 57:6865-6872. [PMID: 29845860 DOI: 10.1021/acs.inorgchem.8b00442] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A challenging goal in nanotechnology is the precise and programmable arrangement of specific elements in nanosystems in the three-dimensional space. The use of ligand-modified nucleic acids represents an accurate and selective tool to achieve this goal when it comes to metal ion organization. The synthesis of peptide nucleic acid (PNA) monomers that contain ligands instead of nucleobases makes possible the creation of metal-mediated alternative base pairs and triplets at specific locations in PNA duplexes and triplexes, respectively. We report the formation of four- and six-coordinate metal complexes between PNA triplexes modified with 2,2'-bipyridine (Bpy) or 8-hydroxyquinoline (Q) ligands and 3d metal ions. These metal complexes function as alternative base triplets or pairs in that they increase the thermal stability of the triplexes if the stability constants of the metal complexes are relatively high. The increase in the triplex melting temperature correlates with the stability constants of the metal complexes with ligand-containing PNA determined by UV-vis titrations. The metal complexes coordinate two or three ligands although three bidentate ligands are in close proximity of each other within a triplex. Metal coordination to ligand-modified PNA triplexes was further studied by electron paramagnetic resonance (EPR) spectroscopy and circular dichrosim (CD) spectroscopy. EPR spectroscopy indicated the formation of a square planar [CuQ2] complex between Cu2+ and Q-containing PNA triplex. Taken together, the spectroscopic results indicate that in the presence of 1 equiv of Fe2+ or Ni2+ the majority, but not all, of the Bpy-containing PNA triplexes contain [MBpy3] complexes, with a minority of them being metal free. We attribute this behavior to a supramolecular chelate effect exerted by the triplex, which favors the formation of tris-ligand complexes, that is balanced by the steric interactions between the metal complex and the adjacent nucleobase triplets, which decrease the stability of the complex and triplex. In contrast, the very high stability of square planar [MQ2] complexes of Cu2+ and Ni2+ leads to formation of bis-ligand complexes instead of tris-ligand complexes with Q3-containing PNA triplexes. The metal-containing PNA triplexes have a terminal l-lysine and adopt a left-handed chiral structure in solution. The handedness of the PNA triplex determines that of the metal complexes formed with the Bpy-containing PNA triplexes.
Collapse
Affiliation(s)
- Dilhara R Jayarathna
- Department of Chemistry , Carnegie Mellon University , 4400 Fifth Avenue , Pittsburgh , Pennsylvania 15213 , United States
| | - Heather D Stout
- Department of Chemistry , Carnegie Mellon University , 4400 Fifth Avenue , Pittsburgh , Pennsylvania 15213 , United States
| | - Catalina Achim
- Department of Chemistry , Carnegie Mellon University , 4400 Fifth Avenue , Pittsburgh , Pennsylvania 15213 , United States
| |
Collapse
|
40
|
Tomassi S, Ieranò C, Mercurio ME, Nigro E, Daniele A, Russo R, Chambery A, Baglivo I, Pedone PV, Rea G, Napolitano M, Scala S, Cosconati S, Marinelli L, Novellino E, Messere A, Di Maro S. Cationic nucleopeptides as novel non-covalent carriers for the delivery of peptide nucleic acid (PNA) and RNA oligomers. Bioorg Med Chem 2018; 26:2539-2550. [PMID: 29656988 DOI: 10.1016/j.bmc.2018.04.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 04/05/2018] [Accepted: 04/06/2018] [Indexed: 12/12/2022]
Abstract
Cationic nucleopeptides belong to a family of synthetic oligomers composed by amino acids and nucleobases. Their capability to recognize nucleic acid targets and to cross cellular membranes provided the basis for considering them as novel non-covalent delivery agents for nucleic acid pharmaceuticals. Herein, starting from a 12-mer nucleopeptide model, the number of cationic residues was modulated in order to obtain new nucleopeptides endowed with high solubility in acqueous medium, acceptable bio-stability, low cytotoxicity and good capability to bind nucleic acid. Two candidates were selected to further investigate their potential as nucleic acid carriers, showing higher efficiency to deliver PNA in comparison with RNA. Noteworthy, this study encourages the development of nucleopeptides as new carriers to extend the known strategies for those nucleic acid analogues, especially PNA, that still remain difficult to drive into the cells.
Collapse
Affiliation(s)
- Stefano Tomassi
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy
| | - Caterina Ieranò
- Molecular Immunology and Immunoregulation, Istituto Nazionale Tumori "Fondazione G. Pascale", IRCCS-Napoli, 80131 Naples, Italy
| | - Maria Emilia Mercurio
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy
| | - Ersilia Nigro
- Department of Cardiothoracic and Respiratory Sciences, University of Campania "Luigi Vanvitelli", Via Leonardo Bianchi c/o Ospedale Monaldi, 80131 Naples, Italy
| | - Aurora Daniele
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy; Ceinge-Biotecnologie Avanzate S.c.a r.l., Via G. Salvatore 486, 80145 Napoli, Italy
| | - Rosita Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy
| | - Angela Chambery
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy
| | - Ilaria Baglivo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy
| | - Paolo Vincenzo Pedone
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy
| | - Giuseppina Rea
- Molecular Immunology and Immunoregulation, Istituto Nazionale Tumori "Fondazione G. Pascale", IRCCS-Napoli, 80131 Naples, Italy
| | - Maria Napolitano
- Molecular Immunology and Immunoregulation, Istituto Nazionale Tumori "Fondazione G. Pascale", IRCCS-Napoli, 80131 Naples, Italy
| | - Stefania Scala
- Molecular Immunology and Immunoregulation, Istituto Nazionale Tumori "Fondazione G. Pascale", IRCCS-Napoli, 80131 Naples, Italy
| | - Sandro Cosconati
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy
| | - Luciana Marinelli
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131 Napoli, Italy
| | - Ettore Novellino
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131 Napoli, Italy
| | - Anna Messere
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy.
| | - Salvatore Di Maro
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy.
| |
Collapse
|
41
|
Abstract
Peptide nucleic acids (PNAs) can bind duplex DNA in a sequence-targeted manner, forming a triplex structure capable of inducing DNA repair and producing specific genome modifications. Since the first description of PNA-mediated gene editing in cell free extracts, PNAs have been used to successfully correct human disease-causing mutations in cell culture and in vivo in preclinical mouse models. Gene correction via PNAs has resulted in clinically-relevant functional protein restoration and disease improvement, with low off-target genome effects, indicating a strong therapeutic potential for PNAs in the treatment or cure of genetic disorders. This review discusses the progress that has been made in developing PNAs as an effective, targeted agent for gene editing, with an emphasis on recent in vivo, nanoparticle-based strategies.
Collapse
|
42
|
Grijalvo S, Alagia A, Jorge AF, Eritja R. Covalent Strategies for Targeting Messenger and Non-Coding RNAs: An Updated Review on siRNA, miRNA and antimiR Conjugates. Genes (Basel) 2018; 9:E74. [PMID: 29415514 PMCID: PMC5852570 DOI: 10.3390/genes9020074] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 01/26/2018] [Accepted: 01/26/2018] [Indexed: 12/11/2022] Open
Abstract
Oligonucleotide-based therapy has become an alternative to classical approaches in the search of novel therapeutics involving gene-related diseases. Several mechanisms have been described in which demonstrate the pivotal role of oligonucleotide for modulating gene expression. Antisense oligonucleotides (ASOs) and more recently siRNAs and miRNAs have made important contributions either in reducing aberrant protein levels by sequence-specific targeting messenger RNAs (mRNAs) or restoring the anomalous levels of non-coding RNAs (ncRNAs) that are involved in a good number of diseases including cancer. In addition to formulation approaches which have contributed to accelerate the presence of ASOs, siRNAs and miRNAs in clinical trials; the covalent linkage between non-viral vectors and nucleic acids has also added value and opened new perspectives to the development of promising nucleic acid-based therapeutics. This review article is mainly focused on the strategies carried out for covalently modifying siRNA and miRNA molecules. Examples involving cell-penetrating peptides (CPPs), carbohydrates, polymers, lipids and aptamers are discussed for the synthesis of siRNA conjugates whereas in the case of miRNA-based drugs, this review article makes special emphasis in using antagomiRs, locked nucleic acids (LNAs), peptide nucleic acids (PNAs) as well as nanoparticles. The biomedical applications of siRNA and miRNA conjugates are also discussed.
Collapse
Affiliation(s)
- Santiago Grijalvo
- Institute of Advanced Chemistry of Catalonia (IQAC, CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain.
- Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, 08034 Barcelona, Spain.
| | - Adele Alagia
- Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, 08034 Barcelona, Spain.
| | - Andreia F Jorge
- Coimbra Chemistry Centre, (CQC), Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal.
| | - Ramon Eritja
- Institute of Advanced Chemistry of Catalonia (IQAC, CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain.
- Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, 08034 Barcelona, Spain.
| |
Collapse
|
43
|
Pansuwan H, Ditmangklo B, Vilaivan C, Jiangchareon B, Pan-In P, Wanichwecharungruang S, Palaga T, Nuanyai T, Suparpprom C, Vilaivan T. Hydrophilic and Cell-Penetrable Pyrrolidinyl Peptide Nucleic Acid via Post-synthetic Modification with Hydrophilic Side Chains. Bioconjug Chem 2017; 28:2284-2292. [PMID: 28704609 DOI: 10.1021/acs.bioconjchem.7b00308] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Peptide nucleic acid (PNA) is a nucleic acid mimic in which the deoxyribose-phosphate was replaced by a peptide-like backbone. The absence of negative charge in the PNA backbone leads to several unique behaviors including a stronger binding and salt independency of the PNA-DNA duplex stability. However, PNA possesses poor aqueous solubility and cannot directly penetrate cell membranes. These are major obstacles that limit in vivo applications of PNA. In previous strategies, the PNA can be conjugated to macromolecular carriers or modified with positively charged side chains such as guanidinium groups to improve the aqueous solubility and cell permeability. In general, a preformed modified PNA monomer was required. In this study, a new approach for post-synthetic modification of PNA backbone with one or more hydrophilic groups was proposed. The PNA used in this study was the conformationally constrained pyrrolidinyl PNA with prolyl-2-aminocyclopentanecarboxylic acid dipeptide backbone (acpcPNA) that shows several advantages over the conventional PNA. The aldehyde modifiers carrying different linkers (alkylene and oligo(ethylene glycol)) and end groups (-OH, -NH2, and guanidinium) were synthesized and attached to the backbone of modified acpcPNA by reductive alkylation. The hybrids between the modified acpcPNAs and DNA exhibited comparable or superior thermal stability with base-pairing specificity similar to those of unmodified acpcPNA. Moreover, the modified apcPNAs also showed the improvement of aqueous solubility (10-20 folds compared to unmodified PNA) and readily penetrate cell membranes without requiring any special delivery agents. This study not only demonstrates the practicality of the proposed post-synthetic modification approach for PNA modification, which could be readily applied to other systems, but also opens up opportunities for using pyrrolidinyl PNA in various applications such as intracellular RNA sensing, specific gene detection, and antisense and antigene therapy.
Collapse
Affiliation(s)
- Haruthai Pansuwan
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Naresuan University , Ta-Po District, Muang, Phitsanulok 65000, Thailand
| | | | | | | | | | | | | | - Thanesuan Nuanyai
- Rajamankala University of Technology Rattanakosin , Wang Klai Kangwon Campus, Huahin, Prachuap Khiri Khan 77110, Thailand
| | - Chaturong Suparpprom
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Naresuan University , Ta-Po District, Muang, Phitsanulok 65000, Thailand
| | | |
Collapse
|
44
|
Wu JC, Meng QC, Ren HM, Wang HT, Wu J, Wang Q. Recent advances in peptide nucleic acid for cancer bionanotechnology. Acta Pharmacol Sin 2017; 38:798-805. [PMID: 28414202 DOI: 10.1038/aps.2017.33] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 02/04/2017] [Indexed: 02/07/2023] Open
Abstract
Peptide nucleic acid (PNA) is an oligomer, in which the phosphate backbone has been replaced by a pseudopeptide backbone that is meant to mimic DNA. Peptide nucleic acids are of the utmost importance in the biomedical field because of their ability to hybridize with neutral nucleic acids and their special chemical and biological properties. In recent years, PNAs have emerged in nanobiotechnology for cancer diagnosis and therapy due to their high affinity and sequence selectivity toward corresponding DNA and RNA. In this review, we summarize the recent progresses that have been made in cancer detection and therapy with PNA biotechnology. In addition, we emphasize nanoparticle PNA-based strategies for the efficient delivery of drugs in anticancer therapies.
Collapse
|
45
|
Pieńko T, Wierzba AJ, Wojciechowska M, Gryko D, Trylska J. Conformational Dynamics of Cyanocobalamin and Its Conjugates with Peptide Nucleic Acids. J Phys Chem B 2017; 121:2968-2979. [PMID: 28301169 DOI: 10.1021/acs.jpcb.7b00649] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Vitamin B12 also called cobalamin (Cbl) is an important enzymatic cofactor taken up by mammalian and also by many bacterial cells. Peptide nucleic acid (PNA) is a synthetic DNA analogue that has the ability to bind in a complementary manner to natural nucleic acids. Provided that PNA is efficiently delivered to cells, it could act as a steric blocker of functional DNA or RNA and regulate gene expression at the level of transcription or translation. Recently, Cbl has been examined as a transporter of various molecules to cells. Also, PNA, if covalently linked with Cbl, can be delivered to bacterial cells, but it is crucial to verify that Cbl does not change the desired PNA biological properties. We have analyzed the structure and conformational dynamics of conjugates of Cbl with a PNA monomer and oligomer. We synthesized a cyanocobalamin derivative with a PNA monomer C connected via the triazole linker and determined its NMR spectra. Using microsecond-long molecular dynamics simulations, we examined the internal dynamics of cyanocobalamin-C, its conjugate with a 14-mer PNA, and free PNA. The results suggest that all compounds acquire rather compact structures but the PNA oligomer conformations vary. For the Cbl-C conjugate the cross-peaks from the ROESY spectrum corroborated with the clusters from molecular dynamics trajectories. Within PNA the dominant interaction is stacking but the stacking bases are not necessarily neighboring in the PNA sequence. More bases stack in free PNA than in PNA of the conjugate, but stacking is less stable in free PNA. PNA in the conjugate is slightly more exposed to solvent. Overall, cyanocobalamin attached to a PNA oligomer increases the flexibility of PNA in a way that could be beneficial for its hybridization with natural nucleic acid oligomers.
Collapse
Affiliation(s)
- Tomasz Pieńko
- Centre of New Technologies, University of Warsaw , S. Banacha 2c, 02-097 Warsaw, Poland.,Department of Drug Chemistry, Faculty of Pharmacy with the Laboratory Medicine Division, Medical University of Warsaw , S. Banacha 1a, 02-097 Warsaw, Poland
| | - Aleksandra J Wierzba
- Institute of Organic Chemistry, Polish Academy of Sciences , M. Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Monika Wojciechowska
- Centre of New Technologies, University of Warsaw , S. Banacha 2c, 02-097 Warsaw, Poland
| | - Dorota Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences , M. Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Joanna Trylska
- Centre of New Technologies, University of Warsaw , S. Banacha 2c, 02-097 Warsaw, Poland
| |
Collapse
|
46
|
Berger O, Gazit E. Molecular self-assembly using peptide nucleic acids. Biopolymers 2017; 108. [PMID: 27486924 DOI: 10.1002/bip.22930] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 07/15/2016] [Accepted: 07/25/2016] [Indexed: 12/17/2022]
Abstract
Peptide nucleic acids (PNAs) are extensively studied for the control of genetic expression since their design in the 1990s. However, the application of PNAs in nanotechnology is much more recent. PNAs share the specific base-pair recognition characteristic of DNA together with material-like properties of polyamides, both proteins and synthetic polymers, such as Kevlar and Nylon. The first application of PNA was in the form of PNA-amphiphiles, resulting in the formation of either lipid integrated structures, hydrogels or fibrillary assemblies. Heteroduplex DNA-PNA assemblies allow the formation of hybrid structures with higher stability as compared with pure DNA. A systematic screen for minimal PNA building blocks resulted in the identification of guanine-containing di-PNA assemblies and protected guanine-PNA monomer spheres showing unique optical properties. Finally, the co-assembly of PNA with thymine-like three-faced cyanuric acid allowed the assembly of poly-adenine PNA into fibers. In summary, we believe that PNAs represent a new and important family of building blocks which converges the advantages of both DNA- and peptide-nanotechnologies.
Collapse
Affiliation(s)
- Or Berger
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel.,Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, 69978, Israel
| |
Collapse
|
47
|
Hnedzko D, McGee DW, Karamitas YA, Rozners E. Sequence-selective recognition of double-stranded RNA and enhanced cellular uptake of cationic nucleobase and backbone-modified peptide nucleic acids. RNA (NEW YORK, N.Y.) 2017; 23:58-69. [PMID: 27742909 PMCID: PMC5159649 DOI: 10.1261/rna.058362.116] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 10/08/2016] [Indexed: 05/07/2023]
Abstract
Sequence-selective recognition of complex RNAs in live cells could find broad applications in biology, biomedical research, and biotechnology. However, specific recognition of structured RNA is challenging, and generally applicable and effective methods are lacking. Recently, we found that peptide nucleic acids (PNAs) were unusually well-suited ligands for recognition of double-stranded RNAs. Herein, we report that 2-aminopyridine (M) modified PNAs and their conjugates with lysine and arginine tripeptides form strong (Ka = 9.4 to 17 × 107 M-1) and sequence-selective triple helices with RNA hairpins at physiological pH and salt concentration. The affinity of PNA-peptide conjugates for the matched RNA hairpins was unusually high compared to the much lower affinity for DNA hairpins of the same sequence (Ka = 0.05 to 1.1 × 107 M-1). The binding of double-stranded RNA by M-modified PNA-peptide conjugates was a relatively fast process (kon = 2.9 × 104 M-1 sec-1) compared to the notoriously slow triple helix formation by oligodeoxynucleotides (kon ∼ 103 M-1 sec-1). M-modified PNA-peptide conjugates were not cytotoxic and were efficiently delivered in the cytosol of HEK293 cells at 10 µM. Surprisingly, M-modified PNAs without peptide conjugation were also taken up by HEK293 cells, which, to the best of our knowledge, is the first example of heterocyclic base modification that enhances the cellular uptake of PNA. Our results suggest that M-modified PNA-peptide conjugates are promising probes for sequence-selective recognition of double-stranded RNA in live cells and other biological systems.
Collapse
Affiliation(s)
- Dziyana Hnedzko
- Department of Chemistry, Binghamton University, State University of New York, Binghamton, New York 13902, USA
| | - Dennis W McGee
- Department of Biological Sciences, Binghamton University, State University of New York, Binghamton, New York 13902, USA
| | - Yannis A Karamitas
- Department of Chemistry, Binghamton University, State University of New York, Binghamton, New York 13902, USA
| | - Eriks Rozners
- Department of Chemistry, Binghamton University, State University of New York, Binghamton, New York 13902, USA
| |
Collapse
|
48
|
Wang X, Milne M, Martínez F, Scholl TJ, Hudson RHE. Synthesis of a poly(Gd( iii)-DOTA)–PNA conjugate as a potential MRI contrast agent via post-synthetic click chemistry functionalization. RSC Adv 2017. [DOI: 10.1039/c7ra09040d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
An operationally easy method provides poly(Gd3+chelate) PNA conjugates that form comb-like complexes with poly(rA) and demonstrate increased relaxivity.
Collapse
Affiliation(s)
- Xiaoxiao Wang
- Department of Chemistry
- The University of Western Ontario
- London
- Canada
| | - Mark Milne
- Department of Chemistry
- The University of Western Ontario
- London
- Canada
| | - Francisco Martínez
- Department of Medical Biophysics
- The Robarts Research Institute
- The University of Western Ontario
- London
- Canada
| | - Timothy J. Scholl
- Department of Medical Biophysics
- The Robarts Research Institute
- The University of Western Ontario
- London
- Canada
| | | |
Collapse
|
49
|
Manicardi A, Bertucci A, Rozzi A, Corradini R. A Bifunctional Monomer for On-Resin Synthesis of Polyfunctional PNAs and Tailored Induced-Fit Switching Probes. Org Lett 2016; 18:5452-5455. [PMID: 27768299 DOI: 10.1021/acs.orglett.6b02363] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A synthetic strategy for the production of polyfunctional PNAs bearing substituent groups both on the nucleobase and on the backbone C5 carbon of the same monomer is described; this is based on the use of a tris-orthogonally protected monomer and subsequent solid-phase selective functionalization. This strategy can be used for synthesizing PNAs that are not readily accessible by use of preformed modified monomers. As an example, a PNA-based probe that undergoes a switch in its fluorescence emission upon hybridization with a target oligonucleotide, induced by tailor-made movement of two pyrene substituent groups, was synthesized.
Collapse
Affiliation(s)
- Alex Manicardi
- Department of Chemistry, University of Parma , Parco Area delle Scienze 17/A, Parma 43123, Italy
| | - Alessandro Bertucci
- Department of Chemistry, University of Parma , Parco Area delle Scienze 17/A, Parma 43123, Italy
| | - Andrea Rozzi
- Department of Chemistry, University of Parma , Parco Area delle Scienze 17/A, Parma 43123, Italy
| | - Roberto Corradini
- Department of Chemistry, University of Parma , Parco Area delle Scienze 17/A, Parma 43123, Italy.,I.N.B.B. Consortium , Viale delle Medaglie D'Oro, 305, 00136 Roma, Italy
| |
Collapse
|
50
|
Beavers KR, Werfel TA, Shen T, Kavanaugh TE, Kilchrist KV, Mares JW, Fain JS, Wiese CB, Vickers KC, Weiss SM, Duvall CL. Porous Silicon and Polymer Nanocomposites for Delivery of Peptide Nucleic Acids as Anti-MicroRNA Therapies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:7984-7992. [PMID: 27383910 PMCID: PMC5152671 DOI: 10.1002/adma.201601646] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/01/2016] [Indexed: 05/10/2023]
Abstract
Self-assembled polymer/porous silicon nanocomposites overcome intracellular and systemic barriers for in vivo application of peptide nucleic acid (PNA) anti-microRNA therapeutics. Porous silicon (PSi) is leveraged as a biodegradable scaffold with high drug-cargo-loading capacity. Functionalization with a diblock polymer improves PSi nanoparticle colloidal stability, in vivo pharmacokinetics, and intracellular bioavailability through endosomal escape, enabling PNA to inhibit miR-122 in vivo.
Collapse
Affiliation(s)
- Kelsey R Beavers
- Interdisciplinary Graduate Program in Materials Science, Vanderbilt University, Nashville, TN, 37235, USA
| | - Thomas A Werfel
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Tianwei Shen
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Taylor E Kavanaugh
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Kameron V Kilchrist
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Jeremy W Mares
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, 37235, USA
| | - Joshua S Fain
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, 37235, USA
| | - Carrie B Wiese
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN, 37235, USA
| | - Kasey C Vickers
- Department of Medicine/Division of Cardiovascular Medicine, Vanderbilt University, Nashville, TN, 37235, USA
| | - Sharon M Weiss
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, 37235, USA
| | - Craig L Duvall
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA.
| |
Collapse
|